JP2002356755A - METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE - Google Patents

METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE

Info

Publication number
JP2002356755A
JP2002356755A JP2001160273A JP2001160273A JP2002356755A JP 2002356755 A JP2002356755 A JP 2002356755A JP 2001160273 A JP2001160273 A JP 2001160273A JP 2001160273 A JP2001160273 A JP 2001160273A JP 2002356755 A JP2002356755 A JP 2002356755A
Authority
JP
Japan
Prior art keywords
mass
temperature
hypereutectic
alloy
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001160273A
Other languages
Japanese (ja)
Inventor
Haruyasu Katto
晴康 甲藤
Hiroshi Horikawa
宏 堀川
Akio Hashimoto
暁生 橋本
Satoshi Suzuki
聡 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001160273A priority Critical patent/JP2002356755A/en
Priority to MYPI20015875A priority patent/MY153928A/en
Priority to FR0203168A priority patent/FR2825376B1/en
Publication of JP2002356755A publication Critical patent/JP2002356755A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a Cu-containing hyper-eutectic Al-Si alloy cast member, in which primary crystal Si is uniformly and finely dispersed, and which has excellent wear resistance and machinability. SOLUTION: The molten metal of a hyper-eutectic Al-Si containing, by mass, 14.0 to 18.0% Si, 0.001 to 0.02% P and 2.0 to 5.0% Cu is prepared. The hyper- eutectic Al-Si alloy molten metal housed in a holding furnace on casting is held in the temperature range of (23×Si%+357) deg.C to (23×Si%+387) deg.C, and is poured from the holding furnace into a mold so as to be cooled at the average cooling rate of 2 to <1,000 deg.C/sec in the temperature range of (23×Si%+357) deg.C to a liquidus temperature, to form a cast structure in which the average particle size of primary crystal Si is controlled to 7 to 30 μm. As the hyper-eutectic Al-Si alloy, the one containing Mg, Fe, Ca, Mn, Cr, Ti and B in addition to the above Si, P and Cu can also be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車用のシリンダー
ブロック等の摺動部材に使用される耐摩耗性に優れたC
u含有の過共晶Al−Si系アルミニウム合金鋳造部材
を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly wear-resistant C used for sliding members such as cylinder blocks for automobiles.
The present invention relates to a method for manufacturing a u-containing hypereutectic Al-Si based aluminum alloy cast member.

【0002】[0002]

【従来の技術】耐摩耗性に優れ減衰能が高いアルミニウ
ム合金鋳造部材として、過共晶Al−Si系アルミニウ
ム合金が、従来から使用されている。過共晶Al−Si
系アルミニウム合金鋳造部材では、マトリックスに晶出
している初晶Siによって耐摩耗性や減衰能が改善され
る。しかし、鋳造凝固時の冷却速度が遅いと初晶Siが
粗大化し、初晶シリコンが割れて耐摩耗性を劣化させる
ばかりでなく、切削加工等にあっては初晶Siを起点と
する欠け等の欠陥が発生し易くなる。また、初晶Siの
分散が、不均一であったり、微細すぎると耐摩耗性の効
果がない。
2. Description of the Related Art A hypereutectic Al-Si based aluminum alloy has been conventionally used as an aluminum alloy cast member having excellent wear resistance and high damping ability. Hypereutectic Al-Si
In a cast aluminum alloy member, wear resistance and damping ability are improved by the primary crystal Si crystallized in the matrix. However, if the cooling rate at the time of casting solidification is low, the primary crystal Si is coarsened, the primary silicon is cracked and the wear resistance is deteriorated. Defects easily occur. On the other hand, if the dispersion of the primary crystal Si is non-uniform or too fine, there is no wear resistance effect.

【0003】そのため、鋳造部材の耐摩耗性や切削性を
確保するためには、初晶Siを適切な大きさである7〜
30μm、好ましくは10〜20μmに制御し、均一に
分散させる必要がある。そこで、初晶Siを微細かつ均
一に分散させるため、鋳造の際に初晶Siが晶出する液
相線温度と固相線温度の間の温度域での冷却温度を速く
したり、逆に初晶Siの大きさをある程度以上の大きさ
に制御するために、鋳造時に溶湯を液相線温度と固相線
温度の間の温度に一時保持し、初晶Siを成長(特開平
11−222636号公報参照)させたりしている。
[0003] Therefore, in order to secure the wear resistance and the machinability of the cast member, the primary crystal Si should have an appropriate size of 7 to 10 mm.
It is necessary to control to 30 μm, preferably 10 to 20 μm, and to uniformly disperse. Therefore, in order to disperse the primary crystal Si finely and uniformly, the cooling temperature in the temperature range between the liquidus temperature and the solidus temperature at which the primary crystal Si crystallizes during casting is increased, and conversely, In order to control the size of primary crystal Si to a certain size or more, the molten metal is temporarily maintained at a temperature between the liquidus temperature and the solidus temperature during casting to grow primary crystal Si (Japanese Patent Laid-Open No. 226636).

【0004】また、初晶Siを微細化するために過共晶
Al−Si合金の溶湯にPを添加し、初晶Siの晶出時
に異質核AlPを生成させることも行われている。この
異質核をシードとして多量の初晶Siが晶出するため、
初晶Si粒が微細化し、初晶Siの粗大化が抑制されて
いる。しかし、アルミニウム合金の溶解温度や保持温度
が低いと、AlPが溶湯中で成長・凝集してしまい初晶
Siを微細化するPの作用が十分に発揮されない。そこ
で、過共晶Al−Si合金を鋳造する場合は、溶解温度
および保持温度をそれぞれ850〜900℃および80
0℃以上の高めに、例えばSi含有量が18質量%の過
共晶Al−Si合金では保持温度を850℃に設定して
いる。
[0004] Further, in order to refine primary Si, P is added to a melt of a hypereutectic Al-Si alloy to generate heterogeneous nucleus AlP when primary Si is crystallized. Since a large amount of primary crystal Si is crystallized using this heterogeneous nucleus as a seed,
The primary crystal Si grains are refined, and coarsening of the primary crystal Si is suppressed. However, if the melting temperature or the holding temperature of the aluminum alloy is low, AlP grows and aggregates in the molten metal, and P does not sufficiently exert the function of refining primary crystal Si. Therefore, when casting a hypereutectic Al-Si alloy, the melting temperature and the holding temperature are 850-900 ° C. and 80 ° C., respectively.
For example, in a hypereutectic Al-Si alloy having a Si content of 18% by mass, the holding temperature is set to 850 ° C.

【0005】過共晶Al−Si合金の溶解温度および保
持温度を高く設定すると、得られた鋳造部材に吸収ガス
や酸化物に起因する鋳造欠陥が多くなり、機械的性質が
劣化するばかりでなく、高い溶解温度や保持温度は、エ
ネルギの消費量を増加させ、炉や金型の寿命を短くする
ため、製造コストを上昇させる原因にもなる。そこで本
発明等は、鋳造時の手元炉における過共晶Al−Si系
アルミニウム合金溶湯の保持温度をSi含有量との関連
で規制することにより、溶解温度および保持温度を過度
に高く設定する必要なく、Pによる初晶Si微細化効果
を十分に発現させ、耐摩耗性に優れ高い減衰能を示す過
共晶Al−Si合金鋳造部材を得るために、特開平11
−222636号公報として、過共晶Al−Si合金溶
湯を(24.6×Si%+324)℃〜(24.6×S
i%+354)℃の温度範囲に保持し、その温度域にお
いて溶湯を保持・鋳造することを提案した。
[0005] When the melting temperature and the holding temperature of the hypereutectic Al-Si alloy are set to be high, the cast member obtained has many casting defects due to the absorption gas and oxides, and not only deteriorates the mechanical properties but also decreases the mechanical properties. High melting and holding temperatures increase energy consumption and shorten the life of furnaces and dies, thus increasing manufacturing costs. Accordingly, the present invention requires that the melting temperature and the holding temperature be set to be excessively high by regulating the holding temperature of the hypereutectic Al-Si-based aluminum alloy in the hand furnace at the time of casting in relation to the Si content. To obtain a hypereutectic Al-Si alloy cast member exhibiting a sufficient primary crystal Si refining effect by P and exhibiting excellent wear resistance and high damping ability, Japanese Patent Laid-Open No.
As described in JP-A-222636, a hypereutectic Al-Si alloy melt is melted at (24.6 × Si% + 324) ° C. to (24.6 × S
i% + 354) It was proposed to maintain the temperature in the temperature range of 354 ° C. and to hold and cast the molten metal in the temperature range.

【0006】[0006]

【発明が解決しようとする課題】ところで、過共晶Al
−Si系アルミニウム合金には、機械的強度を必要とさ
れる物に使用される場合、機械的強度を高めるために、
Cuが数%添加されている。しかし、Cuを含有する過
共晶Al−Si系アルミニウム合金を鋳造して機械部材
を製造する場合、手元炉での溶湯温度を(24.6×S
i%+324)℃以上の温度に保持して鋳造を行って
も、十分な微細効果が得られず初晶Siが粗大化してし
まう場合があった。本発明は、このような問題を解消す
べく案出されたものであり、初晶Siが均一微細に分散
し、耐摩耗性および切削性に優れたCu含有過共晶Al
−Si合金鋳造部材を製造する方法を提供することを目
的とする。
By the way, hypereutectic Al
-Si-based aluminum alloys, when used in products that require mechanical strength, to increase the mechanical strength,
Several percent of Cu is added. However, when manufacturing a machine member by casting a hypereutectic Al-Si-based aluminum alloy containing Cu, the temperature of the molten metal in the hand furnace is set to (24.6 × S
Even if casting is performed at a temperature of not less than (i% + 324) ° C., a sufficient fine effect cannot be obtained, and primary crystal Si may be coarsened. The present invention has been devised in order to solve such a problem. The primary crystal Si is uniformly and finely dispersed, and the Cu-containing hypereutectic Al having excellent wear resistance and machinability is provided.
An object of the present invention is to provide a method of manufacturing a cast Si alloy member.

【0007】[0007]

【課題を解決するための手段】本発明の耐摩耗性に優れ
たCu含有過共晶Al−Si系アルミニウム合金鋳造部
材の製造方法は、その目的を達成するため、Si:1
4.0〜18.0質量%、P:0.001〜0.02質
量%、Cu:2.0〜5.0質量%を含む過共晶Al−
Si合金溶湯を用意し、鋳造時の手元炉に収容した過共
晶Al−Si系アルミニウム合金溶湯を、(23×Si
%+357)℃〜(23×Si%+387)℃の温度範
囲に保持し、手元炉から鋳型に過共晶Al−Si合金溶
湯を注入し、鋳造して初晶Siの平均粒径が7〜30μ
mに調整された鋳造組織を形成することを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a method for producing a Cu-containing hypereutectic Al-Si based aluminum alloy cast member having excellent abrasion resistance is provided in order to achieve the object.
Hypereutectic Al— containing 4.0 to 18.0% by mass, P: 0.001 to 0.02% by mass, and Cu: 2.0 to 5.0% by mass.
A hypereutectic Al-Si-based aluminum alloy melt prepared in a hand furnace at the time of casting is prepared by preparing a melt of Si alloy (23 × Si
% + 357) ° C. to (23 × Si% + 387) ° C., and a hypereutectic Al—Si alloy melt is poured into a mold from a hand-held furnace and cast, and the average grain size of primary crystal Si is 7 to 30μ
m, forming a cast structure adjusted to m.

【0008】過共晶Al−Si系アルミニウム合金とし
ては、上記Si、P、Cuの他にMg:0.1〜1.0
質量%を含み、Fe含有量を1.5質量%以下、Ca含
有量を0.005質量%以下にするとともに、Mn:
0.3〜0.8質量%、Cr:0.05〜0.3質量
%、Ti:0.01〜0.30質量%、B:0.000
5〜0.01質量%のいずれか1以上を含むものが好ま
しい。さらに、初晶Siの粒径の所定範囲内に調整する
ためには、(23×Si%+357)℃〜液相線温度の
温度域を平均冷却速度2℃/秒以上1000℃/秒未満
で鋳造することが好ましい。
As the hypereutectic Al-Si aluminum alloy, in addition to the above Si, P and Cu, Mg: 0.1 to 1.0
%, The Fe content is 1.5% by mass or less, the Ca content is 0.005% by mass or less, and Mn:
0.3 to 0.8% by mass, Cr: 0.05 to 0.3% by mass, Ti: 0.01 to 0.30% by mass, B: 0.000
Those containing any one or more of 5 to 0.01% by mass are preferable. Furthermore, in order to adjust the particle diameter of the primary crystal Si within a predetermined range, the temperature range of (23 × Si% + 357) ° C. to the liquidus temperature is set at an average cooling rate of 2 ° C./sec or more and less than 1000 ° C./sec. Casting is preferred.

【0009】[0009]

【作用】まず、本発明が対象とする過共晶Al−Si系
アルミニウム合金の組成について説明する。Si:14.0〜18.0質量% Siは、Al−Si系アルミニウム合金において、初晶
Siを晶出させて耐摩耗性を発揮させるうえで重要な元
素ある。しかし、Si含有量が14.0重量%に満たな
いと、初晶Siとして晶出できるSi量が少なく、耐摩
耗性の確保に必要で十分なサイズおよび量のSi粒を晶
出させることができない。逆に18.0重量%を超える
多量のSiが含まれると、合金の固相線が上昇し、溶解
性鋳造性が悪くなるとともに、初晶Siの分散が不均一
になりやすく、晶出したSiもサイズが大きくなって、
衝撃値や疲労強度が低下する。
First, the composition of the hypereutectic Al-Si-based aluminum alloy targeted by the present invention will be described. Si: 14.0 to 18.0% by Mass Si is an important element in the Al-Si-based aluminum alloy for crystallizing primary Si and exhibiting wear resistance. However, when the Si content is less than 14.0% by weight, the amount of Si that can be crystallized as primary crystal Si is small, and it is possible to crystallize Si grains of a sufficient size and amount necessary to secure wear resistance. Can not. Conversely, when a large amount of Si exceeding 18.0% by weight is contained, the solidus of the alloy rises, so that the melting castability deteriorates, and the dispersion of primary Si tends to become non-uniform, so that crystallization occurs. Si has also increased in size,
Impact value and fatigue strength decrease.

【0010】P:0.001〜0.02質量% この過共晶Al−Si系アルミニウム合金において、初
晶Siを晶出させるシードとして有効な異質核AlPを
生成するためPが添加される。0.001重量%未満の
P含有量では、十分な異質核の生成が望めず、初晶Si
の微細化作用が弱くなる。Pの添加効果は、0.02重
量%で飽和し、0.02重量%を超える多量を添加して
も添加量に見合った改善が得られないばかりでなく、湯
流れ等の鋳造性が悪化する。なお、Pの添加は、アルミ
ニウム合金を溶解後溶湯中に加えてもよいが、予めPを
含有する母合金を溶解用の原料としてもよい。
P: 0.001 to 0.02% by mass P is added to this hypereutectic Al-Si-based aluminum alloy in order to generate a heterogeneous nucleus AlP effective as a seed for crystallizing primary Si. When the P content is less than 0.001% by weight, sufficient generation of heterogeneous nuclei cannot be expected and primary crystal Si
The effect of miniaturization becomes weaker. The effect of adding P is saturated at 0.02% by weight, and even if a large amount exceeding 0.02% by weight is added, not only the improvement corresponding to the added amount cannot be obtained, but also the castability such as the flow of molten metal deteriorates. I do. In addition, P may be added to the molten metal after the aluminum alloy is melted, or a master alloy containing P may be used as a raw material for melting in advance.

【0011】Cu:2.0〜5.0質量% Cuはアルミニウム合金のマトリックスを強化する作用
を有し、これによって強度および耐摩耗性を向上させ
る。そしてこのような作用を得るためには、2.0質量
%以上のCuを含有させる必要がある。しかし、Cu含
有量が5.0質量%を超えるとひけ巣の発生が多くな
り、また耐食性も悪くなる。
Cu: 2.0 to 5.0% by mass Cu has a function of strengthening the matrix of the aluminum alloy, thereby improving strength and wear resistance. In order to obtain such an effect, it is necessary to contain 2.0% by mass or more of Cu. However, when the Cu content exceeds 5.0% by mass, the occurrence of sink marks increases, and the corrosion resistance also deteriorates.

【0012】本発明では、Si、P、Cuの3成分含有
量を調整することが必須であるが、必要とする鋳物の特
性に応じて他の成分を以下に示す範囲で含有させること
もできる。Mg:0.1〜1.0質量% Mgはアルミニウム合金の硬度、耐摩耗性、機械的強度
等を向上させるのに有効な元素であり、0.1質量%以
上のMgで、これらの作用を得ることができる。しか
し、1.0質量%を超えてMgを含有させると靭性を低
下させる傾向が出てくる。
In the present invention, it is essential to adjust the content of the three components Si, P and Cu, but other components may be contained in the following ranges according to the required properties of the casting. . Mg: 0.1 to 1.0% by mass Mg is an element effective for improving the hardness, wear resistance, mechanical strength, and the like of an aluminum alloy. Can be obtained. However, when Mg exceeds 1.0% by mass, the toughness tends to decrease.

【0013】Fe:1.5質量%以下 Feは、Al−Si−Fe系金属間化合物およびAl−
Si−Fe−Mn−Cr系金属間化合物を微細な晶出物
として耐摩耗性を向上させるが、アルミニウム合金中に
多量のFeが混入すると、特に、徐冷部やホットスポッ
ト部にAl−Fe系の粗大な化合物が生成し、ミクロポ
ロシティの発生原因となる。その結果、得られたアルミ
ニウム合金の靭性および強度を低下させることになるの
で、本発明においては、Fe含有量は1.5質量%以下
にすることが好ましい。
Fe: 1.5 mass% or less Fe is an Al—Si—Fe-based intermetallic compound and Al—
The Si-Fe-Mn-Cr-based intermetallic compound is finely crystallized to improve wear resistance. However, when a large amount of Fe is mixed in the aluminum alloy, particularly, the Al-Fe A coarse compound of the system is formed, which causes microporosity. As a result, the toughness and strength of the obtained aluminum alloy will be reduced. Therefore, in the present invention, the Fe content is preferably set to 1.5% by mass or less.

【0014】Ca:0.005質量%以下 Ca含有量が0.005質量%を超えると、鋳造時に内
部の引けが大きくなり、鋳造性の低下を招く。また、P
による初晶Siの微細化作用を阻害する。したがってC
a含有量は0.005質量%以下にすることが好まし
い。Mn:0.3〜0.8質量% Mnは、Al−Si−Fe−Mn−Cr系金属間化合物
を微細かつ均一に分散させ、耐摩耗性を向上させるとと
もに、アルミニウム合金のマトリックスを強化し、機械
的性質を改善する合金成分である。そして、Mn含有量
が0.3質量%に満たないと耐摩耗性が十分でなく、逆
に0.8質量%を超えると機械的性質の劣化を招く。し
たがってMnの含有量は0.3〜0.8質量%にするこ
とが好ましい。
Ca: 0.005% by mass or less If the Ca content exceeds 0.005% by mass, the internal shrinkage becomes large at the time of casting, resulting in a decrease in castability. Also, P
Inhibits the primary crystal Si from being refined. Therefore C
The content of a is preferably set to 0.005% by mass or less. Mn: 0.3 to 0.8% by mass Mn disperses Al-Si-Fe-Mn-Cr intermetallic compounds finely and uniformly, improves wear resistance, and strengthens the matrix of the aluminum alloy. , An alloy component that improves mechanical properties. If the Mn content is less than 0.3% by mass, the wear resistance is not sufficient, and if it exceeds 0.8% by mass, the mechanical properties deteriorate. Therefore, the content of Mn is preferably set to 0.3 to 0.8% by mass.

【0015】Cr:0.05〜0.3質量% Crは、アルミニウム合金のマトリックス中に初晶Si
を均一に分散させるうえで、重要な元素であり、硬度、
機械的性質の向上にも有効に作用する。またAl−Si
−Fe−Mn−Cr系金属間化合物を、微細な晶出物と
して、均一に分散させ、耐摩耗性を向上させるうえでも
重要な合金元素である。そして、このような作用は、
0.05質量%以上の含有量で現れる。しかし、Cr含
有量が0.30質量%を超えると鋳造性および機械的性
質が低下する。したがって、Crを含有させる場合は
0.05〜0.30質量%の範囲にすることが好まし
い。
Cr: 0.05-0.3% by mass Cr contains primary crystal Si in a matrix of an aluminum alloy.
Is an important element in uniformly dispersing
It also works effectively to improve mechanical properties. Al-Si
-It is an important alloying element in dispersing the Fe-Mn-Cr intermetallic compound as fine crystallized matter uniformly and improving wear resistance. And such an action
Appears at a content of 0.05% by mass or more. However, when the Cr content exceeds 0.30% by mass, castability and mechanical properties decrease. Therefore, when Cr is contained, the content is preferably in the range of 0.05 to 0.30% by mass.

【0016】Ti:0.01〜0.30質量%、B:
0.0005〜0.01質量% TiおよびBは鋳造の際に微細化材として作用し、鋳造
性を向上させるとともに組織を均一化することにも有効
な元素である。これらの作用を得るためには、0.05
質量%以上のTi、0.0005質量%以上のBを含有
させることが必要である。しかし、0.30質量%を超
えるTi、0.01質量%を超えるBでは、逆に機械的
性質の低下を招く。したがって、Ti、Bを含有させる
場合は、上記範囲にすることが好ましい。上記以外の成
分は不純物とみなし、その含有量は極力少なくすること
が好ましい。
[0016] Ti: 0.01 to 0.30% by mass, B:
0.0005 to 0.01% by mass Ti and B are effective elements for acting as a refining material at the time of casting, improving castability and making the structure uniform. To obtain these effects, 0.05
It is necessary to contain Ti by mass or more and B by 0.0005 mass% or more. However, if Ti exceeds 0.30% by mass and B exceeds 0.01% by mass, the mechanical properties decrease. Therefore, when Ti and B are contained, the content is preferably in the above range. Components other than those described above are regarded as impurities, and the content thereof is preferably minimized.

【0017】次に、本発明の特徴である、溶湯の保持・
冷却条件について説明する。手元炉での溶湯保持温度:(23×Si%+357)℃
〜(23×Si%+387)℃ 本発明者等は、先にCu含有量が少ない過共晶Al−S
i系アルミニウム合金の溶湯のAlPが凝集を開始する
温度(24.6×Si%+324)℃を発見し、特開平
11−222636号公報において、AlPが凝集しな
いように溶湯を手元炉で(24.6×Si%+324)
℃に保持して鋳造することを提案した。しかし本発明者
等がさらに研究を進めたところ、このAlPが凝集を開
始する温度は、Cu含有量によって変わり、その量が多
くなると高くなることがわかった。これは、PとCuが
化合物を形成し、このPとCuの化合物が、AlPを凝
集させ易くしているためではないかと推察される。な
お、Cuが近似式に関与しない理由は、Pと比較してC
u量が非常に多いため、Cuを2質量%以上添加して
も、CuとPの化合物量は増加しないためと推測され
る。
Next, the feature of the present invention, that is,
The cooling conditions will be described. Melt holding temperature in hand furnace: (23 × Si% + 357) ° C.
~ (23 × Si% + 387) ° C. The present inventors have previously made hypereutectic Al-S having a low Cu content.
A temperature (24.6 × Si% + 324) ° C. at which AlP of the molten i-based aluminum alloy starts to be aggregated was discovered. In Japanese Patent Application Laid-Open No. 11-222636, the molten metal was placed in a hand-held furnace to prevent aggregation of AlP (24). .6 × Si% + 324)
It was proposed to cast at a temperature of ℃. However, the present inventors have further studied and found that the temperature at which this AlP starts agglomeration changes depending on the Cu content, and the temperature increases as the amount increases. It is presumed that this is because P and Cu form a compound, and the compound of P and Cu facilitates aggregation of AlP. The reason why Cu does not participate in the approximation is that C
It is presumed that since the amount of u is very large, even if Cu is added at 2% by mass or more, the amount of the compound of Cu and P does not increase.

【0018】そして、Si:14.0〜18.0質量
%、Cu:2.0〜5.0質量%を含有する過共晶Al
−Si合金の場合、(23×Si%+357)℃未満の
温度でAlPの凝集が開始されることがわかった。そこ
で本発明では、Cuを含有する過共晶Al−Si系アル
ミニウム合金の溶湯を手元炉で(23×Si%+35
7)℃以上に保持することにより、AlPの凝集を防
ぎ、初晶Siが粗大化することを抑制した。溶湯保持温
度がこの範囲に達しないと、添加されたPがAlPとし
て凝集してしまい、初晶Siの核となるAlPが減少ま
たは粗大化するため、初晶Siが粗大化し易くなる。し
かし、この温度範囲を超える溶湯保持温度では、AlP
の凝集による初晶Si核生成に有効なP量を減少させる
ことはない。
Then, hypereutectic Al containing 14.0 to 18.0% by mass of Si and 2.0 to 5.0% by mass of Cu.
In the case of a -Si alloy, it was found that AlP aggregation started at a temperature lower than (23 x Si% + 357) C. Therefore, in the present invention, a molten metal of a hypereutectic Al-Si-based aluminum alloy containing Cu is placed in a hand-held furnace at (23 × Si% + 35).
7) By keeping the temperature at not less than ° C, aggregation of AlP was prevented, and coarsening of primary crystal Si was suppressed. If the molten metal holding temperature does not reach this range, the added P agglomerates as AlP, and the AlP serving as the nucleus of the primary crystal Si decreases or becomes coarse, so that the primary crystal Si tends to become coarse. However, at a molten metal holding temperature exceeding this temperature range, AlP
Does not reduce the amount of P effective for the formation of primary crystal Si nuclei due to the aggregation of P.

【0019】この(23×Si%+357)℃は、後述
する実施例でも説明しているように本発明者等が見い出
した温度であり、Si含有量に応じて、鋳造組織に晶出
する初晶Siの平均粒径および粒数の温度依存曲線に表
れる変曲点を示す。この変曲点以上の温度に過共晶Al
−Si系アルミニウム合金を保持するとき、初晶Siの
粗大化が抑えられ、適正粒径および適正分布密度で初晶
Siが分散するため、耐摩耗性や切削性に優れた鋳造部
材が得られる。しかし、過度に高い保持温度は、金型の
劣化やエネルギの多量消費等の問題を生じる。したがっ
て、本発明においては、鋳造される合金溶湯の保持温度
の上限を変曲点温度よりも30℃高い(23×Si%+
387)℃に設定した。手元炉では、溶湯温度のみを調
節し、適宜の時間経過後に溶湯をそのまますぐに鋳造す
る。
This (23 × Si% + 357) ° C. is a temperature found by the present inventors as described in Examples described later, and depends on the Si content. The inflection points appearing in the temperature dependence curves of the average grain size and the number of grains of crystalline Si are shown. Hypereutectic Al at a temperature above this inflection point
-When holding a Si-based aluminum alloy, coarsening of primary Si is suppressed, and primary Si is dispersed with an appropriate particle size and an appropriate distribution density, so that a cast member excellent in wear resistance and machinability can be obtained. . However, an excessively high holding temperature causes problems such as deterioration of the mold and large consumption of energy. Therefore, in the present invention, the upper limit of the holding temperature of the alloy melt to be cast is 30 ° C. higher than the inflection point temperature (23 × Si% +
387) Set to ° C. In the hand furnace, only the temperature of the molten metal is adjusted, and the molten metal is cast immediately after an appropriate time has elapsed.

【0020】(23×Si%+357)℃〜液相線温度
での冷却速度:2〜1000℃/秒 Cuを含有する過共晶Al−Si系アルミニウム合金の
溶湯を手元炉で(23×Si%+357)℃以上にに保
持しても。初晶Siが粗大化してしまう場合もある。そ
の原因を調査したところ、手元炉で(23×Si%+3
57)℃以上に保持していても、手元炉と鋳型間にある
重力鋳造における「たまり」やダイカストにおける「射
出スリーブ」等で、鋳造前に一時保持されるときに溶湯
温度が(23×Si%+357)℃未満まで低下してし
まい、短時間であるがその温度で保持され、AlPが凝
集して核の数が少なくなり、その後晶出した初晶Siが
大きくなることが原因であることがわかった。
(23 × Si% + 357) ° C. to liquidus temperature
Cooling rate: 2 to 1000 ° C./sec. Even if the molten metal of the hypereutectic Al—Si-based aluminum alloy containing Cu is kept at (23 × Si% + 357) ° C. or more in a hand-held furnace. Primary crystal Si may be coarsened in some cases. When the cause was investigated, it was found that (23 × Si% + 3)
57) Even if the temperature is maintained at not less than ° C, the temperature of the molten metal becomes (23 × Si % + 357) The temperature is lowered to less than ° C, and the temperature is maintained for a short time but at that temperature, AlP is aggregated, the number of nuclei is reduced, and the primary crystal Si crystallized thereafter is increased. I understood.

【0021】さらに研究を行ったところ、初晶Siの粒
径は初晶Siの晶出する液相線温度と固相線温度の間の
冷却速度に影響されると従来考えられていたが、実際
は、初晶Siがまだ晶出していない(23×Si%+3
57)℃と液相線温度の間の冷却温度によって、初晶S
i粒径が左右されることがわかった。図1は、Al−1
5.1質量%Si−2.9質量%Cuのアルミニウム合
金における1mm2当たりの初晶Siの個数と(23×
Si%+357)℃〜液相線温度間の冷却速度の関係
(図中○印)および液相線温度〜固相線温度間の冷却速
度の関係(図中▲印)を示したものである。この図から
わかるように、初晶Siの個数と液相線温度〜固相線温
度間の冷却速度の関係(図中▲印)には、バラツキが見
られるが、初晶Siの個数と(23×Si%+357)
℃〜液相線温度間の冷却速度は非常に高い相関性を示し
ている。
Further studies have shown that it has been conventionally thought that the grain size of primary Si is affected by the cooling rate between the liquidus temperature and the solidus temperature at which primary Si is crystallized. Actually, primary Si has not yet crystallized (23 × Si% + 3).
57) Depending on the cooling temperature between C and the liquidus temperature, primary S
It was found that the i particle size was affected. FIG. 1 shows Al-1
The number of primary crystal Si per 1 mm 2 in an aluminum alloy of 5.1 mass% Si and 2.9 mass% Cu and (23 ×
It shows the relationship between the cooling rate between Si% + 357) ° C. and the liquidus temperature (indicated by ○ in the figure) and the relationship between the cooling rate between the liquidus temperature and the solidus temperature (indicated by ▲ in the figure). . As can be seen from the figure, there is a variation in the relationship between the number of primary Si and the cooling rate between the liquidus temperature and the solidus temperature (indicated by が in the figure). 23 × Si% + 357)
The cooling rate between ° C and the liquidus temperature shows a very high correlation.

【0022】そこで、本発明では、初晶Siを微細化さ
せるためには、従来考えられていた液相線温度と固相線
温度間の冷却速度より、液相線より上の初晶Siが未だ
晶出していない温度域での冷却速度が重要であることに
着目し、液相線温度とAlPが凝集を開始する温度(2
3×Si%+357)℃間の温度域で、アルミニウム合
金溶湯の冷却速度を制御することとした。すなわち、C
u含有過共晶Al−Si系アルミニウム合金溶湯を鋳造
する際に、(23×Si%+357)℃〜液相線温度間
を2℃/秒以上〜1000℃/秒未満の速度で冷却する
こととした。この冷却速度範囲内で鋳造すると、確実に
初晶Siを7〜30μmの大きさで均一に分散させるこ
とができる。2℃/秒より遅いと、AlPの凝集が進
み、初晶Si晶出の核となるAlPの個数が少なくなっ
て、結果的に初晶Siの粒径が30μmを超えるように
なる。逆に1000℃/秒以上の速さで冷却するとAl
Pの凝集が進まずその個数が多くなって、晶出した初晶
Siは耐摩耗性の向上に寄与しない7μm未満のものと
なってしまう。
Therefore, in the present invention, in order to make the primary crystal Si finer, the primary crystal Si above the liquidus exceeds the cooling rate between the liquidus temperature and the solidus temperature, which has been conventionally considered. Focusing on the importance of the cooling rate in the temperature range where crystallization has not yet occurred, the liquidus temperature and the temperature at which AlP starts aggregation (2
The cooling rate of the molten aluminum alloy was controlled in a temperature range of 3 × Si% + 357) ° C. That is, C
When casting a u-containing hypereutectic Al-Si-based aluminum alloy melt, cooling at a rate of 2 ° C / sec or more to less than 1000 ° C / sec between (23 × Si% + 357) ° C and liquidus temperature. And When casting is performed within this cooling rate range, primary crystal Si can be surely uniformly dispersed in a size of 7 to 30 μm. If the temperature is lower than 2 ° C./sec, the aggregation of AlP proceeds, and the number of AlPs serving as nuclei for the crystallization of primary Si decreases, and as a result, the particle size of primary Si exceeds 30 μm. Conversely, cooling at a rate of 1000 ° C./sec or more
P agglomeration does not progress and the number of P increases, and the crystallized primary crystal Si becomes less than 7 μm which does not contribute to improvement in wear resistance.

【0023】[0023]

【実施例】実施例1 表1に組成を示すように、Si含有量が異なる各種アル
ミニウム合金を用意し、溶解後、各合金溶湯を種々の保
持温度まで冷却し、各保持温度に1分保持した後、直径
18mmの丸棒に金型鋳造した。そして鋳造の際に、保
持温度から液相線温度間の温度域を、平均冷却速度が1
35℃/秒になるように鋳造した。得られた鋳造部材の
鋳造組織を調査し、カールツアイスKS400画像解析
装置を用いて、初晶Siの平均粒径および粒数を測定し
た。その結果例を図2〜図5に示す。
EXAMPLES Example 1 As shown in Table 1, various aluminum alloys having different Si contents were prepared, and after melting, each molten alloy was cooled to various holding temperatures and held at each holding temperature for 1 minute. After that, it was die-cast into a round bar having a diameter of 18 mm. When casting, the temperature range between the holding temperature and the liquidus temperature is set to an average cooling rate of 1
Casting was performed at 35 ° C./sec. The cast structure of the obtained cast member was examined, and the average grain size and the number of primary crystal Si particles were measured using a Carl Zeiss KS400 image analyzer. Examples of the results are shown in FIGS.

【0024】 [0024]

【0025】この4つの図より、それぞれ、特定の温度
より低い温度で保持すると急激に初晶Siの数が減少
し、平均粒径が増加することがわかる。この急激に変化
する温度より低い温度域では保持温度の低下に伴って初
晶Siの平均粒径が大きくなる割合および粒数が大きく
なる割合が大きくなるのに対し、上記急激に変化する温
度より高い温度域では保持温度上昇に応じて初晶Siの
平均粒径が小さくなる割合および粒数が増加する割合の
変化がほとんどなくなっている。したがって、上記急激
に変化する温度より高い温度域ではAlPが未だ凝集し
ておらず、この温度からAlPが凝集を始めたものと判
断した。
From these four figures, it can be understood that the number of primary crystals rapidly decreases and the average grain size increases when the temperature is maintained at a temperature lower than the specific temperature. In a temperature range lower than this rapidly changing temperature, the rate at which the average grain size of primary crystal Si increases and the rate at which the number of grains increases as the holding temperature decreases increases. In the high temperature range, there is almost no change in the rate at which the average grain size of primary crystal Si decreases and the rate at which the number of grains increases in accordance with the increase in the holding temperature. Therefore, it was determined that AlP had not yet aggregated in a temperature range higher than the above-mentioned rapidly changing temperature, and that AlP had started to aggregate from this temperature.

【0026】この変曲点はSi含有量によって変わって
くることが図2〜図5の違いから明らかである。図2〜
図5から得られた変曲点温度をSi含有量との関係で整
理すると図6に示すように強い相関関係が見られる。そ
こで変曲点温度をT(℃)として近似計算すると、T=
(23×Si%+357)℃の関係が導き出される。
It is apparent from the difference between FIGS. 2 to 5 that the inflection point changes depending on the Si content. Figure 2
When the inflection point temperature obtained from FIG. 5 is arranged in relation to the Si content, a strong correlation is seen as shown in FIG. Therefore, when the inflection point temperature is approximately calculated as T (° C.), T =
A relationship of (23 × Si% + 357) ° C. is derived.

【0027】実施例2 表2に示す組成の各種アルミニウム合金を溶解し、各溶
湯をそれぞれ(23×Si%+387)℃となるように
1時間保持した後、平板状に重力鋳造で鋳造した。たま
り部分での溶湯温度を(23×Si%+377)℃にな
るようにして、鋳型内で(23×Si%+357)℃〜
液相線温度間を1.6℃/秒、3.4℃/秒、10℃/
秒、22℃/秒、122℃/秒、1000℃/秒で冷却
されるように鋳造を行った。そして得られた鋳物を、4
90℃で6時間保持し、溶体化処理を行った後、水焼入
れし、その後180℃で、6時間保持し、時効処理を行
った後、画像解析により初晶Siの平均粒径を測定し
た。各冷却速度で得られた鋳物の断面組織を図7に示
す。また、鋳鉄を相手材とする摩擦摩耗試験も行った。
摩擦摩耗試験では、ピン・オン・ディスクタイプの摩擦
摩耗試験機を用い、摺動速度0.2m/秒、摺動距離4
km、面圧18MPaの条件下を採用した。試験前後で
摩耗試験片の重量を測定し、摩耗試験による試験片の重
量減の比率で耐摩耗性を評価した。その結果を表3に示
す。
Example 2 Various aluminum alloys having the compositions shown in Table 2 were melted, and each molten metal was kept at (23 × Si% + 387) ° C. for 1 hour, and then cast into a flat plate by gravity casting. The temperature of the molten metal in the pool is set to (23 × Si% + 377) ° C., and the temperature is set to (23 × Si% + 357) ° C. in the mold.
1.6 ° C / sec, 3.4 ° C / sec, 10 ° C / sec
Casting was performed so as to be cooled at a rate of 22 ° C./sec, 122 ° C./sec, and 1000 ° C./sec. And the obtained casting is 4
After holding at 90 ° C. for 6 hours and performing a solution treatment, quenching with water, and then holding at 180 ° C. for 6 hours and performing an aging treatment, the average particle diameter of primary Si was measured by image analysis. . FIG. 7 shows the sectional structure of the casting obtained at each cooling rate. Further, a friction and wear test using cast iron as a mating material was also performed.
In the friction / wear test, a pin-on-disk type friction / wear tester was used.
km and a surface pressure of 18 MPa. The weight of the abrasion test specimen was measured before and after the test, and the abrasion resistance was evaluated based on the weight reduction ratio of the test specimen in the abrasion test. Table 3 shows the results.

【0028】 [0028]

【0029】 [0029]

【0030】表3に示す結果からわかるように、本発明
に規定する、(23×Si%+357)℃〜液相線温度
間を2℃/秒以上1000℃/秒未満で冷却した鋳物
は、初晶Siの平均粒径が7〜30μmの範囲内にあ
り、耐摩耗性も優れている。これに対して、2℃/秒未
満で冷却した比較例の鋳物は、初晶Siが50μm前後
にもなり、摩擦摩耗試験中に巨大初晶Siが欠けて脱落
したためか、耐摩耗性が低下していた。また、1000
℃/秒という速い速度で冷却した比較例の鋳物では、初
晶Siの平均粒径が7μmに達せず、耐摩耗性の向上に
寄与できなかったことがわかった。
As can be seen from the results shown in Table 3, the casting specified in the present invention and cooled between (23 × Si% + 357) ° C. and the liquidus temperature at 2 ° C./sec or more and less than 1000 ° C./sec, The primary crystal Si has an average particle size in the range of 7 to 30 μm, and has excellent wear resistance. On the other hand, in the casting of the comparative example cooled at less than 2 ° C./sec, the primary crystal Si was about 50 μm, and the wear resistance was deteriorated probably because large primary crystal Si was chipped and dropped off during the friction and wear test. Was. Also, 1000
It was found that in the casting of the comparative example cooled at a high rate of ° C./sec, the average grain size of the primary crystal Si did not reach 7 μm, and could not contribute to the improvement of the wear resistance.

【0031】[0031]

【発明の効果】以上に説明したように、本発明において
は、Si含有量との関係で定まる(23×Si%+35
7)℃〜(23×Si%+387)℃の温度域に鋳造直
前のCu含有過共晶Al−Si合金を保持した後、鋳型
に鋳造している。この保持処理によって、晶出する初晶
Siのシードとなる異質核AlPの数を制御し、鋳造組
織に晶出する初晶Siの平均粒度および分布密度を適正
化することができ、耐摩耗性、切削性に優れた鋳造部材
が得られる。また、鋳造時、(23×Si%+357)
℃〜液相線温度間の冷却速度を所定範囲内に設定するこ
とにより、Si、P、Cu以外の合金成分に関係なく、
初晶Siの平均粒度を7〜30μmに制御することがで
き、分布密度が一定化して、鋳造部材の耐摩耗性をさら
に向上させることができる。
As described above, in the present invention, it is determined by the relationship with the Si content (23 × Si% + 35).
7) After holding the Cu-containing hypereutectic Al-Si alloy immediately before casting in a temperature range of ° C to (23 x Si% + 387) ° C, it is cast into a mold. By this holding treatment, it is possible to control the number of heteronuclear AlPs serving as seeds of crystallized primary crystal Si, to optimize the average grain size and distribution density of the primary crystal Si crystallized in the cast structure, Thus, a cast member having excellent machinability can be obtained. At the time of casting, (23 × Si% + 357)
By setting the cooling rate between ℃ and the liquidus temperature within a predetermined range, regardless of alloy components other than Si, P and Cu,
The average grain size of the primary crystal Si can be controlled to 7 to 30 μm, the distribution density is made constant, and the wear resistance of the cast member can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Al−15.1質量%Si−2.9質量%C
uのアルミニウム合金における1mm2当たりの初晶S
iの個数と(23×Si%+357)℃〜液相線温度間
の冷却速度の関係(図中○印)および液相線温度〜固相
線温度間の冷却速度の関係(図中▲印)を示したグラフ
FIG. 1 Al-15.1% by mass Si-2.9% by mass C
primary crystal S per 1 mm 2 in aluminum alloy u
The relationship between the number of i and the cooling rate between (23 × Si% + 357) ° C. and the liquidus temperature (marked with ○ in the figure) and the relationship between the cooling rate between the liquidus temperature and the solidus temperature (marked with ▲ in the figure) )

【図2】 合金番号No.1(Si含有量13.7重量
%)のCu含有過共晶Al−Si合金溶湯について、初
晶Siの平均粒径および粒数に及ぼす保持温度の影響を
表したグラフ
FIG. 1 is a graph showing the effect of the holding temperature on the average grain size and the number of primary crystal Si particles of a Cu-containing hypereutectic Al-Si alloy melt having a Si content of 13.7% by weight.

【図3】 合金番号No.2(Si含有量15.4重量
%)のCu含有過共晶Al−Si合金溶湯について、初
晶Siの平均粒径および粒数に及ぼす保持温度の影響を
表したグラフ
FIG. 3 shows alloy No. 2 is a graph showing the effect of the holding temperature on the average grain size and the number of primary Si crystals in a Cu-containing hypereutectic Al-Si alloy melt having a Si content of 15.4% by weight.

【図4】 合金番号No.3(Si含有量16.4重量
%)のCu含有過共晶Al−Si合金溶湯について、初
晶Siの平均粒径および粒数に及ぼす保持温度の影響を
表したグラフ
FIG. 3 is a graph showing the influence of the holding temperature on the average grain size and the number of primary Si crystals in a Cu-containing hypereutectic Al-Si alloy melt having a Si content of 16.4% by weight.

【図5】 合金番号No.4(Si含有量17.0重量
%)のCu含有過共晶Al−Si合金溶湯について、初
晶Siの平均粒径および粒数に及ぼす保持温度の影響を
表したグラフ
FIG. 5 shows alloy No. 4 is a graph showing the influence of the holding temperature on the average grain size and the number of primary Si crystals in a Cu-containing hypereutectic Al-Si alloy melt having a Si content of 17.0% by weight.

【図6】 合金番号1〜4の過共晶Al−Si合金溶湯
における変曲点温度TとSi含有量との関係を表したグ
ラフ
FIG. 6 is a graph showing the relationship between the inflection point temperature T and the Si content in the hypereutectic Al—Si alloy melts of alloy numbers 1 to 4.

【図7】 Si:15.0質量%、P:0.01質量
%、Cu:3.0質量%含有する過共晶Al−Si合金
溶湯を、(a)1.6℃/秒、(b)3.4℃/秒、
(c)122℃/秒、(d)1000℃/秒で冷却鋳造
した材料の表面顕微鏡観察模写図
FIG. 7 shows a hypereutectic Al-Si alloy melt containing 15.0% by mass of Si, 0.01% by mass of P, and 3.0% by mass of Cu, (a) 1.6 ° C./sec. b) 3.4 ° C./sec.
(C) 122 ° C./sec, (d) Surface microscopic observation model of a material cooled and cast at 1000 ° C./sec.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 611 C22F 1/00 611 (72)発明者 橋本 暁生 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 鈴木 聡 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 611 C22F 1/00 611 (72) Inventor Akio Hashimoto 1-34 Kabara, Kambara-cho, Anbara-gun, Shizuoka Prefecture No. 1 Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Satoshi Suzuki 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nippon Light Metal Co., Ltd. Group Technology Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si:14.0〜18.0質量%、P:
0.001〜0.02質量%、Cu:2.0〜5.0質
量%を含む過共晶Al−Si合金溶湯を用意し、鋳造時
の手元炉に収容した過共晶Al−Si系アルミニウム合
金溶湯を、(23×Si%+357)℃〜(23×Si
%+387)℃の温度範囲に保持し、手元炉から鋳型に
過共晶Al−Si合金溶湯を注入し、初晶Siの平均粒
径が7〜30μmに調整された鋳造組織を形成すること
を特徴とする耐摩耗性に優れたCu含有過共晶Al−S
i系アルミニウム合金鋳造部材の製造方法。
1. Si: 14.0 to 18.0% by mass, P:
A hypereutectic Al-Si alloy melt containing 0.001 to 0.02 mass% and Cu: 2.0 to 5.0 mass% is prepared and stored in a hand furnace at the time of casting. The molten aluminum alloy is heated from (23 × Si% + 357) ° C. to (23 × Si
% + 387) ° C., and injecting a hypereutectic Al—Si alloy melt from a hand furnace into a mold to form a cast structure in which the average grain size of primary crystal Si is adjusted to 7 to 30 μm. Cu-containing hypereutectic Al-S with excellent wear resistance
A method for manufacturing an i-type aluminum alloy cast member.
【請求項2】 (23×Si%+357)℃〜液相線温
度の温度域を平均冷却速度2℃/秒以上1000℃/秒
未満で鋳造する請求項1に記載の耐摩耗性に優れたCu
含有過Al−Si系アルミニウム合金鋳造部材の製造方
法。
2. An excellent wear resistance according to claim 1, wherein the casting is performed in a temperature range of (23 × Si% + 357) ° C. to a liquidus temperature at an average cooling rate of 2 ° C./sec or more and less than 1000 ° C./sec. Cu
A method for producing a cast alloy member containing excessive Al-Si-based aluminum alloy.
【請求項3】 過共晶Al−Si合金溶湯が、Si:1
4.0〜18.0質量%、P:0.001〜0.02質
量%、Cu:2.0〜5.0質量%、Mg:0.1〜
1.0質量%を含み、さらにFe含有量を1.5質量%
以下、Ca含有量を0.005質量%以下にするととも
に、Mn:0.3〜0.8質量%、Cr:0.05〜
0.3質量%、Ti:0.01〜0.30質量%、B:
0.0005〜0.01質量%のいずれか1以上を含み
残部が実質的にAlである請求項1または2に記載の耐
摩耗性に優れたCu含有過共晶Al−Si系アルミニウ
ム合金鋳造部材の製造方法。
3. The hypereutectic Al—Si alloy melt, wherein Si: 1
4.0 to 18.0 mass%, P: 0.001 to 0.02 mass%, Cu: 2.0 to 5.0 mass%, Mg: 0.1 to
1.0% by mass, and further, the Fe content is 1.5% by mass.
Hereinafter, the Ca content is set to 0.005% by mass or less, Mn: 0.3 to 0.8% by mass, Cr: 0.05 to
0.3% by mass, Ti: 0.01 to 0.30% by mass, B:
3. A Cu-containing hypereutectic Al-Si-based aluminum alloy casting having excellent wear resistance according to claim 1 or 2, wherein at least one of 0.0005 to 0.01% by mass is contained and the balance is substantially Al. Manufacturing method of the member.
JP2001160273A 2001-05-29 2001-05-29 METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE Pending JP2002356755A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001160273A JP2002356755A (en) 2001-05-29 2001-05-29 METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE
MYPI20015875A MY153928A (en) 2001-05-29 2001-12-24 A method of manufacturing a wear-resistant cast article of a cu-containing hyper-eutectic al-si alloy
FR0203168A FR2825376B1 (en) 2001-05-29 2002-03-14 METHOD FOR MANUFACTURING AN ALLOY WEAR-RESISTANT MOLDED ARTICLE A1-Si

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160273A JP2002356755A (en) 2001-05-29 2001-05-29 METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE

Publications (1)

Publication Number Publication Date
JP2002356755A true JP2002356755A (en) 2002-12-13

Family

ID=19003716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160273A Pending JP2002356755A (en) 2001-05-29 2001-05-29 METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE

Country Status (3)

Country Link
JP (1) JP2002356755A (en)
FR (1) FR2825376B1 (en)
MY (1) MY153928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193543A1 (en) * 2017-04-19 2018-10-25 日本軽金属株式会社 Al-Si-Fe ALUMINUM ALLOY CASTING MATERIAL AND PRODUCTION METHOD THEREFOR
JP2019209362A (en) * 2018-06-06 2019-12-12 本田技研工業株式会社 Method for producing aluminum alloy
CN114262810A (en) * 2021-11-25 2022-04-01 广州致远新材料科技有限公司 Preparation method of hypoeutectic die-casting aluminum-silicon alloy material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7412955B2 (en) 2004-02-27 2008-08-19 Yamaha Hatsudoki Kabushiki Kaisha Engine component part and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709663B2 (en) * 1991-09-20 1998-02-04 日本軽金属株式会社 Aluminum alloy with excellent wear resistance
JPH06293933A (en) * 1993-04-06 1994-10-21 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy and its production
JP3378342B2 (en) * 1994-03-16 2003-02-17 日本軽金属株式会社 Aluminum casting alloy excellent in wear resistance and method for producing the same
JP3351181B2 (en) * 1995-07-12 2002-11-25 日産自動車株式会社 Wear-resistant aluminum alloy sliding member
JPH11222636A (en) * 1998-02-02 1999-08-17 Nippon Light Metal Co Ltd Hyper-eutectic aluminum-silicon alloy cast member and its production
DE10006269A1 (en) * 2000-02-12 2001-08-16 Bayerische Motoren Werke Ag Method for producing a metal component for a drive unit, in particular an internal combustion engine, which interacts with a friction partner via a sliding surface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193543A1 (en) * 2017-04-19 2018-10-25 日本軽金属株式会社 Al-Si-Fe ALUMINUM ALLOY CASTING MATERIAL AND PRODUCTION METHOD THEREFOR
JPWO2018193543A1 (en) * 2017-04-19 2019-11-07 日本軽金属株式会社 Al-Si-Fe-based aluminum alloy casting material and method for producing the same
CN110573637A (en) * 2017-04-19 2019-12-13 日本轻金属株式会社 Al-Si-Fe aluminum alloy casting material and method for producing same
CN110573637B (en) * 2017-04-19 2022-02-18 日本轻金属株式会社 Al-Si-Fe aluminum alloy casting material and method for producing same
US11603582B2 (en) 2017-04-19 2023-03-14 Nippon Light Metal Company, Ltd. Al—Si—Fe-based aluminum alloy casting material and method for producing the same
JP2019209362A (en) * 2018-06-06 2019-12-12 本田技研工業株式会社 Method for producing aluminum alloy
CN114262810A (en) * 2021-11-25 2022-04-01 广州致远新材料科技有限公司 Preparation method of hypoeutectic die-casting aluminum-silicon alloy material

Also Published As

Publication number Publication date
FR2825376B1 (en) 2005-03-11
MY153928A (en) 2015-04-15
FR2825376A1 (en) 2002-12-06

Similar Documents

Publication Publication Date Title
CN109252076B (en) Ta-containing stress corrosion resistant Al-Zn-Mg- (Cu) alloy and preparation method thereof
JP3378342B2 (en) Aluminum casting alloy excellent in wear resistance and method for producing the same
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
CN112391562B (en) Aluminum alloy and preparation method thereof
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
CN115044810B (en) Aluminum alloy, preparation method thereof and automobile material
CN106480344B (en) A kind of vacuum pump rotor rare-earth containing aluminium alloy and preparation method thereof
CN110408807A (en) A kind of hypoeutectic Al-Si casting alloy and preparation method thereof
CN109439975A (en) A kind of composite inoculating method of composite modifier and regeneration cast aluminium alloy
CN115386771B (en) Aluminum alloy material and die casting method of barrier gate transmission structural member
JP2020164946A (en) Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
CN114214534A (en) Modified aluminum alloy and preparation method thereof
WO2019111422A1 (en) Aluminum alloy plate for battery cover for forming integrated round explosion-proof valve and method for manufacturing same
EP3284840B1 (en) Aluminum alloy casting having superior high-temperature strength and thermal conductivity, method for manufacturing same, and aluminum alloy casting piston for internal combustion engine
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP2000265232A (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
CN111041291B (en) High-strength aluminum alloy material and preparation method thereof
JP3479204B2 (en) Aluminum alloy casting for non-heat treatment and method for producing the same
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP2002356755A (en) METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE
CA2064437C (en) Grain refining alloy and a method for grain refining of aluminium and aluminium alloys
CN116144990A (en) Wear-resistant aluminum-silicon alloy and preparation method thereof
JPH0517845A (en) Hypereutectic aluminum-silicon alloy powder and production thereof
JP3416503B2 (en) Hypereutectic Al-Si alloy die casting member and method of manufacturing the same