JP2002359930A - Device and method for controlling power factor - Google Patents

Device and method for controlling power factor

Info

Publication number
JP2002359930A
JP2002359930A JP2002088917A JP2002088917A JP2002359930A JP 2002359930 A JP2002359930 A JP 2002359930A JP 2002088917 A JP2002088917 A JP 2002088917A JP 2002088917 A JP2002088917 A JP 2002088917A JP 2002359930 A JP2002359930 A JP 2002359930A
Authority
JP
Japan
Prior art keywords
power factor
voltage
bus
generators
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088917A
Other languages
Japanese (ja)
Other versions
JP3811655B2 (en
Inventor
Daisuke Sumiya
大介 住谷
Shinichi Koyanagi
晋一 小柳
Hirobumi Araki
博文 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2002088917A priority Critical patent/JP3811655B2/en
Publication of JP2002359930A publication Critical patent/JP2002359930A/en
Application granted granted Critical
Publication of JP3811655B2 publication Critical patent/JP3811655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PROBLEM TO BE SOLVED: To provide a power factor control device and its method which enable power factor control, keeping the balance of power factors and voltages, when system non-interconnection parallel operation by the use of generators of different specifications and capacities is carried out. SOLUTION: This control device is fitted with a target power factor setting means (9a) for setting at constant periods each range of power factors which a plurality of generators (1a-1d) aim at, a comparison means (9a) for comparing the voltage of a bus-bar (10) with a specified voltage value range at the constant periods, a first control means (9a) which performs control, so as to lower the voltage of at least one generator of the lowest power factor, when it is found by the result of this comparison means that the voltage of the bus-bar is higher than the voltage value range, and to raise the voltage of at least one generator of the highest power factor, when the voltage of the bus-bar is lower than the voltage value range, and a second control means (9a) which controls the power factor of a generator being out of the power factor range so as to correct the power factor of the generator into the power factor range, when the voltage of the bus-bar lies within the voltage value range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数台の発電機を
並列運転する際、それらの力率を制御する力率制御装置
及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power factor control apparatus and method for controlling a power factor of a plurality of generators when the generators are operated in parallel.

【0002】[0002]

【従来の技術】従来、複数台の発電機を電力会社の系統
と接続していない状態で並列に運転させる場合(系統非
連携並列運転)、各発電機間の力率バランス保持は、以
下に示す如き力率補償回路で行なわれる。
2. Description of the Related Art Conventionally, when a plurality of generators are operated in parallel without being connected to a power company system (system non-cooperative parallel operation), the power factor balance between the generators is maintained as follows. This is performed by a power factor compensation circuit as shown.

【0003】図4は、特開昭51−103209号公報
に開示されている力率補償回路を適用した無効電流制御
装置の構成を示す図である。この装置では、二台の発電
機11a,11bの力率に差が生じた場合、各発電機1
1a,11bに対応する力率検出器12a,12bの出
力に差が生じる。このとき、負荷(母線)10aの力率
は、発電機11aと11bの力率の中間にある。従っ
て、母線10aに対応する力率検出器12cの出力は力
率検出器12aと12bの出力の中間にあり、力率検出
器12cと12aの差信号と、力率検出器12cと12
bの差信号とは、極性が反対になる。
FIG. 4 is a diagram showing a configuration of a reactive current control device to which a power factor compensation circuit disclosed in Japanese Patent Application Laid-Open No. 51-103209 is applied. In this device, when there is a difference between the power factors of the two generators 11a and 11b, each generator 1a
There is a difference between the outputs of the power factor detectors 12a and 12b corresponding to 1a and 11b. At this time, the power factor of the load (bus) 10a is intermediate between the power factors of the generators 11a and 11b. Therefore, the output of the power factor detector 12c corresponding to the bus 10a is intermediate between the outputs of the power factor detectors 12a and 12b, and the difference signal between the power factor detectors 12c and 12a and the power factor detectors 12c and 12c.
The polarity is opposite to the difference signal of b.

【0004】この状態で各発電機11a,11bの電圧
を調整する場合、自動電圧調整器13aと13bの信号
の極性が反対になる。すなわち、発電機11a,11b
の一方の電圧を上げ、他方の電圧を下げるよう動作する
ことで、各発電機11a,11bの力率を等しくしてい
る。これにより、外部設備からの制御を伴わずに、各発
電機間の力率バランスが保たれる。
When the voltages of the generators 11a and 11b are adjusted in this state, the polarities of the signals of the automatic voltage regulators 13a and 13b are reversed. That is, the generators 11a, 11b
The power factor of each of the generators 11a and 11b is made equal by operating to increase one voltage and decrease the other voltage. Thus, the power factor balance between the generators is maintained without control from external equipment.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述した
従来の制御方法では、例えば工場内等の負荷に複数の小
容量の発電機で対応しようとした場合、各自動電圧調整
器から各発電機へ複数の信号が順次出力されるため、急
な負荷変動に対して各発電機が追従できなくなるという
問題がある。また、電力会社の系統と接続しているとき
に各発電機の力率バランスが悪い状態であると、停電時
等で系統から切り離され単独運転を開始した際、力率バ
ランスの回復が難しく、過励磁や過負荷状態となりトリ
ップする。
However, in the above-described conventional control method, when a plurality of small-capacity generators are used to respond to, for example, a load in a factory or the like, a plurality of automatic voltage regulators are connected to each of the generators. Are sequentially output, so that there is a problem that each generator cannot follow a sudden load change. In addition, if the power factor balance of each generator is poor when connected to the grid of the power company, it is difficult to recover the power factor balance when starting isolated operation when disconnected from the grid at the time of power failure etc. The motor trips due to overexcitation or overload.

【0006】また、上述した制御方法は、各発電機が同
一仕様、同一容量である場合に有効であるが、各発電機
が異なる仕様(別メーカー等)や異なる容量である場合
に問題が生じる。すなわち、力率補償回路により発電機
に生ずる特性は発電機のメーカー毎に異なるため、各自
動電圧調整器から信号を受ける各発電機の反応が統一さ
れず、力率バランスと負荷の電圧バランスの保持が期待
できない。
The above-described control method is effective when the generators have the same specifications and the same capacity. However, problems arise when the generators have different specifications (eg, different manufacturers) or different capacities. . In other words, since the characteristics of the generator generated by the power factor compensation circuit differ for each manufacturer of the generator, the response of each generator receiving a signal from each automatic voltage regulator is not unified, and the power factor balance and the voltage balance of the load are not uniform. We cannot expect retention.

【0007】本発明の目的は、異なる仕様や容量の発電
機を用いた系統非連携並列運転時の力率制御を、力率と
電圧のバランスを保持して行なえる力率制御装置及び方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power factor control apparatus and method capable of performing power factor control during non-system parallel operation using generators having different specifications and capacities while maintaining a balance between power factor and voltage. To provide.

【0008】[0008]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明の力率制御装置及び方法は以下
の如く構成されている。
SUMMARY OF THE INVENTION In order to solve the above problems and achieve the object, a power factor control apparatus and method according to the present invention are configured as follows.

【0009】(1)本発明の力率制御装置は、母線に接
続された複数の発電機の力率を制御する力率制御装置に
おいて、前記複数の発電機の目標とする各力率範囲を一
定の周期で設定する目標力率設定手段と、前記母線の電
圧と所定の電圧値範囲とを前記一定の周期で比較する比
較手段と、この比較手段の結果、前記母線の電圧が前記
電圧値範囲より高い場合、最も力率が低い少なくとも一
つの発電機の電圧を下げ、前記母線の電圧が前記電圧値
範囲より低い場合、最も力率が高い少なくとも一つの発
電機の電圧を上げるよう制御する第1の制御手段と、前
記比較手段の結果、前記母線の電圧が前記電圧値範囲内
である場合、前記力率範囲から外れた発電機の力率を前
記力率範囲内に修正するよう制御する第2の制御手段
と、から構成されている。
(1) A power factor control device according to the present invention is a power factor control device for controlling power factors of a plurality of generators connected to a bus. Target power factor setting means for setting at a constant cycle, comparing means for comparing the voltage of the bus with a predetermined voltage value range at the constant cycle, and as a result of the comparing means, the voltage of the bus is set to the voltage value When the voltage is higher than the range, the voltage of at least one generator having the lowest power factor is reduced, and when the voltage of the bus is lower than the voltage value range, the voltage of at least one generator having the highest power factor is controlled to increase. As a result of the first control means and the comparing means, when the voltage of the bus is within the voltage value range, control is performed such that the power factor of the generator outside the power factor range is corrected to be within the power factor range. And second control means for That.

【0010】(2)本発明の力率制御方法は、母線に接
続された複数の発電機の力率を制御する力率制御方法に
おいて、前記複数の発電機の目標とする各力率範囲を一
定の周期で設定する工程と、前記母線の電圧と所定の電
圧値範囲とを前記一定の周期で比較する工程と、この比
較の結果、前記母線の電圧が前記電圧値範囲より高い場
合、最も力率が低い少なくとも一つの発電機の電圧を下
げ、前記母線の電圧が前記電圧値範囲より低い場合、最
も力率が高い少なくとも一つの発電機の電圧を上げるよ
う制御する工程と、前記比較の結果、前記母線の電圧が
前記電圧値範囲内である場合、前記力率範囲から外れた
発電機の力率を前記力率範囲内に修正するよう制御する
工程と、を有する。
(2) The power factor control method according to the present invention is the power factor control method for controlling the power factor of a plurality of generators connected to a bus. Setting at a fixed cycle, and comparing the voltage of the bus with a predetermined voltage value range at the fixed cycle.As a result of the comparison, when the voltage of the bus is higher than the voltage value range, Controlling the voltage of at least one generator having a low power factor to increase the voltage of the at least one generator having the highest power factor when the voltage of the bus is lower than the voltage value range; and As a result, when the voltage of the bus is within the voltage value range, controlling the power factor of the generator outside the power factor range to be corrected to the power factor range.

【0011】[0011]

【発明の実施の形態】図1は、本発明の実施の形態に係
る力率制御装置の構成を示す回路図である。本実施の形
態では、仕様と容量の異なる四台の発電機1a,1b,
1c,1dの間の力率バランスを保持する制御を行な
う。
FIG. 1 is a circuit diagram showing a configuration of a power factor control device according to an embodiment of the present invention. In this embodiment, four generators 1a, 1b,
Control is performed to maintain the power factor balance between 1c and 1d.

【0012】図1において、力率制御部9aには、四つ
の自動電圧調整器2a,2b,2c,2dが接続されて
いる。各自動電圧調整器2a,2b,2c,2dは、そ
れぞれ界磁巻線3a,3b,3c,3dを介在して発電
機1a,1b,1c,1dの電圧制御を行なう。
In FIG. 1, four automatic voltage regulators 2a, 2b, 2c, 2d are connected to a power factor control section 9a. The automatic voltage regulators 2a, 2b, 2c, 2d control the voltage of the generators 1a, 1b, 1c, 1d via the field windings 3a, 3b, 3c, 3d, respectively.

【0013】発電機1a,1b,1c,1dは、それぞ
れ配電盤8a内の遮断器6a,6b,6c,6dを介し
て、母線10に接続されている。電力会社の系統Lは、
配電盤8a内の遮断器6eを介して母線10に接続され
ている。
The generators 1a, 1b, 1c, 1d are connected to a bus 10 via circuit breakers 6a, 6b, 6c, 6d in a switchboard 8a, respectively. The grid L of the power company is
It is connected to bus 10 via circuit breaker 6e in switchboard 8a.

【0014】また配電盤8a内では、計器用変流器5
a,5b,5c,5dと計器用変圧器4a,4b,4
c,4d,4eは、それぞれ複合型アナログ信号変換器
7aに接続されている。
In the switchboard 8a, the current transformer 5 for the instrument is provided.
a, 5b, 5c, 5d and instrument transformers 4a, 4b, 4
Each of c, 4d, and 4e is connected to the composite analog signal converter 7a.

【0015】図2は、上述した構成をなす力率制御装置
による制御手順を示すフローチャートである。なお、母
線10は遮断器6eにて電力会社の系統Lから切り離さ
れた状態にある。
FIG. 2 is a flowchart showing a control procedure by the power factor control device having the above-described configuration. In addition, the bus 10 is in a state of being disconnected from the grid L of the power company by the circuit breaker 6e.

【0016】まず、ステップS1で、力率制御部9aは
各発電機1a,1b,1c,1dが負担している無効電
力と有効電力を一定のサンプリング周期(500ms)
で計測し、各発電機の目標力率範囲(本実施の形態で
は、82〜88%とする)を設定する。この場合、複合
型アナログ信号変換器7aは、各発電機1a〜1dの各
電圧をそれぞれ計器用変圧器4a〜4dから検出すると
ともに、各発電機1a〜1dの各電流をそれぞれ計器用
変流器5a〜5dから検出し、それらをアナログ信号に
変換して力率制御部9aへ出力する。力率制御部9a
は、入力した信号から各発電機1a〜1dの力率を計算
し、目標力率範囲を設定する。
First, in step S1, the power factor control section 9a compares the reactive power and active power borne by each of the generators 1a, 1b, 1c, 1d with a constant sampling period (500 ms).
To set a target power factor range (82-88% in the present embodiment) of each generator. In this case, the composite analog signal converter 7a detects each voltage of each of the generators 1a to 1d from the respective transformers 4a to 4d, and detects each current of each of the generators 1a to 1d. Detectors 5a to 5d, converts them into analog signals, and outputs them to the power factor controller 9a. Power factor control section 9a
Calculates the power factor of each of the generators 1a to 1d from the input signal and sets a target power factor range.

【0017】次にステップS2で、力率制御部9aは母
線10の電圧を検出する。この場合、複合型アナログ信
号変換器7aは、母線10の電圧を計器用変圧器4eか
ら検出し、アナログ信号に変換して力率制御部9aへ出
力する。
Next, in step S2, the power factor control section 9a detects the voltage of the bus 10. In this case, the composite analog signal converter 7a detects the voltage of the bus 10 from the instrument transformer 4e, converts the voltage to an analog signal, and outputs the analog signal to the power factor control unit 9a.

【0018】そしてステップS3で、母線10の電圧が
目標電圧値(本実施の形態では、10.7〜11.3k
Vとする)の最高値(11.3kV)より高い場合、ス
テップS4で、力率制御部9aは電圧下方修正力率制御
モードを実行する。このモードで、力率制御部9aは、
各発電機1a〜1dの力率を上述したように計算し、そ
の力率が一番低い発電機1a〜1dに対応する自動電圧
調整器2a〜2dへ電圧下げ信号を出力する。この信号
を受けた自動電圧調整器2a〜2dは、対応する発電機
1a〜1dにおける界磁巻線3a〜3dの電流を制御
し、その発電機1a〜1dの電圧を下げる。その後、力
率制御部9aは、再び上記ステップS1の目標力率設定
を行なう。
In step S3, the voltage of the bus 10 is set to the target voltage value (10.7 to 11.3 k in this embodiment).
V is higher than the maximum value (11.3 kV), the power factor controller 9a executes the voltage lowering correction power factor control mode in step S4. In this mode, the power factor control unit 9a
The power factor of each of the generators 1a to 1d is calculated as described above, and a voltage reduction signal is output to the automatic voltage regulators 2a to 2d corresponding to the generators 1a to 1d having the lowest power factor. Upon receiving this signal, the automatic voltage regulators 2a to 2d control the currents of the field windings 3a to 3d in the corresponding generators 1a to 1d, and lower the voltages of the generators 1a to 1d. After that, the power factor control section 9a sets the target power factor in step S1 again.

【0019】例えば上記ステップS4で、発電機1a〜
1dの各力率が、80%、85%、87%、90%であ
る場合、力率制御部9aは発電機1aの電圧を下げ、そ
の力率が目標力率範囲(82〜88%)となるよう制御
する。
For example, in step S4, the generators 1a to 1a
When each power factor of 1d is 80%, 85%, 87%, and 90%, the power factor controller 9a lowers the voltage of the generator 1a, and the power factor falls within the target power factor range (82 to 88%). Is controlled so that

【0020】上記ステップS3で、母線10の電圧が上
記目標電圧値の最高値より高くなく、ステップS5で、
母線10の電圧が上記目標電圧値の最低値(10.7k
V)より低い場合、ステップS6で、力率制御部9aは
電圧上方修正力率制御モードを実行する。このモード
で、力率制御部9aは、各発電機1a〜1dの力率を上
述したように計算し、その力率が一番高い発電機1a〜
1dに対応する自動電圧調整器2a〜2dへ電圧上げ信
号を出力する。この信号を受けた自動電圧調整器2a〜
2dは、対応する発電機1a〜1dにおける界磁巻線3
a〜3dの電流を制御し、その発電機1a〜1dの電圧
を上げる。その後、力率制御部9aは、再び上記ステッ
プS1の目標力率設定を行なう。
In step S3, the voltage of the bus 10 is not higher than the maximum value of the target voltage, and in step S5,
The voltage of the bus 10 is the minimum value of the target voltage value (10.7 k
If it is lower than V), in step S6, the power factor control section 9a executes the voltage upward correction power factor control mode. In this mode, the power factor control unit 9a calculates the power factor of each of the generators 1a to 1d as described above, and the generators 1a to 1 having the highest power factor.
A voltage increase signal is output to the automatic voltage regulators 2a to 2d corresponding to 1d. Automatic voltage regulators 2a to 2
2d is a field winding 3 in the corresponding generators 1a to 1d.
The currents a to 3d are controlled to increase the voltage of the generators 1a to 1d. After that, the power factor control section 9a sets the target power factor in step S1 again.

【0021】例えば上記ステップS6で、発電機1a〜
1dの各力率が、80%、85%、87%、90%であ
る場合、力率制御部9aは発電機1dの電圧を上げ、そ
の力率が目標力率範囲(82〜88%)となるよう制御
する。
For example, in step S6, the generators 1a to 1a
When each power factor of 1d is 80%, 85%, 87%, and 90%, the power factor control unit 9a increases the voltage of the generator 1d, and the power factor is in the target power factor range (82 to 88%). Is controlled so that

【0022】上記ステップS5で、母線10の電圧が上
記目標電圧値の最低値より低くない場合、ステップS7
で、力率制御部9aは、各発電機1a〜1dの力率を上
述したように計算し、各力率が目標力率範囲(82〜8
8%)内である場合、再び上記ステップS1の目標力率
設定を行なう。
In step S5, if the voltage of the bus 10 is not lower than the minimum value of the target voltage value, step S7
Then, the power factor control unit 9a calculates the power factor of each of the generators 1a to 1d as described above, and determines that each power factor is in the target power factor range (82 to 8).
8%), the target power factor is set again in step S1.

【0023】また、上記ステップS7で目標力率範囲内
でない力率がある場合、ステップS8で、力率制御部9
aは力率制御モードを実行する。この場合、力率制御部
9aは、力率の目標最低力率82%または目標最高力率
88%に対する絶対値偏差が一番大きい発電機1a〜1
dに対応する自動電圧調整器2a〜2dへ電圧上げ信号
または電圧下げ信号を出力する。この信号を受けた自動
電圧調整器2a〜2dは、対応する発電機1a〜1dに
おける界磁巻線3a〜3dの電流を制御し、その発電機
1a〜1dの電圧を上げるか、または下げる。その後、
力率制御部9aは、再び上記ステップS1の目標力率設
定を行なう。
If there is a power factor that is not within the target power factor range in step S7, a power factor control unit 9 is executed in step S8.
a executes the power factor control mode. In this case, the power factor control unit 9a determines that the generators 1a to 1 have the largest absolute value deviation of the power factor from the target minimum power factor 82% or the target maximum power factor 88%.
A voltage increase signal or a voltage decrease signal is output to the automatic voltage regulators 2a to 2d corresponding to d. Upon receiving this signal, the automatic voltage regulators 2a to 2d control the currents of the field windings 3a to 3d in the corresponding generators 1a to 1d, and increase or decrease the voltages of the generators 1a to 1d. afterwards,
The power factor control section 9a sets the target power factor again in step S1.

【0024】例えば上記ステップS8で、発電機1a〜
1dの各力率が、80%、83%、86%、89%であ
る場合、力率制御部9aは発電機1aの電圧を下げ、そ
の力率が目標力率範囲(82〜88%)となるよう制御
する。
For example, in step S8, the generators 1a to 1a
When each power factor of 1d is 80%, 83%, 86%, and 89%, the power factor controller 9a lowers the voltage of the generator 1a, and the power factor falls within the target power factor range (82 to 88%). Is controlled so that

【0025】以上のように本実施の形態における力率制
御装置では、従来の如き力率補償回路を用いず、上述し
た手順からなるプログラミングによる制御を行なってい
る。その制御の基本は、電力会社の系統と連携している
時に従来から用いられている、力率が低い発電機に対し
て電圧下げ信号を出力し、力率が高い発電機に対して電
圧上げ信号を出力するという方法に即している。ただ
し、系統非連携時にこれらの制御を行なうと、力率と電
圧のバランスが大きくくずれ適切な制御ができない。そ
こで本実施の形態では、以下のような制御を行なう。
As described above, in the power factor control device according to the present embodiment, the control is performed by the programming according to the above-described procedure without using the power factor compensation circuit as in the related art. The basis of the control is to output a voltage reduction signal to a generator with a low power factor and to raise a voltage to a generator with a high power factor, which is conventionally used when cooperating with the grid of a power company. This is in accordance with the method of outputting a signal. However, if these controls are performed when the system is not linked, the balance between the power factor and the voltage is greatly lost, and appropriate control cannot be performed. Therefore, in the present embodiment, the following control is performed.

【0026】(1).複数台の発電機の無効電力と有効電
力を一定の周期で計測して各目標力率を設定し、母線電
圧が規定値範囲内であるか否かをチェックし、さらに目
標力率から外れた発電機の存在をチェックする。
(1). Measure the reactive power and active power of multiple generators at fixed intervals to set each target power factor, check whether the bus voltage is within the specified value range, and further deviate from the target power factor Check for the presence of a generator.

【0027】(2).母線電圧が規定値より高い場合は、
一番力率が低い発電機に対して電圧下げ信号を出力し、
母線電圧が規定値より低い場合は、一番力率が高い発電
機に対して電圧上げ信号を出力する。
(2). If the bus voltage is higher than the specified value,
Outputs a voltage reduction signal to the generator with the lowest power factor,
When the bus voltage is lower than the specified value, a voltage increase signal is output to the generator having the highest power factor.

【0028】(3).(1)を行ない、前回のサンプリング結
果による(2)の制御が終了していなくても、最新のサン
プリング結果を優先して次の目標制御(2)に移行する。
(3). (1) is performed, and even if the control of (2) based on the previous sampling result is not completed, the latest sampling result is prioritized to shift to the next target control (2).

【0029】図3(a),(b)は、上述した力率制御
装置にて二台の発電機を制御対象とした場合の力率・電
圧データを示す図である。図3(a),(b)は、遮断
器6eにて母線10を電力会社の系統Lから切り離した
状態で二台の発電機A,Bを並列運転した結果を示して
いる。図3(a)から、二台の発電機A,Bとも力率が
目標力率範囲内(40〜60%)にあり、母線10の電
圧が目標電圧値の範囲内(11.0kV前後)で一定の
状態にあることが分かる。このように本力率制御装置に
よれば、系統非連携時に、仕様や容量の異なる複数台の
発電機の運転制御を、力率と電圧のバランスを保って行
なうことができる。
FIGS. 3A and 3B are diagrams showing power factor / voltage data when two power generators are controlled by the above-described power factor control device. FIGS. 3A and 3B show the results of parallel operation of two generators A and B in a state where the bus 10 is disconnected from the power company's system L by the circuit breaker 6e. From FIG. 3A, the power factor of both generators A and B is within the target power factor range (40 to 60%), and the voltage of the bus 10 is within the target voltage value range (around 11.0 kV). It can be seen that the state is constant. As described above, according to the present power factor control device, the operation control of a plurality of generators having different specifications and capacities can be performed while maintaining the balance between the power factor and the voltage when the system is not linked.

【0030】なお、本発明は上記実施の形態のみに限定
されず、要旨を変更しない範囲で適宜変形して実施でき
る。例えば、上記実施の形態では発電機が4台または2
台の場合について示したが、これに限定されず複数台で
実施可能である。
It should be noted that the present invention is not limited to only the above-described embodiment, and can be appropriately modified and implemented without changing the gist. For example, in the above embodiment, the number of generators is four or two.
Although the case of a single unit has been described, the present invention is not limited to this, and a plurality of units can be implemented.

【0031】また、上記実施の形態では力率制御を行な
う発電機の数を1サイクルで1台づつとしたが、2台以
上づつ同時に制御するようにしてもよい。例えば、2台
づつ制御する場合、上記ステップS4では、力率が一番
低い発電機と二番目に低い発電機とに対応する各自動電
圧調整器2a〜2dへ電圧下げ信号を出力する。上記ス
テップS6では、力率が一番高い発電機と二番目に高い
発電機とに対応する各自動電圧調整器へ電圧上げ信号を
出力する。上記ステップS8では、力率の目標最低力率
または目標最高力率に対する絶対値偏差が一番大きい発
電機と二番目に大きい発電機とに対応する各自動電圧調
整器へ電圧上げ信号または電圧下げ信号を出力する。
In the above-described embodiment, the number of generators for performing power factor control is one for each cycle, but two or more generators may be controlled simultaneously. For example, in the case of controlling two units at a time, in step S4, a voltage drop signal is output to each of the automatic voltage regulators 2a to 2d corresponding to the generator having the lowest power factor and the generator having the second lowest power factor. In step S6, a voltage increase signal is output to each of the automatic voltage regulators corresponding to the generator having the highest power factor and the generator having the second highest power factor. In step S8, a voltage increase signal or a voltage decrease is sent to each automatic voltage regulator corresponding to the generator having the largest absolute value deviation of the power factor from the target minimum power factor or the target maximum power factor and the generator having the second largest absolute value deviation. Output a signal.

【0032】また、上記実施の形態ではサンプリング周
期(プログラム実行周期)を500msとしたが、これ
に限らず、例えば10ms以上の調整レンジで変更可能
である。また、各発電機の信号に対する追随性を力率制
御部9aの設定レンジで調整可能である。
In the above embodiment, the sampling period (program execution period) is set to 500 ms. However, the present invention is not limited to this, and can be changed in an adjustment range of, for example, 10 ms or more. Further, the followability of each generator with respect to the signal can be adjusted within the setting range of the power factor control section 9a.

【0033】また本発明は、仕様や容量が同じ複数の発
電機に対しても実施可能であり、電力会社の系統と接続
した状態でも実施可能である。
The present invention can be implemented for a plurality of generators having the same specifications and the same capacity, and can be implemented in a state where the generator is connected to a power company system.

【0034】[0034]

【発明の効果】本発明の力率制御装置及び方法によれ
ば、商用停電等による系統非連携運転への移行時に発生
する力率バランスの崩れに起因する発電機のトリップを
防止することができるとともに、力率の変動に伴う電圧
の変動を抑えることができる。これにより、異なる仕様
や容量の発電機を用いた系統非連携並列運転時の力率制
御を確立できる。
According to the power factor control device and method of the present invention, it is possible to prevent the generator from tripping due to a power factor balance collapse that occurs at the time of transition to non-cooperative operation due to a commercial power failure or the like. At the same time, it is possible to suppress the fluctuation of the voltage accompanying the fluctuation of the power factor. Thereby, power factor control at the time of system non-cooperation parallel operation using generators of different specifications and capacities can be established.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る力率制御装置の構成
を示す回路図。
FIG. 1 is a circuit diagram showing a configuration of a power factor control device according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る力率制御装置による
制御手順を示すフローチャート。
FIG. 2 is a flowchart showing a control procedure by the power factor control device according to the embodiment of the present invention.

【図3】本発明の実施の形態に係る力率・電圧データを
示す図。
FIG. 3 is a diagram showing power factor / voltage data according to the embodiment of the present invention.

【図4】従来例に係る無効電流制御装置の構成を示す
図。
FIG. 4 is a diagram showing a configuration of a reactive current control device according to a conventional example.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d…発電機 2a,2b,2c,2d…自動電圧調整器 3a,3b,3c,3d…界磁巻線 4a,4b,4c,4d…計器用変圧器 5a,5b,5c,5d…計器用変流器 6a,6b,6c,6d,6e…遮断器 7a…複合型アナログ信号変換器 8a…配電盤 9a…力率制御部 10…母線 L…系統 1a, 1b, 1c, 1d: Generators 2a, 2b, 2c, 2d: Automatic voltage regulators 3a, 3b, 3c, 3d: Field windings 4a, 4b, 4c, 4d: Instrument transformers 5a, 5b, 5c, 5d: current transformer for instrument 6a, 6b, 6c, 6d, 6e: circuit breaker 7a: composite analog signal converter 8a: switchboard 9a: power factor control unit 10: bus L: system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柳 晋一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 荒木 博文 長崎県長崎市丸尾町6番14号 三菱電機プ ラントエンジニアリング株式会社内 Fターム(参考) 5G066 FA01 FB17 FC11 5H590 AA12 AB03 AB06 CC01 CC29 CE02 DD64 EA16 EB12 EB16 FA06 GA02 GA08 HA02 HA04 HB02 HB03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Koyanagi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Hirofumi Araki 6-14 Maruo-cho, Nagasaki City, Nagasaki Prefecture Mitsubishi Electric F-term in Plant Engineering Co., Ltd. (reference) 5G066 FA01 FB17 FC11 5H590 AA12 AB03 AB06 CC01 CC29 CE02 DD64 EA16 EB12 EB16 FA06 GA02 GA08 HA02 HA04 HB02 HB03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】母線に接続された複数の発電機の力率を制
御する力率制御装置において、 前記複数の発電機の目標とする各力率範囲を一定の周期
で設定する目標力率設定手段と、 前記母線の電圧と所定の電圧値範囲とを前記一定の周期
で比較する比較手段と、 この比較手段の結果、前記母線の電圧が前記電圧値範囲
より高い場合、最も力率が低い少なくとも一つの発電機
の電圧を下げ、前記母線の電圧が前記電圧値範囲より低
い場合、最も力率が高い少なくとも一つの発電機の電圧
を上げるよう制御する第1の制御手段と、 前記比較手段の結果、前記母線の電圧が前記電圧値範囲
内である場合、前記力率範囲から外れた発電機の力率を
前記力率範囲内に修正するよう制御する第2の制御手段
と、 を具備したことを特徴とする力率制御装置。
1. A power factor control device for controlling a power factor of a plurality of generators connected to a bus, wherein a target power factor setting for setting a target power factor range of the plurality of generators at a constant cycle. Means, comparing means for comparing the voltage of the bus with a predetermined voltage value range at the fixed cycle, and as a result of the comparing means, when the voltage of the bus is higher than the voltage value range, the power factor is the lowest. First control means for reducing the voltage of at least one generator, and controlling to increase the voltage of at least one generator having the highest power factor when the voltage of the bus is lower than the voltage value range; and the comparing means As a result, when the voltage of the bus is within the voltage value range, a second control unit that controls the power factor of the generator outside the power factor range to be corrected to within the power factor range. A power factor control device characterized in that:
【請求項2】母線に接続された複数の発電機の力率を制
御する力率制御方法において、 前記複数の発電機の目標とする各力率範囲を一定の周期
で設定する工程と、 前記母線の電圧と所定の電圧値範囲とを前記一定の周期
で比較する工程と、 この比較の結果、前記母線の電圧が前記電圧値範囲より
高い場合、最も力率が低い少なくとも一つの発電機の電
圧を下げ、前記母線の電圧が前記電圧値範囲より低い場
合、最も力率が高い少なくとも一つの発電機の電圧を上
げるよう制御する工程と、 前記比較の結果、前記母線の電圧が前記電圧値範囲内で
ある場合、前記力率範囲から外れた発電機の力率を前記
力率範囲内に修正するよう制御する工程と、 を有することを特徴とする力率制御方法。
2. A power factor control method for controlling a power factor of a plurality of generators connected to a bus, comprising: setting a target power factor range of the plurality of generators at a constant cycle; Comparing the voltage of the bus with a predetermined voltage value range at the fixed cycle; and, as a result of the comparison, when the voltage of the bus is higher than the voltage value range, at least one of the generators having the lowest power factor Controlling the voltage to be lower and increasing the voltage of at least one generator having the highest power factor when the voltage of the bus is lower than the voltage value range; and as a result of the comparison, the voltage of the bus is higher than the voltage value. Controlling the power factor of the generator outside the power factor range to be within the power factor range if the power factor is within the range.
JP2002088917A 2001-03-30 2002-03-27 Power factor control apparatus and method Expired - Lifetime JP3811655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088917A JP3811655B2 (en) 2001-03-30 2002-03-27 Power factor control apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-99596 2001-03-30
JP2001099596 2001-03-30
JP2002088917A JP3811655B2 (en) 2001-03-30 2002-03-27 Power factor control apparatus and method

Publications (2)

Publication Number Publication Date
JP2002359930A true JP2002359930A (en) 2002-12-13
JP3811655B2 JP3811655B2 (en) 2006-08-23

Family

ID=26612754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088917A Expired - Lifetime JP3811655B2 (en) 2001-03-30 2002-03-27 Power factor control apparatus and method

Country Status (1)

Country Link
JP (1) JP3811655B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090539A (en) * 2011-10-21 2013-05-13 Toshiba Mitsubishi-Electric Industrial System Corp Rotor protection monitoring device for brushless synchronous generator
JP2014508503A (en) * 2011-03-15 2014-04-03 ロンシン モーター カンパニー リミテッド Control method and apparatus for parallel operation of generator set driven by internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508503A (en) * 2011-03-15 2014-04-03 ロンシン モーター カンパニー リミテッド Control method and apparatus for parallel operation of generator set driven by internal combustion engine
JP2013090539A (en) * 2011-10-21 2013-05-13 Toshiba Mitsubishi-Electric Industrial System Corp Rotor protection monitoring device for brushless synchronous generator

Also Published As

Publication number Publication date
JP3811655B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US10348211B2 (en) Power conversion device and power conversion system
EP3627684A1 (en) Power conversion device
US9209701B2 (en) Electric power conversion system
US20190273445A1 (en) Apparatus for controlling output voltage for single-type converter, and method therefor
US20160105093A1 (en) Inverter synchronization
US10476258B2 (en) Method of operating a protection device, associated computer program product, protection device and electrical installation
WO2018127967A1 (en) Reactive power control device and reactive power control method
US20180019654A1 (en) Voltage conversion device and voltage conversion method
US6628103B2 (en) Power factor control apparatus and method
EP3136578B1 (en) Power source management method and power source
US20170222429A1 (en) Premagnetizing of mmc connected transformer
JP4312826B1 (en) Transformer that automatically adjusts the voltage of the three-phase power supply
JP2016123238A (en) Power storage device and control method for power storage device
JP2002359930A (en) Device and method for controlling power factor
US10367371B2 (en) Intelligent charging system and intelligent charging method
JP2010011677A (en) Power converting apparatus
JP6799502B2 (en) Power conversion device for photovoltaic power generation and control method of power converter for photovoltaic power generation
JP2017135904A (en) Voltage reactive power control system
JP5917950B2 (en) Distribution line voltage adjustment method and voltage regulator
WO2021028976A1 (en) Power conversion apparatus
KR20210086825A (en) Vehicular on board charger charging systme and controlling method thereof
JP2020005336A (en) System stabilization method and system stabilizer
WO2023203699A1 (en) Load current distribution adjusting device for storage battery power conversion device, load current distribution adjusting method, and load current distribution adjusting program
JP2815284B2 (en) Voltage control method for power supply system
JP2018036827A (en) Solar power generation power converter, control method, and solar power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3811655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term