JP2002359414A - Huge magnetoresistive effect element - Google Patents
Huge magnetoresistive effect elementInfo
- Publication number
- JP2002359414A JP2002359414A JP2001165763A JP2001165763A JP2002359414A JP 2002359414 A JP2002359414 A JP 2002359414A JP 2001165763 A JP2001165763 A JP 2001165763A JP 2001165763 A JP2001165763 A JP 2001165763A JP 2002359414 A JP2002359414 A JP 2002359414A
- Authority
- JP
- Japan
- Prior art keywords
- film
- gmr
- hard magnetic
- laminated film
- giant magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims description 22
- 230000005291 magnetic effect Effects 0.000 claims abstract description 192
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 9
- 239000000696 magnetic material Substances 0.000 claims description 19
- 230000005294 ferromagnetic effect Effects 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 230000005389 magnetism Effects 0.000 claims 1
- 230000000087 stabilizing effect Effects 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 238000009413 insulation Methods 0.000 abstract 2
- 238000013508 migration Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 345
- 239000004020 conductor Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000005330 Barkhausen effect Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910019222 CoCrPt Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 101000777456 Mus musculus Disintegrin and metalloproteinase domain-containing protein 15 Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910006297 γ-Fe2O3 Inorganic materials 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、巨大磁気抵抗効果
積層膜の膜面に垂直な方向にセンス電流が流される巨大
磁気抵抗効果素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a giant magnetoresistive element in which a sense current flows in a direction perpendicular to the surface of a giant magnetoresistive laminated film.
【0002】[0002]
【従来の技術】磁気抵抗効果素子(以下、「MR素子」
と略記する)が組み込まれて実用化されている電子部品
の一つとして磁気ヘッドがある。例えば、現在、ハード
ディスクドライブに搭載されている磁気ヘッドは、高密
度磁気記録用として、誘導型の磁気ヘッドと、読み出し
用として、磁気抵抗効果(Magnet Resist
ive、以下、単に「MR」と略記する)を利用した磁
気ヘッド(MRヘッド)とが組み合わされた複合磁気ヘ
ッドが用いてられている。2. Description of the Related Art A magnetoresistive effect element (hereinafter referred to as "MR element")
A magnetic head is one of the electronic components that have been incorporated and put into practical use. For example, a magnetic head currently mounted on a hard disk drive has an inductive magnetic head for high-density magnetic recording and a magnetoresistive effect (Magnet Resist) for reading.
A composite magnetic head is used in combination with a magnetic head (MR head) using an ive (hereinafter simply referred to as “MR”).
【0003】この複合磁気ヘッドの概略構成図を図9に
示す。尚、この図9ではギャップ膜や絶縁膜は省略して
いる。この複合磁気ヘッド50は、基板51上に形成さ
れた磁性材から成る下部シールド52上に感磁素子53
が配置され、更に、上層に磁性材から成る上部シールド
54が形成されている。FIG. 9 shows a schematic configuration diagram of this composite magnetic head. In FIG. 9, the gap film and the insulating film are omitted. The composite magnetic head 50 includes a magnetic sensing element 53 on a lower shield 52 made of a magnetic material formed on a substrate 51.
Are arranged, and an upper shield 54 made of a magnetic material is formed in an upper layer.
【0004】これら下部シールド52、感磁素子53、
上部シールド54により下層ヘッドとして読み出し用磁
気ヘッド61が構成される。感磁素子53としては、磁
気抵抗効果を有する素子、即ち、MR素子が用いられ
る。[0004] These lower shield 52, magneto-sensitive element 53,
The upper shield 54 constitutes a read magnetic head 61 as a lower layer head. As the magnetic sensing element 53, an element having a magnetoresistance effect, that is, an MR element is used.
【0005】また、上部シールド54は、記録用の上層
ヘッドの下層磁気コアを兼ねるものであり、その上方に
先端ボール部55が配置されている。先端ボール部55
の上には上層磁気コア57が接続され、更に、上層磁気
コア57の後方にバックヨーク58が接続されている。
そして、下層磁気コア54と上層磁気コア57及びバッ
クヨーク58との間に、絶縁層を介してコイル56が配
置される。The upper shield 54 also functions as a lower magnetic core of an upper head for recording, and a tip ball portion 55 is disposed above the upper shield 54. Tip ball 55
The upper magnetic core 57 is connected to the upper part of the upper magnetic core 57, and a back yoke 58 is connected to the rear of the upper magnetic core 57.
Then, a coil 56 is disposed between the lower magnetic core 54 and the upper magnetic core 57 and the back yoke 58 via an insulating layer.
【0006】これら下層磁気コア54、コイル56、先
端ボール部55、上層磁気コア57、バックヨーク58
とから上層ヘッドとして誘導型の書き込み用磁気ヘッド
62が構成される。The lower magnetic core 54, the coil 56, the tip ball 55, the upper magnetic core 57, and the back yoke 58
Thus, an inductive write magnetic head 62 is configured as an upper layer head.
【0007】そして、下層の読み出し用磁気ヘッド61
と上層の書き込み用磁気ヘッド62とが積層されて複合
磁気ヘッド50が構成されている。The lower read magnetic head 61
And a write magnetic head 62 in the upper layer are laminated to form a composite magnetic head 50.
【0008】この複合磁気ヘッド50の下層の読み出し
用磁気ヘッド61を構成するMRヘッドに用いられるM
R素子として、最近より感度の高い巨大磁気抵抗効果
(Giant Magnet Resistive、以
下、単に「GMR」と略記する)素子が用いられてきて
いる。The M used for the MR head constituting the readout magnetic head 61 in the lower layer of the composite magnetic head 50
As the R element, a Giant Magnet Resistive (hereinafter, simply referred to as “GMR”) element having higher sensitivity has recently been used.
【0009】現在実用化されているGMR素子は、磁気
抵抗効果を検知するためのセンス電流をGMR積層膜の
膜面に平行な方向に流す、所謂、CIP(Curren
tIn Planeの略)モードで使用されている。In a GMR element currently in practical use, a so-called CIP (Curren) in which a sense current for detecting a magnetoresistance effect flows in a direction parallel to the film surface of the GMR laminated film.
tIn Plane).
【0010】[0010]
【発明が解決しようとする課題】しかしながら、このC
IPモードで使用するCIP型GMR素子の構成では、
今後、更に、記録密度を高くする場合に、シールド膜と
センス電流を流すハード膜及びGMR積層膜との電気的
な短絡や、エレクトロマイグレーションなどの観点か
ら、遠からず限界が訪れるものと考えられている。However, this C
In the configuration of the CIP GMR element used in the IP mode,
In the future, when the recording density is further increased, it is considered that the limit will come soon from the viewpoint of the electrical short-circuit between the shield film and the hard film and the GMR laminated film for passing the sense current and the electromigration. I have.
【0011】このことから、最近、センス電流をGMR
積層膜の膜面に垂直に流す、所謂、CPP(Curre
nt Perpendicular to the P
lane)モードで使用するCPP型GMR素子の実用
化が検討されている。For this reason, recently, the sense current has been reduced to GMR.
A so-called CPP (Curre) that flows vertically to the film surface of the laminated film.
nt Perpendicular to the P
The practical use of a CPP type GMR element used in a (lane) mode has been studied.
【0012】CPP型GMR素子では、シールド膜を電
極として用いることにより、シールド膜/GMR積層膜
間の絶縁層が不要となるため、前述した短絡の問題を根
本的に解決することができる。In the CPP type GMR element, the use of the shield film as an electrode eliminates the need for an insulating layer between the shield film and the GMR laminated film, so that the above-described short-circuit problem can be fundamentally solved.
【0013】また、CPP型GMR素子では、熱伝導性
の良い金属膜から成る電極膜との接触面積が大きくなる
ため、CIP型GMR素子と比較して格段に高い電流密
度でもエレクトロマイグレーションが発生しにくいとい
う特徴を有しており、高密度記録の磁気ヘッドに要求さ
れる、狭ギャップ及び狭トラック幅を実現できる。Further, in the CPP type GMR element, since the contact area with the electrode film made of a metal film having good thermal conductivity becomes large, electromigration occurs even at a much higher current density than the CIP type GMR element. This makes it difficult to realize a narrow gap and a narrow track width required for a magnetic head for high-density recording.
【0014】この従来技術のCPP型GMR素子の概略
構成を図10に断面図で示す。FIG. 10 is a sectional view showing a schematic configuration of the conventional CPP type GMR element.
【0015】この図10に示したGMR素子70の構成
は、GMR積層膜73を安定化するための硬磁性膜(ハ
ード膜)77に導電性の硬磁性体が用いられている。In the configuration of the GMR element 70 shown in FIG. 10, a conductive hard magnetic material is used for a hard magnetic film (hard film) 77 for stabilizing the GMR laminated film 73.
【0016】磁性体から成る下部磁気シールド71上
に、非磁性の導体から成り電極膜を兼ねる下部ギャップ
膜72を介して断面台形状のGMR積層膜73が形成さ
れている。このGMR積層膜73は、図示しないが、磁
性膜や非磁性膜や反強磁性膜の積層膜により構成され
る。GMR積層膜73の左右にはアルミナ膜などの絶縁
膜76を介して導電性の硬磁性体から成る硬磁性膜77
が配置されている。絶縁膜76はGMR積層膜73と導
電性の硬磁性膜77とを絶縁している。この硬磁性膜7
7上には、GMR積層膜73上にも渡って絶縁層78が
形成され、絶縁層78上に非磁性の導体から成る上部ギ
ャップ膜74を介して磁性体から成る上部磁気シールド
75が配置されている。上部ギャップ膜74は電極膜を
兼ねており、左右の絶縁層78間の開口(幅W)を通じ
てGMR積層膜73に接続されている。A GMR laminated film 73 having a trapezoidal cross section is formed on a lower magnetic shield 71 made of a magnetic material via a lower gap film 72 made of a nonmagnetic conductor and also serving as an electrode film. Although not shown, the GMR laminated film 73 is composed of a laminated film of a magnetic film, a nonmagnetic film, and an antiferromagnetic film. A hard magnetic film 77 made of a conductive hard magnetic material is provided on the left and right sides of the GMR laminated film 73 via an insulating film 76 such as an alumina film.
Is arranged. The insulating film 76 insulates the GMR film 73 from the conductive hard magnetic film 77. This hard magnetic film 7
An insulating layer 78 is also formed on the GMR laminated film 73, and an upper magnetic shield 75 made of a magnetic material is disposed on the insulating layer 78 via an upper gap film 74 made of a nonmagnetic conductor. ing. The upper gap film 74 also serves as an electrode film, and is connected to the GMR laminated film 73 through an opening (width W) between the left and right insulating layers 78.
【0017】下部磁気シールド71及び下部ギャップ膜
72が下部電極となり、上部磁気シールド75及び上部
ギャップ膜74が上部電極となり、これら電極を通じて
GMR積層膜73にその積層膜の膜面に対して垂直な方
向にセンス電流Isを流すことができる。また、硬磁性
膜77によりGMR積層膜73を磁気的に安定化するこ
とができる。The lower magnetic shield 71 and the lower gap film 72 serve as lower electrodes, and the upper magnetic shield 75 and the upper gap film 74 serve as upper electrodes. Through these electrodes, the GMR laminated film 73 is perpendicular to the film surface of the laminated film. The sense current Is can flow in the direction. Further, the GMR laminated film 73 can be magnetically stabilized by the hard magnetic film 77.
【0018】図10の構成において、各層は次のような
機能を有する。In the structure shown in FIG. 10, each layer has the following functions.
【0019】下部磁気シールド71及び上部磁気シール
ド75は、記録媒体の線方向の記録密度を高めるため
に、GMR積層膜73に入る信号磁界を制限する役目を
果たす。このシールド71及び75の材料としては、N
iFe、FeNなどが使用可能である。The lower magnetic shield 71 and the upper magnetic shield 75 serve to limit the signal magnetic field entering the GMR film 73 in order to increase the recording density in the recording medium in the linear direction. The material of the shields 71 and 75 is N
iFe, FeN, etc. can be used.
【0020】非磁性の導電体から成る下部ギャップ膜7
2及び上部ギヤップ膜74は、シールド71及び75と
GMR積層膜73とを磁気的に分断する。CIP型GM
R素子を備えたGMRヘッドでは、シールドとGMR積
層膜との絶縁をとるためにギヤップ膜にはアルミナなど
の絶縁材料を用いる必要があった。これに対して、CP
P型GMR素子を備えたGMRヘッドでは下部ギャップ
膜72及び上部ギャップ膜74を通じてGMR積層膜7
3にセンス電流Isを流すために、下部ギャップ膜72
及び上部ギャップ膜74には導電性材料を用いる。例え
ばAu、Cu、Taなどが使用可能である。Lower gap film 7 made of non-magnetic conductor
The second and upper gap films 74 magnetically separate the shields 71 and 75 from the GMR laminated film 73. CIP type GM
In a GMR head provided with an R element, it was necessary to use an insulating material such as alumina for the gap film in order to insulate the shield from the GMR laminated film. In contrast, CP
In a GMR head having a P-type GMR element, the GMR laminated film 7 is formed through a lower gap film 72 and an upper gap film 74.
3 to allow the sense current Is to flow through the lower gap film 72.
For the upper gap film 74, a conductive material is used. For example, Au, Cu, Ta or the like can be used.
【0021】GMR積層膜73に記録媒体から入る信号
磁界が変化すると、それに対応してGMR積層膜73の
電気抵抗が変化する。このとき、GMR積層膜73にセ
ンス電流Isを流しておくことにより、抵抗の変化を出
力として検知することができる。When the signal magnetic field entering the GMR film 73 from the recording medium changes, the electrical resistance of the GMR film 73 changes correspondingly. At this time, by passing the sense current Is through the GMR film 73, a change in resistance can be detected as an output.
【0022】ここで、GMR積層膜73と硬磁性膜77
の間の絶縁膜76は、GMR積層膜73に与える安定化
磁界の点から充分に薄いことが望ましい。Here, the GMR film 73 and the hard magnetic film 77
Is desirably sufficiently thin from the viewpoint of a stabilizing magnetic field applied to the GMR laminated film 73.
【0023】この絶縁膜76が厚いと、硬磁性膜77が
GMR積層膜73の磁化自由層に与える安定化磁界にス
ペーシングロスを生じて、GMR積層膜73を充分に安
定化することができず、バルクハウゼンノイズやヒステ
リシスノイズなどが発生することになる。If the insulating film 76 is thick, the hard magnetic film 77 causes a spacing loss in the stabilizing magnetic field applied to the magnetization free layer of the GMR laminated film 73, so that the GMR laminated film 73 can be sufficiently stabilized. However, Barkhausen noise and hysteresis noise are generated.
【0024】また、絶縁膜76の成膜工程における成膜
状態のばらつきやこの成膜工程により工程数が増加する
ことなどを考えると、可能であれば絶縁膜76を無くす
ことが望ましい。In consideration of variations in the film formation state in the process of forming the insulating film 76 and an increase in the number of processes due to the film forming process, it is desirable to eliminate the insulating film 76 if possible.
【0025】ここで、GMR積層膜と硬磁性膜との間の
絶縁膜によるスペーシングロスについて、シミュレーシ
ョンによる検討を行う。Here, the spacing loss due to the insulating film between the GMR multilayer film and the hard magnetic film will be examined by simulation.
【0026】図11に示すように、幅Wlが100nm
のGMR積層膜81の左右にAl2O3 から成る絶縁
膜82を介して硬磁性膜(ハード膜)83を配置したG
MR素子80のモデルを用いて、絶縁膜82によるスぺ
−シングの量dを変化させて、それぞれの量dに対する
GMR積層膜81内の磁界の分布を計算して求めた。As shown in FIG. 11, the width Wl is 100 nm.
A hard magnetic film (hard film) 83 is disposed on the left and right of the GMR laminated film 81 via an insulating film 82 made of Al2O3.
Using the model of the MR element 80, the distribution d of the magnetic field in the GMR laminated film 81 for each amount d was calculated by changing the amount d of spacing by the insulating film 82.
【0027】計算の結果を図12に示す。図12の縦軸
は、硬磁性膜83を絶縁膜を介さないで直接GMR積層
膜81に接触させた場合(スぺ−シング量d=0)に硬
磁性膜83によリGMR積層膜81の両端(x=50n
mの位置)で得られる磁界の強さの理想値を1として規
格化した磁界の強さである。尚、図12では計算方法の
影響により、d=0のときのx=50nmの位置におけ
る値が理想値の1にはなっていない。FIG. 12 shows the result of the calculation. The vertical axis of FIG. 12 indicates the case where the hard magnetic film 83 is directly in contact with the GMR laminated film 81 without an insulating film (spacing amount d = 0). (X = 50n
(position of m) is the strength of the magnetic field normalized with the ideal value of the strength of the magnetic field obtained at 1. In FIG. 12, due to the influence of the calculation method, the value at the position of x = 50 nm when d = 0 is not the ideal value of 1.
【0028】また、GMR積層膜81の中央部における
規格化した磁界の強さの変化を図13に示す。この図1
3の場合の縦軸は、GMR積層膜81の中央部、即ち、
図12のx=0の位置におけるスペーシング量d=0で
ある場合の磁界の強さ(図12では約0.17)を1と
して規格化した磁界の強さである。FIG. 13 shows the change in the normalized magnetic field intensity at the center of the GMR laminated film 81. This figure 1
The vertical axis in the case of No. 3 is the central part of the GMR laminated film 81, ie
The magnetic field strength is normalized by setting the magnetic field strength (about 0.17 in FIG. 12) to 1 when the spacing amount d = 0 at the position of x = 0 in FIG.
【0029】図12及び図13より、絶縁膜82による
スペーシングの量dが大きくなるほど、GMR積層膜8
1内の安定化磁界が低減されることが判る。12 and 13, the larger the spacing d of the insulating film 82 is, the larger the GMR laminated film 8 is.
It can be seen that the stabilizing magnetic field within 1 is reduced.
【0030】前記の課題を解決するために、本発明にお
いては、GMR積層膜を磁気的に充分安定化でき、かつ
より一層感度よく情報を読み出せ、エレクトロマイグレ
ーションを抑制できるGMR素子を提供するものであ
る。In order to solve the above-mentioned problems, the present invention provides a GMR element capable of sufficiently stabilizing a GMR laminated film magnetically, reading information with higher sensitivity, and suppressing electromigration. It is.
【0031】[0031]
【課題を解決するための手段】それ故、第1の本発明で
は、巨大磁気抵抗効果素子を、強磁性膜と非磁性膜と反
強磁性膜とを有する巨大磁気抵抗効果積層膜から成り、
上部電極及び下部電極によりその巨大磁気抵抗効果積層
膜の膜面に垂直な方向に電流が流される巨大磁気抵抗効
果素子であって、前記巨大磁気抵抗効果積層膜の幅方向
の両外側に、硬磁性膜を直接接合して形成し、前記硬磁
性膜の上に或いは下に、絶縁層を形成し、両側の前記絶
縁層間の開口により、前記上部電極或いは前記下部電極
と前記巨大磁気抵抗効果積層膜との電流の経路を規制
し、前記硬磁性膜へ流入しようとする前記電流の分流を
抑制或いは阻止するための高抵抗膜を前記硬磁性膜内に
介挿して構成し、前記課題を解決している。Therefore, in the first aspect of the present invention, the giant magnetoresistive element comprises a giant magnetoresistive laminated film having a ferromagnetic film, a nonmagnetic film and an antiferromagnetic film,
A giant magnetoresistive element in which a current flows in a direction perpendicular to the film surface of the giant magnetoresistive laminated film by the upper electrode and the lower electrode, and a hard magnetic material is provided on both outer sides in the width direction of the giant magnetoresistive laminated film. A magnetic film is formed by direct bonding, an insulating layer is formed above or below the hard magnetic film, and the upper electrode or the lower electrode and the giant magnetoresistive effect stack are formed by openings between the insulating layers on both sides. A high-resistance film for regulating a current path to a film and suppressing or preventing a shunt of the current flowing into the hard magnetic film is provided in the hard magnetic film to solve the problem. are doing.
【0032】また、第2の本発明では、巨大磁気抵抗効
果素子を、強磁性膜と非磁性膜と反強磁性膜とを有する
巨大磁気抵抗効果積層膜から成り、上部電極及び下部電
極によりその巨大磁気抵抗効果積層膜の膜面に垂直な方
向に電流が流される巨大磁気抵抗効果素子であって、前
記巨大磁気抵抗効果積層膜の幅方向の両外側に、硬磁性
膜を直接接合して形成し、前記硬磁性膜の上に或いは下
に、絶縁層を形成し、両側の前記絶縁層間の開口によ
り、前記上部電極或いは前記下部電極と前記積層膜との
電流の経路を規制し、前記硬磁性膜を、前記巨大磁気抵
抗効果積層膜の比抵抗と同等以上の比抵抗を有し、かつ
前記硬磁性膜へ流入しようとする前記電流の分流を抑制
或いは阻止するための高抵抗膜を前記硬磁性膜内に介挿
して構成し、前記課題を解決している。According to the second aspect of the present invention, the giant magnetoresistive element comprises a giant magnetoresistive laminated film having a ferromagnetic film, a non-magnetic film and an antiferromagnetic film, and is formed by an upper electrode and a lower electrode. A giant magnetoresistive element in which a current flows in a direction perpendicular to the film surface of the giant magnetoresistive laminated film, wherein a hard magnetic film is directly bonded to both outer sides in the width direction of the giant magnetoresistive laminated film. Forming an insulating layer on or below the hard magnetic film, and restricting a current path between the upper electrode or the lower electrode and the laminated film by an opening between the insulating layers on both sides, The hard magnetic film has a specific resistance equal to or higher than the specific resistance of the giant magnetoresistance effect laminated film, and a high-resistance film for suppressing or preventing the shunt of the current flowing into the hard magnetic film. The hard magnetic film is interposed in the The have solved.
【0033】更にまた、第3の本発明では、巨大磁気抵
抗効果素子を、強磁性膜と非磁性膜と反強磁性膜とを有
する巨大磁気抵抗効果積層膜から成り、上部電極及び下
部電極により該巨大磁気抵抗効果積層膜の膜面に垂直な
方向に電流が流される巨大磁気抵抗効果素子であって、
前記巨大磁気抵抗効果積層膜の幅方向の両外側に硬磁性
膜を直接接合して形成し、それら両硬磁性膜に、前記巨
大磁気抵抗効果積層膜へ流入する電流の経路を規制し、
かつこれら硬磁性膜へ流入しようとする前記電流の分流
を抑制或いは阻止するための高抵抗膜を介挿して構成
し、前記課題を解決している。Further, according to the third aspect of the present invention, the giant magnetoresistive element is composed of a giant magnetoresistive laminated film having a ferromagnetic film, a non-magnetic film and an antiferromagnetic film, and includes an upper electrode and a lower electrode. A giant magnetoresistive element in which a current flows in a direction perpendicular to the film surface of the giant magnetoresistive stacked film,
Hard magnetic films are formed by directly bonding hard magnetic films on both outer sides in the width direction of the giant magnetoresistive laminated film, and on both of these hard magnetic films, a path of a current flowing into the giant magnetoresistive laminated film is regulated,
Further, the problem is solved by interposing a high-resistance film for suppressing or preventing the shunt of the current flowing into the hard magnetic film.
【0034】前記高抵抗膜は複数枚積層されて硬磁性膜
内に介挿されていてもよく、また、前記高抵抗膜が永久
磁石、軟磁性体或いは非磁性体であってもよい。A plurality of the high resistance films may be laminated and interposed in the hard magnetic film, and the high resistance film may be a permanent magnet, a soft magnetic material or a non-magnetic material.
【0035】従って、第1の本発明の巨大磁気抵抗効果
素子によれば、両硬磁性膜へ分流しようとするセンス電
流を効果的に抑制或いは阻止し、センス電流を巨大磁気
抵抗効果積層膜に有効に通電することができる。Therefore, according to the giant magnetoresistive element of the first aspect of the present invention, the sense current which is shunted to the two hard magnetic films is effectively suppressed or blocked, and the sense current is transmitted to the giant magnetoresistive laminated film. It can be energized effectively.
【0036】また、第2の本発明の巨大磁気抵抗効果素
子によれば、両硬磁性膜を巨大磁気抵抗効果積層膜の比
抵抗と同等以上の比抵抗の高抵抗膜で構成したことによ
り、両硬磁性膜へ分流しようとするセンス電流をより一
層効果的に抑制或いは阻止し、センス電流を巨大磁気抵
抗効果積層膜により一層有効に通電することができる。According to the giant magnetoresistive element of the second aspect of the present invention, both the hard magnetic films are made of a high resistance film having a specific resistance equal to or higher than that of the giant magnetoresistive laminated film. The sense current that is shunted to the two hard magnetic films can be more effectively suppressed or prevented, and the sense current can be more effectively supplied to the giant magnetoresistive laminated film.
【0037】更にまた、第3の本発明の巨大磁気抵抗効
果素子によれば、前記の作用効果の他に、両硬磁性膜に
設けた高抵抗膜のみにより巨大磁気抵抗効果積層膜へ流
入する電流の経路を規制することができる。Further, according to the giant magnetoresistive element of the third aspect of the present invention, in addition to the above-described effects, the giant magnetoresistive effect film flows into the giant magnetoresistive effect laminated film only by the high resistance films provided on both the hard magnetic films. The current path can be regulated.
【0038】[0038]
【発明の実施の形態】以下、図を用いて、本発明の実施
形態のCPP型巨大磁気抵抗効果素子(CPP型GMR
素子)を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, a CPP type giant magnetoresistive element (CPP type GMR
The element will be described.
【0039】前記のように、より一層感度よく情報を読
み出すためには、センス電流の全てが図10に示したG
MR積層膜73内を流れることが望ましく、かつGMR
積層膜を磁気的に充分安定化させるために、GMR積層
膜73と硬磁性膜77の間の絶縁膜76は可能な限り無
くすことが望ましい。しかし、この絶縁膜76を無くし
た場合にはセンス電流が硬磁性膜77へ分流する可能性
がある。As described above, in order to read information with even higher sensitivity, all of the sense currents must be equal to G shown in FIG.
It is desirable to flow in the MR laminated film 73, and the GMR
In order to sufficiently stabilize the laminated film magnetically, it is desirable to eliminate the insulating film 76 between the GMR laminated film 73 and the hard magnetic film 77 as much as possible. However, when the insulating film 76 is eliminated, there is a possibility that the sense current is shunted to the hard magnetic film 77.
【0040】そこで、この絶縁膜76を無くして、硬磁
性膜をGMR素子に直接接合した場合に、どの程度の電
流が硬磁性膜に漏洩するかを検討した。Therefore, when the insulating film 76 was removed and the hard magnetic film was directly joined to the GMR element, it was examined how much current would leak to the hard magnetic film.
【0041】先ず、検討に用いたCPP型GMR素子の
模式的断面図を図1に示す。First, FIG. 1 shows a schematic sectional view of the CPP type GMR element used in the study.
【0042】図1に示したCPP型GMR素子1の断面
構造は、GMR積層膜2を安定化させる硬磁性膜3に導
電性の硬磁性体を用いている。なお、図1の断面構造で
は、GMRヘッドや薄膜磁気センサに適用する場合のよ
うに、GMR積層膜2の上下に磁気シールド11、15
を設けている。The sectional structure of the CPP type GMR element 1 shown in FIG. 1 uses a conductive hard magnetic material for the hard magnetic film 3 for stabilizing the GMR film 2. In the sectional structure shown in FIG. 1, the magnetic shields 11 and 15 are provided above and below the GMR laminated film 2 as in the case of applying to a GMR head or a thin film magnetic sensor.
Is provided.
【0043】磁性体から成る下部磁気シールド11上
に、非磁性の導体から成り電極膜を兼ねる下部ギャップ
膜12を介してGMR積層膜2が形成されている。The GMR laminated film 2 is formed on a lower magnetic shield 11 made of a magnetic material via a lower gap film 12 made of a non-magnetic conductor and also serving as an electrode film.
【0044】GMR積層膜2は、図示しないが、強磁性
膜と非磁性膜と反強磁性膜とを有する積層膜により構成
され、断面台形状に形成されている。Although not shown, the GMR laminated film 2 is composed of a laminated film having a ferromagnetic film, a non-magnetic film, and an antiferromagnetic film, and has a trapezoidal cross section.
【0045】GMR積層膜2の左右両側面には導電性の
硬磁性体から成る硬磁性膜(ハード膜)3がGMR積層
膜2に直接接合する構造で配設されている。A hard magnetic film (hard film) 3 made of a conductive hard magnetic material is disposed on both left and right sides of the GMR laminated film 2 in a structure directly bonded to the GMR laminated film 2.
【0046】硬磁性膜3上には、GMR積層膜2の上に
もわたって絶縁層4が形成され、絶縁層4上に非磁性の
導体から成る上部ギャップ膜14は電極膜を兼ねてお
り、左右の絶縁層4間の開口(幅W)を通じてGMR積
層膜2に接続されている。On the hard magnetic film 3, an insulating layer 4 is formed so as to extend over the GMR laminated film 2. On the insulating layer 4, an upper gap film 14 made of a non-magnetic conductor also serves as an electrode film. , Is connected to the GMR laminated film 2 through an opening (width W) between the left and right insulating layers 4.
【0047】下部磁気シールド11及び上部磁気シール
ド15は、GMR積層膜2に入る磁界を制限する役目を
果たす。この下部磁気シールド11及び上部磁気シール
ド15の材料としては、NiFe、FeNなどが使用可
能である。The lower magnetic shield 11 and the upper magnetic shield 15 serve to limit the magnetic field entering the GMR film 2. As a material of the lower magnetic shield 11 and the upper magnetic shield 15, NiFe, FeN, or the like can be used.
【0048】非磁性の導電体から成る下部ギャップ膜1
2及び上部ギャップ膜14は、シールド11及び15と
GMR積層膜2とを磁気的に分断する。ギャップ膜12
及び14の材料には、例えばAu、Cu、Taなどが使
用可能である。Lower gap film 1 made of non-magnetic conductor
2 and the upper gap film 14 magnetically separate the shields 11 and 15 from the GMR laminated film 2. Gap film 12
For example, Au, Cu, Ta, or the like can be used as the material of (14).
【0049】そして、下部磁気シールド11及び下部ギ
ャップ膜12が下部電極となり、上部磁気シールド15
及び上部ギャップ膜14が上部電極となり、これら電極
を通じてGMR積層膜2にその積層膜の膜面方向に垂直
な方向にセンス電流Isを流すことができるCPP型G
MR素子1を構成する。The lower magnetic shield 11 and the lower gap film 12 serve as lower electrodes, and the upper magnetic shield 15
And the upper gap film 14 serves as an upper electrode, through which a sense current Is can flow through the GMR laminated film 2 in a direction perpendicular to the film surface direction of the laminated film.
The MR element 1 is configured.
【0050】GMR積層膜2における磁界が変化する
と、それに対応してGMR積層膜2の電気抵抗が変化す
る。このとき、GMR積層膜2にセンス電流Isを流し
ておくことにより、抵抗の変化を出力として検知するこ
とができる。When the magnetic field in the GMR film 2 changes, the electrical resistance of the GMR film 2 changes accordingly. At this time, a change in resistance can be detected as an output by flowing the sense current Is through the GMR laminated film 2.
【0051】また、左右両側面の硬磁性膜3によリGM
R積層膜2を磁気的に安定化することができる。Further, the hard magnetic films 3 on both the left and right sides make the GM
The R laminated film 2 can be magnetically stabilized.
【0052】そして、硬磁性膜3上に形成された絶縁層
4が、GMR積層膜2の上にオーバーラップして形成さ
れているため、GMR積層膜2と上部電極14及び下部
電極15と電気的に接続される接続部の幅Wは、この部
分における両側の絶縁層4の間隔で決定される。Since the insulating layer 4 formed on the hard magnetic film 3 is formed so as to overlap the GMR film 2, the GMR film 2, the upper electrode 14 and the lower electrode 15 are electrically connected to each other. The width W of the connection part to be electrically connected is determined by the distance between the insulating layers 4 on both sides in this part.
【0053】この図1に示す構成のGMR積層膜2にお
いて、硬磁性膜3の比抵抗ρを変化させてGMR積層膜
2内の電流効率を調べた。この電流効率とは、GMR積
層膜2内で出力に直接寄与する磁化自由層のある面内に
おいて、 電流効率=(GMR積層膜を流れる電流)/(GMR積
層膜を流れる電流+硬磁性膜を流れる電流) で定義した。In the GMR multilayer film 2 having the structure shown in FIG. 1, the current efficiency in the GMR multilayer film 2 was examined by changing the specific resistance ρ of the hard magnetic film 3. The current efficiency is defined as current efficiency = (current flowing through the GMR laminated film) / (current flowing through the GMR laminated film + hard magnetic film) in a plane where the magnetization free layer directly contributes to the output in the GMR laminated film 2. Flowing current).
【0054】硬磁性膜3の比抵抗ρの変化による電流効
率の変化を図2に示す。図2の横軸は、硬磁性膜3とG
MR積層膜2の比・比抵抗(硬磁性膜3の比抵抗/GM
R積層膜2の比抵抗)である。尚、前記GMR積層膜2
の比抵抗は、GMR積層膜2の積層膜全体の合成比抵抗
に該当する。以下、特に断らないが同様である。FIG. 2 shows a change in current efficiency due to a change in the specific resistance ρ of the hard magnetic film 3. The horizontal axis of FIG.
Specific resistance / specific resistance of MR laminated film 2 (specific resistance of hard magnetic film 3 / GM
R specific film 2). The GMR laminated film 2
Corresponds to the combined specific resistance of the entire laminated film of the GMR laminated film 2. Hereinafter, the same applies, although not otherwise specified.
【0055】図2より、硬磁性膜3の比抵抗ρが少なく
ともGMR積層膜2の比抵抗と同程度以上であれば、7
0%程度の充分に高い電流効率が得られることが判る。FIG. 2 shows that if the specific resistance ρ of the hard magnetic film 3 is at least equal to or higher than the specific resistance of the GMR laminated film 2,
It can be seen that a sufficiently high current efficiency of about 0% can be obtained.
【0056】この検討の結果より、硬磁性膜3部分をG
MR積層膜2と同程度以上の比抵抗を有する硬磁性体を
用いて形成することにより、GMR積層膜2と硬磁性膜
3の間の絶縁膜76を省略しても、漏洩電流の観点から
は大きな問題は発生せず、むしろ硬磁性膜3をGMR積
層膜2により近づけて効果的にGMR積層膜2の安定化
を図ることができ、また、製造プロセスを簡略化するこ
とができるという観点から大きなメリットが得られると
考えられる。As a result of this study, the hard magnetic film 3 was
By using a hard magnetic material having a specific resistance equal to or higher than that of the MR laminated film 2, even if the insulating film 76 between the GMR laminated film 2 and the hard magnetic film 3 is omitted, from the viewpoint of leakage current, Does not cause a major problem. Rather, the hard magnetic film 3 can be brought closer to the GMR laminated film 2 to effectively stabilize the GMR laminated film 2, and the manufacturing process can be simplified. It is thought that great advantages can be obtained from.
【0057】次に、図2に示した結果が得られた原因に
ついて考察する。Next, the reason why the result shown in FIG. 2 is obtained will be considered.
【0058】図1の断面構造において、GMR積層膜2
内の電流密度分布を計算した結果を図3に示す。図3の
横軸は、GMR積層膜2の中心からの距離y(nm)、
縦軸は最大値を100として規格化した電流密度Jであ
る。なお、上部電極側の絶縁層4の開口の幅を、GMR
積層膜中心から50nm(=W/2)としている。In the sectional structure of FIG.
FIG. 3 shows the result of calculating the current density distribution in the inside. The horizontal axis in FIG. 3 is a distance y (nm) from the center of the GMR multilayer film 2,
The vertical axis is the current density J normalized with the maximum value as 100. Note that the width of the opening in the insulating layer 4 on the upper electrode side is GMR.
It is 50 nm (= W / 2) from the center of the laminated film.
【0059】図3より、絶縁層4の開口より内側では高
い電流密度であるが、絶縁層4の開口より外側では、開
口部から離れるに従って電流密度が徐々に減少してい
る。As shown in FIG. 3, the current density is high inside the opening of the insulating layer 4, but the current density outside the opening of the insulating layer 4 gradually decreases as the distance from the opening increases.
【0060】また、図4に、図1に示したGMR積層膜
2内におけるセンス電流Isの分布を模式的に示した。FIG. 4 schematically shows the distribution of the sense current Is in the GMR film 2 shown in FIG.
【0061】センス電流Isは、絶縁層4の開口部を通
じて、上部電極からGMR積層膜2へと流入する。GM
R積層膜2及び硬磁性膜3内でセンス電流Isは幅方向
(図中横方向)に広がるが、センス電流Isの大きさ
(電流密度)は絶縁層4の開口部から離れるに従って減
少する。即ち、図4に示すように、センス電流Isの大
部分はGMR積層膜2内を絶縁層4の開口部より僅かに
広がる程度で通過する。The sense current Is flows from the upper electrode to the GMR film 2 through the opening of the insulating layer 4. GM
The sense current Is spreads in the width direction (horizontal direction in the drawing) in the R laminated film 2 and the hard magnetic film 3, but the magnitude (current density) of the sense current Is decreases as the distance from the opening of the insulating layer 4 increases. That is, as shown in FIG. 4, most of the sense current Is passes through the GMR laminated film 2 to such an extent that it spreads slightly from the opening of the insulating layer 4.
【0062】また、このとき、硬磁性膜3の比抵抗がG
MR積層膜2の比抵抗と比較して大きければ、GMR積
層膜2から硬磁性膜3への電流の広がりは格段に減少す
る。At this time, the specific resistance of the hard magnetic film 3 is G
If the specific resistance is larger than the specific resistance of the MR laminated film 2, the spread of the current from the GMR laminated film 2 to the hard magnetic film 3 is significantly reduced.
【0063】以上のことより、硬磁性層膜3の比抵抗を
GMR積層膜2の比抵抗の同程度以上とすれば、GMR
積層膜2と導電性の硬磁性膜3とを直接接触させて形成
しても、硬磁性膜3へセンス電流Isの漏洩は充分に小
さいものと考えられる。From the above, if the specific resistance of the hard magnetic layer film 3 is set to be equal to or more than the specific resistance of the GMR laminated film 2, the GMR
Even if the laminated film 2 and the conductive hard magnetic film 3 are formed in direct contact, the leakage of the sense current Is to the hard magnetic film 3 is considered to be sufficiently small.
【0064】従って、本発明の第1の実施形態のCPP
型GMR素子1Aにおいては、図5に示したように、図
1または図4に示したGMR素子1における硬磁性膜3
内にGMR積層膜2の膜面に水平に高抵抗膜31を介挿
して硬磁性膜3の比抵抗を高める構造を採った。なお、
他の構成部分はGMR素子1の構成部分と同一であるの
で、同一の符号を付してそれらの説明を省略する。Therefore, the CPP of the first embodiment of the present invention
In the type GMR element 1A, as shown in FIG. 5, the hard magnetic film 3 in the GMR element 1 shown in FIG. 1 or FIG.
In the structure, the high resistance film 31 is interposed horizontally on the film surface of the GMR laminated film 2 to increase the specific resistance of the hard magnetic film 3. In addition,
The other components are the same as the components of the GMR element 1, and thus the same reference numerals are given and the description thereof will be omitted.
【0065】本発明の第1の実施形態のCPP型GMR
素子1Aを、このような構造で構成することにより、硬
磁性膜3の比抵抗ρはセンス電流Isに対して見掛け上
GMR積層膜2の比抵抗と同等かそれ以上の高い比抵抗
とすることができる。CPP GMR of First Embodiment of the Present Invention
By configuring the element 1A with such a structure, the specific resistance ρ of the hard magnetic film 3 is apparently equal to or higher than the specific resistance of the GMR laminated film 2 with respect to the sense current Is. Can be.
【0066】従って、絶縁層4の開口から流入するセン
ス電流Isの一部分がGMR積層膜2から硬磁性膜3に
分流しようとしても、そのような分流を抑制或いは阻止
することができる。Therefore, even if a part of the sense current Is flowing from the opening of the insulating layer 4 tries to shunt from the GMR multilayer film 2 to the hard magnetic film 3, such a shunt can be suppressed or prevented.
【0067】硬磁性膜3の材料としては、例えば、Co
CrPtなどの導電性の硬磁性体を用い、高抵抗膜31
としては、例えば、Co−γ−Fe2 O3 (コバル
トガンマヘマタイト)を用いることができる。究極の高
抵抗膜31としては、絶縁体があり、これを用いてもよ
い。また、高抵抗膜31としては、永久磁石、軟磁性体
或いは非磁性体であってもよい。The material of the hard magnetic film 3 is, for example, Co
A high resistance film 31 made of a conductive hard magnetic material such as CrPt is used.
For example, Co-γ-Fe2O3 (cobalt gamma hematite) can be used. As the ultimate high resistance film 31, there is an insulator, which may be used. Further, the high resistance film 31 may be a permanent magnet, a soft magnetic material or a non-magnetic material.
【0068】図5において、ギャップの幅Taが60n
m、硬磁性膜3の厚みTbが40〜50nmであれば、
高抵抗膜31の一枚の厚みTcは3〜5nm程度とす
る。In FIG. 5, the gap width Ta is 60n.
m, if the thickness Tb of the hard magnetic film 3 is 40 to 50 nm,
The thickness Tc of one high-resistance film 31 is about 3 to 5 nm.
【0069】高抵抗膜31を挿入する位置は、GMR素
子2の磁気自由層近傍を避け、硬磁性膜3からの磁界で
充分にGMR積層膜2を磁気的に充分安定化させる必要
がある。この高抵抗膜31の挿入位置は場所によって効
果が異なってくる。特に、高抵抗膜31が1枚だけであ
ると、その挿入位置の選定が難しいので、硬磁性膜3の
厚み方向に複数枚の薄膜の高抵抗膜31を積層するとよ
い。この構造で構成した本発明の第2実施形態のGMR
素子1Bを図6に示した。このGMR素子1Bの硬磁性
膜3部分は、高抵抗膜31と硬磁性膜32との積層膜で
構成されている。高抵抗膜31と硬磁性膜32との材料
は前記のものと同様のもので構成するとよい。The position where the high-resistance film 31 is inserted should be located near the magnetic free layer of the GMR element 2 and the magnetic field from the hard magnetic film 3 must sufficiently stabilize the GMR multilayer film 2 sufficiently. The effect of the insertion position of the high resistance film 31 differs depending on the location. In particular, if only one high-resistance film 31 is used, it is difficult to select an insertion position. Therefore, it is preferable to stack a plurality of thin high-resistance films 31 in the thickness direction of the hard magnetic film 3. The GMR according to the second embodiment of the present invention constituted by this structure
The element 1B is shown in FIG. The portion of the hard magnetic film 3 of the GMR element 1B is composed of a laminated film of a high resistance film 31 and a hard magnetic film 32. The materials of the high-resistance film 31 and the hard magnetic film 32 may be the same as those described above.
【0070】硬磁性膜3部分を、このような積層構造で
構成することにより、GMR素子2の上方から硬磁性膜
3部分へ流入しようとする一部分のセンス電流Isを遮
断することができる。By forming the hard magnetic film 3 in such a laminated structure, it is possible to cut off the sense current Is that is going to flow into the hard magnetic film 3 from above the GMR element 2.
【0071】しかし、一方、GMR積層膜2の磁気安定
化の問題がある。高抵抗膜31を挿入する枚数が多くな
るに従って、硬磁性膜3としての発生磁界が減少するた
め、磁気安定化としては弱くなってくる。従って、この
硬磁性膜3の位置や枚数はGMR積層膜2を充分に安定
化できるように決定され、GMR積層膜の構成や素子に
流すセンス電流の大きさなどに応じて設計することがで
きる。However, on the other hand, there is a problem of magnetic stabilization of the GMR multilayer film 2. As the number of high resistance films 31 to be inserted increases, the magnetic field generated as the hard magnetic film 3 decreases, and the magnetic stabilization decreases. Therefore, the position and the number of the hard magnetic films 3 are determined so that the GMR multilayer film 2 can be sufficiently stabilized, and can be designed according to the configuration of the GMR multilayer film, the magnitude of the sense current flowing through the element, and the like. .
【0072】また、本発明者等は、CPP型GMR素子
として、比抵抗ρが硬磁性層膜3の比抵抗の比抵抗と同
程度以上の硬磁性膜3をGMR積層膜2の左右両側面に
直接接合するように配置したことにより、GMR積層膜
2と硬磁性膜3の間に絶縁膜を設けた場合と比較して、
硬磁性膜3をGMR積層膜2に近づけて、より確実にG
MR積層膜2の安定化を図り、これにより、バルクハウ
ゼンノイズやヒステリシスノイズなどを低減する構造を
提案した。そのCPP型GMR素子などは2001年3
月23日に出願した特許願第2001−085843号
「巨大磁気抵抗効果素子、磁気抵抗効果型ヘッド、薄膜
磁気メモリ、並びに薄膜磁気センサ」に開示されてい
る。Further, the present inventors have proposed that a hard magnetic film 3 having a specific resistance ρ approximately equal to or higher than the specific resistance of the hard magnetic layer film 3 as a CPP type GMR element is formed on both left and right sides of the GMR laminated film 2. Is arranged so as to be directly bonded to the semiconductor device, and as compared with the case where an insulating film is provided between the GMR laminated film 2 and the hard magnetic film 3,
The hard magnetic film 3 is brought closer to the GMR laminated film 2 so that G
A structure was proposed in which the MR laminated film 2 was stabilized, thereby reducing Barkhausen noise, hysteresis noise, and the like. The CPP type GMR element etc.
Patent Application No. 2001-085843 filed on May 23, 2009, entitled "Giant magnetoresistance effect element, magnetoresistance effect type head, thin film magnetic memory, and thin film magnetic sensor".
【0073】このCPP型GMR素子における硬磁性膜
としてCoCrPtの磁性膜が用いられている。特に、
CoCrPtの組成を、例えば、Co:Cr:Pt=7
8:10:12(原子比%)とすることにより、硬磁性
膜3の比抵抗をGMR積層膜2の比抵抗より高くするこ
とができる。そして良好な磁気特性を有する硬磁性膜3
を形成することができる。A magnetic film of CoCrPt is used as a hard magnetic film in the CPP type GMR element. In particular,
The composition of CoCrPt is, for example, Co: Cr: Pt = 7.
By setting the ratio to 8:10:12 (atomic ratio%), the specific resistance of the hard magnetic film 3 can be made higher than the specific resistance of the GMR laminated film 2. And a hard magnetic film 3 having good magnetic properties
Can be formed.
【0074】このようなCPP型GMR素子において
も、前記のCPP型GMR素子1A、1Bの構造のよう
に、その硬磁性膜(ハード膜)に少なくとも1層の高抵
抗膜31を挿入するとよい。そのような構造で構成すれ
ば、その硬磁性膜はGMR素子から流入しようとするセ
ンス電流Isの分流をより一層確実に抑制或いは阻止す
ることができる。In such a CPP type GMR element, it is preferable to insert at least one high resistance film 31 in the hard magnetic film (hard film) as in the structure of the CPP type GMR elements 1A and 1B. With such a structure, the hard magnetic film can further surely suppress or prevent the shunt of the sense current Is flowing from the GMR element.
【0075】また、これら実施形態のCPP型GMR素
子1A、1Bは、その硬磁性膜3上の絶縁層4がGMR
積層膜2上にもわたって形成され、両側の絶縁層4の開
口により上部電極となる上部ギャップ膜14とGMR積
層膜2との電流の経路を規制しているため、GMR積層
膜2の中央部にセンス電流Isを集中させて、硬磁性膜
3に漏らさないようにすることもできる。そのように形
成することによって、GMR積層膜2内に充分な電流密
度を確保することができる。In the CPP type GMR elements 1A and 1B of these embodiments, the insulating layer 4 on the hard magnetic film
Since the current path between the upper gap film 14 serving as an upper electrode and the GMR laminated film 2 is regulated by the openings of the insulating layers 4 on both sides formed over the laminated film 2, the center of the GMR laminated film 2 is It is also possible to concentrate the sense current Is on the portion so as not to leak to the hard magnetic film 3. With such a formation, a sufficient current density can be ensured in the GMR laminated film 2.
【0076】更に、本発明のCPP型GMR素子1A、
1Bによれば、GMR積層膜2と硬磁性膜3の間に絶縁
層を形成する必要がなくなるため、工程数を削減して、
製造工程を簡略化することができると共に、絶縁膜の成
膜のばらつきの影響もなくすことができる。Further, the CPP type GMR element 1A of the present invention,
According to 1B, since it is not necessary to form an insulating layer between the GMR multilayer film 2 and the hard magnetic film 3, the number of steps can be reduced,
The manufacturing process can be simplified, and the influence of variations in the formation of the insulating film can be eliminated.
【0077】更にまた、本発明のCPP型GMR素子1
A、1Bによれば、硬磁性膜3がGMR積層膜2に直接
接合されているため、GMR積層膜2から硬磁性体3へ
熱が拡散するので、耐エレクトロマイグレーションなど
の点でGMR積層膜2の信頼性を向上させることができ
る。Further, the CPP type GMR element 1 of the present invention
According to A and 1B, since the hard magnetic film 3 is directly bonded to the GMR laminated film 2, heat is diffused from the GMR laminated film 2 to the hard magnetic material 3, so that the GMR laminated film is resistant to electromigration. 2 can improve the reliability.
【0078】図1、図4〜図6では、絶縁層4をGMR
積層膜2の上に形成しているが、GMR積層膜の下側に
絶縁層を配置して、この絶縁層の開口により下部電極と
GMR積層膜2との間の電流経路を規定するようにして
もよい。この場合も全く同様の効果が得られる。In FIGS. 1 and 4 to 6, the insulating layer 4 is formed by GMR.
Although formed on the laminated film 2, an insulating layer is disposed below the GMR laminated film, and an opening of the insulating layer defines a current path between the lower electrode and the GMR laminated film 2. You may. In this case, the same effect can be obtained.
【0079】また、図1、図4〜図6では、絶縁層4を
GMR積層膜2上にも渡って(オーバラップして)形成
しているが、絶縁層4の位置はそれらの位置には限定さ
れない。例えば、絶縁層4の端縁が、GMR積層膜2と
硬磁性膜3の界面と一致していたり、この界面よりさら
に硬磁性膜3側にあってもよい。In FIGS. 1 and 4 to 6, the insulating layer 4 is formed over (overlapping with) the GMR laminated film 2, but the insulating layer 4 is located at those positions. Is not limited. For example, the edge of the insulating layer 4 may coincide with the interface between the GMR multilayer film 2 and the hard magnetic film 3 or may be further closer to the hard magnetic film 3 than this interface.
【0080】なお、本発明においては、図7に示した本
発明の第3実施形態のCPP型GMR素子1Cや図8に
示した本発明の第4実施形態のCPP型GMR素子1D
のように、前記の両絶縁層4を省略した構造で構成する
こともできる。即ち、硬磁性膜3が上下両方の電極1
2、14と接していても、硬磁性膜3の間に挿入した高
抵抗膜31の開口間隔によってセンス電流の前記分流を
抑制できる他、センス電流の経路をも規定することがで
きる。CPP型GMR素子1C及びCPP型GMR素子
1Dの他の構成、作用などは、それぞれCPP型GMR
素子1A及びCPP型GMR素子1Bのそれらとほぼ同
様であるので、それらの説明を省略する。In the present invention, the CPP type GMR element 1C according to the third embodiment of the present invention shown in FIG. 7 and the CPP type GMR element 1D according to the fourth embodiment of the present invention shown in FIG.
As described above, the structure may be such that both insulating layers 4 are omitted. That is, both the upper and lower electrodes 1 are hard magnetic films.
Even in contact with the hard magnetic films 2, 14, the branching of the sense current can be suppressed by the opening interval of the high resistance film 31 inserted between the hard magnetic films 3, and the path of the sense current can be defined. Other configurations and operations of the CPP type GMR element 1C and the CPP type GMR element 1D are respectively similar to those of the CPP type GMR element 1C.
Since these are almost the same as those of the element 1A and the CPP type GMR element 1B, their description will be omitted.
【0081】本発明は、前記の実施の形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲でその他
様々な構成を取り得る。また、本発明のGMR素子は、
GMRヘッドや、薄膜磁気メモリ、並びに薄膜磁気セン
サにも適用できることを付言しておく。The present invention is not limited to the above-described embodiment, and can take various other configurations without departing from the gist of the present invention. Further, the GMR element of the present invention comprises:
It should be noted that the present invention can be applied to a GMR head, a thin-film magnetic memory, and a thin-film magnetic sensor.
【0082】[0082]
【発明の効果】以上、記したように、本発明によれば、
GMR素子のGMR積層膜に硬磁性膜を直接接合し、そ
の硬磁性膜を高抵抗膜で構成したことにより、GMR積
層膜とその硬磁性膜の間に絶縁膜を設けた場合と比較し
て、硬磁性膜をGMR積層膜に近づけて、より確実にG
MR積層膜を安定化して、GMR積層膜の抵抗変化を安
定化させることができる。これにより、GMR素子にお
いて、バルクハウゼンノイズやヒステリシスノイズなど
が低減される。As described above, according to the present invention,
A hard magnetic film is directly bonded to a GMR laminated film of a GMR element, and the hard magnetic film is formed of a high-resistance film, so that an insulating film is provided between the GMR laminated film and the hard magnetic film. , By bringing the hard magnetic film closer to the GMR laminated film,
By stabilizing the MR laminated film, the resistance change of the GMR laminated film can be stabilized. Thereby, in the GMR element, Barkhausen noise, hysteresis noise, and the like are reduced.
【0083】また、硬磁性膜の比抵抗をGMR積層膜と
同等以上の比抵抗とすることにより、センス電流を硬磁
性膜に漏らさないでGMR積層膜内に集中して流すこと
ができる。Further, by setting the specific resistance of the hard magnetic film to be equal to or higher than that of the GMR laminated film, the sense current can be concentrated and flow in the GMR laminated film without leaking to the hard magnetic film.
【0084】更に、硬磁性膜の上或いは下に絶縁層が形
成されていることにより、両側の絶縁層の開口によりG
MR積層膜と上部電極或いは下部電極との間の電流の経
路が規制されるため、GMR積層膜の中央部に電流を偏
らせて、硬磁性膜に漏らさないようにすることができ
る。従って、GMR積層膜内に充分な電流密度を確保す
ることができる。Further, since the insulating layer is formed above or below the hard magnetic film, G
Since the current path between the MR laminated film and the upper electrode or the lower electrode is regulated, the current can be biased toward the center of the GMR laminated film so as not to leak to the hard magnetic film. Therefore, a sufficient current density can be ensured in the GMR laminated film.
【0085】更にまた、GMR積層膜と硬磁性膜の間に
絶縁膜を形成する必要がなくなるため、工程数を削減し
て、製造工程を簡略化することができると共に、絶縁膜
の成膜のばらつきの影響も無くすことができる。Further, since there is no need to form an insulating film between the GMR layer film and the hard magnetic film, the number of steps can be reduced, the manufacturing process can be simplified, and the film thickness of the insulating film can be reduced. The influence of the variation can be eliminated.
【0086】従って、本発明により、製造コストの削減
及び製造歩留まりの向上を図ることができる。Therefore, according to the present invention, the manufacturing cost can be reduced and the manufacturing yield can be improved.
【図1】 硬磁性膜をGMR素子に直接接合したCPP
型GMR素子の構成を概念的に示した断面図である。FIG. 1 CPP in which a hard magnetic film is directly bonded to a GMR element
FIG. 2 is a cross-sectional view conceptually showing a configuration of a type GMR element.
【図2】 図1に示したGMR素子において硬磁性膜の
比抵抗を変化させたときのGMR素子内の電流効率の変
化を示すグラフである。FIG. 2 is a graph showing a change in current efficiency in the GMR element when the specific resistance of the hard magnetic film is changed in the GMR element shown in FIG.
【図3】 図1に示したGMR素子においてGMR素子
の幅方向における規格化電流密度の分布を示すグラフで
ある。3 is a graph showing a distribution of a normalized current density in a width direction of the GMR element in the GMR element shown in FIG.
【図4】 図1に示したCPP型GMR素子内を流れる
電流の状態を模式的に示す断面図である。FIG. 4 is a sectional view schematically showing a state of a current flowing in the CPP type GMR element shown in FIG.
【図5】 本発明の第1実施形態のCPP型GMR素子
の構成を概念的に示した断面側面図である。FIG. 5 is a sectional side view conceptually showing the configuration of the CPP type GMR element of the first embodiment of the present invention.
【図6】 本発明の第2実施形態のCPP型GMR素子
の構成を概念的に示した断面側面図である。FIG. 6 is a sectional side view conceptually showing a configuration of a CPP type GMR element according to a second embodiment of the present invention.
【図7】 本発明の第3実施形態のCPP型GMR素子
の構成を概念的に示した断面側面図である。FIG. 7 is a sectional side view conceptually showing a configuration of a CPP type GMR element according to a third embodiment of the present invention.
【図8】 本発明の第4実施形態のCPP型GMR素子
の構成を概念的に示した断面側面図である。FIG. 8 is a sectional side view conceptually showing a configuration of a CPP type GMR element according to a fourth embodiment of the present invention.
【図9】 一般的な複合磁気ヘッドの概略構成図であ
る。FIG. 9 is a schematic configuration diagram of a general composite magnetic head.
【図10】 従来技術のCPP型GMR素子の構成を概
念的に示した断面図である。FIG. 10 is a sectional view conceptually showing the configuration of a conventional CPP type GMR element.
【図11】 GMR素子と硬磁性膜との間の絶縁膜によ
るスぺ−シングロスについて、シミュレーションを行う
ためのモデルの構成図である。FIG. 11 is a configuration diagram of a model for performing a simulation on a spacing loss caused by an insulating film between the GMR element and the hard magnetic film.
【図12】 図13に示したモデルにおけるスペーシン
グの量の変化によるGMR素子内の磁界分布の変化の計
算結果を示すグラフである。12 is a graph showing a calculation result of a change in a magnetic field distribution in the GMR element due to a change in the amount of spacing in the model shown in FIG. 13;
【図13】 図13に示したモデルにおけるスペーシン
グの量の変化によるGMR素子の中央部における磁界の
大きさの変化の計算結果を示すグラフである。13 is a graph showing a calculation result of a change in the magnitude of a magnetic field at the center of the GMR element due to a change in the amount of spacing in the model shown in FIG. 13;
1…CPP型巨大磁気抵抗効果素子(GMR素子)、1
A…本発明の第1実施形態のCPP型巨大磁気抵抗効果
素子(GMR素子)、1B…本発明の第2実施形態のC
PP型巨大磁気抵抗効果素子(GMR素子)、2…GM
R積層膜、3,32…硬磁性膜(ハード膜)、31…高
抵抗膜、4…絶縁層、11…下部磁気シールド、12…
下部ギャップ膜、14…上部ギャップ膜、15…上部磁
気シールド1: CPP type giant magnetoresistance effect element (GMR element), 1
A: CPP type giant magnetoresistive element (GMR element) of the first embodiment of the present invention, 1B: C of the second embodiment of the present invention
PP type giant magnetoresistive element (GMR element), 2 ... GM
R laminated film, 3, 32 hard magnetic film (hard film), 31 high resistance film, 4 insulating layer, 11 lower magnetic shield, 12
Lower gap film, 14: Upper gap film, 15: Upper magnetic shield
フロントページの続き (72)発明者 寺田 尚司 東京都品川区北品川6丁目7番35号ソニー 株式会社内 (72)発明者 大河原 重久 東京都品川区北品川6丁目7番35号ソニー 株式会社内 Fターム(参考) 2G017 AC01 AD55 AD56 AD62 AD63 AD65 5D034 BA03 BA08 BA12 BA15 BB08 CA00 5E049 AA01 AA07 AC00 AC05 BA12 CB02 DB12 Continuation of the front page (72) Inventor Naoji Terada 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation (72) Inventor Shigehisa Ogawara 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation F-term (reference) 2G017 AC01 AD55 AD56 AD62 AD63 AD65 5D034 BA03 BA08 BA12 BA15 BB08 CA00 5E049 AA01 AA07 AC00 AC05 BA12 CB02 DB12
Claims (7)
する巨大磁気抵抗効果積層膜から成り、上部電極及び下
部電極により該巨大磁気抵抗効果積層膜の膜面に垂直な
方向に電流が流される巨大磁気抵抗効果素子であって、 前記巨大磁気抵抗効果積層膜の幅方向の両外側に、硬磁
性膜が直接接合して形成され、 前記硬磁性膜の上に或いは下に絶縁層が形成され、 両側の前記絶縁層間の開口により、前記上部電極或いは
前記下部電極と前記巨大磁気抵抗効果積層膜との電流の
経路が規制され、 前記硬磁性膜へ流入しようとする前記電流の分流を抑制
或いは阻止するための高抵抗膜が前記硬磁性膜内に介挿
されていることを特徴とする巨大磁気抵抗効果素子。1. A giant magnetoresistive laminated film having a ferromagnetic film, a nonmagnetic film, and an antiferromagnetic film, wherein an upper electrode and a lower electrode are arranged in a direction perpendicular to the film surface of the giant magnetoresistive laminated film. A giant magnetoresistive element through which an electric current flows, wherein a hard magnetic film is formed by directly bonding both outer sides in the width direction of the giant magnetoresistive laminated film, and is insulated on or below the hard magnetic film. A layer is formed, and a current path between the upper electrode or the lower electrode and the giant magnetoresistive laminated film is regulated by openings between the insulating layers on both sides, and the current flowing to the hard magnetic film is restricted. A giant magnetoresistive element, wherein a high-resistance film for suppressing or preventing a shunt is inserted in the hard magnetic film.
する巨大磁気抵抗効果積層膜から成り、上部電極及び下
部電極により該巨大磁気抵抗効果積層膜の膜面に垂直な
方向に電流が流される巨大磁気抵抗効果素子であって、 前記巨大磁気抵抗効果積層膜の幅方向の両外側に、硬磁
性膜が直接接合して形成され、 前記硬磁性膜の上に或いは下に絶縁層が形成され、 両側の前記絶縁層間の開口により、前記上部電極或いは
前記下部電極と前記積層膜との電流の経路が規制され、 前記硬磁性膜が、前記巨大磁気抵抗効果積層膜の比抵抗
と同等以上の比抵抗を有し、かつ前記硬磁性膜へ流入し
ようとする前記電流の分流を抑制或いは阻止するための
高抵抗膜が前記硬磁性膜内に介挿されていることを特徴
とする巨大磁気抵抗効果素子。2. A giant magnetoresistance effect laminated film having a ferromagnetic film, a nonmagnetic film, and an antiferromagnetic film, wherein an upper electrode and a lower electrode extend in a direction perpendicular to the film surface of the giant magnetoresistance effect laminated film. A giant magnetoresistive element through which a current flows, wherein a hard magnetic film is formed by directly bonding both outer sides in the width direction of the giant magnetoresistive laminated film, and is insulated on or below the hard magnetic film. A layer is formed, and an opening between the insulating layers on both sides restricts a current path between the upper electrode or the lower electrode and the laminated film, and the hard magnetic film has a specific resistance of the giant magnetoresistive laminated film. And a high-resistance film for suppressing or preventing the shunt of the current flowing into the hard magnetic film is inserted into the hard magnetic film. Giant magnetoresistance effect element.
する巨大磁気抵抗効果積層膜から成り、上部電極及び下
部電極により該巨大磁気抵抗効果積層膜の膜面に垂直な
方向に電流が流される巨大磁気抵抗効果素子であって、 前記巨大磁気抵抗効果積層膜の幅方向の両外側に硬磁性
膜が直接接合して形成され、 該両硬磁性膜には、前記巨大磁気抵抗効果積層膜へ流入
する電流の経路を規制し、かつこれら硬磁性膜へ流入し
ようとする前記電流の分流を抑制或いは阻止するための
高抵抗膜が介挿されていることを特徴とする巨大磁気抵
抗効果素子。3. A giant magnetoresistive laminated film having a ferromagnetic film, a non-magnetic film and an antiferromagnetic film, wherein an upper electrode and a lower electrode extend in a direction perpendicular to the film surface of the giant magnetoresistive laminated film. A giant magnetoresistive element through which an electric current flows, wherein a hard magnetic film is formed by directly joining both outer sides of the giant magnetoresistive effect laminated film in the width direction; A giant magnetism characterized in that a high resistance film is interposed to regulate the path of the current flowing into the effect laminated film and to suppress or prevent the shunt of the current flowing into the hard magnetic film. Resistance effect element.
れていることを特徴とする請求項1、請求項2または請
求項3に記載の巨大磁気抵抗効果素子。4. The giant magnetoresistive element according to claim 1, wherein a plurality of said high resistance films are stacked and interposed.
徴とする請求項1、請求項2または請求項3に記載の巨
大磁気抵抗効果素子。5. The giant magnetoresistive element according to claim 1, wherein the high-resistance film is a permanent magnet.
徴とする請求項1、請求項2または請求項3に記載の巨
大磁気抵抗効果素子。6. The giant magnetoresistance effect element according to claim 1, wherein said high resistance film is a soft magnetic material.
徴とする請求項1、請求項2または請求項3に記載の巨
大磁気抵抗効果素子。7. The giant magnetoresistive element according to claim 1, wherein the high-resistance film is a non-magnetic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001165763A JP2002359414A (en) | 2001-05-31 | 2001-05-31 | Huge magnetoresistive effect element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001165763A JP2002359414A (en) | 2001-05-31 | 2001-05-31 | Huge magnetoresistive effect element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002359414A true JP2002359414A (en) | 2002-12-13 |
Family
ID=19008395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001165763A Pending JP2002359414A (en) | 2001-05-31 | 2001-05-31 | Huge magnetoresistive effect element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002359414A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7268985B2 (en) | 2004-05-28 | 2007-09-11 | Hitachi Global Storage Technologies Netherlands, B.V. | Magnetic head having a layered hard bias layer exhibiting reduced noise |
US8066897B2 (en) | 2007-12-28 | 2011-11-29 | Hitachi Global Storage Technologies Netherlands B.V. | Dynamic hard magnet thickness adjustment for reduced variation in free layer stabilization field in a magnetoresistive sensor |
US8335056B2 (en) | 2007-12-16 | 2012-12-18 | HGST Netherlands, B.V. | CPP sensors with hard bias structures that shunt sense current towards a shield |
-
2001
- 2001-05-31 JP JP2001165763A patent/JP2002359414A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7268985B2 (en) | 2004-05-28 | 2007-09-11 | Hitachi Global Storage Technologies Netherlands, B.V. | Magnetic head having a layered hard bias layer exhibiting reduced noise |
US8335056B2 (en) | 2007-12-16 | 2012-12-18 | HGST Netherlands, B.V. | CPP sensors with hard bias structures that shunt sense current towards a shield |
US8066897B2 (en) | 2007-12-28 | 2011-11-29 | Hitachi Global Storage Technologies Netherlands B.V. | Dynamic hard magnet thickness adjustment for reduced variation in free layer stabilization field in a magnetoresistive sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001006130A (en) | Tunneling magneto-resistance effect type head | |
JPH07272225A (en) | Magnetic resistive head | |
JP2002314167A (en) | Giant magnetoresistance effect element, magnetoresistance effect type head, thin film magnetic memory and thin film magnetic sensor | |
US6754055B2 (en) | Giant magneto-resistive effect element having small leakage current, magneto-resistive effective type head having small-leakage current, thin-film magnetic memory having small leakage current and thin-film magnetic sensor having small leakage current | |
JP3836294B2 (en) | Magnetic head and magnetic recording / reproducing apparatus using the same | |
JP2003296907A (en) | Magnetic disk unit using magnetic head having magneto- resistive effect film | |
US7805828B2 (en) | Method of manufacturing thin-film magnetic head | |
US6693774B2 (en) | Magnetoresistive sensor and magnetic storage apparatus | |
JP3817399B2 (en) | Magnetoresistive sensor | |
KR100553489B1 (en) | Spin-valve magnetoresistance effect head, composite magnetic head comprising the same, and magnetoresistance recorded medium drive | |
JP2002217473A (en) | Spin valve-type structure and method for forming it | |
JPH07176019A (en) | Flat magnetoresistance head | |
JP2001160208A (en) | Magneto-resistive element and method for manufacturing the same | |
JP2002359414A (en) | Huge magnetoresistive effect element | |
US6833975B2 (en) | Perpendicular magnetic recording medium and apparatus including a soft magnetic layer, an at least 20 nm thick non-magnetic layer, and a 50-90 nm gap length | |
JP2002289946A (en) | Magnetism detection element, manufacturing method therefor and thin-film magnetic head using the magnetism detection element | |
JP3569259B2 (en) | Perpendicular conduction type magnetoresistive element, magnetic head, and magnetic recording / reproducing device | |
JPH1196513A (en) | Magnetic head and magnetic memory device using the same | |
US6697235B2 (en) | Magnetoresistive head and magnetic recoding/reproducing apparatus using the same | |
JP4018464B2 (en) | Magnetic field sensor and magnetic disk device | |
JPH07201021A (en) | Composite magnetic head | |
JPH11110720A (en) | Magneto-resistive type head | |
JPH0836715A (en) | Magnetoresistance effect-type magnetic head | |
JP3868747B2 (en) | Yoke type magnetic head | |
JPH09251612A (en) | Thin film magnetic head |