JP2002363558A - Gypsum-caking material - Google Patents

Gypsum-caking material

Info

Publication number
JP2002363558A
JP2002363558A JP2001167820A JP2001167820A JP2002363558A JP 2002363558 A JP2002363558 A JP 2002363558A JP 2001167820 A JP2001167820 A JP 2001167820A JP 2001167820 A JP2001167820 A JP 2001167820A JP 2002363558 A JP2002363558 A JP 2002363558A
Authority
JP
Japan
Prior art keywords
gypsum
hydrogen sulfide
soil
weight
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001167820A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kawamura
和幸 川村
Nobuo Kato
信雄 加藤
Seiichi Itagaki
清一 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telnite Co Ltd
Original Assignee
Telnite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telnite Co Ltd filed Critical Telnite Co Ltd
Priority to JP2001167820A priority Critical patent/JP2002363558A/en
Publication of JP2002363558A publication Critical patent/JP2002363558A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gypsum-caking material which prevents generation of hydrogen sulfide when improving soft soil and dredging soil in recycling soil. SOLUTION: A gypsum-caking material comprises a mixture of hemihydrate gypsum and powdered iron oxide and has a function of absorbing hydrogen sulfide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軟弱泥土や浚渫土
を再利用土に改良する際に使用する石膏系固化材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gypsum solidified material used for improving soft mud or dredged soil into recycled soil.

【0002】[0002]

【従来の技術】建設工事から発生する軟弱泥土、浚渫土
などを、路盤材料、盛土材料、築堤材料、埋め戻し材
料、裏込め材料などとして固化して再生利用するため
に、従来、セメント系固化材、石灰系固化材が広く使わ
れてきた。
2. Description of the Related Art Conventionally, cement-based solidification has been used to solidify soft mud and dredged soil generated from construction work as roadbed material, embankment material, embankment material, backfill material, backfill material, and the like. Wood and lime-based solidification materials have been widely used.

【0003】[0003]

【発明が解決しようとする課題】軟弱泥土などの処理に
セメント系固化材、石灰系固化材を使用するさいに、ア
ルカリ汚染が大きな問題となる。アルカリ汚染を引き起
こさない中性固化材として半水石膏が注目されている
が、半水石膏は、硫酸還元菌の作用で、硫酸カルシウム
の硫酸イオンが還元され、硫化水素ガスが発生する危険
があることが指摘されている。
When a cement-based solidification material or a lime-based solidification material is used for treating soft mud, etc., alkali contamination becomes a serious problem. Gypsum hemihydrate is attracting attention as a neutral solidifying material that does not cause alkali contamination, but the hemihydrate gypsum has the risk of reducing the sulfate ions of calcium sulfate due to the action of sulfate-reducing bacteria and generating hydrogen sulfide gas. It has been pointed out that.

【0004】また、中性下で軟弱泥土、浚渫土など(以
下軟弱土という)を処理する方法として、アルカリ性の
固化材と酸性の無機材料、例えば硫酸ばん土の粉末等を
あらかじめブレンドして使用する方法が知られている。
しかし、改良効果を上げようとすると、どうしてもアル
カリ性の固化材を多く使用することになり、アルカリサ
イドに傾くことは避けられない。合成系、半合成系、天
然系のポリマーで軟弱土を処理する方法も広く行われて
いるが、見掛けの性状が「ばさばさ」になってトラフィ
カビリティの改善に貢献するものの、改良土に強度発現
がみられないため、用途が限定されている。
As a method for treating soft muddy soil, dredged soil and the like under neutrality (hereinafter referred to as soft soil), an alkaline solidified material and an acidic inorganic material, for example, powder of sodium sulfate are used by previously blending. There are known ways to do this.
However, in order to improve the effect of improvement, a large amount of the alkaline solidifying material is necessarily used, and it is inevitable to lean toward the alkali side. Methods of treating soft soil with synthetic, semi-synthetic, and natural polymers are widely used, but the apparent properties of the soil have become "bulky", contributing to improved trafficability, but the improved soil exhibits strength. The use is limited due to the lack of porosity.

【0005】さらに中性で強度の発現を期待できる方法
として、合成系、半合成系、天然系のポリマーと半水石
膏を組み合わせて処理する方法、あるいは、合成系、半
合成系、天然系のポリマーと古紙破砕物等の吸水材、半
水石膏を組み合わせて処理する方法が考えられる。半水
石膏が改良土の強度発現に寄与する理由は、第1に、半
水石膏が土粒子を巻き込んで2水石膏に変わり自硬する
ためであり、第2に、半水石膏が2水石膏になるときの
脱水効果による。半水石膏を固化材として使用するさい
懸念されるのは、改良土を再利用土として、路盤材料、
盛土材料、築堤材料、埋め戻し材料、裏込め材料などに
使用した場合、地中に存在する硫酸還元菌の作用で、石
膏(硫酸カルシウム)の硫酸イオンが還元され、硫化水
素ガスの発生する可能性があることである。
Further, as a method which can be expected to exhibit strength at neutrality, a method in which a synthetic, semi-synthetic or natural polymer is combined with hemihydrate gypsum, or a synthetic, semi-synthetic or natural synthetic polymer is used. A method of treating the polymer in combination with a water absorbing material such as crushed waste paper and gypsum hemihydrate can be considered. The reason why hemihydrate gypsum contributes to the strength development of the improved soil is, firstly, that hemihydrate gypsum involves soil particles and changes to dihydrate gypsum and self-hardens. Due to the dehydration effect when it becomes gypsum. One of the concerns when using hemihydrate gypsum as a solidifying material is that the improved soil is used as recycled soil,
When used as embankment material, embankment material, backfill material, backfill material, etc., sulfate ions in gypsum (calcium sulfate) are reduced by the action of sulfate reducing bacteria existing in the ground, and hydrogen sulfide gas may be generated. That is.

【0006】硫化水素ガスは、猛毒ガスとして恐れられ
ており、600ppm以上の濃度のガスを吸い込んだ場合、呼
吸器系が麻痺し、窒息死に至る危険性が高い。
[0006] Hydrogen sulfide gas is feared as a highly toxic gas, and if a gas having a concentration of 600 ppm or more is inhaled, there is a high risk of paralysis of the respiratory system and death from suffocation.

【0007】[0007]

【課題を解決するための手段】発明者らは、石膏系の固
化材を使用したさい、改良した土から硫化水素ガスが発
生した場合でも、それを大気中に放出させずただちに固
定化させる方法について鋭意研究を重ね、酸化鉄粉末を
あらかじめ石膏系固化材にブレンドしておくことで目的
を達成できることを見い出した。
SUMMARY OF THE INVENTION The present inventors have developed a method for immobilizing hydrogen sulfide gas immediately from gypsum-based solidified material without releasing it to the atmosphere, even if hydrogen sulfide gas is generated from the improved soil. As a result of extensive research, it has been found that the purpose can be achieved by blending iron oxide powder with a gypsum-based solidifying material in advance.

【0008】硫化水素の固定材としては、石灰等のアル
カリ材が一般に用いられるが、本発明の目的が中性の固
化材を提供することにあるから、適当でないし、アルカ
リで硫化水素を固定しても、酸性雨等の影響でpHが低下
すると、硫化水素が再発生するので、好ましくない。酸
化鉄、炭酸亜鉛などが硫化水素を固定することは、知ら
れている。これらは、アルカリ材と異なり、一度、硫化
水素を捕まえたらpHが低下しても硫化水素を離さない。
本発明は、これらを石膏系固化材にブレンドして使用し
ようとするもので、改良した土から硫化水素ガスが発生
した場合でも、それを大気中に放出させず、ただちに固
定することができる。酸化鉄、炭酸亜鉛のいずれを使用
してもよいが、炭酸亜鉛からは亜鉛イオンが溶け出して
二次公害を引き起こす可能性がある。その点、二次公害
の恐れがなく、単位重量あたりの硫化水素固定量の大き
い酸化鉄のほうが好ましい。硫化水素固定材は、あらか
じめ石膏系固化材にブレンドしておくのがよいが、軟弱
土の改良時に石膏と別々に加えてもよく、同様の効果を
期待できる。石膏系固化材100重量部に対して硫化水素
固定材は、0.5〜5重量部含有させる。酸化鉄100重量部
あたり、60〜70重量部(平均65重量部)の硫化水素を捕
集する能力があるから、石膏系固化材100重量部に対し
て硫化水素固定材を0.5〜5重量部添加すると、その65%
の0.3〜3重量部の硫化水素に対応できる。半水石膏100
重量部に含まれる硫黄が仮に全量硫化水素にかわったと
すると、半水石膏の1分子(分子量145)から1分子の硫
化水素(分子量34)が発生するから、 34÷145×100=23 すなわち、23重量部の硫化水素が発生する計算になる。
硫化水素固定材を、0.5〜5重量部含有させると、 (0.5〜5)×65%×100÷23=1.3〜13% すなわち、1.3〜13%の石膏分解に対応できる計算にな
る。石膏系固化材から硫化水素が発生するのは硫酸還元
菌の働きによるが、硫酸還元菌の繁殖には栄養源、温
度、還元雰囲気(脱酸素状態)など一定の条件が揃わね
ばならず、経験的に言って、10%以上の石膏が分解する
ような状態は考えられない。よって、石膏系固化材100
重量部に対して硫化水素固定材は、0.5〜5重量部含有さ
せれば、実用上充分と考えられる。これ以上の添加は、
経済性を圧迫して実用的でない。
As a fixing material for hydrogen sulfide, an alkali material such as lime is generally used. However, since the object of the present invention is to provide a neutral solidified material, it is not suitable, and hydrogen sulfide is fixed with alkali. Even if the pH is lowered due to acid rain or the like, hydrogen sulfide is regenerated, which is not preferable. It is known that iron oxide, zinc carbonate and the like fix hydrogen sulfide. These are different from alkali materials, and once hydrogen sulfide is captured, it does not release hydrogen sulfide even if the pH decreases.
The present invention intends to use these by blending them with a gypsum-based solidifying material. Even if hydrogen sulfide gas is generated from the improved soil, it can be fixed immediately without releasing it to the atmosphere. Either iron oxide or zinc carbonate may be used, but zinc ions may dissolve out of zinc carbonate and cause secondary pollution. In that regard, iron oxide having a large amount of fixed hydrogen sulfide per unit weight without the risk of secondary pollution is preferable. The hydrogen sulfide fixing material is preferably blended in advance with the gypsum-based solidifying material, but may be added separately from the gypsum when improving the soft soil, and the same effect can be expected. The hydrogen sulfide fixing material is contained in an amount of 0.5 to 5 parts by weight based on 100 parts by weight of the gypsum-based solidified material. It has the ability to trap 60 to 70 parts by weight (average 65 parts by weight) of hydrogen sulfide per 100 parts by weight of iron oxide, so 0.5 to 5 parts by weight of hydrogen sulfide fixing material is used for 100 parts by weight of gypsum-based solidified material. 65% when added
0.3 to 3 parts by weight of hydrogen sulfide. Hemihydrate gypsum 100
If the sulfur contained in parts by weight is completely replaced by hydrogen sulfide, one molecule (molecular weight: 145) of hemihydrate gypsum generates one molecule of hydrogen sulfide (molecular weight: 34), so that 34 ÷ 145 × 100 = 23 It is calculated that 23 parts by weight of hydrogen sulfide is generated.
When 0.5 to 5 parts by weight of the hydrogen sulfide fixing material is contained, (0.5 to 5) × 65% × 100 ÷ 23 = 1.3 to 13%, that is, a calculation capable of dealing with 1.3 to 13% of gypsum decomposition. Hydrogen sulfide is generated from the gypsum-based solidifying material by the action of sulfate-reducing bacteria. However, the growth of sulfate-reducing bacteria requires a certain set of conditions such as nutrient sources, temperature, and reducing atmosphere (deoxygenated state). In short, it is unlikely that more than 10% of the gypsum will degrade. Therefore, gypsum-based solidified material 100
It is considered practically sufficient if the hydrogen sulfide fixing material is contained in an amount of 0.5 to 5 parts by weight with respect to parts by weight. For further additions,
It is economical and impractical.

【0009】酸化鉄系の硫化水素固定材としては、酸化
第二鉄(FeO2)粉末や四三酸化鉄(Fe3O4)粉末を用いるこ
とができる。酸化第一鉄(FeO)は、不安定な化合物であ
り、工業用に流通していないので用いない。四三酸化鉄
(Fe3O4)を特殊な製法で多孔性に加工したものは、米国
で石油掘削時の硫化水素捕集材として開発されたもの
で、非常に固定性能が高い。よって、これを使用するの
が最も好ましい。
As the iron oxide-based hydrogen sulfide fixing material, ferric oxide (FeO 2 ) powder or triiron tetroxide (Fe 3 O 4 ) powder can be used. Ferrous oxide (FeO) is not used because it is an unstable compound and is not distributed industrially. Ferric oxide
Porous (Fe 3 O 4 ) processed by a special production method was developed in the United States as a material for collecting hydrogen sulfide during oil drilling, and has extremely high fixing performance. Therefore, it is most preferable to use this.

【0010】実施例1 5リットル容量のソイルミキサーに、以下の順序で各材
料を添加、攪拌し、改良土を得た。 含水比135%の浚渫土2kgに菌繁殖の栄養源として寒
天800gを配合し、これを上記ミキサーに投入した。石
膏に対する寒天の添加量は重量比で40%である。 古紙の粉砕物100gを添加し攪拌した。浚渫土に対す
る添加量は重量比で5%である。 適量のアクリルアミド・アクリル酸ソーダ共重合物
を添加する。その理由は、トラフィカビリティの改善お
よび処理物の疎水化をはかることにあり、標準添加量
は、0.05〜0.2%である。 半水石膏100重量部と多孔性四三酸化鉄(米国、IRO
NITE PRODUCTS CO.製)1重量部をブレンドし、それを0
g、60g、120g、180gの4種類にして添加し攪拌し
た。浚渫土に対する添加量は重量比で0、3、6、9%であ
る。得られた改良土について、ただちにコーン指数を測
定した。使用した多孔性四三酸化鉄の性状を表1に、コ
ーン指数測定結果を表2に示す。コーン指数測定後、四
三酸化鉄入り半水石膏180g(9%)添加のものについ
て、セルから改良土を取りだし、手作業で充分に解きほ
ぐした後、縦21cm×横25cm×深さ25cmのガラス製
水槽に入れて、室外の日陰に放置した。水槽上部にはガ
ラス板を置き、重しをのせて外気との遮断をはかった。
硫化水素の測定は、ガラス板をずらしてわずかに隙間を
あけ、そこからドレ−ゲル検知管を差し込み、ガスを吸
引する方法で行った。対比試料として、四三酸化鉄を加
えない半水石膏を180g使用した以外は全く同様の操作
を行ない、もうひとつ準備したガラス製水槽に入れて、
同じく硫化水素の発生状況を調べた。 実施例2 実施例1の多孔性四三酸化鉄にかえて、酸化第二鉄(試
薬:関東化学製)または四三酸化鉄(試薬:関東化学
製)を使用し、実施例1と同様の手法で改良土を作製し
た。ただし、半水石膏と酸化鉄の混合品(いずれも半水
石膏100重量に酸化鉄を1重量部混合)の浚渫土(古紙
破砕物およびアクリルアミド・アクリル製ソーダ共重合
物を加えたもの)に対する添加量は、重量比で9%のみ
とした。これらと、実施例1の多孔性四三酸化鉄入り固
化材9%添加品の3種類について、手作業で充分に解き
ほぐした後、縦21cm×横25cm×深さ25cmのガラス製水槽
に入れて、室外の日陰に放置した。結果を表3に示す。
Example 1 Each material was added to a 5-liter soil mixer in the following order and stirred to obtain an improved soil. 800 g of agar was mixed with 2 kg of dredged soil having a water content of 135% as a nutrient source for breeding bacteria, and the mixture was charged into the mixer. The amount of agar added to gypsum is 40% by weight. 100 g of ground paper was added and stirred. The amount added to the dredged soil is 5% by weight. An appropriate amount of acrylamide / sodium acrylate copolymer is added. The reason is to improve the trafficability and make the treated product hydrophobic, and the standard addition amount is 0.05 to 0.2%. 100 parts by weight of hemihydrate gypsum and porous iron tetroxide (US, IRO
1 part by weight of NITE PRODUCTS CO.)
g, 60 g, 120 g, and 180 g were added and stirred. The amount added to the dredged soil is 0, 3, 6, 9% by weight. The corn index of the obtained improved soil was measured immediately. Table 1 shows the properties of the porous iron tetroxide used, and Table 2 shows the results of the cone index measurement. After measuring the cone index, for 180 g (9%) of hemihydrate gypsum containing triiron tetroxide, the improved soil was taken out of the cell and thoroughly unraveled by hand, and then glass 21 cm long x 25 cm wide x 25 cm deep It was placed in a water tank and left outside in the shade. A glass plate was placed on the upper part of the water tank, and a weight was put on it to shut off the outside air.
The measurement of hydrogen sulfide was carried out by displacing the glass plate to make a slight gap, inserting a drain gel detecting tube from there, and sucking gas. The same operation was performed except that 180 g of hemihydrate gypsum to which triiron tetroxide was not added was used as a comparison sample.
Similarly, the generation status of hydrogen sulfide was examined. Example 2 A ferric oxide (reagent: manufactured by Kanto Kagaku) or ferric oxide (reagent: manufactured by Kanto Kagaku) was used instead of the porous iron tetroxide of Example 1, and the same as in Example 1 was used. Improved soil was prepared by the method. However, for dredged soil (mixed waste paper and acrylamide / acrylic soda copolymer) of a mixture of hemihydrate gypsum and iron oxide (both 100 weight of hemihydrate gypsum and 1 part by weight of iron oxide) The amount added was only 9% by weight. These and three types of the porous iron trioxide containing solidified material containing 9% of iron tetroxide of Example 1 were sufficiently disentangled by hand and then placed in a glass water tank of 21 cm long × 25 cm wide × 25 cm deep. , Left in the shade outside. Table 3 shows the results.

【表1】 【table 1】

【表2】 [Table 2]

【表3】 実験結果に示すように、静置の場合、酸化鉄を含まない
半水石膏で改良した試料からは、25日目にて硫化水素が
発生し始めた。33日目で52ppmに達し、その後は急激に
低下した。一方、酸化第二鉄を含む半水石膏で改良した
試料からは、32日目でわずかの硫化硫化水素が発生した
が、四三酸化鉄を含む半水石膏で改良した試料、多孔性
四三酸化鉄を含む半水石膏で改良した試料からは、全く
硫化水素は検知されなかった。38日目において酸化鉄を
含まない半水石膏で改良した試料の濃度が0.6ppmと低い
値を示したため、4つの水槽とも、試料全体を木製へら
でかき混ぜた。かき混ぜ直後に硫化水素濃度を測定した
ところ、酸化鉄も含まない半水石膏で改良した試料から
は81ppmの硫化水素が検知された。それ以後は、59日後
まで、毎日、かき混ぜ前後の濃度を測定したが、酸化鉄
を含まない半水石膏で改良した試料からは、値がばらつ
いたものの、高い濃度で硫化水素が測定されつづけた。
これに比べ、酸化第二鉄を含む半水石膏で改良した試料
からは、6〜18ppmの硫化水素が、四三酸化鉄を含む半水
石膏で改良した試料からは、0.9〜2.4ppmの硫化水素が
検知されたものの、多孔性四三酸化鉄を含む半水石膏で
改良した試料からは、一切、ガスは検知されなかった。
[Table 3] As shown in the experimental results, in the case of standing, hydrogen sulfide began to be generated on the 25th day from the sample modified with hemihydrate gypsum containing no iron oxide. It reached 52 ppm on day 33 and then dropped sharply. On the other hand, from the sample modified with hemihydrate gypsum containing ferric oxide, a small amount of hydrogen sulfide was generated on the 32nd day. No hydrogen sulfide was detected from the sample modified with hemihydrate gypsum containing iron oxide. On day 38, the concentration of the sample modified with hemihydrate gypsum without iron oxide showed a low value of 0.6 ppm, so the entire sample was stirred with a wooden spatula in all four aquariums. When the hydrogen sulfide concentration was measured immediately after stirring, 81 ppm of hydrogen sulfide was detected from the sample modified with gypsum hemihydrate containing no iron oxide. Thereafter, until 59 days later, the concentration before and after stirring was measured every day.From the sample modified with hemihydrate gypsum containing no iron oxide, the value varied, but hydrogen sulfide was continuously measured at a high concentration. .
In comparison, 6-18 ppm of hydrogen sulfide was obtained from the sample improved with hemihydrate gypsum containing ferric oxide, and 0.9-2.4 ppm was obtained from the sample improved with hemihydrate gypsum containing iron tetroxide. Although hydrogen was detected, no gas was detected from the sample modified with hemihydrate gypsum containing porous iron tetroxide.

【0011】[0011]

【発明の効果】上記説明したように、本発明によれば、
硫化水素固定剤を半水石膏に添加して軟弱土の改良に用
いることで、硫酸還元バクテリアの作用で、万が一、硫
化水素ガスが発生しても、それをただちに固定材が吸収
して大気放出を抑えることができる。よって、環境上、
安全に中性の石膏系固化材を軟弱土の改良に用いること
ができ、得られる効果は非常に大きい。
As described above, according to the present invention,
By adding hydrogen sulfide fixative to hemihydrate gypsum and using it to improve soft soil, even if hydrogen sulfide gas is generated by the action of sulfate-reducing bacteria, the fixing material immediately absorbs it and releases it to the atmosphere. Can be suppressed. Therefore, environmentally,
Neutral gypsum-based solidified material can be safely used to improve soft soil, and the effect obtained is very large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) //(C04B 28/14 C04B 14:30 14:30) 111:70 111:70 C09K 103:00 C09K 103:00 (72)発明者 板垣 清一 山形県酒田市大浜1−2−14 株式会社テ ルナイト北日本営業所内 Fターム(参考) 4G012 PA11 PA33 PB03 PB31 PC01 PC13 PD01 PE04 4H026 CA04 CB07 CB08 CC03 CC06──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // (C04B 28/14 C04B 14:30 14:30) 111: 70 111: 70 C09K 103: 00 C09K 103 : 00 (72) Inventor Seiichi Itagaki 1-2-14 Ohama, Sakata-shi, Yamagata F-term in Terunite Co., Ltd. Northern Japan Sales Office (reference) 4G012 PA11 PA33 PB03 PB31 PC01 PC13 PD01 PE04 4H026 CA04 CB07 CB08 CC03 CC06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硫化水素を吸収する機能を有する石膏系
固化材。
1. A gypsum-based solidifying material having a function of absorbing hydrogen sulfide.
【請求項2】 半水石膏と酸化鉄粉末の混合物を含む請
求項1の石膏系固化材。
2. The gypsum-based solidifying material according to claim 1, comprising a mixture of hemihydrate gypsum and iron oxide powder.
【請求項3】 酸化鉄粉末が多孔性四三酸化鉄粉末であ
ることを特徴とする請求項2に記載の石膏系固化材。
3. The gypsum-based solidifying material according to claim 2, wherein the iron oxide powder is a porous iron tetroxide powder.
【請求項4】 酸化鉄粉末の含有量が、半水石膏100重
量部に対し0.5〜5重量部であることを特徴とする請求項
2または3に記載の石膏系固化材。
4. The gypsum-based solidifying material according to claim 2, wherein the content of the iron oxide powder is 0.5 to 5 parts by weight based on 100 parts by weight of hemihydrate gypsum.
JP2001167820A 2001-06-04 2001-06-04 Gypsum-caking material Pending JP2002363558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167820A JP2002363558A (en) 2001-06-04 2001-06-04 Gypsum-caking material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167820A JP2002363558A (en) 2001-06-04 2001-06-04 Gypsum-caking material

Publications (1)

Publication Number Publication Date
JP2002363558A true JP2002363558A (en) 2002-12-18

Family

ID=19010149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167820A Pending JP2002363558A (en) 2001-06-04 2001-06-04 Gypsum-caking material

Country Status (1)

Country Link
JP (1) JP2002363558A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290877A (en) * 2006-04-21 2007-11-08 Yusaku Ono Gypsum-based building material
JP2014050823A (en) * 2012-09-10 2014-03-20 Terunaito:Kk Production method of modified dredge soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311446A (en) * 1995-05-16 1996-11-26 Mitsubishi Materials Corp Solidifier for soil conditioning
JPH09155394A (en) * 1995-12-14 1997-06-17 Ebara Corp Treatment process of dredged sludge
JP2001335778A (en) * 2000-03-21 2001-12-04 Ishihara Sangyo Kaisha Ltd Soil improver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311446A (en) * 1995-05-16 1996-11-26 Mitsubishi Materials Corp Solidifier for soil conditioning
JPH09155394A (en) * 1995-12-14 1997-06-17 Ebara Corp Treatment process of dredged sludge
JP2001335778A (en) * 2000-03-21 2001-12-04 Ishihara Sangyo Kaisha Ltd Soil improver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290877A (en) * 2006-04-21 2007-11-08 Yusaku Ono Gypsum-based building material
JP2014050823A (en) * 2012-09-10 2014-03-20 Terunaito:Kk Production method of modified dredge soil

Similar Documents

Publication Publication Date Title
US20070272609A1 (en) Reuse of waste materials via manure additive
JP3479715B2 (en) Soil solidifying agent
JP2006272286A (en) Grouting material for soil improvement and insolubilization method of soil contaminant using the same
CN107365589A (en) A kind of heavy-metal contaminated soil solidification based on magnesia, insoluble material
JP2917096B2 (en) Water quality and bottom sedimentary malignant improver
JP2006167524A (en) Treatment method for arsenic-containing soil
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
KR101722308B1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP2002363558A (en) Gypsum-caking material
JPH10137716A (en) Waste treating material and treatment of waste
JP2008255171A (en) Fixing agent for inorganic harmful component
JP2008094901A (en) Mud solidifying material
JP4378041B2 (en) Gypsum building materials
JP2000301101A (en) Treatment method of refuse incineration fly ash and acidic gas removing agent for refuse incineration exhaust gas
JP4594606B2 (en) Soil modifying material and soil modifying method using the same
JPH1076298A (en) Method for deodorizing and solidifying sludge or dredging sludge
JP2003013064A (en) Dusting-preventing type solidification material, and method for producing dusting-preventing type solidification material
CN1285424C (en) Process for reducing pollution of hexa covalent chromium ion
JP4695254B2 (en) Soil treatment material composition and soil treatment method
JP3817534B2 (en) Soil and groundwater purification composition and purification method
JP3613651B2 (en) Soil improvement mixture and soil improvement method
JPH0971777A (en) Process for neutralizing solidified soil resulting from solidification of sludge and soft soil
JP3789745B2 (en) Neutralizing agent and neutralizing method for alkaline soil
JPH0938414A (en) Flocculating precipitant
WO2007023424B1 (en) A method for treating contaminated compounds or contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080410

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20101112

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Effective date: 20110531

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A02