JP2002363632A - Method for producing low n steel - Google Patents

Method for producing low n steel

Info

Publication number
JP2002363632A
JP2002363632A JP2001168636A JP2001168636A JP2002363632A JP 2002363632 A JP2002363632 A JP 2002363632A JP 2001168636 A JP2001168636 A JP 2001168636A JP 2001168636 A JP2001168636 A JP 2001168636A JP 2002363632 A JP2002363632 A JP 2002363632A
Authority
JP
Japan
Prior art keywords
steel
molten metal
furnace
electric furnace
carbon molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001168636A
Other languages
Japanese (ja)
Inventor
Hajime Amano
肇 天野
Tetsuhiro Nagatani
哲洋 永谷
Atsushi Hattori
篤 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001168636A priority Critical patent/JP2002363632A/en
Publication of JP2002363632A publication Critical patent/JP2002363632A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To inexpensively suppress the cost of electric power as much as possibly on steel making using an electric furnace, and to produce low N steel which has not been produced heretofore. SOLUTION: An iron raw material and a carbonaceous material are charged to an electric furnace 10, and are dissolved to produce a high carbon molten metal 12 having a C content of >=1 wt.%. Further, the produced high carbon molten metal 12 is temporarily stored in a storage furnace 16, and the high carbon molten metal 12 from the storage furnace 16 and scrap are charged to an electric furnace 18, and they are mixed and dissolved to make steel. Further, on the steel making, the feed of oxygen is performed to decarburize the molten steel, and, in accordance with the exhaust of gaseous CO generated on the decarburization, N in the steel is denitrified as gaseous N2 , so that the content of N in the molten steel is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は低N鋼の製造方法
に関する。
[0001] The present invention relates to a method for producing low N steel.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
溶鋼製造のための方法として高炉に鉄鉱石とコークスと
を装入してこれを高温で溶融還元し、得られたC含有量
の高い溶銑を転炉に移して、そこで酸素の吹込みにより
脱炭を行って製鋼し溶鋼を得る、いわゆる高炉−転炉プ
ロセスといわれるものと、電気炉を用いてスクラップを
溶解し製鋼する電気炉プロセスといわれるものが広く実
施されている。ここで電気炉プロセスではアーク炉で代
表される電気炉に廃棄自動車等から得られるスクラップ
と生石灰等の造滓材を装入し、電気炉に電力を投入して
スクラップを溶解する。
2. Description of the Related Art
As a method for producing molten steel, iron ore and coke are charged into a blast furnace, which are smelted and reduced at a high temperature, and the resulting hot metal having a high C content is transferred to a converter, where it is blown with oxygen to remove it. A so-called blast furnace-converter process in which steel is produced by making charcoal to obtain molten steel, and an electric furnace process in which scrap is melted and made using an electric furnace are widely used. Here, in the electric furnace process, scrap obtained from a scrap car or the like and slag making material such as quicklime are charged into an electric furnace represented by an arc furnace, and electric power is supplied to the electric furnace to melt the scrap.

【0003】前者の高炉−転炉プロセスの場合、出発原
料(鉄原料)として鉄鉱石を用いるために、溶銑製造に
際して鉄鉱石還元のために多大なエネルギーを必要とす
る問題に加えて、設備が大掛りであって設備費,維持
費,ランニングコストが高いといった問題がある。また
その他にこの方法の場合、高炉操業が連続操業であって
溶銑が高炉から連続出銑され、従って必要なときに必要
な分だけの溶銑製造及びこれを用いた製鋼を行うことが
実質的にできないといった問題があった。
[0003] In the former blast furnace-converter process, since iron ore is used as a starting material (iron raw material), in addition to the problem that a large amount of energy is required for iron ore reduction in hot metal production, equipment is required. There is a problem that the cost is large and the equipment cost, maintenance cost, and running cost are high. In addition, in the case of this method, the blast furnace operation is a continuous operation, and the hot metal is continuously output from the blast furnace.Therefore, it is substantially necessary to produce only the required amount of hot metal and make steel using it when necessary. There was a problem that it could not be done.

【0004】これに対して後者の電気炉プロセスの場
合、鉄原料として一般にスクラップを用いることから、
鉄鉱石を用いた場合に比べて溶解に際し還元熱分だけエ
ネルギー使用が少なくて済み、また設備も比較的簡単で
済むことから設備費,維持費,ランニングコストが安い
といった利点の外、基本的にバッチ生産であるために景
気の変動等に応じて、必要なときに必要な分だけ溶鋼製
造を行うことができるといった利点がある。
On the other hand, in the latter electric furnace process, scrap is generally used as an iron raw material.
Compared to the case of using iron ore, energy consumption is reduced by the amount of reduction heat for melting, and equipment is relatively simple. Therefore, it has the advantages of low equipment cost, maintenance cost, running cost, and basically Since it is a batch production, there is an advantage that the required amount of molten steel can be produced when necessary according to economic fluctuations.

【0005】この電気炉製鋼操業においては、鋼の製造
コストに占める電力コストが大きな比率を占めている。
この場合、電気炉操業を電力コストの安い夜間に行うこ
とで必要な電力コストを低減することが可能であり、実
際にそうしたことが行われている。しかしながら電気炉
操業を常に夜間にだけ行うことも困難であって、電力コ
ストの高い昼間にも操業を行わざるを得ないのが実情で
ある。
[0005] In this electric furnace steelmaking operation, the electric power cost accounts for a large proportion of the steel production cost.
In this case, it is possible to reduce the required power cost by performing the electric furnace operation at night when the power cost is low, and this is actually performed. However, it is difficult to always operate the electric furnace only at night, and the fact is that the electric furnace must be operated during the daytime when power costs are high.

【0006】この他に電気炉製鋼においては、従来次の
ような問題が生じていた。電気炉製鋼では不純物成分と
してのNが溶綱中に多く入って来てしまい、しかも電気
炉製鋼ではNを除去することが困難であって、そのため
に電気炉で製造した鋼にはNが比較的多く含まれてしま
うといった問題が生じていた。
[0006] In addition, the following problems have conventionally occurred in electric furnace steelmaking. In electric furnace steelmaking, N as an impurity component enters a molten steel in a large amount, and it is difficult to remove N in electric furnace steelmaking. Therefore, N is compared with steel produced in an electric furnace. There was a problem that many targets were included.

【0007】[0007]

【課題を解決するための手段】本発明の低窒化鋼の製造
方法はこのような課題を解決するために案出されたもの
である。而して請求項1のものは、電気炉に鉄原料と炭
材とを装入して溶解し、C含有量が1重量%以上の高炭
素溶湯を製造するとともに、該製造した高炭素溶湯を一
旦貯留炉に貯留し、該貯留炉からの高炭素溶湯とスクラ
ップとを製鋼用の電気炉に装入し混合溶解して製鋼する
ようになし、且つ該製鋼に際し酸素供給を行って溶鋼の
脱炭を行い、該脱炭の際に発生するCOガスの系外への
排出に伴い溶鋼を脱窒させ、該溶鋼を低N化することを
特徴とする。
SUMMARY OF THE INVENTION The method for producing a low-nitride steel of the present invention has been devised to solve such a problem. According to the first aspect of the present invention, an iron furnace and a carbon material are charged and melted in an electric furnace to produce a high-carbon molten metal having a C content of 1% by weight or more, and the produced high-carbon molten metal is produced. Is temporarily stored in a storage furnace, the high-carbon molten metal and scrap from the storage furnace are charged into an electric furnace for steelmaking, mixed and melted to make steel, and oxygen is supplied during the steelmaking to supply molten steel. It is characterized by performing decarburization, denitrifying molten steel with the discharge of CO gas generated during the decarburization to the outside of the system, and reducing the N of the molten steel.

【0008】請求項2のものは、請求項1において、前
記高炭素溶湯におけるC含有量を2%以上となし、且つ
前記電気炉における製鋼に際して該高炭素溶湯を、前記
スクラップを加えた合量に対して30重量%以上の割合
で装入することを特徴とする。
In a second aspect of the present invention, in the first aspect, the C content in the high-carbon molten metal is set to 2% or more, and the high-carbon molten metal is mixed with the scrap in steel making in the electric furnace. Characterized by being charged at a rate of 30% by weight or more with respect to

【0009】請求項3のものは、請求項1,2の何れか
において、前記低N鋼がN:0.0080重量%以下のもので
あることを特徴とする。
A third aspect of the present invention is characterized in that, in any one of the first and second aspects, the low N steel is N: 0.0080% by weight or less.

【0010】[0010]

【作用及び発明の効果】以上のように本発明は、電気炉
に鉄原料とブリーズや石炭等の炭材とを装入してC含有
量が1%(1重量%:以下同)以上の高炭素溶湯を製造
してこれを一旦貯留炉に貯留しておき、そして貯留炉か
ら出湯した高炭素溶湯とスクラップとを製鋼用の電気炉
に装入して混合溶解し、製鋼するようになしたものであ
る。
As described above, according to the present invention, an electric furnace is charged with an iron raw material and a carbon material such as breeze or coal and has a C content of 1% or more (1% by weight: the same applies hereinafter). A high-carbon molten metal is manufactured, temporarily stored in a storage furnace, and the high-carbon molten metal and scrap discharged from the storage furnace are charged into an electric furnace for steelmaking, mixed, melted, and made into steel. It was done.

【0011】本発明では、電力コストの安い夜間に電気
炉による高炭素溶湯の製造を行うことができ、そしてこ
れを貯留炉内に貯留しておくことで、電力コストの高い
昼間にこの高炭素溶湯を用いて電気炉での製鋼を行うこ
とができる。
According to the present invention, a high-carbon molten metal can be produced by an electric furnace at night when the electric power cost is low. Steelmaking in an electric furnace can be performed using molten metal.

【0012】この場合、電気炉で製鋼を行うに際して高
炭素溶湯とスクラップとを混合溶解することから、その
高炭素溶湯の持つ潜熱、具体的には高炭素溶湯の有する
熱エネルギー及び脱炭時におけるCOガス発生の際の反
応熱を有効に活用することができ、以って電気炉での製
鋼を少ないエネルギーにて行うことができる。
In this case, since the high-carbon molten metal and the scrap are mixed and melted at the time of steel making in the electric furnace, the latent heat of the high-carbon molten metal, specifically, the heat energy of the high-carbon molten metal and the heat energy during decarburization are obtained. The heat of reaction at the time of CO gas generation can be effectively utilized, so that steel making in an electric furnace can be performed with a small amount of energy.

【0013】また一方、高炭素溶湯は電力コストの安い
夜間に製造することができるため、溶鋼製造のための必
要な電力コストを安価に抑えることができる。このよう
なことが可能であるのは、本発明において電気炉を用い
た高炭素溶湯の製造,貯留炉による高炭素溶湯の貯留,
高炭素溶湯を用いた電気炉での製鋼の各プロセスを経て
鋼の製造を行うことによるものである。
On the other hand, the high-carbon molten metal can be produced at night when the electric power cost is low, so that the electric power cost required for producing the molten steel can be reduced. This is possible because, in the present invention, the production of high carbon molten metal using an electric furnace, the storage of high carbon molten metal using a storage furnace,
This is because steel is manufactured through each process of steel making in an electric furnace using a high-carbon molten metal.

【0014】ここで高炭素溶湯としてC含有量を1%以
上と規定しているのは次の理由、即ちC含有量が1%未
満では電気炉から高炭素溶湯を貯留炉に移してそこで一
定時間貯留するといったことが実質的にできないことに
よる。
Here, the reason why the C content is defined as 1% or more as a high-carbon molten metal is as follows: when the C content is less than 1%, the high-carbon molten metal is transferred from the electric furnace to the storage furnace and fixed there. This is because it is virtually impossible to save time.

【0015】高炭素溶湯の融点はそこに含有されるCの
量によって変化し、C含有量が高い程高炭素溶湯の融点
が低くなって固まり難くなる。そしてこれに応じて貯留
炉での貯留可能な時間が長くなる。この場合の貯留可能
な時間(電気炉から貯留炉へ或いは貯留炉から電気炉へ
の移し替え等のハンドリング時間を含む貯留時間)は1
時間以上が必要であり、而して本発明者等の研究による
とC含有量1%以上で1時間以上の貯留が可能であると
の知見を得た。本発明においてC含有量を1%以上と規
定しているのはこのような理由による。
The melting point of the high-carbon molten metal varies depending on the amount of C contained therein, and the higher the C content, the lower the melting point of the high-carbon molten metal and the harder it becomes. And the time which can be stored in a storage furnace becomes long according to this. In this case, the storage time (storage time including the handling time such as transfer from the electric furnace to the storage furnace or from the storage furnace to the electric furnace) is 1
It takes more than an hour, and according to the study of the present inventors, it has been found that a storage of 1 hour or more is possible with a C content of 1% or more. It is for this reason that the C content is defined as 1% or more in the present invention.

【0016】本発明では高炭素溶湯を電気炉で溶解し製
造することから高炭素溶湯の温度制御が容易であるこ
と、具体的には高炭素溶湯を高温度で出湯することが可
能である利点がある。例えば高炭素溶湯である溶銑を高
炉から出銑する場合、その出銑温度は1300〜135
0℃程度であるが、本発明に従って電気炉から高炭素溶
湯を出湯する際、これを1500℃程度の高温度で出湯
することが可能である。而してそのような高い温度で高
炭素溶湯を出湯することで、その後の貯留炉での貯留可
能な時間を長くすることができる。
In the present invention, since the high-carbon molten metal is melted and manufactured in an electric furnace, the temperature control of the high-carbon molten metal is easy, and more specifically, the high-carbon molten metal can be discharged at a high temperature. There is. For example, when tapping hot metal that is a high-carbon molten metal from a blast furnace, the tapping temperature is 1300 to 135.
Although it is about 0 ° C., when the high-carbon molten metal is discharged from the electric furnace according to the present invention, it can be discharged at a high temperature of about 1500 ° C. By discharging the high-carbon molten metal at such a high temperature, the time that can be stored in the subsequent storage furnace can be lengthened.

【0017】本発明は、電気炉を用いた高炭素溶湯の製
造,貯留炉による貯留,高炭素溶湯を用いた電気炉での
製鋼の各プロセスによる溶鋼の製造時期,製造量等を景
気の変動等に応じて容易にコントロールできる特長があ
る。
The present invention relates to the production of high-carbon molten metal using an electric furnace, storage in a storage furnace, and the production time and production amount of molten steel in each process of steelmaking in an electric furnace using high-carbon molten metal. There is a feature that can be easily controlled according to the conditions.

【0018】本発明では、電気炉を用いた製鋼に際し酸
素供給を行って溶綱の脱炭を行い、その脱炭の際に発生
するCOガスの系外への排出に伴い鋼中のNをNガス
として脱窒させ、溶綱を低N化することを特徴としてい
る。
In the present invention, oxygen is supplied during steel making using an electric furnace to decarburize the molten steel, and N in the steel is reduced by discharging CO gas generated during the decarburization to the outside of the system. It is characterized in that it is denitrified as N 2 gas to reduce the N content of the molten steel.

【0019】本発明では、電気炉において高炭素溶湯と
スクラップとを混合溶解し、製鋼を行うことから溶鋼中
に多くのCが含まれており、そこで酸素供給を行ってこ
れを脱炭することにより溶綱中のCを必要レベルまで低
減するとともに、併せて溶綱中のNを系外に排出するこ
とができ、これによってN含有量の少ない低N鋼を得る
ことができる。
In the present invention, high carbon molten metal and scrap are mixed and melted in an electric furnace to produce steel, so that a large amount of C is contained in the molten steel, and oxygen is supplied there to decarbonize the steel. As a result, C in the molten steel can be reduced to a required level, and at the same time, N in the molten steel can be discharged out of the system, whereby a low-N steel with a small N content can be obtained.

【0020】即ち従来電気炉製鋼では得られなかったN
レベルの低い低N鋼を製造することが可能となる。ここ
で鋼中からのNガスの系外への排出量は発生するCO
ガスの量によって左右され、COガスの発生量が多いほ
ど脱窒量も多くなる。即ち鋼がそれだけ低N化される。
That is, N which cannot be obtained by conventional electric furnace steelmaking
It becomes possible to produce low-level low-N steel. Here, the amount of N 2 gas discharged from the steel to the outside of the system is the amount of CO
It depends on the amount of gas, and the greater the amount of CO gas generated, the greater the amount of denitrification. That is, the N of the steel is reduced accordingly.

【0021】この場合のCOガスの発生量は、高炭素溶
湯に含有されるC量及び製鋼用の電気炉への高炭素溶湯
の装入量によって定まってくる。この意味において本発
明では高炭素溶湯のC量を2%以上としておくこと、更
に製鋼用の電気炉への装入量をスクラップと併せた合量
に対し、30%以上となしておくことが望ましい(請求
項2)。
The amount of CO gas generated in this case is determined by the amount of C contained in the high-carbon molten metal and the amount of the high-carbon molten metal charged into the electric furnace for steelmaking. In this sense, in the present invention, the C content of the high-carbon molten metal is set to 2% or more, and the charging amount to the electric furnace for steelmaking is set to 30% or more with respect to the total amount including the scrap. Desirable (claim 2).

【0022】更にまた本発明は、N含有量が0.0080%以
下の低N鋼の製造に適用して特に好適なものである(請
求項3)。
Furthermore, the present invention is particularly suitable when applied to the production of low N steel having an N content of 0.0080% or less (claim 3).

【0023】[0023]

【実施の形態】次に本発明の実施の形態を図面に基づい
て以下に説明する。図1に示すアーク炉(電気炉)10
に鉄原料としてのスクラップと炭材(ブリーズ,石炭
等)とを装入してこれらをアーク溶解し、C含有量が1
%以上(望ましくは2%以上)の高炭素溶湯12を製造
する。このアーク炉10による高炭素溶湯12の製造
は、電力コストの安い夜間に行うことができる。
Embodiments of the present invention will be described below with reference to the drawings. Arc furnace (electric furnace) 10 shown in FIG.
A scrap as an iron raw material and a carbonaceous material (breeze, coal, etc.) were charged into the furnace, and these were arc-melted to obtain a C content of 1%.
% (Preferably 2% or more) of the high-carbon molten metal 12 is produced. The production of the high-carbon molten metal 12 by the arc furnace 10 can be performed at night when the power cost is low.

【0024】次にこのようにして得た高炭素溶湯12を
取鍋14に出湯し、図1(II)に示しているようにこれ
を貯留炉16、望ましくはアーク炉10よりも大容量の
貯留炉16内に移し替えてそこに貯留する。この貯留炉
16としては、例えばアーク炉10からの高炭素溶湯1
2を8チャージ分貯留可能な容量のものを用いることが
できる。
Next, the high-carbon molten metal 12 thus obtained is poured into a ladle 14 and, as shown in FIG. 1 (II), is supplied to a storage furnace 16, preferably a larger capacity than the arc furnace 10. It is transferred into the storage furnace 16 and stored there. As the storage furnace 16, for example, the high-carbon molten metal 1 from the arc furnace 10 is used.
It is possible to use one having a capacity capable of storing 2 to 8 charges.

【0025】この貯留炉16による貯留に際して、必要
に応じこれをバーナ等にて保温しておくこともできる。
ここで保温とは、貯留炉16からの放熱分を外部からの
エネルギーを加えることによって補填する操作である。
During storage by the storage furnace 16, the temperature of the storage furnace 16 can be maintained by a burner or the like, if necessary.
Here, the heat retention is an operation of supplementing the heat radiation from the storage furnace 16 by adding external energy.

【0026】上記高炭素溶湯12の製造に際し、炉とし
てアーク炉10を用いていることから、その出湯温度を
容易に制御することができる。具体的にはその出湯温度
を1500℃程度の高温度とすることができる。このよ
うに出湯温度を高温度とすることによって、次の貯留炉
16での貯留可能な時間を長くすることができる。
Since the arc furnace 10 is used as a furnace in the production of the high carbon molten metal 12, the tapping temperature can be easily controlled. Specifically, the tapping temperature can be as high as about 1500 ° C. By setting the tapping temperature to a high temperature in this way, the time that can be stored in the next storage furnace 16 can be lengthened.

【0027】この貯留炉16による高炭素溶湯12の貯
留に際しては、アーク炉10からの高炭素溶湯12を複
数チャージ分同時に貯留しておく。そしてその一部を貯
留炉16から出湯し、取鍋22を介してこれを図1(II
I)に示しているように別置きのアーク炉(電気炉)1
8内にスクラップ20とともに装入して混合溶解を行
う。その際、スクラップ20の溶解が30%未満の段階
で取鍋22により受けた貯留炉16からの高炭素溶湯1
2をアーク炉18内に装入するのが望ましい。また高炭
素溶湯12の装入量としては、スクラップ20と合せた
合量を基準として30%以上装入するのが望ましい。
When storing the high-carbon molten metal 12 in the storage furnace 16, the high-carbon molten metal 12 from the arc furnace 10 is simultaneously stored for a plurality of charges. Then, a part of the hot water is taken out of the storage furnace 16, and the hot water is supplied through a ladle 22 to the hot water in FIG.
A separate arc furnace (electric furnace) 1 as shown in I)
8 and the scrap 20 are charged together to perform mixing and dissolution. At this time, the high carbon molten metal 1 from the storage furnace 16 received by the ladle 22 at a stage where the melting of the scrap 20 is less than 30%
2 is preferably charged into the arc furnace 18. The amount of the high-carbon molten metal 12 to be charged is desirably 30% or more based on the total amount combined with the scrap 20.

【0028】このアーク炉18での混合溶解では、投入
された電力によりアーク熱を発生させ、これにより混合
溶解を行う。その混合溶解の適宜の時点で、図2に示す
ようにランスパイプ24を鋼浴中に深く挿入し、そのラ
ンスパイプ24を通じて鋼浴中に酸素を吹き込み、溶湯
の脱炭を促進する。
In the mixing and melting in the arc furnace 18, arc heat is generated by the supplied electric power, and the mixing and melting are performed. At an appropriate point in the mixing and dissolution, as shown in FIG. 2, a lance pipe 24 is inserted deep into the steel bath, and oxygen is blown into the steel bath through the lance pipe 24 to promote decarburization of the molten metal.

【0029】このアーク炉18による混合溶解即ち製鋼
プロセスは、通常電力コストの高い昼間に行うが、この
製鋼プロセスでは高炭素溶湯12がそれ自身熱エネルギ
ーを多量に有しているために、更にはまた脱炭に際して
発生するCOの反応熱を有効に利用することができるた
め、外部から加えるべきエネルギーは少なくて済む。即
ち少ないエネルギーで混合溶解、製鋼を行うことができ
る。
The mixing and melting by the arc furnace 18, that is, the steel making process, is usually performed during the daytime when the electric power cost is high. In the steel making process, however, the high carbon molten metal 12 itself has a large amount of thermal energy. In addition, since the heat of reaction of CO generated during decarburization can be effectively used, less external energy is required. That is, mixed melting and steel making can be performed with little energy.

【0030】図3は炉内貯留量700tの貯留炉16に
対して約80t容量のアーク炉10からの高炭素溶湯1
2を下記条件の下で貯留(保温なし)したときの貯留可
能時間をC含有量との関係で表したものである。
FIG. 3 shows a high carbon molten metal 1 from an arc furnace 10 having a capacity of about 80 t with respect to a storage furnace 16 having a furnace storage amount of 700 t.
2 is a graph showing the storable time when stored (under no heat) under the following conditions in relation to the C content.

【0031】<条件> 貯留炉形状:φ7m×長さ9m 耐火物厚さ:880mm 炉放散熱:15.1Gcal/day 炉内投入溶鋼温度:1500℃ 炉内貯留量:700t 比熱:0.2Mcal/t・℃<Conditions> Storage furnace shape: φ7 m × length 9 m Refractory thickness: 880 mm Furnace heat dissipation: 15.1 Gcal / day Temperature of molten steel charged in furnace: 1500 ° C. Storage amount in furnace: 700 t Specific heat: 0.2 Mcal / t ・ ℃

【0032】ここで高炭素溶湯12はC含有量とともに
融点が変化し、C含有量が多くなる程融点が低くなって
固まり難くなる。この関係を以下に示した。
Here, the melting point of the high-carbon molten metal 12 changes with the C content. The higher the C content, the lower the melting point and the harder it becomes. This relationship is shown below.

【0033】 [0033]

【0034】以上の結果は、貯留前後の必要ハンドリン
グ時間も考慮すると高炭素溶湯12におけるC含有量を
1%以上としておくことで、実質的に有効時間だけ貯留
炉16に貯留しておくことが可能であることを示してい
る。
The above results show that, considering the required handling time before and after the storage, the C content in the high-carbon molten metal 12 is set to 1% or more, so that the molten metal can be stored in the storage furnace 16 for a substantially effective time. Indicates that it is possible.

【0035】上記のようにアーク炉18において高炭素
溶湯12とスクラップ20とを混合溶解し製鋼するに際
して、ランスパイプ24を通じて酸素を供給し溶鋼のC
と反応させて脱炭することで、溶鋼中のNが併せて系外
にNガスとして排出される。即ち溶鋼からの脱窒が行
われる。その際の脱窒量は発生するCOガスの量によっ
て左右される。以下はこの点を実際の製鋼実績によって
示したものである。
As described above, when the high-carbon molten metal 12 and the scrap 20 are mixed and melted in the arc furnace 18 to produce steel, oxygen is supplied through the lance pipe 24 to supply the molten steel C.
And decarburization, the N in the molten steel is also discharged out of the system as N 2 gas. That is, denitrification from molten steel is performed. The amount of denitrification at that time depends on the amount of generated CO gas. The following shows this point based on actual steelmaking results.

【0036】ここではアーク炉10にてC:4%の高炭
素溶湯を製造してこれを貯留炉16に貯留し、そしてこ
の貯留炉16からの高炭素溶湯をスクラップと合せた合
量に対し40%,70%の割合で製鋼用のアーク炉18
に装入して混合溶解し、その際にランスパイプ24を通
じてOの吹精を行って脱炭と脱窒とを行わせ、低N鋼
を製造した。
Here, a high-carbon molten metal of C: 4% is produced in the arc furnace 10 and stored in the storage furnace 16, and the high-carbon molten metal from the storage furnace 16 is added to the total amount of the molten metal and the scrap. Arc furnace 18 for steel making at a rate of 40%, 70%
, And mixed and dissolved. At that time, O 2 was blown through a lance pipe 24 to perform decarburization and denitrification, thereby producing a low-N steel.

【0037】その際の操業条件及び発生COガス量と鋼
中のN量との関係が、従来プロセスとの比較において表
1及び図4に示してある。但し図4において発生COガ
ス量は電気炉に装入した高炭素溶湯からの発生分のみを
示している。尚ここで従来プロセスとは単にアーク炉1
8でスクラップを造滓剤とともに溶解し製鋼するもので
ある。但し図4において、発生COガス量は電気炉に装
入した高炭素溶湯からの発生分のみを示している。
Table 1 and FIG. 4 show the operating conditions and the relationship between the amount of generated CO gas and the amount of N in the steel in comparison with the conventional process. However, in FIG. 4, the generated CO gas amount shows only the amount generated from the high carbon molten metal charged in the electric furnace. Here, the conventional process simply means the arc furnace 1
In step 8, the scrap is melted together with the slag-making agent to produce steel. However, in FIG. 4, the generated CO gas amount shows only the amount generated from the high-carbon molten metal charged in the electric furnace.

【0038】[0038]

【表1】 [Table 1]

【0039】以上に示しているように、高炭素溶湯とス
クラップとを電気炉で混合溶解し製鋼することで、その
際に多量のCOガスが発生すること、またこれに伴って
鋼中のNが低減すること、特に高炭素溶湯を70%と多
く配合したものについては鋼中のNが0.004%以下
にまで低減しており、従来の電気炉製鋼では得られなか
った低N鋼が得られることが分る。
As described above, by mixing and melting a high-carbon molten metal and scrap in an electric furnace to produce steel, a large amount of CO gas is generated at that time, and accordingly, N In particular, when the high carbon molten metal is blended as much as 70%, the N in the steel is reduced to 0.004% or less, and the low N steel which cannot be obtained by the conventional electric furnace steelmaking is reduced. You can see that it is obtained.

【0040】この結果はまた、製鋼に際してCOガスを
50Nm/t以上発生させることで飛躍的に鋼中Nが
低減することを示している。換言すれば、そのような量
でCOガスを発生させるように高炭素溶湯のC量及び電
気炉への装入量を調整することで、溶鋼を飛躍的に低N
化できることが分る。
The results also show that N in steel is dramatically reduced by generating CO gas of 50 Nm 3 / t or more during steelmaking. In other words, by adjusting the C amount of the high carbon molten metal and the charging amount to the electric furnace so as to generate the CO gas at such an amount, the molten steel can be drastically reduced in N2.
You can see that it can be converted.

【0041】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において種々変更を加えた態様で実施可能である。
Although the embodiments of the present invention have been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the gist thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の低N鋼の製造方法の実施の形態を示す
図である。
FIG. 1 is a diagram showing an embodiment of a method for producing a low-N steel according to the present invention.

【図2】図1に続くプロセスを示す図である。FIG. 2 is a diagram illustrating a process following FIG. 1;

【図3】図1の貯留炉における貯留に際しての高炭素溶
湯の炭素濃度と貯留可能な時間との関係を示した図であ
る。
FIG. 3 is a diagram showing a relationship between a carbon concentration of a high-carbon molten metal and a storable time during storage in the storage furnace of FIG. 1;

【図4】電気炉を用いた製鋼に際しての発生COガス量
と溶鋼中のN量との関係を示した図である。
FIG. 4 is a diagram showing the relationship between the amount of CO gas generated during steelmaking using an electric furnace and the amount of N in molten steel.

【符号の説明】[Explanation of symbols]

10,18 アーク炉(電気炉) 12 高炭素溶湯 16 貯留炉 20 スクラップ 24 ランスパイプ 10, 18 Arc furnace (electric furnace) 12 High carbon molten metal 16 Storage furnace 20 Scrap 24 Lance pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 篤 愛知県東海市元浜町39番地 大同特殊鋼株 式会社知多工場内 Fターム(参考) 4K012 CA04 CA05 CA09 4K013 AA01 BA02 CA04 CA11 CA15 CD02 CF12 FA02 4K014 CA03 CB01 CC01 CD18  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Atsushi Hattori 39 Motomoto-cho, Tokai City, Aichi Prefecture F-term in the Chita Plant of Daido Steel Co., Ltd. (Reference) 4K012 CA04 CA05 CA09 4K013 AA01 BA02 CA04 CA11 CA15 CD02 CF12 FA02 4K014 CA03 CB01 CC01 CD18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気炉に鉄原料と炭材とを装入して溶解
し、C含有量が1重量%以上の高炭素溶湯を製造すると
ともに、該製造した高炭素溶湯を一旦貯留炉に貯留し、
該貯留炉からの高炭素溶湯とスクラップとを製鋼用の電
気炉に装入し混合溶解して製鋼するようになし、 且つ該製鋼に際し酸素供給を行って溶鋼の脱炭を行い、
該脱炭の際に発生するCOガスの系外への排出に伴い溶
鋼を脱窒させ、該溶鋼を低N化することを特徴とする低
N鋼の製造方法。
An iron furnace and a carbon material are charged and melted in an electric furnace to produce a high-carbon molten metal having a C content of 1% by weight or more, and the produced high-carbon molten metal is temporarily stored in a storage furnace. Storing,
The high-carbon molten metal and the scrap from the storage furnace are charged into an electric furnace for steelmaking, mixed and melted to make steel, and oxygen is supplied during the steelmaking to decarbonize the molten steel,
A method for producing low-N steel, comprising: denitrifying molten steel with the discharge of CO gas generated during the decarburization to the outside of the system to reduce the N of the molten steel.
【請求項2】 請求項1において、前記高炭素溶湯にお
けるC含有量を2%以上となし、且つ前記電気炉におけ
る製鋼に際して該高炭素溶湯を、前記スクラップを加え
た合量に対して30重量%以上の割合で装入することを
特徴とする低N鋼の製造方法。
2. The high-carbon molten metal according to claim 1, wherein the C content in the high-carbon molten metal is 2% or more, and the high-carbon molten metal is used in steelmaking in the electric furnace at a weight of 30% with respect to the total amount of the scrap. %. A method for producing low-N steel, characterized by charging at a rate of at least%.
【請求項3】 請求項1,2の何れかにおいて、前記低
N鋼がN:0.0080重量%以下のものであることを特徴と
する低N鋼の製造方法。
3. The method for producing a low N steel according to claim 1, wherein the low N steel is N: 0.0080% by weight or less.
JP2001168636A 2001-06-04 2001-06-04 Method for producing low n steel Pending JP2002363632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168636A JP2002363632A (en) 2001-06-04 2001-06-04 Method for producing low n steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168636A JP2002363632A (en) 2001-06-04 2001-06-04 Method for producing low n steel

Publications (1)

Publication Number Publication Date
JP2002363632A true JP2002363632A (en) 2002-12-18

Family

ID=19010836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168636A Pending JP2002363632A (en) 2001-06-04 2001-06-04 Method for producing low n steel

Country Status (1)

Country Link
JP (1) JP2002363632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111625A (en) * 2009-11-24 2011-06-09 Jfe Steel Corp Steel-making method using iron scrap
KR101239650B1 (en) 2010-11-26 2013-03-11 주식회사 포스코 Method for refining low nitrogen of molten steel
CN114616349A (en) * 2019-11-06 2022-06-10 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111625A (en) * 2009-11-24 2011-06-09 Jfe Steel Corp Steel-making method using iron scrap
KR101239650B1 (en) 2010-11-26 2013-03-11 주식회사 포스코 Method for refining low nitrogen of molten steel
CN114616349A (en) * 2019-11-06 2022-06-10 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace
CN114616349B (en) * 2019-11-06 2024-04-02 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
KR101606255B1 (en) Method of refining molten iron
JP2011038142A (en) Converter steelmaking method with the use of large quantity of iron scrap
JPS60174812A (en) Converter steel making method using large amount of ferrous cold charge
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP6897274B2 (en) Pretreatment method of hot metal
JP2006009146A (en) Method for refining molten iron
JP2002363632A (en) Method for producing low n steel
JP4097010B2 (en) Molten steel manufacturing method
CN114058771A (en) Slag charging converter steelmaking method capable of reducing early-stage slag overflow
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
JP2000109924A (en) Method for melting extra-low sulfur steel
JPH07179920A (en) Production of molten steel
JP2002363633A (en) Low p-steel manufacturing method
JP4411934B2 (en) Method for producing low phosphorus hot metal
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
KR101257266B1 (en) Dephosphorizing agent for molten metal in electric furnace and dephosphorizing method using the same
EP4273273A1 (en) Method for refining molten iron
JP6468264B2 (en) Operating method of hot metal holding furnace
JP2004218039A (en) Method for operating heating furnace for storing pig iron
JP6744586B2 (en) Steelmaking refining method using converter type vessel
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
JP3187461B2 (en) Slag smelting reduction method
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JP3294466B2 (en) Operation method of high blown Mn in converter