JP2002356738A - High contact pressure resistant member and its manufacturing method - Google Patents

High contact pressure resistant member and its manufacturing method

Info

Publication number
JP2002356738A
JP2002356738A JP2001160694A JP2001160694A JP2002356738A JP 2002356738 A JP2002356738 A JP 2002356738A JP 2001160694 A JP2001160694 A JP 2001160694A JP 2001160694 A JP2001160694 A JP 2001160694A JP 2002356738 A JP2002356738 A JP 2002356738A
Authority
JP
Japan
Prior art keywords
temperature
pressure resistant
high surface
carbide
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001160694A
Other languages
Japanese (ja)
Inventor
Yutaka Kurebayashi
豊 紅林
Toshimitsu Kimura
利光 木村
Takuo Yamaguchi
拓郎 山口
Keizo Otani
敬造 尾谷
Noriko Uchiyama
典子 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001160694A priority Critical patent/JP2002356738A/en
Priority to US10/137,440 priority patent/US20030075244A1/en
Priority to EP02010460A priority patent/EP1258644A3/en
Publication of JP2002356738A publication Critical patent/JP2002356738A/en
Priority to US10/936,800 priority patent/US20050045249A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high contact pressure resistant member having excellent surface fatigue strength owing to finely and uniformly precipitated M23 C6 -type carbides, and also to provide a method for manufacturing the high contact pressure resistant member by which the M23 C6 -type carbides is precipitated finely and uniformly in an intermediate step and resultantly the surface fatigue strength of the member is greatly improved. SOLUTION: In raising the temperature of steel for machine structural use in which C content is made to 0.6-1.5% or surface C content is enriched to 0.6-1.5% by a carburizing treatment or a carbonitriding treatment to an intermediate temperature of 600-750 deg.C, the steel is heated through the temperature range of 500-650 deg.C at (0.2 to 30) deg.C/min temperature-rise rate, held successively within the intermediate temperature range, then held at a temperature not lower than the Ac1 transformation temperature and not higher than the A cm transformation temperature, and quenched for hardening.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、歯車やベアリング
転動体のように、高い面疲労強度を必要とする動力伝達
部品として利用される部材に係わり、特に準高温から高
温までの環境(100〜300℃程度)において高面圧
下で使用するのに好適な耐高面圧部材およびこのような
耐高面圧部材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member used as a power transmission component requiring a high surface fatigue strength, such as a gear or a rolling element of a bearing, and more particularly to an environment from a quasi-high temperature to a high temperature. The present invention relates to a high surface pressure resistant member suitable for use under a high surface pressure at about 300 ° C.) and a method for producing such a high surface pressure resistant member.

【0002】[0002]

【発明が解決しようとする課題】上記したような動力伝
達部材の耐面疲労強度を高める方法としては、例えば、
準高温から高温においても分解しにくい炭化物、例えば
C型炭化物などを積極的に析出させて硬度を高め、
もって焼戻し軟化抵抗性の向上を図る過共析浸炭法や高
濃度浸炭法がある。特願平11−206552号公報で
は、MCを析出させた鋼に比べて耐面疲労強度に優れ
るM23型炭化物を微細に分散析出させた部材が提
案されている。
As a method for increasing the surface fatigue strength of the power transmission member as described above, for example,
Carbides that are not easily decomposed even at quasi-high to high temperatures, such as M 3 C-type carbides, are positively precipitated to increase hardness,
There are a hypereutectoid carburizing method and a high concentration carburizing method for improving the tempering softening resistance. In Japanese Patent Application No. 11-206552, members were finely dispersed precipitating the M 23 C 6 type carbide which is excellent in resistance to surface fatigue strength than steel to precipitate M 3 C has been proposed.

【0003】このような炭化物を析出させるには、部材
に浸炭処理を行うことによって表面層の炭素量を高めた
後、炭素が固溶し得る温度以下に降温、保持を行う方法
が用いられる。このときの炭化物の析出は、炭化物を生
成するのに必須の元素であるクロム(Cr)などが偏在
している部位、あるいは析出核となるオーステナイト粒
の界面から生じ易く、上記温度での保持を続けることで
部材の表面の組織中に均一に炭化物が生成していく。こ
の炭化物析出の工程としては、通常焼入れ前に部材の温
度を均一にするための保持工程が利用される。
[0003] In order to precipitate such carbides, a method is used in which the amount of carbon in the surface layer is increased by carburizing the member, and then the temperature is lowered and maintained at a temperature below which carbon can be dissolved. The precipitation of carbide at this time is likely to occur at a site where chromium (Cr), which is an element essential for generating carbide, is unevenly distributed, or at an interface of austenite grains serving as precipitation nuclei. By continuing, carbides are uniformly generated in the structure on the surface of the member. As the carbide precipitation step, a holding step for making the temperature of the member uniform before quenching is usually used.

【0004】しかしながら、M23型炭化物は、保
持工程のみでは、部材の組織中の全面あるいは浸炭によ
り炭素量を高めた部材表面層に均一に分散させ難いた
め、未析出領域が生じ易いという問題があった。炭化物
が析出していない領域では炭化物分散析出による強化が
十分に行われず、強度が損なわれてしまうことになる。
さらに焼入れ工程における炭化物の作用としては、焼入
れ時に生成するマルテンサイトが粗大に成長するのを阻
止する効果があるが、炭化物が分散析出していないと緻
密な組織を得にくく、転動疲労強度が損なわれ易い。一
方、上述した特願平11−206552号公報では、浸
炭後、焼入れ保持の前にAc1変態温度以下で長時間保
持する、中間保持工程を設けることによってM23
を部材の組織中の全面、あるいは浸炭により炭素量を高
めた部材表面層に均一に析出させようとしているが、条
件によっては未析出領域が生じたり、非常に長時間の処
理が必要となったりして、製造コストの増加を招くなど
の問題があり、このような問題の解消が従来の動力伝達
部材における課題となっていた。
However, it is difficult to uniformly disperse the M 23 C 6 type carbide in the entire surface of the structure of the member or in the surface layer of the member whose carbon content has been increased by carburization only by the holding step, so that an unprecipitated region is easily generated. There was a problem. In a region where carbide is not precipitated, reinforcement by dispersion of carbide is not sufficiently performed, and the strength is impaired.
Further, as an effect of carbides in the quenching step, there is an effect of preventing martensite generated at the time of quenching from growing coarsely, but if carbides are not dispersed and precipitated, it is difficult to obtain a dense structure, and rolling fatigue strength is reduced. Easily damaged. On the other hand, in Japanese Patent Application No. 11-206552 Publication described above, after carburization, to hold a long time at Ac1 transformation temperature or less prior to quenching holding, M 23 C 6 by providing the intermediate holding step
Trying to deposit uniformly on the entire surface of the structure of the member, or on the surface layer of the member whose carbon content has been increased by carburization, but depending on the conditions, an unprecipitated region may occur, or a very long treatment may be required. Thus, there is a problem such as an increase in manufacturing cost, and solving such a problem has been a problem in the conventional power transmission member.

【0005】[0005]

【発明の目的】本発明は、従来の動力伝達部材における
上記課題に鑑みてなされたものであって、均一かつ微細
に析出したM23型炭化物によって優れた耐面疲労
強度を備えた耐高面圧部材と、中間保持工程においてM
23型炭化物を均一かつ微細に析出させることがで
き、もって部材の耐面疲労強度を大幅に向上させること
ができる耐高面圧部材の製造方法を提供することを目的
としている。
The present invention is an object of the invention, which has been made in view of the above problems in the conventional power transmission member, resistance with excellent resistance to surface fatigue strength by M 23 C 6 type carbide uniformly and finely precipitated High surface pressure member and M
The 23 C 6 type carbide uniformly and can be finely precipitated, and its object is to provide a method for producing a resistance to high surface member of the resistance to surface fatigue strength of the member can be greatly improved with.

【0006】[0006]

【課題を解決するための手段】本発明に係わる耐高面圧
部材は、少なくとも表面におけるC量が0.6〜1.5
%であり、平均粒径0.3μm以下の炭化物が基地に分
散している構成としたことを特徴としており、耐高面圧
部材におけるこのような構成を上記した課題を解決する
ための手段としている。
The high surface pressure resistant member according to the present invention has a C content of at least 0.6 to 1.5 on the surface.
%, And having a structure in which carbides having an average particle size of 0.3 μm or less are dispersed in the matrix. Such a structure in the high surface pressure resistant member is used as a means for solving the above-described problem. I have.

【0007】また、本発明に係わる耐高面圧部材の好適
な実施形態として請求項2に係わる耐高面圧部材におい
ては、Cを0.6〜1.5%含有する機械構造用鋼から
なる構成とし、同じく実施形態として請求項3に係わる
耐高面圧部材においては、浸炭処理または浸炭窒化処理
により表面C量が富化されている構成とし、請求項4に
係わる耐高面圧部材においては、C:0.6〜1.5
%、Cr:1.2〜3.2%、Mo:0.25〜2.0
%を含有する機械構造用鋼からなり、炭化物が少なくと
もCrを含むM23型炭化物である構成とし、さら
に請求項5に係わる耐高面圧部材においては、Cr:
1.2〜3.2%、Mo:0.25〜2.0%を含有す
る機械構造用鋼に浸炭処理または浸炭窒化処理が施して
あり、炭化物が少なくともCrを含むM23型炭化
物である構成としたことを特徴としている。
[0007] In a preferred embodiment of the high surface pressure resistant member according to the present invention, the high surface pressure resistant member according to claim 2 is a steel plate for machine structural use containing 0.6 to 1.5% of C. In the high surface pressure resistant member according to claim 3 as the embodiment, the surface C amount is enriched by carburizing or carbonitriding, and the high surface pressure resistant member according to claim 4 is also provided. In, C: 0.6 to 1.5
%, Cr: 1.2 to 3.2%, Mo: 0.25 to 2.0
% Consists mechanical structural steel containing, carbides and configuration is M 23 C 6 type carbide containing at least Cr, in the resistance to high surface pressure member further according to claim 5, Cr:
From 1.2 to 3.2%, Mo: carburizing or carbonitriding treatment on mechanical structural steel containing 0.25 to 2.0 percent is is applied to the surface, M 23 C 6 type carbides carbide containing at least Cr Is characterized in that:

【0008】本発明の請求項6に係わる耐高面圧部材の
製造方法においては、Cを0.6〜1.5%含有する機
械構造用鋼を500〜650℃の温度範囲における昇温
速度が0.2〜30℃/minとなるような速度で加熱
して600〜750℃の温度に昇温し、引き続き当該温
度範囲内で保持して、その後Ac1変態温度以上、かつ
Acm変態温度以下に保持した後、急冷する構成とし、
本発明の請求項7に係わる耐高面圧部材の製造方法にお
いては、表面C量を0.6〜1.5%にする浸炭または
浸炭窒化処理の後、500〜650℃の温度範囲におけ
る昇温速度が0.2〜30℃/minとなるような速度
で加熱して600〜750℃の温度に昇温し、引き続き
当該温度範囲内で保持して、その後Ac1変態温度以
上、かつAcm変態温度以下に保持した後、急冷する構
成とし、本発明の請求項8に係わる耐高面圧部材の製造
方法においては、減圧下において、C:0.6〜1.5
%、Cr:1.2〜3.2%、Mo:0.25〜2.0
%を含有する機械構造用鋼を500〜650℃の温度範
囲における昇温速度が0.2〜30℃/minとなるよ
うな速度で加熱して600〜750℃の温度に昇温し、
引き続き減圧下において当該温度範囲内で保持して、そ
の後Ac1変態温度以上、かつT(℃)=675+12
0・Si(%)−27・Ni(%)+30・Cr(%)
+215・Mo(%)−400・V(%)以下の温度に
加熱保持した後、急冷する構成とし、さらに本発明の請
求項9に係わる耐高面圧部材の製造方法においては、C
r:1.2〜3.2%、Mo:0.25〜2.0%を含
有する機械構造用鋼に表面C量を0.6〜1.5%とす
る浸炭または浸炭窒化処理を施した後、減圧下において
500〜650℃の温度範囲における昇温速度が0.2
〜30℃/minとなるような速度で加熱して600〜
750℃の温度に昇温し、引き続き減圧下において当該
温度範囲内で保持して、その後Ac1変態温度以上、か
つT=675+120・Si(%)−27・Ni(%)
+30・Cr(%)+215・Mo(%)−400・V
(%)以下の温度に加熱保持した後、急冷する構成とし
ており、耐高面圧部材の製造方法におけるこのような構
成を上記した課題を解決するための手段としたことを特
徴としている。
[0008] In the method of manufacturing a high surface pressure resistant member according to claim 6 of the present invention, the temperature rising rate of the steel for machine structural use containing 0.6 to 1.5% of C in a temperature range of 500 to 650 ° C. Is heated to a temperature of 600 to 750 ° C. at a rate such that the temperature becomes 0.2 to 30 ° C./min, and is kept within the temperature range. Thereafter, the temperature is higher than the Ac1 transformation temperature and lower than the Acm transformation temperature. And then quenched,
In the method for manufacturing a high surface pressure resistant member according to claim 7 of the present invention, after the carburizing or carbonitriding treatment for reducing the surface C content to 0.6 to 1.5%, the temperature is raised in a temperature range of 500 to 650 ° C. Heat at a rate such that the temperature rate becomes 0.2 to 30 ° C./min, raise the temperature to a temperature of 600 to 750 ° C., and keep the temperature within the temperature range, and thereafter, the temperature is higher than the Ac1 transformation temperature and Acm transformation. After the temperature is kept below the temperature, rapid cooling is performed. In the method for manufacturing a high surface pressure resistant member according to claim 8 of the present invention, C: 0.6 to 1.5 under reduced pressure.
%, Cr: 1.2 to 3.2%, Mo: 0.25 to 2.0
% In a temperature range of 500 to 650 ° C. at a rate such that the rate of temperature rise is 0.2 to 30 ° C./min to raise the temperature to 600 to 750 ° C.,
Subsequently, the temperature is maintained within the temperature range under reduced pressure, and thereafter, the temperature is higher than the Ac1 transformation temperature, and T (° C.) = 675 + 12
0 ・ Si (%)-27 ・ Ni (%) + 30 ・ Cr (%)
+ 215 · Mo (%) − 400 · V (%) or less and then quenching, and further, in the method for manufacturing a high surface pressure resistant member according to claim 9 of the present invention,
The steel for machine structural use containing r: 1.2 to 3.2% and Mo: 0.25 to 2.0% is subjected to a carburizing or carbonitriding treatment with a surface C amount of 0.6 to 1.5%. After that, the rate of temperature rise in the temperature range of 500 to 650 ° C. under reduced pressure is 0.2
Heating at a rate of ~ 30 ° C / min to 600 ~
The temperature was raised to a temperature of 750 ° C., and then kept within the temperature range under reduced pressure. Thereafter, the temperature was higher than the Ac1 transformation temperature, and T = 675 + 120 · Si (%) − 27 · Ni (%)
+ 30 · Cr (%) + 215 · Mo (%) − 400 · V
(%) It is configured to be rapidly cooled after being heated and held at the following temperature, and is characterized in that such a configuration in the method for manufacturing a high surface pressure resistant member is used as a means for solving the above-mentioned problem.

【0009】[0009]

【発明の作用】本発明に係わる耐高面圧部材は、その少
なくとも表面におけるC含有量、すなわち当該部材自体
のC含有量、あるいは浸炭処理または浸炭窒化処理によ
り富化された表面C量が0.6〜1.5%であると共
に、平均粒径が0.3μm以下の炭化物がその基地に分
散したものであるから、微細に分散析出した炭化物によ
って耐面疲労強度が向上することになる。このとき、当
該部材の素材鋼としては、Cr:1.2〜3.2%、M
o:0.25〜2.0%を含有する機械構造用鋼である
ことが望ましく、炭化物として少なくともCrを含むM
23型炭化物であることが望ましい。
The high surface pressure resistant member according to the present invention has a C content at least on the surface thereof, that is, a C content of the member itself, or a surface C amount enriched by carburizing or carbonitriding. Since the carbides having an average particle diameter of 0.3 to 1.5 μm are dispersed in the matrix, the surface fatigue strength is improved by the finely dispersed carbides. At this time, as the material steel of the member, Cr: 1.2 to 3.2%, M
o: M is preferably a steel for machine structural use containing 0.25 to 2.0%, and contains at least Cr as a carbide.
It is desirable that the 23 C 6 type carbides.

【0010】すなわち、表面C量が0.6%に満たない
と炭化物の面積率(析出量)を十分に確保することがで
きず、1.5%を超えるとMC型炭化物が析出し易く
なり、このような炭化物の網状析出によって機械的性質
が劣化することになる。また、炭化物の平均粒径が0.
3μmを超えると転動疲労寿命が低下する。そして、素
材鋼中のCr含有量が1.2%に満たないと、M23
型炭化物の析出量が減少して優れた転動疲労寿命が得
られなくなり、逆に3.2%を超えると、機械加工時に
おける切削性の低下を招く傾向がある。また、Mo含有
量が0.25%に満たないと、M23型炭化物の安
定析出が阻害されることがあり、2.0%を超えると、
Crと同様に切削性が低下する傾向がある。なお、本発
明における各成分の含有量は、すべて質量パーセントを
意味する。
That is, if the surface C content is less than 0.6%, the area ratio (precipitation amount) of carbide cannot be sufficiently ensured, and if it exceeds 1.5%, M 3 C type carbide precipitates. The mechanical properties are degraded due to such network precipitation of carbides. In addition, the average particle size of the carbide is 0.1.
If it exceeds 3 μm, the rolling fatigue life is reduced. If the Cr content in the base steel is less than 1.2%, M 23 C
An excellent rolling fatigue life cannot be obtained due to a decrease in the amount of precipitation of the type 6 carbide. Conversely, if it exceeds 3.2%, the machinability during machining tends to decrease. If the Mo content is less than 0.25%, stable precipitation of M 23 C 6 type carbide may be hindered.
Like Cr, machinability tends to decrease. In addition, all content of each component in this invention means a mass percentage.

【0011】本発明に係わる耐高面圧部材の製造方法
は、上記耐高面圧部材の製造に好適なものであって、C
含有量が0.6〜1.5%の機械構造用鋼、あるいは浸
炭または浸炭窒化処理によって表面のC量を0.6〜
1.5%に富化した鋼を600〜750℃の中間保持温
度に昇温するに際して、500〜650℃の温度範囲を
0.2〜30℃/minの昇温速度で加熱し、引き続き
前記中間保持温度範囲内で保持し、その後Ac1変態温
度以上、かつAcm変態温度以下に保持した後、急冷し
て焼入れ処理するようにしているので、炭化物が微細に
分散析出することにより、優れた耐面疲労強度を備えた
耐高面圧部材が得られることになる。このとき、素材鋼
としては、Cr:1.2〜3.2%、Mo:0.25〜
2.0%を含有する機械構造用鋼を用い、中間保持温度
への昇温および保持を減圧下で行うことが望ましく、A
cm変態温度としては、T=675+120・Si
(%)−27・Ni(%)+30・Cr(%)+215
・Mo(%)−400・V(%)によって算出される温
度Tを用いることができる。
The method for producing a high surface pressure resistant member according to the present invention is suitable for producing the above high surface pressure resistant member.
Mechanical structural steel having a content of 0.6 to 1.5%, or a carbon content of 0.6 to 1.5% by carburizing or carbonitriding.
When raising the steel enriched to 1.5% to an intermediate holding temperature of 600 to 750 ° C, the temperature range of 500 to 650 ° C is heated at a rate of 0.2 to 30 ° C / min, It is kept within the intermediate holding temperature range, and then kept at a temperature higher than the Ac1 transformation temperature and lower than the Acm transformation temperature, and then quenched by quenching. A high surface pressure resistant member having surface fatigue strength can be obtained. At this time, as the material steel, Cr: 1.2 to 3.2%, Mo: 0.25 to
It is desirable to use a steel for machine structural use containing 2.0%, and to raise and hold the temperature to the intermediate holding temperature under reduced pressure.
As the cm transformation temperature, T = 675 + 120 · Si
(%)-27 · Ni (%) + 30 · Cr (%) + 215
The temperature T calculated by Mo (%)-400V (%) can be used.

【0012】すなわち、表面C量が0.6%に満たない
と、上記したように炭化物の面積率を確保することがで
きず、1.5%を超えるとMC型炭化物が析出し易く
なり、機械的性質が劣化する。
That is, if the amount of surface C is less than 0.6%, the area ratio of carbide cannot be secured as described above, and if it exceeds 1.5%, M 3 C-type carbide is liable to precipitate. And the mechanical properties deteriorate.

【0013】また、中間保持温度が600℃を下回ると
Cの拡散速度が小さくなるために、M23型炭化物
の成長が著しく遅くなってコスト増を招く一方、750
℃を超えるとMC型炭化物の形成にCが消費されるた
め、M23型炭化物が成長できず硬度を確保するこ
とができなくなる。そして、この中間保持温度への昇温
に際して、500〜650℃の温度範囲における昇温速
度が0.2℃/minより小さいと処理時間が著しく長
くなってコスト増を招き、30℃/minを超えるとM
23型炭化物の核を析出させるための時間が足りな
くなって、炭化物の析出量が不足するようになる。な
お、前記昇温速度については、0.2〜5℃/minの
範囲とすることがより望ましい。
On the other hand, when the intermediate holding temperature is lower than 600 ° C., the diffusion rate of C becomes low, so that the growth of M 23 C 6 type carbide is remarkably slowed, and the cost is increased.
If the temperature is higher than C, C is consumed to form M 3 C-type carbide, so that M 23 C 6- type carbide cannot grow and the hardness cannot be secured. When the temperature is raised to the intermediate holding temperature, if the rate of temperature rise in the temperature range of 500 to 650 ° C. is less than 0.2 ° C./min, the processing time becomes extremely long and the cost is increased. M over
The time for precipitating the nucleus of 23 C 6 type carbide is not enough, and the amount of carbide precipitation becomes insufficient. In addition, it is more preferable that the heating rate be in the range of 0.2 to 5 ° C./min.

【0014】さらに、焼入れ保持温度については、Ac
1変態温度よりも低いと焼入れ後の基地をマルテンサイ
トやベイナイト組織とすることができず、Acm変態温
度、あるいは上記算出式によって算出される温度Tより
も高いとM23型炭化物が固溶してしまうことにな
る。
Further, regarding the quenching holding temperature, Ac
If the transformation temperature is lower than 1 transformation temperature, the matrix after quenching cannot have a martensite or bainite structure, and if the transformation temperature is higher than the Acm transformation temperature or the temperature T calculated by the above calculation formula, M 23 C 6 type carbide solidifies. It will melt.

【0015】そして、素材鋼中のCrおよびMo含有量
の限定理由にについては、上記したように、Crおよび
Mo含有量が上記下限値に満たない場合には、M23
型炭化物の析出量が減少したり、その安定析出が阻害
されたりすることがあり、上限値を超えた場合には、切
削性の低下を招く傾向があることによる。
Regarding the reasons for limiting the Cr and Mo contents in the base steel, as described above, when the Cr and Mo contents are less than the above lower limits, M 23 C
This is because the amount of precipitation of the type 6 carbide may be reduced or its stable precipitation may be impaired, and if it exceeds the upper limit, the machinability tends to decrease.

【0016】[0016]

【実施例】以下に、本発明を実施例によって、さらに具
体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to the following examples.

【0017】(実施例1)表1に示す6種類の鋼種A〜
Fを用いて、スラスト転動疲労試験用の円板形試験片
(径:60mm、厚さ:5mm)を削り出し、鋼種A,
B,Cについては、表面炭素濃度が0.7〜1.4%と
なるように浸炭処理を施した後、鋼種D,E,Fについ
ては、浸炭処理を施すことなく円板形試験片を削り出し
た後、図1または図2に示すパターンにより炭化物析出
処理、および焼入れを行い、続いて170℃×2時間保
持の焼戻しを行い、各試験片の表面を研削仕上げした。
(Example 1) Six types of steels A to A shown in Table 1
Using F, a disk-shaped test piece (diameter: 60 mm, thickness: 5 mm) for thrust rolling fatigue test was cut out, and steel grade A,
For B and C, after performing carburizing treatment so that the surface carbon concentration becomes 0.7 to 1.4%, for steel types D, E, and F, disc-shaped test pieces were not subjected to carburizing treatment. After shaving, carbide precipitation treatment and quenching were performed according to the pattern shown in FIG. 1 or FIG. 2, followed by tempering at 170 ° C. × 2 hours, and the surface of each test piece was ground and finished.

【0018】[0018]

【表1】 [Table 1]

【0019】転動疲労試験については、表2に示す条件
の下に、剥離が発生するまでのn=5における累積破損
確率50%寿命(L50)を求めた。
In the rolling fatigue test, a cumulative failure probability 50% life (L50) at n = 5 until peeling occurred under the conditions shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】このようにして得たスラスト転動疲労試験
片の断面を3%硝酸アルコール溶液で腐蝕し、走査型電
子顕微鏡により、試験片の最表面から0.1mm深さま
での断面について10000倍で写真撮影した後、画像
解析装置を用いて析出炭化物の平均粒径を測定した。ま
た、最表面から0.1mm±0.05mmの範囲を光学
顕微鏡によって観察し、炭化物の未析出域の面積率を求
めた。これらの結果を表3に示す。なお、発明例3は、
浸炭後に600℃まで冷却した後、直ちに本発明の条件
により加熱する処理を施している。
The cross section of the thrust rolling fatigue test piece thus obtained was corroded with a 3% alcohol nitric acid solution, and the cross section from the outermost surface of the test piece to a depth of 0.1 mm was magnified by 10,000 times using a scanning electron microscope. After photographing, the average particle size of the precipitated carbide was measured using an image analyzer. Further, a range of 0.1 mm ± 0.05 mm from the outermost surface was observed with an optical microscope, and an area ratio of a non-precipitated region of carbide was determined. Table 3 shows the results. In addition, Invention Example 3
After cooling to 600 ° C. after carburization, a heating treatment is immediately performed under the conditions of the present invention.

【0022】[0022]

【表3】 [Table 3]

【0023】表3に示したように、本発明の実施例であ
る発明例1〜6については、炭化物の未析出部がなく、
炭化物がむらなく析出しており、優れた転動疲労寿命が
得られた。
As shown in Table 3, with respect to Inventive Examples 1 to 6, which are examples of the present invention, there is no undeposited portion of carbide,
Carbide was uniformly precipitated, and excellent rolling fatigue life was obtained.

【0024】これに対し、焼入れ保持温度T2が高い比
較例1および5では、析出した炭化物が固溶してしまう
ために炭化物の未析出領域が生じ、中間保持温度T1が
高い比較例2および6では、M23型炭化物の析出
量が少なく、中間保持温度T1が低い比較例3では、炭
化物の成長が遅くて未析出領域が生じ、中間保持温度T
1までの昇温速度が速い比較例4では、炭化物の析出核
が少なくて析出むらが生じ、いずれも転動疲労寿命が短
い結果となった。
On the other hand, in Comparative Examples 1 and 5 in which the quenching holding temperature T2 is high, the precipitated carbides form a solid solution, so that a non-precipitated region of the carbide is generated, and Comparative Examples 2 and 6 in which the intermediate holding temperature T1 is high. In Comparative Example 3 where the amount of precipitation of the M 23 C 6 type carbide is small and the intermediate holding temperature T1 is low, the non-precipitated region occurs due to the slow growth of the carbide and the intermediate holding temperature T
In Comparative Example 4 in which the rate of temperature rise up to 1 was fast, the precipitation nuclei of carbides were small and uneven precipitation occurred, and all resulted in a short rolling fatigue life.

【0025】(実施例2)表4に示す5種類の鋼種G〜
Kを用いて、これを焼きならしした後、図3に示す条件
でガス浸炭処理を行った。なお、浸炭処理後の表面炭素
濃度は、浸炭時浸炭ガス組成(Cポテンシャル)により
0.7〜0.8%の範囲に調整した。その後、図4およ
び表5に示す熱処理記号イ〜ホのいずれかの条件で熱処
理を行った。このようにして得られた試験片は、走査型
電子顕微鏡による組織観察を行い、画像解析装置によっ
て炭化物の未析出領域の占める面積率、および析出した
炭化物の平均粒径を測定した。
Example 2 Five types of steels G to G shown in Table 4
After normalizing this using K, a gas carburizing treatment was performed under the conditions shown in FIG. In addition, the surface carbon concentration after the carburizing treatment was adjusted to a range of 0.7 to 0.8% depending on the carburizing gas composition during carburizing (C potential). Thereafter, heat treatment was performed under any of the heat treatment symbols A to E shown in FIG. 4 and Table 5. The structure of the test piece obtained in this manner was observed with a scanning electron microscope, and the area ratio of the non-precipitated carbide region and the average particle size of the precipitated carbide were measured by an image analyzer.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】また、これとは別に、試験片表面を研摩し
て、スラスト試験片(径:60mm、厚さ:5mm)と
し、表6に示す試験条件の下に、剥離までの寿命として
ワイブルの破壊確率10%寿命(L10)を調べた。
Separately from this, the surface of the test piece was polished to obtain a thrust test piece (diameter: 60 mm, thickness: 5 mm). The failure probability 10% life (L10) was examined.

【0029】[0029]

【表6】 [Table 6]

【0030】この結果を表7にまとめて示す。The results are summarized in Table 7.

【0031】[0031]

【表7】 [Table 7]

【0032】表7に示すように、本発明の実施例である
発明例7〜10については、炭化物がむらなく析出し、
優れた転動疲労寿命が得られることが確認された。これ
に対して、比較例7、9、13および15では、中間保
持温度t1が低すぎるために、炭化物の成長が遅く、未
析出領域が生じて十分な転動疲労寿命が得られなかっ
た。逆に、比較例10、11、14および16において
は、中間保持温度t1および焼入れ保持温度t2が高す
ぎて、炭化物がほとんど析出しないために転動疲労寿命
が短く、比較例8および12では、中間保持温度t1ま
での加熱速度が速すぎて炭化物の析出核が少ないため
に、炭化物の未析出領域が生じてしまい、転動疲労寿命
が短い結果となった。
As shown in Table 7, in Invention Examples 7 to 10 which are examples of the present invention, carbides were uniformly deposited,
It was confirmed that excellent rolling fatigue life was obtained. On the other hand, in Comparative Examples 7, 9, 13, and 15, since the intermediate holding temperature t1 was too low, the growth of carbide was slow, and a non-precipitated region was generated, so that sufficient rolling fatigue life was not obtained. Conversely, in Comparative Examples 10, 11, 14 and 16, the intermediate holding temperature t1 and the quenching holding temperature t2 are too high and carbides hardly precipitate, so that the rolling fatigue life is short. In Comparative Examples 8 and 12, Since the heating rate up to the intermediate holding temperature t1 was too high and the number of carbide precipitation nuclei was small, an unprecipitated region of carbide was generated, resulting in a short rolling fatigue life.

【0033】図5は、比較例1のSEM写真である。黒
色部が炭化物析出領域で、白色部が炭化物未析出領域で
ある。炭化物未析出領域が多く存在することがわかる。
FIG. 5 is an SEM photograph of Comparative Example 1. The black portion is a carbide precipitation region, and the white portion is a carbide non-precipitation region. It can be seen that there are many carbide non-precipitated regions.

【0034】[0034]

【発明の効果】以上説明したように、本発明に係わる耐
高面圧部材は、その少なくとも表面におけるC含有量、
すなわち当該耐高面圧部材全体のC含有量、あるいは浸
炭処理または浸炭窒化処理により富化された表面C量が
0.6〜1.5%であって、平均粒径が0.3μm以下
の炭化物がその基地に分散しているものであるから、耐
面疲労強度に優れ、高面圧下で使用される歯車や、ベア
リング転動体などとして好適に使用することができると
いう極めて優れた効果をもたらすものである。また、好
適形態として、Cr:1.2〜3.2%、Mo:0.2
5〜2.0%を含有し、炭化物として少なくともCrを
含むM23型炭化物を析出させた耐高面圧部材にお
いては、M23型炭化物が微細かつむらなく析出す
ることによって、組織の不均一に起因する疲労強度の低
下を防止することができ、耐面疲労強度をより確実に向
上させることができる。
As described above, the high surface pressure resistant member according to the present invention has a C content at least on its surface,
That is, the C content of the entire high surface pressure resistant member, or the amount of surface C enriched by carburizing or carbonitriding is 0.6 to 1.5%, and the average particle size is 0.3 μm or less. Since the carbides are dispersed in the matrix, it has excellent surface fatigue strength, and has an extremely excellent effect that it can be suitably used as a gear used under high surface pressure or a rolling element of a bearing. Things. Further, as a preferred embodiment, Cr: 1.2 to 3.2%, Mo: 0.2
Containing 5 to 2.0%, in the resistance to high surface member obtained by precipitating the M 23 C 6 type carbide containing at least Cr as a carbide, by M 23 C 6 type carbides are precipitated not Tsumura or fine, It is possible to prevent a decrease in the fatigue strength due to the unevenness of the structure, and it is possible to more reliably improve the surface fatigue strength.

【0035】また、本発明に係わる耐高面圧部材の製造
方法においては、望ましくはCr:1.2〜3.2%、
Mo:0.25〜2.0%を含有し、C含有量が0.6
〜1.5%、あるいは浸炭処理または浸炭窒化処理によ
って表面C量を0.6〜1.5%に富化させた機械構造
用鋼を600〜750℃の中間保持温度に昇温するに際
して、500〜650℃の温度範囲を0.2〜30℃/
minの昇温速度で加熱し、引き続き前記中間保持温度
範囲内で保持し、その後Ac1変態温度以上、かつAc
m変態温度以下、あるいはT(℃)(=675+120
・Si(%)−27・Ni(%)+30・Cr(%)+
215・Mo(%)−400・V(%))以下に保持し
た後、急冷して焼入れ処理するようにしているので、微
細なM 型炭化物をむらなく均一に分散析出させ
ることができ、転動疲労寿命に優れた耐高面圧部材を得
ることができるという極めて優れた効果がもたらされ
る。
In the method for manufacturing a high surface pressure resistant member according to the present invention, it is preferable that Cr: 1.2 to 3.2%,
Mo: 0.25 to 2.0%, C content is 0.6
When raising the steel for machine structural use whose surface C content is enriched to 0.6 to 1.5% by carburizing treatment or carbonitriding treatment to an intermediate holding temperature of 600 to 750 ° C, The temperature range of 500 to 650 ° C is 0.2 to 30 ° C /
heating at a temperature rising rate of min, and subsequently maintaining the temperature within the above-mentioned intermediate holding temperature range.
m transformation temperature or lower, or T (° C) (= 675 + 120)
・ Si (%)-27 ・ Ni (%) + 30 ・ Cr (%) +
215 · Mo (%) - 400 · V (%)) was held below, since so as to quenching treatment by rapid cooling, thereby evenly uniformly distributed precipitating fine M 2 3 C 6 type carbide And an extremely excellent effect that a high surface pressure resistant member excellent in rolling fatigue life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における炭化物析出およ
び焼入れ処理条件を示す図である。
FIG. 1 is a view showing carbide precipitation and quenching conditions in a first embodiment of the present invention.

【図2】本発明の第1の実施例における他の炭化物析出
および焼入れ処理条件を示す図である。
FIG. 2 is a view showing other carbide precipitation and quenching treatment conditions in the first embodiment of the present invention.

【図3】本発明の第2の実施例におけるガス浸炭処理条
件を示す図である。
FIG. 3 is a view showing gas carburizing conditions in a second embodiment of the present invention.

【図4】本発明の第2の実施例における炭化物析出処
理、焼入れ処理および焼戻し処理条件を示す図である。
FIG. 4 is a view showing carbide precipitation, quenching and tempering conditions in a second embodiment of the present invention.

【図5】本発明の比較例1のSEM写真(ナイタル腐
食)である
FIG. 5 is an SEM photograph (Nital corrosion) of Comparative Example 1 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 利光 愛知県名古屋市南区大同町2丁目30番 大 同特殊鋼株式会社技術開発研究所内 (72)発明者 山口 拓郎 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 尾谷 敬造 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 内山 典子 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshimitsu Kimura 2-30 Odomo-cho, Minami-ku, Nagoya City, Aichi Prefecture Inside the Technology Development Laboratory of Daido Steel Co., Ltd. (72) Inventor Takuro Yamaguchi Takaracho, Yokohama-shi, Kanagawa No. 2 Nissan Motor Co., Ltd. (72) Keizo Otani Inventor Keizo Oya 2 Kanagawa-ku, Kanagawa-ku, Kanagawa Prefecture 2 Nissan Motor Co., Ltd. (72) Inventor Noriko Uchiyama 2 Kanagawa-ku, Kanagawa-ku, Kanagawa-ku 2 Nissan Motor Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面におけるC量が0.6〜
1.5%であり、平均粒径0.3μm以下の炭化物が基
地に分散していることを特徴とする耐高面圧部材。
1. The amount of C on the surface is at least 0.6 to 1.
A high surface pressure resistant member, wherein 1.5% and carbide having an average particle size of 0.3 μm or less are dispersed in the matrix.
【請求項2】 Cを0.6〜1.5%含有する機械構造
用鋼からなることを特徴とする請求項1記載の耐高面圧
部材。
2. The high surface pressure resistant member according to claim 1, comprising a steel for machine structural use containing 0.6 to 1.5% of C.
【請求項3】 浸炭処理または浸炭窒化処理により表面
C量が富化されていることを特徴とする請求項1記載の
耐高面圧部材。
3. The high surface pressure resistant member according to claim 1, wherein the surface C content is enriched by carburizing or carbonitriding.
【請求項4】 C:0.6〜1.5%、Cr:1.2〜
3.2%、Mo:0.25〜2.0%を含有する機械構
造用鋼からなり、炭化物が少なくともCrを含むM23
型炭化物であることを特徴とする請求項1記載の耐
高面圧部材。
4. C: 0.6-1.5%, Cr: 1.2-
3.2%, Mo: containing 0.25 to 2.0 percent consists machine structural steel, M 23 carbide containing at least Cr
Resistance to high surface pressure member of claim 1, wherein it is a C 6 type carbides.
【請求項5】 Cr:1.2〜3.2%、Mo:0.2
5〜2.0%を含有する機械構造用鋼に浸炭処理または
浸炭窒化処理が施してあり、炭化物が少なくともCrを
含むM23型炭化物であることを特徴とする請求項
1記載の耐高面圧部材。
5. Cr: 1.2-3.2%, Mo: 0.2
Carburizing or carbonitriding treatment on mechanical structural steel containing 5 to 2.0% is has been applied, resistance of claim 1, wherein the carbide is a M 23 C 6 type carbide containing at least Cr High surface pressure member.
【請求項6】 Cを0.6〜1.5%含有する機械構造
用鋼を500〜650℃の温度範囲における昇温速度が
0.2〜30℃/minとなるような速度で加熱して6
00〜750℃の温度に昇温し、引き続き当該温度範囲
内で保持して、その後Ac1変態温度以上、かつAcm
変態温度以下に保持した後、急冷することを特徴とする
耐高面圧部材の製造方法。
6. A steel for machine structural use containing 0.6 to 1.5% of C is heated at a rate such that a rate of temperature rise in a temperature range of 500 to 650 ° C. is 0.2 to 30 ° C./min. 6
The temperature is raised to a temperature of from 00 to 750 ° C., and is kept within the temperature range.
A method for producing a high surface pressure resistant member, wherein the member is rapidly cooled after being maintained at a transformation temperature or lower.
【請求項7】 表面C量を0.6〜1.5%にする浸炭
または浸炭窒化処理の後、500〜650℃の温度範囲
における昇温速度が0.2〜30℃/minとなるよう
な速度で加熱して600〜750℃の温度に昇温し、引
き続き当該温度範囲内で保持して、その後Ac1変態温
度以上、かつAcm変態温度以下に保持した後、急冷す
ることを特徴とする耐高面圧部材の製造方法。
7. After the carburizing or carbonitriding treatment to reduce the surface C content to 0.6 to 1.5%, the rate of temperature rise in the temperature range of 500 to 650 ° C. is 0.2 to 30 ° C./min. The temperature is raised to a temperature of 600 to 750 ° C. by heating at a suitable rate, the temperature is kept within the temperature range, then the temperature is kept at or above the Ac1 transformation temperature and below the Acm transformation temperature, and then quenched. Manufacturing method of high surface pressure resistant member.
【請求項8】 減圧下において、C:0.6〜1.5
%、Cr:1.2〜3.2%、Mo:0.25〜2.0
%を含有する機械構造用鋼を500〜650℃の温度範
囲における昇温速度が0.2〜30℃/minとなるよ
うな速度で加熱して600〜750℃の温度に昇温し、
引き続き減圧下において当該温度範囲内で保持して、そ
の後Ac1変態温度以上、かつT(℃)=675+12
0・Si(%)−27・Ni(%)+30・Cr(%)
+215・Mo(%)−400・V(%)以下の温度に
加熱保持した後、急冷することを特徴とする耐高面圧部
材の製造方法。
8. C: 0.6 to 1.5 under reduced pressure.
%, Cr: 1.2 to 3.2%, Mo: 0.25 to 2.0
% In a temperature range of 500 to 650 ° C. at a rate such that the rate of temperature rise is 0.2 to 30 ° C./min to raise the temperature to 600 to 750 ° C.,
Subsequently, the temperature is maintained within the temperature range under reduced pressure, and thereafter, the temperature is higher than the Ac1 transformation temperature, and T (° C.) = 675 + 12
0 ・ Si (%)-27 ・ Ni (%) + 30 ・ Cr (%)
A method for producing a high surface pressure resistant member, characterized in that the member is heated and maintained at a temperature of + 215 · Mo (%) − 400 · V (%) or less and then rapidly cooled.
【請求項9】 Cr:1.2〜3.2%、Mo:0.2
5〜2.0%を含有する機械構造用鋼に表面C量を0.
6〜1.5%とする浸炭または浸炭窒化処理を施した
後、減圧下において500〜650℃の温度範囲におけ
る昇温速度が0.2〜30℃/minとなるような速度
で加熱して600〜750℃の温度に昇温し、引き続き
減圧下において当該温度範囲内で保持して、その後Ac
1変態温度以上、かつT(℃)=675+120・Si
(%)−27・Ni(%)+30・Cr(%)+215
・Mo(%)−400・V(%)以下の温度に加熱保持
した後、急冷することを特徴とする耐高面圧部材の製造
方法。
9. Cr: 1.2-3.2%, Mo: 0.2
A machine structural steel containing 5 to 2.0% has a surface C content of 0.1%.
After performing carburizing or carbonitriding treatment at 6 to 1.5%, the mixture is heated under reduced pressure at a rate of 0.2 to 30 ° C./min in a temperature range of 500 to 650 ° C. The temperature is raised to a temperature of 600 to 750 ° C., and then kept within the temperature range under reduced pressure.
1 transformation temperature or more and T (° C) = 675 + 120 · Si
(%)-27 · Ni (%) + 30 · Cr (%) + 215
-A method for producing a high surface pressure resistant member, wherein the member is heated and held at a temperature of not more than Mo (%)-400 V (%) and then rapidly cooled.
JP2001160694A 2001-05-17 2001-05-29 High contact pressure resistant member and its manufacturing method Pending JP2002356738A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001160694A JP2002356738A (en) 2001-05-29 2001-05-29 High contact pressure resistant member and its manufacturing method
US10/137,440 US20030075244A1 (en) 2001-05-17 2002-05-03 Bearing pressure-resistant member and process for making the same
EP02010460A EP1258644A3 (en) 2001-05-17 2002-05-08 Bearing pressure-resistant member and process for making the same
US10/936,800 US20050045249A1 (en) 2001-05-17 2004-09-09 Bearing pressure-resistant member and process for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160694A JP2002356738A (en) 2001-05-29 2001-05-29 High contact pressure resistant member and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002356738A true JP2002356738A (en) 2002-12-13

Family

ID=19004067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160694A Pending JP2002356738A (en) 2001-05-17 2001-05-29 High contact pressure resistant member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002356738A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
WO2006068205A1 (en) * 2004-12-24 2006-06-29 Jtekt Corporation Rolling-sliding elements and process for production of the same
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
EP2514847A1 (en) * 2010-03-19 2012-10-24 Nippon Steel Corporation Steel for case-hardening treatment, case-hardened steel component, and method for producing same
WO2023235169A1 (en) * 2022-05-31 2023-12-07 Schaeffler Technologies AG & Co. KG Treatment method and process for valve seat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098343A (en) * 1999-07-21 2001-04-10 Daido Steel Co Ltd High bearing pressure resistant member and producing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098343A (en) * 1999-07-21 2001-04-10 Daido Steel Co Ltd High bearing pressure resistant member and producing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
WO2006068205A1 (en) * 2004-12-24 2006-06-29 Jtekt Corporation Rolling-sliding elements and process for production of the same
JPWO2006068205A1 (en) * 2004-12-24 2008-06-12 株式会社ジェイテクト Rolling and sliding parts and manufacturing method thereof
JP5094126B2 (en) * 2004-12-24 2012-12-12 株式会社ジェイテクト Rolling and sliding parts and manufacturing method thereof
EP2514847A1 (en) * 2010-03-19 2012-10-24 Nippon Steel Corporation Steel for case-hardening treatment, case-hardened steel component, and method for producing same
US8475605B2 (en) 2010-03-19 2013-07-02 Nippon Steel & Sumitomo Metal Corporation Surface layer-hardened steel part and method of manufacturing the same
EP2514847A4 (en) * 2010-03-19 2013-08-28 Nippon Steel & Sumitomo Metal Corp Steel for case-hardening treatment, case-hardened steel component, and method for producing same
WO2023235169A1 (en) * 2022-05-31 2023-12-07 Schaeffler Technologies AG & Co. KG Treatment method and process for valve seat

Similar Documents

Publication Publication Date Title
JP4971751B2 (en) Manufacturing method of high-concentration carburized steel
US7566373B2 (en) Rolling member and producing method thereof
TWI486455B (en) Steel for mechanical construction for cold working and its manufacturing method
JPH0849057A (en) Rolling bearing excellent in wear resistance
JP6950821B2 (en) Machine parts and their manufacturing methods
KR20090071163A (en) High strength wire rod for spring having excellent corrosion resistance and manufacturing method thereof
JP2005163173A (en) Gear part and method of producing thereof
JP2016050350A (en) Steel component for high strength high toughness machine structure excellent in pitching resistance and abrasion resistance and manufacturing method therefor
JP5076535B2 (en) Carburized parts and manufacturing method thereof
JP4423608B2 (en) Hardened tool steel material
JP2002339054A (en) High pressure-resistant member and manufacturing method
JP4188307B2 (en) Carburized parts and manufacturing method thereof
JP2002356738A (en) High contact pressure resistant member and its manufacturing method
JP2021143388A (en) Martensitic stainless steel of high strength/high corrosion resistance excellent in durability and manufacturing method thereof
JP5359582B2 (en) Hardened tool steel material
JP4940849B2 (en) Vacuum carburized parts and method for manufacturing the same
JPH06108226A (en) Carburizing heat treatment of steel-made parts
RU2749008C1 (en) Method for surface hardening for precipitation hardening steels
JP2002348615A (en) High bearing pressure resistant member and manufacturing method therefor
CN101058864A (en) Carburized component and manufacturing method thereof
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JP2013227675A (en) Gear excellent in seizure resistance
JPH05279836A (en) Method for plasma carburizing onto surface of steel
JP5400589B2 (en) Steel material with excellent rolling fatigue life
JPH0559427A (en) Production of wear resistant steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105