JP2002356626A - Method for producing water-dispersible organic pigment and aqueous organic pigment dispersion prepared thereby - Google Patents

Method for producing water-dispersible organic pigment and aqueous organic pigment dispersion prepared thereby

Info

Publication number
JP2002356626A
JP2002356626A JP2002065176A JP2002065176A JP2002356626A JP 2002356626 A JP2002356626 A JP 2002356626A JP 2002065176 A JP2002065176 A JP 2002065176A JP 2002065176 A JP2002065176 A JP 2002065176A JP 2002356626 A JP2002356626 A JP 2002356626A
Authority
JP
Japan
Prior art keywords
water
organic pigment
pressure
temperature
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002065176A
Other languages
Japanese (ja)
Inventor
Hideyuki Murata
秀之 村田
Takeshi Tobisawa
猛 飛沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002065176A priority Critical patent/JP2002356626A/en
Publication of JP2002356626A publication Critical patent/JP2002356626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for an organic pigment which is easily dispersible in water by a simple and convenient treatment and is excellent in water-dispersibility; and a stable organic pigment dispersion prepared by the method. SOLUTION: In the production method for a water-dispersible organic pigment the organic pigment is treated with high-temperature high-pressure water in a liquid or supercritical state at 120 deg.C or higher under a pressure of 4 MPa or higher. A stable organic pigment dispersion is produced by the production method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は印刷インキ、水性塗
料、ジェットインキ等に用いられる水分散性の有機顔料
の製造方法に関し、更に詳しくは、有機顔料を温度12
0℃以上、圧力4MPa以上の液体状態もしくは超臨界
状態にある高温高圧の水で有機顔料を処理することを特
徴とする、水分散性に優れる水分散性有機顔料の製造方
法、該製法により製造された安定性に優れる有機顔料水
分散液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a water-dispersible organic pigment used in printing inks, water-based paints, jet inks and the like.
A method for producing a water-dispersible organic pigment excellent in water dispersibility, characterized by treating an organic pigment with water at a high temperature and a high pressure in a liquid state or a supercritical state at 0 ° C. or more and a pressure of 4 MPa or more. To an aqueous dispersion of an organic pigment having excellent stability.

【0002】[0002]

【従来の技術】印刷インキや塗料などに着色剤として利
用されている有機顔料は、フタロシアニン系、イソイン
ドリノン系、キナクリドン系、不溶性アゾ顔料系、ペリ
レン系などに分類され、各々多くの品種が開発・販売さ
れている。しかしながら、有機顔料は一般に凝集を起こ
しやすく、インキ化・塗料化の為には、一般に界面活性
剤等の分散剤と強力な剪断力を持つロールミルやボール
ミルを併用して、顔料を微分散することが行われてい
る。インキや塗料の製造工程において、この分散工程は
最もエネルギーを消費する工程であり、また分散剤の添
加は最終製品であるインキや塗料の品質を低下させる原
因になり得る。
2. Description of the Related Art Organic pigments used as colorants in printing inks and paints are classified into phthalocyanine-based, isoindolinone-based, quinacridone-based, insoluble azo pigment-based, and perylene-based pigments. Developed and sold. However, organic pigments generally tend to agglomerate, and in order to form inks and paints, finely disperse pigments by using a dispersant such as a surfactant in combination with a roll mill or ball mill that has strong shearing force. Has been done. In the manufacturing process of inks and paints, this dispersing process is the most energy consuming process, and the addition of a dispersant can cause deterioration in the quality of the final product ink or paint.

【0003】更に近年では、環境意識の高まりからイン
キ、塗料等においても水性インキ、水性塗料化が進みつ
つある。このため過剰の分散剤が不要で、分散のための
エネルギーコストが低い、水分散性有機顔料が要求され
ており、有機顔料粒子の表面を改質し分散性を向上させ
る試みがなされている。
[0003] In recent years, water-based inks and water-based paints have been increasingly used in inks and paints as environmental awareness increases. Therefore, there is a demand for a water-dispersible organic pigment which does not require an excessive dispersant and has a low energy cost for dispersion, and attempts have been made to improve the dispersibility by modifying the surface of the organic pigment particles.

【0004】その方法として特開平12−219841
号公報、特開平12−219749号公報、特開平9−
031360号公報に記載の特定組成の水性樹脂を用い
る方法や、特開平5−080927号公報や特開平12
−109720号公報に記載の界面活性剤を用いる方
法、特開平5−163454号公報に記載のエマルジョ
ン化を行う方法、特開平12−191974号公報や特
開平5−112748号公報に記載の顔料の誘導体を顔
料表面に生成する方法、特開平5−255632号公報
に記載の、極性/非極性溶媒を用いる方法等が提案され
ている。
[0004] The method is disclosed in Japanese Patent Application Laid-Open No. 12-219841.
JP, JP-A-12-219749, JP-A-9-19749
No. 031360, a method using an aqueous resin having a specific composition, and JP-A-5-080927 and JP-A-Hei.
A method using a surfactant described in JP-A-109720, a method for emulsification described in JP-A-5-163454, and a pigment described in JP-A-12-191974 and JP-A-5-112748. A method of producing a derivative on the surface of a pigment, a method of using a polar / non-polar solvent described in JP-A-5-255632, and the like have been proposed.

【0005】しかしながら、これらの提案された方法に
おいても、なお顔料表面の本質的な親水化は難しく、特
殊な樹脂や溶剤、添加剤等を使用するため、特別な技能
が必要であると言った欠点や長期間の分散安定性が未だ
十分でない等の問題を含んでいる。更に一定の分散度に
するためには多大のエネルギー及び時間を要するなどの
問題は従来通り抱えている。
However, even in these proposed methods, it is still difficult to make the surface of the pigment essentially hydrophilic, and special skills are required because special resins, solvents, additives and the like are used. It has drawbacks and problems such as insufficient long-term dispersion stability. Further, there is a problem that a large amount of energy and time are required in order to make the degree of dispersion constant.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、簡便な処理で容易に水に分散する、優れた
水分散性を有する有機顔料の製造方法、及び該製法によ
り製造された安定な有機顔料分散液を提供することにあ
る。
The problem to be solved by the present invention is to provide a method for producing an organic pigment having excellent water dispersibility, which can be easily dispersed in water by a simple treatment, and an organic pigment produced by the method. It is to provide a stable organic pigment dispersion.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために、鋭意研究した結果、フタロシアニン
系、イソインドリノン系、キナクリドン系、不溶性アゾ
顔料系、ペリレン系などの各種有機顔料を高温高圧の
水、もしくは過酸化水素等の酸素供与体を含む高温高圧
の水で酸化処理し、しかる後に必要に応じて有機顔料を
還元剤で還元処理することにより、有機顔料の表面に水
酸基等の親水性を有する酸素含有官能基を導入して粒子
表面の親水性を向上せしめ、水に容易に分散する有機顔
料、又は安定して水に分散した有機顔料分散液を製造で
きることを見出し、本発明を完成するに到った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above problems, and as a result, have found that various organic compounds such as phthalocyanine, isoindolinone, quinacridone, insoluble azo pigment, and perylene are available. The pigment is oxidized with high-temperature and high-pressure water or high-temperature and high-pressure water containing an oxygen donor such as hydrogen peroxide, and then, if necessary, the organic pigment is reduced with a reducing agent. It has been found that by introducing an oxygen-containing functional group having a hydrophilic property such as a hydroxyl group to improve the hydrophilicity of the particle surface, an organic pigment which can be easily dispersed in water or an organic pigment dispersion which is stably dispersed in water can be produced. Thus, the present invention has been completed.

【0008】即ち、本発明は、有機顔料を温度120℃
以上、圧力4MPa以上の液体状態もしくは超臨界状態
にある高温高圧の水で顔料の表面を酸化処理することを
特徴とする、水分散性有機顔料の製造方法であり、特
に、用いる高温高圧の水が、特に温度120℃〜550
℃、圧力4MPa〜50MPaの範囲である水分散性有
機顔料の製造方法である。
That is, according to the present invention, an organic pigment is treated at a temperature of 120 ° C.
As described above, the method for producing a water-dispersible organic pigment is characterized in that the surface of the pigment is oxidized with high-temperature and high-pressure water in a liquid state or a supercritical state at a pressure of 4 MPa or more. But especially at temperatures between 120 ° C. and 550
This is a method for producing a water-dispersible organic pigment having a temperature of 4 ° C. and a pressure of 4 to 50 MPa.

【0009】また、本発明の製造方法は、必要に応じ
て、該高温高圧の水が酸素供与体を含む水である水分散
性有機顔料の製造方法であり、該酸素供与体が、特に、
酸素、オゾン、及び過酸化水素からなる群から少なくと
も1つ以上選ばれる水分散性有機顔料の製造方法であ
る。更に、本発明は、上述の本発明の製造方法で製造さ
れた有機顔料水分散液を含むものである。
Further, the production method of the present invention is a method for producing a water-dispersible organic pigment in which the high-temperature and high-pressure water is water containing an oxygen donor, if necessary.
This is a method for producing a water-dispersible organic pigment selected from at least one selected from the group consisting of oxygen, ozone, and hydrogen peroxide. Furthermore, the present invention includes an organic pigment aqueous dispersion produced by the above-mentioned production method of the present invention.

【0010】[0010]

【発明の実施の形態】本発明は、本来、水分散性の劣る
有機顔料粒子を亜臨界及び超臨界状態を含む高温高圧の
水、もしくは過酸化水素等の酸素供与体を含む高温高圧
の水で酸化処理し、顔料表面に水酸基等の親水性を有す
る酸素含有官能基を導入し、その後に必要に応じて水素
化ホウ素ナトリウム等の還元剤で還元処理することによ
り、酸化処理で顔料表面に導入された酸素含有官能基の
うち、親水性の低いキノン基を水酸基に変換し、顔料表
面の親水性をさらに向上せしめることで、水に容易に分
散する有機顔料、又は水中で安定して分散した有機顔料
分散液を製造する方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing organic pigment particles having poor water dispersibility by using high-temperature high-pressure water containing a subcritical and supercritical state or high-temperature high-pressure water containing an oxygen donor such as hydrogen peroxide. By introducing an oxygen-containing functional group having a hydrophilic property such as a hydroxyl group into the pigment surface, and then performing a reduction treatment with a reducing agent such as sodium borohydride if necessary, the pigment surface is oxidized. Of the introduced oxygen-containing functional groups, quinone groups having low hydrophilicity are converted to hydroxyl groups, and the hydrophilicity of the pigment surface is further improved, so that organic pigments that are easily dispersed in water, or stably dispersed in water. This is a method for producing a prepared organic pigment dispersion.

【0011】本発明の製造方法に用いられる有機顔料と
しては、インキ又は塗料用に用いられている各種の有機
顔料、即ち、フタロシアニン系、イソインドリノン系、
キナクリドン系、不溶性アゾ顔料系、ペリレン系等の有
機顔料がいずれも使用可能であり、特に制限はないが、
これら有機顔料の一次粒子の平均粒子径が5〜300n
mであるものが好ましく、より好ましくは10〜100
nm、特に好ましくは20〜60nmのものである。
As the organic pigment used in the production method of the present invention, various organic pigments used for inks or coatings, that is, phthalocyanine, isoindolinone,
Organic pigments such as quinacridone-based, insoluble azo pigment-based, and perylene-based pigments can be used, and there is no particular limitation.
The average particle size of primary particles of these organic pigments is 5 to 300 n
m, more preferably 10 to 100
nm, particularly preferably 20 to 60 nm.

【0012】一次粒子径が300nmよりも大きい場合
は、例えその表面を親水化しても水中で安定的に分散せ
ず、沈降する場合がある。また5nmよりも小さい顔料
を高温高圧の水で酸化処理すると、耐光性の低下等によ
り、インキなどの色材として用いるには不適当な場合も
ある。
When the primary particle size is larger than 300 nm, even if the surface is made hydrophilic, the particles may not stably disperse in water and may settle. In addition, if a pigment smaller than 5 nm is oxidized with high-temperature and high-pressure water, it may be unsuitable for use as a coloring material such as ink due to a decrease in light resistance.

【0013】本発明の製造方法では、これらの有機顔料
を高温高圧に耐え得る反応容器に投入し、続いて高圧ポ
ンプにて水をこの反応容器内に供給する。ここで必要に
応じて、高温高圧水に過酸化水素などの酸素供与体を添
加した水を利用しても良い。所定の圧力に達した後、所
定温度に達するまで昇温を行う。
In the production method of the present invention, these organic pigments are charged into a reaction vessel capable of withstanding high temperature and high pressure, and then water is supplied into the reaction vessel by a high pressure pump. Here, if necessary, water obtained by adding an oxygen donor such as hydrogen peroxide to high-temperature and high-pressure water may be used. After reaching the predetermined pressure, the temperature is increased until the temperature reaches the predetermined temperature.

【0014】本発明で言う、高温高圧の水とは、温度1
20℃以上、圧力4MPa以上の亜臨界域もしくは超臨
界域を含む、液体状態にある水もしくは超臨界状態にあ
る水を言い、特に温度及び圧力の上限はないが、実用的
観点から温度が120℃〜550℃、圧力が4MPa〜
50MPa、更に実用的には、220℃〜360℃、1
0MPa〜30MPaの範囲の水が好ましい。
The high-temperature and high-pressure water referred to in the present invention means that the temperature is 1
Water in a liquid state or water in a supercritical state, including a subcritical region or a supercritical region at a temperature of 20 ° C. or more and a pressure of 4 MPa or more. There is no particular upper limit on temperature and pressure, but from a practical viewpoint, the temperature is 120 ℃ ~ 550 ℃, pressure is 4MPa ~
50 MPa, more practically, 220 ° C. to 360 ° C., 1
Water in the range of 0 MPa to 30 MPa is preferred.

【0015】また用いる水は、とりわけ精製された水で
なくとも不純物が少ない水であれば良く、一般の水道水
であっても良いが、純水と呼ばれるイオン交換水や蒸留
水を用いることが、不純物管理の点から好ましい。
The water to be used is not limited to purified water, but may be any water having few impurities, and may be ordinary tap water. However, it is preferable to use ion-exchanged water or distilled water called pure water. It is preferable from the viewpoint of impurity management.

【0016】本発明においては、水のイオン積が最大と
なる280℃近辺に最適の反応温度を有する。この反応
機構は明確ではないが、亜臨界状態で水の解離状態が最
大となり、親水性付加能が最大となるためと思われる。
水の臨界温度(374℃)以上では、これらの傾向は逆
に減少するため、360℃以下が好ましい。
In the present invention, the optimum reaction temperature is around 280 ° C. where the ionic product of water is maximized. Although the reaction mechanism is not clear, it is considered that the dissociation state of water is maximized in the subcritical state, and the ability to add hydrophilicity is maximized.
Above the critical temperature of water (374 ° C.), these tendencies decrease in reverse.

【0017】しかしながら、酸素付加能自体は380℃
以上でも見られる。有機顔料の表面により多くの酸素含
有官能基を導入し、その後にこれらの酸素含有官能基の
うち、キノン基等の親水性の低い官能基に還元剤を作用
させて還元することにより、より多くの親水性基を有機
顔料に導入する製造方法を用いることもできる。還元処
理が有効な場合もある理由として、高温高圧の水で有機
顔料を酸化処理した際に顔料表面に導入される酸素含有
官能基は親水性の高い水酸基等以外に、親水性の低いキ
ノン基が含まれることもあるからである。また用いる酸
素供与体の濃度は特に限定されないが、例えば酸素供与
体が過酸化水素の場合は、用いる水に対して0.1重量
%〜10重量%、好ましくは0.1重量%〜2重量%を
添加する。
However, the oxygen addition ability itself is 380 ° C.
You can also see above. More oxygen-containing functional groups are introduced on the surface of the organic pigment, and then, by reducing the oxygen-containing functional groups among the oxygen-containing functional groups by applying a reducing agent to a functional group having a low hydrophilicity such as a quinone group, the amount is increased. Can be used to introduce a hydrophilic group into the organic pigment. The reason why the reduction treatment may be effective is that, when the organic pigment is oxidized with high-temperature and high-pressure water, the oxygen-containing functional group introduced to the pigment surface is, in addition to a highly hydrophilic hydroxyl group, a quinone group having a low hydrophilicity. Is included in some cases. Although the concentration of the oxygen donor used is not particularly limited, for example, when the oxygen donor is hydrogen peroxide, it is 0.1% by weight to 10% by weight, preferably 0.1% by weight to 2% by weight with respect to the water used. Add%.

【0018】また有機顔料及び水の反応容器への供給法
は特に限定されるものではなく、両者の混合液を密閉容
器内で処理する方法、有機顔料を投入した容器に、水を
連続的に供給する方法、もしくはあらかじめ有機顔料を
水中で機械的に懸濁させ、これを反応容器に連続的に供
給し、かつ連続的に排出する連続反応法などが挙げられ
る。反応時間は特に限定されないが、連続反応を行う場
合は反応系内の滞留時間は30分以内、回分式で行う場
合も30分以内が好ましい。その理由として酸化処理の
時間が長くなると、顔料表面だけでなく、その内部まで
酸化されたり、一部が分解されたりする場合もあるから
である。
The method of supplying the organic pigment and water to the reaction vessel is not particularly limited. A method of treating a mixture of the two in a closed vessel, a method of continuously supplying water to a vessel filled with the organic pigment, The method includes a supply method, a continuous reaction method in which an organic pigment is mechanically suspended in water in advance, and the organic pigment is continuously supplied to a reaction vessel and continuously discharged. The reaction time is not particularly limited, but the residence time in the reaction system is preferably 30 minutes or less when a continuous reaction is performed, and 30 minutes or less when a batch reaction is performed. The reason is that if the time of the oxidation treatment becomes longer, not only the pigment surface but also the inside thereof may be oxidized or a part of the pigment may be decomposed.

【0019】本発明では反応溶媒が水であるため反応終
了後は不純物を含まない有機顔料の水分散液が得られる
ので、特別な後処理を行うこと無く、水性インキ又は塗
料を作製する工程に進むことが出来る。酸素供与体を用
いるときも、酸素供与体が過酸化水素の場合は反応容器
中の高温高圧水により水と酸素に容易に分解されるの
で、特別な後処理を必要とせずに水性インキ、塗料の製
作工程に進むことができる。それ故、酸素供与体の添加
が好ましい場合で、なお且つ、可能であれば、市販され
ている過酸化水素水を水で希釈して容易に使用できる過
酸化水素を用いることが好ましい。
In the present invention, since the reaction solvent is water, an aqueous dispersion of an organic pigment containing no impurities can be obtained after the completion of the reaction, so that the aqueous ink or paint can be prepared without any special post-treatment. You can proceed. Even when an oxygen donor is used, if the oxygen donor is hydrogen peroxide, it is easily decomposed into water and oxygen by the high-temperature and high-pressure water in the reaction vessel, so no special post-treatment is required for aqueous inks and paints. Can proceed to the manufacturing process. Therefore, when it is preferable to add an oxygen donor, and if possible, it is preferable to use hydrogen peroxide that can be easily used by diluting a commercially available aqueous hydrogen peroxide solution with water.

【0020】しかしながら有機顔料自身に不純物が含ま
れている場合もある。これらの不純物は高温高圧水中で
分解されるものや、コロイド状懸濁物や油分として残
り、分離する必要がある場合もある。このような分離を
要する不純物が生じる場合は、有機顔料のみを反応容器
に一括投入し、水は連続供給する方法が有効である。こ
の方法により大部分の不純物は水とともに反応系から容
易に排出される。
However, in some cases, the organic pigment itself contains impurities. In some cases, these impurities are decomposed in high-temperature and high-pressure water, remain as a colloidal suspension or oil, and need to be separated. When such impurities requiring separation are generated, it is effective to charge only the organic pigment into the reaction vessel at a time and supply water continuously. In this way, most of the impurities are easily discharged from the reaction system together with the water.

【0021】管状反応器などに有機顔料と水との混合ス
ラリーを連続的に供給して高温高圧で反応させた後、連
続遠心分離器で処理して表面改質した有機顔料を連続的
に回収する方法も利用できる。本発明の製造方法により
有機顔料の表面に酸素が導入されるが、温度、圧力など
の操作条件の差異により、導入される酸素含有官能基の
濃度及び親水性が異なる。
A mixed slurry of an organic pigment and water is continuously supplied to a tubular reactor and the like, and reacted at a high temperature and a high pressure. Then, a continuous centrifugal separator is used to continuously recover the surface-modified organic pigment. A method to do this is also available. Oxygen is introduced into the surface of the organic pigment by the production method of the present invention, but the concentration and hydrophilicity of the oxygen-containing functional group to be introduced are different due to differences in operating conditions such as temperature and pressure.

【0022】顔料表面に水酸基等の親水性の酸素含有官
能基が導入された場合は、直ちに安定した有機顔料の水
分散液が得られるが、酸素含有官能基の濃度は高いが、
親水性官能基濃度が低い場合には、高温高圧の水による
酸化処理の後に更に還元剤を用いて、導入された酸素含
有官能基のうち、親水性の低いキノン基を還元して親水
性の高い水酸基に変性させる方法が有効である。還元剤
としては、水素、水素化ホウ素ナトリウム、水素化リチ
ウムアルミニウム等の公知慣用の還元剤が使用できる
が、有機顔料の色目に影響を与えない範囲で用いること
が好ましい。なかでも後処理等の観点から水溶性の還元
剤を用いることが好ましく、例えば取り扱いの容易な水
素化ホウ素ナトリウムが好ましく用いられる。
When a hydrophilic oxygen-containing functional group such as a hydroxyl group is introduced on the surface of the pigment, a stable aqueous dispersion of the organic pigment can be obtained immediately, but the concentration of the oxygen-containing functional group is high.
When the concentration of the hydrophilic functional group is low, after the oxidation treatment with high-temperature and high-pressure water, the reducing agent is used to further reduce the quinone group having a low hydrophilicity among the introduced oxygen-containing functional groups, thereby reducing the hydrophilicity. A method of modifying to a high hydroxyl group is effective. As the reducing agent, known reducing agents such as hydrogen, sodium borohydride, lithium aluminum hydride and the like can be used, but it is preferable to use the reducing agent within a range that does not affect the color of the organic pigment. Among them, it is preferable to use a water-soluble reducing agent from the viewpoint of post-treatment and the like. For example, sodium borohydride, which is easy to handle, is preferably used.

【0023】本発明の製造方法によれば、極めて短時間
(実質的な反応時間は10〜30分程度)の簡便な処理
で、且つ分離精製工程を必要としないか、もしくは簡単
な洗浄のみで水分散性に優れた有機顔料、又は有機顔料
の水分散液を得ることができる。
According to the production method of the present invention, a simple treatment in an extremely short time (substantial reaction time is about 10 to 30 minutes) and no separation / purification step is required, or only a simple washing is required. An organic pigment excellent in water dispersibility or an aqueous dispersion of an organic pigment can be obtained.

【0024】[0024]

【実施例】(実施例1)銅フタロシアニン顔料(大日本
インキ化学工業株式会社製)を1.0g計量し、ハステ
ロイ製高圧容器(容量:10ml)に投入した。この容
器に高圧プランジャーポンプを用いて2%の過酸化水素
を含有する蒸留水を容器底部より1ml/分の流量で連
続的に供給した。供給された液は容器内部の銅フタロシ
アニン顔料と接触したあと容器上部より排出するが、排
出口に圧力制御弁を設置し、容器の圧力を25MPaに
維持した。
EXAMPLES Example 1 1.0 g of a copper phthalocyanine pigment (manufactured by Dainippon Ink and Chemicals, Inc.) was weighed and placed in a Hastelloy high-pressure container (capacity: 10 ml). Distilled water containing 2% hydrogen peroxide was continuously supplied to this container from the bottom of the container at a flow rate of 1 ml / min using a high-pressure plunger pump. The supplied liquid was discharged from the upper part of the container after coming into contact with the copper phthalocyanine pigment inside the container. A pressure control valve was provided at the outlet, and the pressure of the container was maintained at 25 MPa.

【0025】ここで、容器の底部と上部には焼結フィル
ターを設置し、顔料が高圧容器から流出するのを防ぐ。
この高圧容器を電気加熱炉内に固定し、容器の内温が2
80℃に達するまで昇温した。内温が280℃に達した
後、30分間温度を維持した。反応終了後、温度を下
げ、内温が100℃未満になったのを確認して徐々に内
圧を下げて容器の内圧を常圧に戻した。容器が十分冷え
たのを確認して内容物を取り出し、安定に分散した銅フ
タロシアニンの水分散液を得た。
Here, a sintered filter is provided at the bottom and the top of the container to prevent the pigment from flowing out of the high-pressure container.
This high-pressure vessel was fixed in an electric heating furnace, and the internal temperature of the vessel was 2
The temperature was raised until it reached 80 ° C. After the internal temperature reached 280 ° C., the temperature was maintained for 30 minutes. After completion of the reaction, the temperature was lowered, and after confirming that the internal temperature was less than 100 ° C., the internal pressure was gradually lowered to return the internal pressure of the container to normal pressure. After confirming that the container was sufficiently cooled, the contents were taken out, and an aqueous dispersion of copper phthalocyanine stably dispersed was obtained.

【0026】得られた分散液は1ヶ月の放置後も安定し
た分散状態を保持した。分散液を濾過後、水洗、乾燥し
て得られた銅フタロシアニン顔料に水を加え、軽く振動
すると再び安定的に分散した銅フタロシアニン顔料分散
液を得ることが出来た。
The resulting dispersion maintained a stable dispersion even after standing for one month. After the dispersion was filtered, washed with water and dried, water was added to the obtained copper phthalocyanine pigment, and the mixture was gently shaken to obtain a copper phthalocyanine pigment dispersion which was dispersed stably again.

【0027】銅フタロシアニン顔料表面の酸素量をXP
S法(X-Ray Photoelectoron Spectrometory、X線光電
子分光法)で測定したところ、表1に示す様に、本発明
の製造方法で製造された水分散性銅フタロシアニン顔料
には、未処理のものと比較して多量の酸素含有官能基が
導入されていることが確認された。水分散性の安定性を
見るために、ゼータ電位を測定したところ未処理のもの
と比較して水分散性が安定していることが確認された。
The amount of oxygen on the surface of the copper phthalocyanine pigment was determined by XP
When measured by the S method (X-Ray Photoelectoron Spectrometory, X-ray photoelectron spectroscopy), as shown in Table 1, the water-dispersible copper phthalocyanine pigment produced by the production method of the present invention was compared with the untreated one. It was confirmed that a relatively large amount of the oxygen-containing functional group was introduced. When the zeta potential was measured to check the stability of the water dispersibility, it was confirmed that the water dispersibility was more stable than that of the untreated product.

【0028】(実施例2)銅フタロシアニンを1.0g
計量し、ハステロイ製高圧容器(容量:10ml)に投
入した。この容器に高圧プランジャーポンプを用いて、
2%の過酸化水素を含有する蒸留水を容器底部より1m
l/分の流量で連続的に供給した。この蒸留水は容器内
部で銅フタロシアニン顔料と接触したあと容器上部より
排出するが、排出口に圧力制御弁を設置し、容器の圧力
を23.5MPaに維持した。
(Example 2) 1.0 g of copper phthalocyanine
It was weighed and put into a Hastelloy high-pressure container (volume: 10 ml). Using a high pressure plunger pump for this container,
Distilled water containing 2% hydrogen peroxide 1 m from the bottom of the container
It was fed continuously at a flow rate of 1 / min. The distilled water was discharged from the upper part of the container after coming into contact with the copper phthalocyanine pigment inside the container. A pressure control valve was installed at the outlet to maintain the pressure of the container at 23.5 MPa.

【0029】ここで、容器の底部と上部に焼結フィルタ
ーを設置し、銅フタロシアニン顔料が高圧容器から流出
するのを防いだ。この高圧容器を電気加熱炉内に固定
し、容器の内温が380℃に達するまで昇温した。内温
が380℃に達した後、30分間温度を維持した。反応
終了後、温度を下げ、内温が100℃未満になったのを
確認して徐々に内圧を下げ、容器の内圧を常圧に戻し、
容器が十分冷えたのを確認して内容物を取り出し、安定
に分散した銅フタロシアニン顔料分散液を得た。
Here, a sintered filter was installed at the bottom and the top of the vessel to prevent the copper phthalocyanine pigment from flowing out of the high-pressure vessel. This high-pressure vessel was fixed in an electric heating furnace, and the temperature was raised until the internal temperature of the vessel reached 380 ° C. After the internal temperature reached 380 ° C, the temperature was maintained for 30 minutes. After the completion of the reaction, the temperature was lowered, and after confirming that the internal temperature was less than 100 ° C., the internal pressure was gradually lowered, and the internal pressure of the container was returned to normal pressure.
After confirming that the container was sufficiently cooled, the contents were taken out to obtain a copper phthalocyanine pigment dispersion liquid which was stably dispersed.

【0030】実施例1と同じ方法で銅フタロシアニン顔
料表面の酸素量とゼータ電位を測定したところ、表面酸
素量が増加し、分散安定性が増加していることが示され
た。表1に銅フタロシアニン顔料の特性を示す。
When the amount of oxygen and the zeta potential on the surface of the copper phthalocyanine pigment were measured in the same manner as in Example 1, it was found that the amount of surface oxygen increased and the dispersion stability increased. Table 1 shows the properties of the copper phthalocyanine pigment.

【0031】(比較例1)実施例1.2で使用した銅フ
タロシアニン顔料を1.0g計量し、ハステロイ製高圧
容器(容量:10ml)に投入した。この容器に高圧プ
ランジャーポンプを用いて蒸留水を容器底部より1ml
/分の流量で連続的に供給した。供給された液は容器内
部の銅フタロシアニン顔料と接触したあと容器上部より
排出するが、排出口に圧力制御弁を設置し、容器の圧力
を3.5MPaに維持した。
Comparative Example 1 1.0 g of the copper phthalocyanine pigment used in Example 1.2 was weighed and placed in a Hastelloy high-pressure container (capacity: 10 ml). Using a high pressure plunger pump, add 1 ml of distilled water to the container from the bottom of the container.
/ Min continuously. The supplied liquid was discharged from the upper part of the container after coming into contact with the copper phthalocyanine pigment inside the container. A pressure control valve was provided at the outlet, and the pressure of the container was maintained at 3.5 MPa.

【0032】ここで、実施例1と同様にこの高圧容器を
電気加熱炉内に固定し、容器の内温が110℃に達する
まで昇温した。内温が110℃に達した後、30分間温
度を維持した。反応終了後、温度を下げ、内温が100
℃未満になったのを確認して徐々に内圧を下げて容器の
内圧を常圧に戻した。容器が十分冷えたのを確認して内
容物を取り出た。このとき銅フタロシアニン顔料は水中
に沈殿しており、十分に親水化されておらず、安定して
分散した銅フタロシアニン顔料分散液を得ることは出来
なかった。またXPSにて表面酸素量を分析したとこ
ろ、表1に示す様に酸素量は低いものであった。
Here, the high-pressure vessel was fixed in an electric heating furnace as in Example 1, and the temperature was raised until the internal temperature of the vessel reached 110 ° C. After the internal temperature reached 110 ° C., the temperature was maintained for 30 minutes. After the reaction is completed, the temperature is lowered and the internal temperature becomes 100
After confirming that the temperature became lower than 0 ° C., the internal pressure was gradually lowered to return the internal pressure of the container to normal pressure. After confirming that the container was sufficiently cooled, the contents were taken out. At this time, the copper phthalocyanine pigment was precipitated in water, was not sufficiently hydrophilized, and a stable dispersion of the copper phthalocyanine pigment dispersion could not be obtained. When the surface oxygen content was analyzed by XPS, the oxygen content was low as shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例3)キナクリドンマゼンタ(大日
本インキ化学工業株式会社製)を1.0g計量し、ハス
テロイ製高圧容器(容量:10ml)に投入した。次い
で5%の過酸化水素を含有する蒸留水でこの高圧容器を
満たし、密閉して排出口に圧力制御弁を設置した。しか
る後にこの高圧容器を電気加熱炉内に固定し、容器の圧
力を17MPaに維持しつつ、内温が280℃になるま
で昇温した。内温が280℃に達した後、10分間温度
を維持した。反応終了後、温度を下げ、内温が100℃
未満になったのを確認して徐々に内圧を下げ、容器の内
圧を常圧に戻し、容器が十分冷えたのを確認して内容物
を取り出し、安定に分散したキナクリドンマゼンタ顔料
分散液を得た。
Example 3 1.0 g of quinacridone magenta (manufactured by Dainippon Ink and Chemicals, Inc.) was weighed and placed in a high-pressure container (volume: 10 ml) made of Hastelloy. The high pressure vessel was then filled with distilled water containing 5% hydrogen peroxide, sealed and a pressure control valve was installed at the outlet. Thereafter, the high-pressure container was fixed in an electric heating furnace, and the internal temperature was raised to 280 ° C. while maintaining the pressure of the container at 17 MPa. After the internal temperature reached 280 ° C., the temperature was maintained for 10 minutes. After the reaction is completed, the temperature is lowered and the internal temperature is 100 ° C.
After confirming that the pressure was less than 1, the internal pressure was gradually lowered, and the internal pressure of the container was returned to normal pressure.After confirming that the container was sufficiently cooled, the contents were taken out to obtain a stable dispersion of the quinacridone magenta pigment dispersion. Was.

【0035】また未処理のキナクリドンマゼンタの表面
酸素原子濃度、及び水に超音波で強制分散したキナクリ
ドンマゼンタ分散液のゼータ電位も測定し、それぞれの
測定結果を表2に示す。
The surface oxygen atom concentration of untreated quinacridone magenta and the zeta potential of the quinacridone magenta dispersion liquid which was forcibly dispersed in water with ultrasonic waves were also measured. Table 2 shows the measurement results.

【0036】[0036]

【表2】 [Table 2]

【0037】表2の結果から、本発明の処理方法によっ
て表面酸素量が増加し、水中での分散安定性が増加して
いることがわかる。
From the results shown in Table 2, it can be seen that the surface oxygen amount is increased by the treatment method of the present invention, and the dispersion stability in water is increased.

【0038】(実施例4)処理する顔料としてペリレン
マルーンを用いる以外は、実施例3と同様にしてペリレ
ンマルーン顔料分散液を得た。また未処理のペリレンマ
ルーンの表面酸素原子濃度を測定し、その測定結果を表
3に示す。
Example 4 A perylene maroon pigment dispersion was obtained in the same manner as in Example 3 except that perylene maroon was used as the pigment to be treated. The surface oxygen atom concentration of untreated perylene maroon was measured, and the measurement results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】表3の結果から、本発明の処理方法によっ
て表面酸素量が増加していることがわかる。なお未処理
のペリレンマルーンは超音波を用いても水にほとんど分
散しなかったので、ゼータ電位は測定できなかった。
From the results shown in Table 3, it can be seen that the surface oxygen amount is increased by the treatment method of the present invention. The zeta potential could not be measured because untreated perylene maroon was hardly dispersed in water even by using ultrasonic waves.

【0041】[0041]

【発明の効果】本発明は、簡便な処理で容易に水に分散
する、優れた水分散性を有する有機顔料の製造方法、及
び該製法により製造される安定な有機顔料分散液を提供
することができる。
The present invention provides a method for producing an organic pigment having excellent water dispersibility, which can be easily dispersed in water by a simple treatment, and a stable organic pigment dispersion produced by the method. Can be.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機顔料を温度120℃以上、圧力4M
Pa以上の液体状態もしくは超臨界状態にある高温高圧
の水で処理することを特徴とする、水分散性有機顔料の
製造方法。
1. An organic pigment having a temperature of 120 ° C. or higher and a pressure of 4 M
A method for producing a water-dispersible organic pigment, comprising treating with water at a high temperature and a high pressure in a liquid state or a supercritical state of Pa or more.
【請求項2】 高温高圧の水が温度120℃〜550
℃、圧力4MPa〜50MPaである請求項1に記載の
水分散性有機顔料の製造方法。
2. A high-temperature and high-pressure water having a temperature of 120 ° C. to 550
The method for producing a water-dispersible organic pigment according to claim 1, wherein the pressure is 4 ° C. to 50 MPa.
【請求項3】 高温高圧の水が酸素供与体を含む水であ
る請求項1又は2に記載の水分散性有機顔料の製造方
法。
3. The method for producing a water-dispersible organic pigment according to claim 1, wherein the high-temperature high-pressure water is water containing an oxygen donor.
【請求項4】 酸素供与体が、酸素、オゾン、及び過酸
化水素からなる群から選ばれる1つ以上である請求項3
に記載の水分散性有機顔料の製造方法。
4. The oxygen donor is one or more selected from the group consisting of oxygen, ozone, and hydrogen peroxide.
3. The method for producing a water-dispersible organic pigment according to item 1.
【請求項5】 請求項1〜4のいずれか1つに記載の製
造方法で製造された有機顔料水分散液。
5. An organic pigment aqueous dispersion produced by the production method according to claim 1. Description:
JP2002065176A 2001-03-29 2002-03-11 Method for producing water-dispersible organic pigment and aqueous organic pigment dispersion prepared thereby Pending JP2002356626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065176A JP2002356626A (en) 2001-03-29 2002-03-11 Method for producing water-dispersible organic pigment and aqueous organic pigment dispersion prepared thereby

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001095782 2001-03-29
JP2001-95782 2001-03-29
JP2002065176A JP2002356626A (en) 2001-03-29 2002-03-11 Method for producing water-dispersible organic pigment and aqueous organic pigment dispersion prepared thereby

Publications (1)

Publication Number Publication Date
JP2002356626A true JP2002356626A (en) 2002-12-13

Family

ID=26612539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065176A Pending JP2002356626A (en) 2001-03-29 2002-03-11 Method for producing water-dispersible organic pigment and aqueous organic pigment dispersion prepared thereby

Country Status (1)

Country Link
JP (1) JP2002356626A (en)

Similar Documents

Publication Publication Date Title
AU2001268184B2 (en) Self-dispersing pigment and process of making and use of same
EP1226216B1 (en) Ink jet inks, inks, and other compositions containing colored pigments
EP0834537B1 (en) Surface-treated organic pigment and process for the production thereof
JP6184432B2 (en) Methods, dispersions and uses
EP1833932B1 (en) Method of preparing oxidized modified pigments and inkjet ink compositions comprising the same
AU2001268184A1 (en) Self-dispersing pigment and process of making and use of same
US20180118575A1 (en) Zeta Positive Hydrogenated Nanodiamond Powder, Zetapositive Single Digit Hydrogenated Nanodiamond Dispersion, and Methods for Producing the Same
EP2196507B1 (en) Ink jet ink
WO2001030919A1 (en) Ink jet inks, inks, and other compositions containing colored pigments
KR20080017367A (en) Process for producing aqueous dispersion of carbon black
KR20080032210A (en) Method of preparing pigment compositions
US8383701B2 (en) Polymer encapsulated pigment dispersion with high solids content
EP2344274B1 (en) Process, dispersions and use
KR20080045753A (en) Water-dispersible carbon black pigment and process for producing aqueous dispersion thereof
JP2016121237A (en) Production method of water-based pigment dispersion for inkjet recording
US20090071908A1 (en) Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
JP2002356626A (en) Method for producing water-dispersible organic pigment and aqueous organic pigment dispersion prepared thereby
JP4984126B2 (en) Aqueous pigment dispersion and ink composition for ink jet recording
JP2002129065A (en) Production method for carbon black having water dispersibility
JP2008248136A (en) Method for producing dispersion liquid of metal oxide minute particles, method for producing metal oxide minute particle dispersion paste, resin composition, and coating composition
US4031060A (en) Process of pigmenting polyamides
JP5325548B2 (en) Method for producing aqueous dispersion for ink jet recording
JP2004339428A (en) Aqueous carbon black dispersion and preparation of the same
JP2000345094A (en) Aqueous pigment dispersion and its preparation
JP2018016682A (en) Treatment method of self-dispersible pigment, self-dispersible pigment and ink for inkjet