JP2002358926A - Ultraviolet fluorescent lamp - Google Patents
Ultraviolet fluorescent lampInfo
- Publication number
- JP2002358926A JP2002358926A JP2001163745A JP2001163745A JP2002358926A JP 2002358926 A JP2002358926 A JP 2002358926A JP 2001163745 A JP2001163745 A JP 2001163745A JP 2001163745 A JP2001163745 A JP 2001163745A JP 2002358926 A JP2002358926 A JP 2002358926A
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet
- phosphor
- wavelength
- light
- mercury
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、紫外線硬化樹脂の
硬化用光源として使用する紫外線蛍光ランプに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet fluorescent lamp used as a light source for curing an ultraviolet curable resin.
【0002】[0002]
【従来の技術】例えば、紫外線硬化形マニキュアなどの
紫外線硬化形樹脂の乾燥には殺菌ランプを使用してい
る。殺菌ランプは、波長がUV−C領域の波長253.
7nmの紫外線(水銀輝線)を発光し、その殺菌線を紫
外線硬化形樹脂に照射することで、紫外線硬化形マニキ
ュアなどの紫外線硬化形樹脂を乾燥すなわち硬化させて
いる。2. Description of the Related Art For example, a germicidal lamp is used for drying an ultraviolet-curable resin such as an ultraviolet-curable nail polish. The germicidal lamp has a wavelength of 253.
By irradiating ultraviolet rays (mercury emission line) of 7 nm and germicidal rays to the ultraviolet curing resin, the ultraviolet curing resin such as ultraviolet curing nail varnish is dried, that is, cured.
【0003】この場合、波長253.7nmの水銀輝線
は紫外線硬化形樹脂の膜厚が0、1mm以上になると、樹
脂自体の紫外線吸収作用により内部が所要に硬化されに
くくなる。一方、波長がUV−A領域の波長320nm
〜400nmの近紫外線を発生する近紫外線蛍光ランプ
を用いた場合には、紫外線硬化形樹脂自体の近紫外線吸
収が少ないので、紫外線硬化形樹脂の内部まで近紫外線
が入り込んで紫外線硬化形樹脂の内部を硬化させること
ができる。このように、近年紫外線硬化形樹脂を硬化さ
せるあたっては、波長が253.7nmの水銀輝線だけ
でなくUV−A領域の近紫外線も必要とされるようにな
ってきている。In this case, when the thickness of the UV-curable resin becomes 0.1 mm or more, the inside of the mercury emission line having a wavelength of 253.7 nm becomes hard to be hardened as required due to the UV absorbing action of the resin itself. On the other hand, the wavelength is 320 nm in the UV-A region.
When a near-ultraviolet fluorescent lamp that generates near-ultraviolet light of up to 400 nm is used, the near-ultraviolet light penetrates into the ultraviolet-curable resin because the near-ultraviolet absorption of the ultraviolet-curable resin itself is small. Can be cured. Thus, in recent years, in curing an ultraviolet-curable resin, not only a mercury emission line having a wavelength of 253.7 nm but also near-ultraviolet rays in the UV-A region have been required.
【0004】[0004]
【発明が解決しようとする課題】ところが、殺菌ランプ
と近紫外線ランプとを併用した場合には、紫外線硬化形
樹脂の硬化は問題なく行なうことができるようになる
が、紫外線硬化装置が大形化してしまう。また、ランプ
および点灯装置を2セット用いる必要があることからコ
ストアップにもなる。本発明の目的は、紫外線硬化形樹
脂の内部への浸透性の高いUV−A領域の光と紫外線硬
化形樹脂の表面を硬化させる力の強いUV−C領域の光
を同時に発光できる紫外線蛍光ランプを提供することで
ある。However, when a germicidal lamp and a near-ultraviolet lamp are used in combination, curing of the ultraviolet-curable resin can be performed without any problem. Would. Further, since it is necessary to use two sets of lamps and lighting devices, the cost increases. SUMMARY OF THE INVENTION An object of the present invention is to provide an ultraviolet fluorescent lamp capable of simultaneously emitting light in a UV-A region having high permeability into an ultraviolet-curable resin and light in a UV-C region having a strong power to cure the surface of the ultraviolet-curable resin. It is to provide.
【0005】[0005]
【課題を解決するための手段】請求項1の発明に係わる
紫外線蛍光ランプは、不純物であるFe3O2、B2O
3がそれぞれ10ppm未満であるソーダ石灰ガラスか
らなる気密容器と;前記気密容器の内部に封入された水
銀および希ガスを含む放電媒体と;前記気密容器の内部
に低圧水銀蒸気放電を生起するように気密容器の内部に
配設された一対の電極と;前記気密容器の内面に塗布量
が0.3〜6.0mg/cm2で塗布され、波長が32
0nm〜400nmの近紫外線を発光する蛍光体と;を
備えたことを特徴とする。Means for Solving the Problems] UV fluorescent lamp according to a first aspect of the invention, Fe 3 O 2 as an impurity, B 2 O
An airtight container made of soda-lime glass, each having less than 10 ppm; a discharge medium containing mercury and a rare gas sealed in the airtight container; and causing a low-pressure mercury vapor discharge in the airtight container. A pair of electrodes disposed inside the hermetic container; a coating amount of 0.3 to 6.0 mg / cm 2 on the inner surface of the hermetic container;
A phosphor that emits near-ultraviolet light of 0 nm to 400 nm.
【0006】本発明および以下の発明において、特に指
定しない限り用語の定義及び技術的意味は以下による。In the present invention and the following inventions, definitions and technical meanings of terms are as follows unless otherwise specified.
【0007】気密容器は、波長253.7nmの紫外線
を透過するソーダ石灰ガラスで形成され、たとえば、S
iO2、Na2O、CaOを主成分とした組成を有し、
Al 2O3、MgO、K2Oなどの副成分を含むことが
できる。Fe2O3やB2O 3などの不純物成分は少な
い程良い。不純物であるFe3O2、B2O3はそれぞ
れ10ppm未満とする。これにより、波長253.7
nmの水銀輝線の透過率を60%以上に保つ。The airtight container is made of ultraviolet light having a wavelength of 253.7 nm.
Formed of soda-lime glass that transmits
iO2, Na2O, having a composition containing CaO as a main component,
Al 2O3, MgO, K2May contain minor components such as O
it can. Fe2O3And B2O 3Low impurity components
Good. Fe as an impurity3O2, B2O3Each
And less than 10 ppm. Thereby, the wavelength 253.7
The transmittance of the mercury emission line of nm is maintained at 60% or more.
【0008】放電媒体は、水銀および希ガスを含んでい
るものとする。水銀は純水銀の形で封入したり、アマル
ガムの形で封入したりすることができる。希ガスは、ネ
オン、アルゴン、キセノンおよびクリプトンなどの一種
を単独でまたは複数種を混合して用いることができる。
電極は、熱陰極および冷陰極のいずれでもよい。熱陰極
を用いるときには一対の導入線の内端間に継線してな
り、電子放射物質を塗布したフィラメント電極やセラミ
ックス状の電子放射物質を用いたセラミックス電極を用
いることができる。冷陰極を用いるときには、タングステ
ン製の電極軸の先端部にタングステン製のコイルを1重
または2重に巻回し、電子放射物質を塗布したものや、
ニッケル、タングステンなどの電子放射性金属の棒、筒
またはコイル体からなる構成、またはこれらに電子放射
物質を塗布したものなど既知の各種冷陰極を用いること
ができる。蛍光体は、気密容器の内面に塗布量が0.3
〜6.0mg/cm2で塗布される。また、蛍光体は、
放電媒体の低圧水銀蒸気放電によって放射される波長2
53.7nmの水銀輝線によって励起され、そのときに
波長が320nm〜400nmの近紫外線を発生する材
質で形成される。蛍光体の塗布量が0.3mg/cm2
未満である場合には、波長320nm〜400nmの
近紫外線のピーク強度が小さすぎ、また、6.0mg/
cm2以上である場合には水銀輝線のピーク強度が小さ
すぎるので、本発明では、蛍光体の塗布量が0.3〜
6.0mg/cm2とする。The discharge medium contains mercury and a rare gas. Mercury can be encapsulated in pure mercury form or in amalgam form. As the rare gas, one kind such as neon, argon, xenon, and krypton can be used alone or in combination of two or more kinds.
The electrode may be either a hot cathode or a cold cathode. When a hot cathode is used, a wire is connected between the inner ends of a pair of introduction wires, and a filament electrode coated with an electron emitting material or a ceramic electrode using a ceramic-like electron emitting material can be used. When a cold cathode is used, a tungsten coil is wound one or two times around the tip of a tungsten electrode shaft and an electron emitting material is applied,
Various known cold cathodes, such as a structure composed of a rod, a cylinder, or a coil body of an electron-emitting metal such as nickel or tungsten, or a material obtained by applying an electron-emitting substance to them can be used. The phosphor is applied to the inner surface of the hermetic container at a coating amount of 0.3.
It is applied at 66.0 mg / cm 2 . Also, the phosphor is
Wavelength 2 emitted by low-pressure mercury vapor discharge of the discharge medium
It is formed of a material that is excited by a 53.7 nm mercury emission line and generates near-ultraviolet light having a wavelength of 320 nm to 400 nm at that time. The amount of the phosphor applied is 0.3 mg / cm 2
If it is less than 3, the peak intensity of near-ultraviolet light having a wavelength of 320 nm to 400 nm is too small, and 6.0 mg /
Since the peak intensity of the mercury emission line is too small when the average particle size is 2 cm 2 or more, in the present invention, the coating amount of the phosphor is 0.3 to
6.0 mg / cm 2 .
【0009】本発明によれば、紫外線硬化形樹脂の内部
への浸透性の高いUV−A領域の光(近紫外線)と、紫
外線硬化形樹脂の表面を硬化させる力の強いUV−Cの
光(水銀輝線)とを1本のランプで同時に得ることがで
きる。したがって、紫外線硬化樹脂の硬化用光源として
適切な紫外線蛍光ランプを得ることができる。According to the present invention, light in the UV-A region (near ultraviolet light) having high penetration into the inside of the ultraviolet curable resin and UV-C light having a strong power to cure the surface of the ultraviolet curable resin are provided. (Mercury emission line) can be obtained simultaneously with one lamp. Therefore, an ultraviolet fluorescent lamp suitable as a light source for curing the ultraviolet curable resin can be obtained.
【0010】また、酸化チタンを使用した光触媒用の光
源として用いることも可能であり、蛍光体によるUV−
A領域の光(近紫外線)と253.7nmの水銀輝線と
により、光触媒効果を促すことが可能である。Further, it can be used as a light source for a photocatalyst using titanium oxide.
The photocatalytic effect can be promoted by the light in the region A (near ultraviolet light) and the mercury emission line of 253.7 nm.
【0011】請求項2の発明に係わる紫外線蛍光ランプ
は、請求項1の発明において、前記蛍光体は、BaSi
2O5:Eu、(BaSrMg)3Si2O7:Eu、
SrB4O7:Eu、(CaZn)3(PO4)2:T
l、Ca3(PO4)2:Tl、YPO4:Ce、La
pO4:Ce、Ce(MgBa)Al11O19のうち
のいずれか一つまたはこれらの組み合わせとしたことを
特徴とする。According to a second aspect of the present invention, there is provided an ultraviolet fluorescent lamp according to the first aspect, wherein the phosphor is made of BaSi.
2 O 5 : Eu, (BaSrMg) 3 Si 2 O 7 : Eu,
SrB 4 O 7 : Eu, (CaZn) 3 (PO 4 ) 2 : T
1, Ca 3 (PO 4 ) 2 : Tl, YPO 4 : Ce, La
pO 4 : One of Ce and Ce (MgBa) Al 11 O 19 or a combination thereof.
【0012】本発明は、気密容器の内面に塗布する蛍光
体として、波長が320nm〜400nmの近紫外線を
発生する材質の組成を特定したものである。According to the present invention, the composition of a material that generates near-ultraviolet light having a wavelength of 320 nm to 400 nm is specified as a phosphor applied to the inner surface of an airtight container.
【0013】これらの材質により、放電媒体の低圧水銀
蒸気放電によって放射される波長253.7nmの水銀
輝線によって、波長320nm〜400nmの近紫外線
が発生し、紫外線硬化形樹脂の内部への浸透性の高いU
V−A領域の光(近紫外線)を適正に確保する。With these materials, near-ultraviolet light having a wavelength of 320 nm to 400 nm is generated by a mercury emission line having a wavelength of 253.7 nm radiated by low-pressure mercury vapor discharge of a discharge medium. High U
Properly secure light (near ultraviolet light) in the VA region.
【0014】本発明によれば、近紫外線の発生を確保で
きるので、紫外線硬化形樹脂の内部を適正に硬化でき
る。According to the present invention, since the generation of near-ultraviolet rays can be ensured, the inside of the ultraviolet-curable resin can be appropriately cured.
【0015】[0015]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の実施の形態に係わる紫外線蛍光ラ
ンプの説明図であり、図1(a)は一部切り欠き斜視
図、図1(b)は断面図である。紫外線蛍光ランプ11
の気密容器12の内部には放電媒体である水銀および希
ガスが封入され、気密容器12の内部の両端部には電極
13が設けられている。電極13は口金部14で支持さ
れ電極13のフィラメント15はリード線16を介して
気密容器12の外側に設けられた口金ピン17に接続さ
れている。Embodiments of the present invention will be described below. FIG. 1 is an explanatory view of an ultraviolet fluorescent lamp according to an embodiment of the present invention. FIG. 1 (a) is a partially cutaway perspective view, and FIG. 1 (b) is a sectional view. UV fluorescent lamp 11
The inside of the hermetic container 12 is filled with mercury and a rare gas as a discharge medium, and electrodes 13 are provided at both ends inside the hermetic container 12. The electrode 13 is supported by a base 14, and the filament 15 of the electrode 13 is connected to a base pin 17 provided outside the airtight container 12 via a lead wire 16.
【0016】気密容器12は、波長253.7nmの紫
外線を透過するソーダ石灰ガラスで形成され、その内面
には、放電媒体の低圧水銀蒸気放電によって放射される
波長253.7nmの水銀輝線により励起される波長3
20nm〜400nmの近紫外線を発生する蛍光体18
が塗布されている。The hermetic container 12 is formed of soda-lime glass that transmits ultraviolet light having a wavelength of 253.7 nm, and has an inner surface excited by a mercury emission line having a wavelength of 253.7 nm emitted by a low-pressure mercury vapor discharge of a discharge medium. Wavelength 3
Phosphor 18 that generates near ultraviolet rays of 20 nm to 400 nm
Is applied.
【0017】図2は、ソーダ石灰ガラスの組成の説明図
であり、図2(a)は本発明の実施の形態におけるソー
ダ石灰ガラスの組成の説明図、図2(b)は一般的なソ
ーダ石灰ガラスの組成の説明図である。本発明の実施の
形態におけるソーダ石灰ガラスは、不純物であるFe3
O2、B2O3がそれぞれ10ppm未満であり、これ
により、波長がUV−C領域の紫外線を透過できるよう
にしたものである。FIG. 2 is an explanatory diagram of the composition of soda-lime glass, FIG. 2 (a) is an explanatory diagram of the composition of soda-lime glass in the embodiment of the present invention, and FIG. 2 (b) is a general soda-lime glass. It is explanatory drawing of the composition of lime glass. The soda-lime glass according to the embodiment of the present invention contains Fe 3 which is an impurity.
O 2 and B 2 O 3 are less than 10 ppm, respectively, so that ultraviolet rays having a wavelength in the UV-C region can be transmitted.
【0018】図3は、ソーダ石灰ガラスの透過率の特性
図であり、図3(a)は本発明の実施の形態におけるソ
ーダ石灰ガラスの透過率の特性図、図3(b)は一般的
なソーダ石灰ガラスの透過率の特性図である。図3に示
すように、本発明の実施の形態におけるソーダ石灰ガラ
スの透過率は、一般的なソーダ石灰ガラスの透過率に比
較し、波長253.7nmの水銀輝線を透過する。そし
て、その透過率は68%程度であり、これにより、紫外
線硬化形樹脂の表面を硬化させる力の強いUV−Cの光
(水銀輝線)を発光する。FIG. 3 is a characteristic diagram of the transmittance of soda-lime glass, FIG. 3 (a) is a characteristic diagram of the transmittance of soda-lime glass in the embodiment of the present invention, and FIG. 3 (b) is a general diagram. FIG. 4 is a characteristic diagram of transmittance of a soda-lime glass. As shown in FIG. 3, the transmittance of soda-lime glass according to the embodiment of the present invention transmits a mercury emission line having a wavelength of 253.7 nm as compared with the transmittance of general soda-lime glass. And the transmittance is about 68%, thereby emitting UV-C light (mercury emission line) having a strong power to cure the surface of the ultraviolet curable resin.
【0019】図4は、ソーダ石灰ガラスの内面に蛍光体
18を塗布しない場合の紫外線蛍光ランプ11のスペク
トルの分布特性図であり、波長253.7nmの水銀輝
線のピーク強度が大きい特性となっている。FIG. 4 is a graph showing a spectrum distribution characteristic of the ultraviolet fluorescent lamp 11 when the phosphor 18 is not applied to the inner surface of the soda-lime glass. The peak intensity of the mercury emission line having a wavelength of 253.7 nm is large. I have.
【0020】一方、ソーダ石灰ガラスの内面に塗布され
る蛍光体18は、例えば、BaSi 2O5:Eu、(B
aSrMg)3Si2O7:Eu、SrB4O7:E
u、(CaZn)3(PO4)2:Tl、Ca3(PO
4)2:Tl、YPO4:Ce、LapO4:Ce、C
e(MgBa)Al11O19のうちのいずれか一つま
たはこれらの組み合わせたものが使用される。これらの
材質は、放電媒体の低圧水銀蒸気放電によって放射され
る波長253.7nmの水銀輝線により励起されて、U
V−C領域の波長320nm〜400nmの近紫外線を
発生する。On the other hand, it is applied to the inner surface of soda-lime glass.
The phosphor 18 is, for example, BaSi 2O5: Eu, (B
aSrMg)3Si2O7: Eu, SrB4O7: E
u, (CaZn)3(PO4)2: Tl, Ca3(PO
4)2: Tl, YPO4: Ce, LapO4: Ce, C
e (MgBa) Al11O19Any one of
Alternatively, a combination of these is used. these
Material is radiated by low pressure mercury vapor discharge of discharge medium
Excited by a mercury emission line having a wavelength of 253.7 nm,
Near UV of wavelength 320nm ~ 400nm in VC region
appear.
【0021】図5は、蛍光体18の発光スペクトルの分
布特性図であり、波長320nm〜400nmの近紫外
線のピーク強度が大きな特性となっている。FIG. 5 is a distribution characteristic diagram of the emission spectrum of the phosphor 18, wherein the peak intensity of near ultraviolet light having a wavelength of 320 nm to 400 nm is large.
【0022】図6は、気密容器12であるソーダ石灰ガ
ラスの内面に適量の蛍光体18を塗布した場合の発光ス
ペクトルの分布特性図であり、波長253.7nmの水
銀輝線のピーク強度および波長320nm〜400nm
の近紫外線のピーク強度ともに適正に発光している。FIG. 6 is a distribution characteristic diagram of an emission spectrum when an appropriate amount of phosphor 18 is applied to the inner surface of soda-lime glass as the airtight container 12, and shows a peak intensity of a mercury emission line having a wavelength of 253.7 nm and a wavelength of 320 nm. ~ 400nm
And the peak intensity of near-ultraviolet light is properly emitted.
【0023】ここで、気密容器12であるソーダ石灰ガ
ラスの内面の蛍光体18の塗布量により、波長253.
7nmの水銀輝線のピーク強度が変化する。図7は、蛍
光体18の塗布量が変化した場合の波長253.7nm
の水銀輝線のピーク強度の特性図である。蛍光体18の
塗布量が0の場合には、波長253.7nmの水銀輝線
のピーク強度は最大となり、蛍光体18が増加するにし
たがって波長253.7nmの水銀輝線のピーク強度は
小さくなる。Here, depending on the amount of the phosphor 18 coated on the inner surface of the soda-lime glass as the airtight container 12, the wavelength 253.
The peak intensity of the 7 nm mercury emission line changes. FIG. 7 shows a wavelength of 253.7 nm when the coating amount of the phosphor 18 is changed.
5 is a characteristic diagram of the peak intensity of the mercury emission line of FIG. When the coating amount of the phosphor 18 is 0, the peak intensity of the mercury emission line at a wavelength of 253.7 nm becomes maximum, and as the phosphor 18 increases, the peak intensity of the mercury emission line at a wavelength of 253.7 nm decreases.
【0024】図8は蛍光体18の塗布量が少ない場合の
発光スペクトルの特性図であり、図9は蛍光体18の塗
布量が多い場合の発光スペクトルの特性図である。蛍光
体18の塗布量は、紫外線蛍光ランプの使用目的に応じ
て適宜選択する。波長253.7nmの水銀輝線が強く
波長320nm〜400nmの近紫外線が弱い光源を必
要とする場合には、蛍光体18の塗布量を少な目にし、
逆に、波長253.7nmの水銀輝線が弱く波長320
nm〜400nmの近紫外線が強い光源を必要とする場
合には、蛍光体18の塗布量を多めにする。実用的に
は、蛍光体18の塗布量は0.3〜6.0mg/cm2
とする。FIG. 8 is a characteristic diagram of the emission spectrum when the coating amount of the phosphor 18 is small, and FIG. 9 is a characteristic diagram of the emission spectrum when the coating amount of the phosphor 18 is large. The application amount of the phosphor 18 is appropriately selected according to the purpose of use of the ultraviolet fluorescent lamp. In the case where a mercury emission line having a wavelength of 253.7 nm is strong and a near ultraviolet ray having a wavelength of 320 nm to 400 nm requires a light source, the coating amount of the phosphor 18 is reduced,
Conversely, the mercury emission line having a wavelength of 253.7 nm is weak and the wavelength of 320
When a near ultraviolet light of nm to 400 nm requires a strong light source, the coating amount of the phosphor 18 is increased. Practically, the coating amount of the phosphor 18 is 0.3 to 6.0 mg / cm 2.
And
【0025】次に、実施例として、下記の熱陰極の紫外
線蛍光ランプを製作し、50Hzの安定化電源で点灯し
測定を行った。Next, as an example, an ultraviolet fluorescent lamp of the following hot cathode was manufactured and turned on with a stabilized power supply of 50 Hz to perform measurement.
【0026】(1)実施例1 (a)ランプ構成 バルブ:殺菌灯用ソーダ石灰バルブ(253.7nm透
過率68%) 管径:15.5mm((肉厚0.7mm) 管長:210、5mm ランプ電流:0、147A ランプ電力:6W 蛍光体:SrB407:Eu(塗布量0.8mg/cm
2) 結着剤:(Ca、Ba)O・B203、Ca2P2O7
の同時混合品を蛍光体に対して5%添加 (b)結果 分光スペクトル分布は図6に示すとおりである。波長2
53.7nmの水銀輝線と368nmにピークを持つ蛍
光体の発光が見られる。蛍光体18の塗布量を変えたと
きの分光スペクトル分布は、図8および図9に示すとお
り、蛍光体18の塗布量を変えることで、波長253.
7nm水銀輝線と蛍光体18の発光の強度が変わってい
ることが分かる。(1) Example 1 (a) Lamp configuration Bulb: Soda lime bulb for germicidal lamp (253.7 nm transmittance 68%) Tube diameter: 15.5 mm ((wall thickness 0.7 mm) Tube length: 210, 5 mm lamp current: 0,147A lamp power: 6W phosphor: SrB 4 0 7: Eu (coating weight 0.8 mg / cm
2) binder: (Ca, Ba) O · B 2 0 3, Ca 2 P 2 O 7
(B) Result The spectral spectrum distribution is as shown in FIG. Wavelength 2
Emission of a phosphor having a mercury emission line at 53.7 nm and a peak at 368 nm is observed. As shown in FIG. 8 and FIG. 9, the spectral spectrum distribution when the coating amount of the phosphor 18 is changed is changed to the wavelength 253.
It can be seen that the emission intensity of the 7 nm mercury emission line and that of the phosphor 18 are different.
【0027】(2)実施例2 実施例1のランプにて蛍光体18の塗布量を変えてスペ
クトル分布の測定を行った。蛍光体の塗布量が6mg/
cm2を越えると波長253.7nmの水銀ラインの強
度はほぼ0になる。(2) Example 2 The spectrum distribution was measured using the lamp of Example 1 while changing the coating amount of the phosphor 18. 6mg /
Above cm 2 , the intensity of the 253.7 nm wavelength mercury line becomes almost zero.
【0028】蛍光体18の塗布量(膜厚)を増やしてい
った場合には、蛍光体18が波長253.7nmの水銀
輝線を吸収するため、蛍光体18の塗布量が6mg/c
m2以上になると、波長253.7nmの水銀輝線の強
度がランプから放出されなくなる。このため、蛍光体1
8の塗布量は6.0mg/cm2未満とする。When the coating amount (film thickness) of the phosphor 18 is increased, since the phosphor 18 absorbs a mercury emission line having a wavelength of 253.7 nm, the coating amount of the phosphor 18 is 6 mg / c.
becomes a m 2 or more, the intensity of the mercury emission line wavelengths 253.7nm is no longer emitted from the lamp. Therefore, the phosphor 1
The coating amount of No. 8 is less than 6.0 mg / cm 2 .
【0029】以上述べたように、本発明の実施の形態よ
れば、UV−A領域の光とUV−C領域の光の両方の紫
外線を一本のランプで得られる。また、UV−A領域の
光とUV−C領域の光の強度比を蛍光体18の塗布量を
変化させることで任意に設定できる。As described above, according to the embodiment of the present invention, both the UV-A region light and the UV-C region light can be obtained by one lamp. Further, the intensity ratio between the light in the UV-A region and the light in the UV-C region can be arbitrarily set by changing the application amount of the phosphor 18.
【0030】また、酸化チタンを使用した光触媒用の光
源として用いることも可能で、蛍光体18によるUV−
A領域の光と253.7nmの水銀輝線とにより、光触
媒効果を促すことが可能である。Further, it can be used as a light source for a photocatalyst using titanium oxide.
The photocatalytic effect can be promoted by the light in the region A and the mercury emission line of 253.7 nm.
【0031】[0031]
【発明の効果】以上述べたように、請求項1の発明によ
れば、紫外線硬化形樹脂の内部への浸透性の高いUV−
A領域の光と、紫外線硬化形樹脂の表面を硬化させる力
の強いUV−Cの光とを1本のランプで同時に得ること
ができる。したがって、紫外線硬化樹脂の硬化用光源と
して適切な紫外線蛍光ランプを得ることができる。As described above, according to the first aspect of the present invention, the UV-curable resin having a high permeability to the inside of the UV-curable resin is used.
The light in the region A and the UV-C light having a strong power to cure the surface of the ultraviolet curable resin can be simultaneously obtained by one lamp. Therefore, an ultraviolet fluorescent lamp suitable as a light source for curing the ultraviolet curable resin can be obtained.
【0032】請求項2の発明によれば、波長253.7
nmの水銀輝線の透過率を60%以上に保持できるの
で、紫外線硬化形樹脂の表面を硬化させる力の強いUV
−Cの光(水銀輝線)を適正に確保できる。According to the second aspect of the present invention, the wavelength is 253.7.
Since the transmittance of the mercury emission line of 60 nm or more can be maintained at 60% or more, a strong UV that hardens the surface of the ultraviolet-curable resin.
-C light (mercury emission line) can be appropriately secured.
【0033】請求項3の発明によれば、近紫外線の発生
を確保できるので、紫外線硬化形樹脂の内部を適正に硬
化できる。According to the third aspect of the present invention, generation of near-ultraviolet rays can be ensured, so that the inside of the ultraviolet-curable resin can be properly cured.
【図1】本発明の実施の形態に係わる紫外線蛍光ランプ
の説明図。FIG. 1 is an explanatory diagram of an ultraviolet fluorescent lamp according to an embodiment of the present invention.
【図2】ソーダ石灰ガラスの組成の説明図であり、図2
(a)は本発明の実施の形態におけるソーダ石灰ガラス
の組成の説明図。FIG. 2 is an explanatory diagram of the composition of soda-lime glass, and FIG.
(A) is an explanatory view of the composition of soda-lime glass in the embodiment of the present invention.
【図3】ソーダ石灰ガラスの透過率の特性図であり、図
3(a)は本発明の実施の形態におけるソーダ石灰ガラ
スの透過率の特性図、図3(b)は一般的なソーダ石灰
ガラスの透過率の特性図。3A and 3B are characteristic diagrams of transmittance of soda-lime glass, FIG. 3A is a characteristic diagram of transmittance of soda-lime glass in the embodiment of the present invention, and FIG. FIG. 4 is a characteristic diagram of transmittance of glass.
【図4】ソーダ石灰ガラスの内面に蛍光体を塗布しない
場合の紫外線蛍光ランプのスペクトルの分布特性図。FIG. 4 is a spectrum distribution characteristic diagram of an ultraviolet fluorescent lamp when a phosphor is not applied to the inner surface of soda-lime glass.
【図5】蛍光体の発光スペクトルの分布特性図。FIG. 5 is a distribution characteristic diagram of an emission spectrum of a phosphor.
【図6】気密容器であるソーダ石灰ガラスの内面に適量
の蛍光体を塗布した場合の発光スペクトルの分布特性
図。FIG. 6 is a distribution characteristic diagram of an emission spectrum when an appropriate amount of phosphor is applied to the inner surface of soda-lime glass as an airtight container.
【図7】蛍光体の塗布量が変化した場合の波長253.
7nmの水銀輝線のピーク強度の特性図。FIG. 7 shows a wavelength 253. in the case where the coating amount of the phosphor is changed.
FIG. 7 is a characteristic diagram of the peak intensity of a 7 nm mercury emission line.
【図8】蛍光体の塗布量が少ない場合の発光スペクトル
の特性図。FIG. 8 is a characteristic diagram of an emission spectrum when a coating amount of a phosphor is small.
【図9】蛍光体の塗布量が多い場合の発光スペクトルの
特性図。FIG. 9 is a characteristic diagram of an emission spectrum when a coating amount of a phosphor is large.
11…紫外線蛍光ランプ、12…気密容器、13…電
極、14…口金部、15…フィラメント、16…リード
線、17…口金ピン、18…蛍光体DESCRIPTION OF SYMBOLS 11 ... Ultraviolet fluorescent lamp, 12 ... Airtight container, 13 ... Electrode, 14 ... Base part, 15 ... Filament, 16 ... Lead wire, 17 ... Base pin, 18 ... Phosphor
Claims (2)
れぞれ10ppm未満であるソーダ石灰ガラスからなる
気密容器と;前記気密容器の内部に封入された水銀およ
び希ガスを含む放電媒体と;前記気密容器の内部に低圧
水銀蒸気放電を生起するように気密容器の内部に配設さ
れた一対の電極と;前記気密容器の内面に塗布量が0.
3〜6.0mg/cm2で塗布され、波長が320nm
〜400nmの近紫外線を発光する蛍光体と;を備えた
ことを特徴とする紫外線蛍光ランプ。1. An airtight container made of soda-lime glass containing impurities of less than 10 ppm each of Fe 3 O 2 and B 2 O 3 ; a discharge medium containing mercury and a rare gas sealed in the airtight container. A pair of electrodes disposed inside the hermetic container so as to generate a low-pressure mercury vapor discharge inside the hermetic container;
Coated at 3-6.0 mg / cm 2 , wavelength is 320 nm
A phosphor that emits near-ultraviolet light of about 400 nm;
(BaSrMg)3Si2O7:Eu、SrB4O7:
Eu、(CaZn)3(PO4)2:Tl、Ca3(P
O4)2:Tl、YPO4:Ce、LapO4:Ce、
Ce(MgBa)Al11O19のうちのいずれか一つ
またはこれらの組み合わせとしたことを特徴とする請求
項1記載の紫外線蛍光ランプ。2. The phosphor according to claim 1, wherein the phosphor is BaSi 2 O 5 : Eu,
(BaSrMg) 3 Si 2 O 7 : Eu, SrB 4 O 7 :
Eu, (CaZn) 3 (PO 4 ) 2 : Tl, Ca 3 (P
O 4 ) 2 : Tl, YPO 4 : Ce, LapO 4 : Ce,
Ce (MgBa) any one or ultraviolet fluorescent lamp according to claim 1, characterized in that a combination of these of Al 11 O 19.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001163745A JP2002358926A (en) | 2001-05-31 | 2001-05-31 | Ultraviolet fluorescent lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001163745A JP2002358926A (en) | 2001-05-31 | 2001-05-31 | Ultraviolet fluorescent lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002358926A true JP2002358926A (en) | 2002-12-13 |
Family
ID=19006655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001163745A Abandoned JP2002358926A (en) | 2001-05-31 | 2001-05-31 | Ultraviolet fluorescent lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002358926A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101567294A (en) * | 2008-04-24 | 2009-10-28 | 哈利盛东芝照明公司 | Ultraviolet electric discharge lamp |
CN101964297A (en) * | 2009-07-23 | 2011-02-02 | 哈利盛东芝照明公司 | Ultraviolet discharge lamp |
JP2011044421A (en) * | 2009-07-23 | 2011-03-03 | Harison Toshiba Lighting Corp | Ultraviolet discharge lamp |
CN103018963A (en) * | 2011-09-22 | 2013-04-03 | 哈利盛东芝照明株式会社 | Ultraviolet irradiation device |
JP2016007832A (en) * | 2014-06-26 | 2016-01-18 | 株式会社東通研 | Curing device of ultraviolet curing resin |
TWI566017B (en) * | 2011-09-22 | 2017-01-11 | Toshiba Lighting & Technology | Ultraviolet radiation device |
CN114213002A (en) * | 2021-12-24 | 2022-03-22 | 上海罗金光电科技有限公司 | Environment-friendly lead-free sterilizing lamp tube |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH058861U (en) * | 1991-07-19 | 1993-02-05 | 東芝硝子株式会社 | Fluorescent lamp |
JPH09129184A (en) * | 1995-05-25 | 1997-05-16 | Toshiba Lighting & Technol Corp | Fluorescent lamp, fluorescent lamp device, photocatalyst device, lighting system, and article |
JPH1031976A (en) * | 1996-07-15 | 1998-02-03 | Toshiba Lighting & Technol Corp | Ultraviolet lamp and germicidal lamp |
JP2000279494A (en) * | 1999-03-31 | 2000-10-10 | Toshiba Lighting & Technology Corp | Air cleaning device and fluorescent lamp for photocatalyst |
JP2000285859A (en) * | 1999-03-30 | 2000-10-13 | Nippon Paper Industries Co Ltd | Fluorescent lamp and hazardous matter removing system |
-
2001
- 2001-05-31 JP JP2001163745A patent/JP2002358926A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH058861U (en) * | 1991-07-19 | 1993-02-05 | 東芝硝子株式会社 | Fluorescent lamp |
JPH09129184A (en) * | 1995-05-25 | 1997-05-16 | Toshiba Lighting & Technol Corp | Fluorescent lamp, fluorescent lamp device, photocatalyst device, lighting system, and article |
JPH1031976A (en) * | 1996-07-15 | 1998-02-03 | Toshiba Lighting & Technol Corp | Ultraviolet lamp and germicidal lamp |
JP2000285859A (en) * | 1999-03-30 | 2000-10-13 | Nippon Paper Industries Co Ltd | Fluorescent lamp and hazardous matter removing system |
JP2000279494A (en) * | 1999-03-31 | 2000-10-10 | Toshiba Lighting & Technology Corp | Air cleaning device and fluorescent lamp for photocatalyst |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101567294A (en) * | 2008-04-24 | 2009-10-28 | 哈利盛东芝照明公司 | Ultraviolet electric discharge lamp |
CN101964297A (en) * | 2009-07-23 | 2011-02-02 | 哈利盛东芝照明公司 | Ultraviolet discharge lamp |
JP2011044421A (en) * | 2009-07-23 | 2011-03-03 | Harison Toshiba Lighting Corp | Ultraviolet discharge lamp |
TWI497559B (en) * | 2009-07-23 | 2015-08-21 | Harison Toshiba Lighting Corp | Ultraviolet discharge lamp |
CN103018963A (en) * | 2011-09-22 | 2013-04-03 | 哈利盛东芝照明株式会社 | Ultraviolet irradiation device |
TWI566017B (en) * | 2011-09-22 | 2017-01-11 | Toshiba Lighting & Technology | Ultraviolet radiation device |
JP2016007832A (en) * | 2014-06-26 | 2016-01-18 | 株式会社東通研 | Curing device of ultraviolet curing resin |
CN114213002A (en) * | 2021-12-24 | 2022-03-22 | 上海罗金光电科技有限公司 | Environment-friendly lead-free sterilizing lamp tube |
CN114213002B (en) * | 2021-12-24 | 2024-01-26 | 上海罗金光电科技有限公司 | Environment-friendly lead-free sterilizing lamp tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4647745B2 (en) | Water sterilizer | |
US5801483A (en) | Fluorescent lamp having visible and UV radiation | |
JP2007534128A (en) | Dielectric barrier discharge lamp having UV-B emitter | |
US6906475B2 (en) | Fluorescent lamp and high intensity discharge lamp with improved luminous efficiency | |
US3707641A (en) | Discharge device which utilizes a mixture of two fluorescent materials | |
JP5850539B2 (en) | Discharge lamp, method of use and system | |
JP2002358926A (en) | Ultraviolet fluorescent lamp | |
JP2003109541A (en) | Ultraviolet fluorescent lamp | |
JPH0345505B2 (en) | ||
JPS5916707B2 (en) | high pressure mercury fluorescent lamp | |
JP2002543577A (en) | Low pressure mercury vapor discharge lamp | |
EP0968520B1 (en) | Low-pressure mercury discharge lamp | |
JP3678203B2 (en) | Glass composition, protective layer composition, binder composition, glass tube for fluorescent lamp, fluorescent lamp, outer tube for high-intensity discharge lamp, and high-intensity discharge lamp | |
US5760547A (en) | Multiple-discharge electrodeless fluorescent lamp | |
JP2003272559A (en) | Fluorescent lamp | |
JP2002289147A (en) | Ultraviolet discharge lamp for curing | |
JPH1050261A (en) | Discharge lamp, lighting system, and display device | |
JPS6319750A (en) | Low-pressure discharge lamp | |
EP1323181B1 (en) | Very high output low pressure discharge lamp | |
JP3768976B2 (en) | Fluorescent lamp | |
JP2002319373A (en) | Electrodeless low-pressure discharge lamp having ultraviolet ray-reflecting layer | |
JP2006511040A (en) | Impurity getter of UV reflection base coat in fluorescent lamp | |
JP2598323Y2 (en) | Small fluorescent tube | |
JP5213027B2 (en) | Fluorescent lamp | |
JP2003157804A (en) | Ultraviolet emission type fluorescent lamp and lighting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20100520 |