JP2002356301A - Production method for hydrogen and its apparatus - Google Patents

Production method for hydrogen and its apparatus

Info

Publication number
JP2002356301A
JP2002356301A JP2001168418A JP2001168418A JP2002356301A JP 2002356301 A JP2002356301 A JP 2002356301A JP 2001168418 A JP2001168418 A JP 2001168418A JP 2001168418 A JP2001168418 A JP 2001168418A JP 2002356301 A JP2002356301 A JP 2002356301A
Authority
JP
Japan
Prior art keywords
electrode
working electrode
hydrogen
film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001168418A
Other languages
Japanese (ja)
Inventor
Keiichi Kohama
恵一 小浜
Midori Mori
みどり 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001168418A priority Critical patent/JP2002356301A/en
Publication of JP2002356301A publication Critical patent/JP2002356301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve efficiency in hydrogen generation using a photocatalyst. SOLUTION: A hydrogen generation apparatus 10 is provided by soaking a first working electrode 20 and a second working electrode 30 of a platinum electrode in a reaction vessel 12 which reserves water. A direct current voltage is impressed between both working electrodes through a direct current power source 40. In this case, the direct current voltage is impressed with a voltage below 2 V so that a side of the first working electrode 20 becomes positive and the side of the second working electrode 30 becomes negative. A light of a tungsten lamp 44 is irradiated under such a impressed condition. The first working electrode 20 has a transparent electrode 22 using an indium tin oxide(ITO) on a surface of a glass substrate 21, and has a photocatalytic electrode film 23 on the electrode surface. The photocatalytic electrode film 23 is made a titanium dioxide film. A ruthenium complex as a visible ray absorption pigment is supported on the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水或いはアルコー
ルもしくはこれらを溶媒とする電解質溶液のいずれかか
ら水素を生成する方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing hydrogen from either water or alcohol or an electrolyte solution using these as a solvent.

【0002】[0002]

【従来の技術】近年になり、光触媒がこうした水素生成
に用いられつつあり、種々の技術が提案されている。例
えば、特開平11−246985号公報では、光触媒か
らなる光電極と白金電極とをリード線で導通し、光電極
に光照射する技術が提案されている。
2. Description of the Related Art In recent years, photocatalysts have been used for such hydrogen generation, and various techniques have been proposed. For example, Japanese Patent Application Laid-Open No. H11-246985 proposes a technique in which a photoelectrode made of a photocatalyst and a platinum electrode are electrically connected by a lead wire, and light is irradiated to the photoelectrode.

【0003】[0003]

【発明が解決しようとする課題】上記公報で提案された
水素生成手法によれば、それまでのものに比べて水素生
成効率の向上をもたらすことができるものの、更なる効
率向上が求められている。
According to the hydrogen generation method proposed in the above publication, although the hydrogen generation efficiency can be improved as compared with the prior art, further improvement in efficiency is required. .

【0004】本発明は、上記問題点を解決するためにな
され、水素生成の効率向上を図ることを目的とする。
The present invention has been made to solve the above problems, and has as its object to improve the efficiency of hydrogen generation.

【0005】[0005]

【課題を解決するための手段およびその作用・効果】か
かる課題の少なくとも一部を解決するため、本発明の水
素生成方法は、水或いはアルコールもしくはこれらを溶
媒とする電解質溶液のいずれかから水素を生成する方法
であって、光の照射を受けると正孔と電子を生成する光
触媒活性を呈する光触媒の膜が電極膜として形成された
第1作用極と、電極触媒作用を果たす電極材料の膜が電
極膜として形成された第2作用極とを、前記水或いは前
記電解質溶液中に浸漬された状態とする工程Aと、前記
第1作用極の電極膜に、前記光触媒活性の励起可能な光
を照射すると共に、前記第1と第2の作用極の電極膜間
に、前記第1作用極の側をプラス側にして直流電圧を印
加する工程Bとを備え、前記第2作用極の電極膜で水素
を生成することを特徴とする。
Means for Solving the Problems and Action / Effect thereof To solve at least a part of the problems, the hydrogen generation method of the present invention converts hydrogen from either water or alcohol or an electrolyte solution using these as a solvent. A first working electrode in which a photocatalytic film exhibiting photocatalytic activity for generating holes and electrons when irradiated with light is formed as an electrode film, and a film of an electrode material performing an electrocatalytic action is formed. A step A of bringing the second working electrode formed as an electrode film into a state of being immersed in the water or the electrolyte solution; and applying the light capable of exciting the photocatalytic activity to the electrode film of the first working electrode. Irradiating and applying a DC voltage between the electrode films of the first and second working electrodes with the side of the first working electrode being a plus side, comprising the steps of: To produce hydrogen with And butterflies.

【0006】また、上記課題の少なくとも一部を解決す
るため、本発明の水素生成装置は、水或いはアルコール
もしくはこれらを溶媒とする電解質溶液のいずれかから
水素を生成する装置であって、光の照射を受けると正孔
と電子を生成する光触媒活性を呈する光触媒の膜が電極
膜として形成された第1作用極と、電極触媒作用を果た
す電極材料の膜が電極膜として形成された第2作用極と
を、前記水或いは前記電解質溶液中に浸漬された状態で
備える電極反応槽と、前記第1作用極の電極膜に、前記
光触媒活性の励起可能な光を照射する光照射手段と、該
光照射手段による光照射の実行の間に、前記第1と第2
の作用極の電極膜間に、前記第1作用極の側をプラス側
にして直流電圧を印加する電圧印加手段とを備え、前記
第2作用極の電極膜で水素を生成することを特徴とす
る。
Further, in order to solve at least a part of the above-mentioned problems, a hydrogen generator of the present invention is an apparatus for generating hydrogen from water, alcohol or an electrolyte solution using these as a solvent. A first working electrode in which a photocatalytic film exhibiting photocatalytic activity that generates holes and electrons when irradiated is formed as an electrode film, and a second working electrode in which a film of an electrode material that performs electrode catalysis is formed as an electrode film. An electrode reaction tank having the electrode in a state of being immersed in the water or the electrolyte solution; and a light irradiation unit for irradiating the electrode film of the first working electrode with light capable of exciting the photocatalytic activity. During the execution of light irradiation by the light irradiation means, the first and second
Voltage applying means for applying a DC voltage with the first working electrode side being a plus side between the electrode films of the working electrode, and generating hydrogen at the electrode film of the second working electrode. I do.

【0007】この電圧印加に際しては、2V未満の直流
電圧を印加することが望ましい。
[0007] When applying this voltage, it is desirable to apply a DC voltage of less than 2V.

【0008】上記構成を有する本発明の第1の水素生成
方法とその装置では、第1作用極の電極膜への光照射に
より、当該電極膜の光触媒に触媒活性を起こし、正孔と
電子を生成する。生成された正孔は、第1作用極の電極
膜に残り、生成した電子は、電圧印加のための配線を通
って第1作用極側から第2作用極側に移動する。
In the first method and apparatus for producing hydrogen of the present invention having the above-described structure, the light irradiation on the electrode film of the first working electrode causes the photocatalyst of the electrode film to have a catalytic activity to generate holes and electrons. Generate. The generated holes remain on the electrode film of the first working electrode, and the generated electrons move from the first working electrode side to the second working electrode side through wires for voltage application.

【0009】こうした正孔・電子生成とその移動によ
り、第2作用極の電極膜では、電子により水分子が還元
されて水素が生成する。その一方、第1作用極の電極膜
では、残った正孔による水分子の酸化もしくはアルコー
ル分子の酸化が起こり、前者では酸素が、後者では二酸
化炭素が生成する。
[0009] By the generation and movement of holes and electrons, water molecules are reduced by electrons in the electrode film of the second working electrode to generate hydrogen. On the other hand, in the electrode film of the first working electrode, oxidation of water molecules or oxidation of alcohol molecules occurs due to the remaining holes, and oxygen is generated in the former and carbon dioxide is generated in the latter.

【0010】このように各作用極での反応を進行させる
上で、生成電子の第2作用極側への移動は、第1作用極
をプラス側とした直流電圧印加により妨げられることは
なく、電圧印加に伴って速やかに且つ継続して起きる。
このため、光触媒により生成された正孔と生成された電
子の再結合を第1作用極の電極膜面(詳しくは、光触媒
表面)で起きにくくでき、正孔と電子を効率的に第1、
第2の作用極に分離させる。よって、第2作用極側での
水素生成の効率を高めることができる。なお、第1作用
極側での酸素生成の効率も高めることができる。
As described above, when the reaction at each working electrode proceeds, the movement of the generated electrons to the second working electrode side is not hindered by the application of the DC voltage with the first working electrode being the plus side. It occurs quickly and continuously with the application of voltage.
For this reason, the recombination of the holes generated by the photocatalyst and the generated electrons can be made less likely to occur on the electrode film surface of the first working electrode (specifically, the photocatalyst surface), and the holes and the electrons can be efficiently converted into the first and second electrodes.
Separate to the second working electrode. Therefore, the efficiency of hydrogen generation on the second working electrode side can be increased. The efficiency of oxygen generation on the first working electrode side can also be increased.

【0011】そして、印加する直流電圧を2v未満とす
ることで、水素生成に対して過大な電力供給を必要が無
くなり、水素生成に伴うエネルギ効率を高めることがで
きる。しかも、この程度の直流電圧は、入手が容易で安
価な乾電池で得ることができるので、装置構成の簡略化
や低コスト化を図ることもできる。
By setting the applied DC voltage to less than 2 V, it is not necessary to supply an excessive amount of electric power for hydrogen generation, and the energy efficiency accompanying the hydrogen generation can be increased. Moreover, such a DC voltage can be obtained with an easily available and inexpensive dry battery, so that the device configuration can be simplified and the cost can be reduced.

【0012】なお、光触媒が二酸化チタン、酸化亜鉛、
酸化バナジウム、酸化タングステン等であれば、これら
を光触媒活性可能な紫外領域の光(紫外線)を照射すれ
ばよく、光照射に当たっては、用いる触媒の特性に合わ
せるだけでよい。二酸化チタンにあっては、特に結晶型
がアナターゼ型のものが光触媒活性、入手の容易さから
好ましい。
The photocatalyst is titanium dioxide, zinc oxide,
In the case of vanadium oxide, tungsten oxide, or the like, these may be irradiated with light (ultraviolet light) in an ultraviolet region capable of photocatalytic activation, and the light irradiation may be performed only in accordance with the characteristics of the catalyst used. Among the titanium dioxides, those having a crystal form of anatase are particularly preferred from the viewpoint of photocatalytic activity and availability.

【0013】この他、本発明は次のような態様とするこ
ともできる。即ち、第1作用極の電極膜を、可視光の照
射を受けると光のエネルギを吸収する色素を担持した前
記光触媒の膜で形成する。この場合、担持する色素は、
前記光触媒が呈する最低空軌道(LUMO)エネルギ準
位よりも低い最低空軌道(LUMO)エネルギ準位を有
するものとされ、第1作用極へは、可視光を照射するよ
うにする。こうした色素としては、ビピリジン金属錯
体、金属ポルフィリン、金属フタロシアニン、或いはこ
れらの誘導体とすることが好ましい。
[0013] In addition, the present invention may be in the following modes. That is, the electrode film of the first working electrode is formed of the photocatalyst film supporting a dye that absorbs light energy when irradiated with visible light. In this case, the dye to be supported is
It has a lowest unoccupied orbital (LUMO) energy level lower than the lowest unoccupied orbital (LUMO) energy level exhibited by the photocatalyst, and irradiates the first working electrode with visible light. Such a dye is preferably a bipyridine metal complex, metal porphyrin, metal phthalocyanine, or a derivative thereof.

【0014】こうした色素を担持した光触媒の電極膜
に、光触媒活性の励起可能な光に替わって可視光が照射
されると、その可視光エネルギが色素に吸収される。こ
れにより、色素(詳しくは、色素構成原子)では、その
電子軌道のうちの最低空軌道(LUMO)の電子が、上
記のエネルギ準位の差により、電極膜の光触媒(詳しく
は、光触媒構成原子)の最低空軌道(LUMO)に移動
する。これにより、電子の移動を受けた光触媒では、色
素からの電子移動に伴い光触媒作用が活性化された状態
が起きる。よって、第1作用極からは、電子が既述した
ように電圧印加のための配線を通って第2作用極側に移
動し、この電子移動に伴い正孔が第1作用極に残る。こ
の結果、第2作用極の電極膜では、電子により水分子が
還元されて水素が生成し、第1作用極の電極膜では、残
った正孔による水分子の酸化もしくはアルコール分子の
酸化が起こり、前者では酸素が、後者では二酸化炭素が
生成する。
When the electrode film of a photocatalyst carrying such a dye is irradiated with visible light instead of light capable of exciting photocatalytic activity, the visible light energy is absorbed by the dye. As a result, in the dye (specifically, the constituent atoms of the dye), the electron in the lowest unoccupied orbit (LUMO) of the electron orbits is caused by the difference in the energy level, due to the difference in the energy levels. ) To the lowest free orbit (LUMO). As a result, in the photocatalyst that has received the transfer of electrons, a state in which the photocatalysis is activated with the transfer of electrons from the dye occurs. Therefore, from the first working electrode, electrons move to the second working electrode side through the wiring for voltage application as described above, and holes remain in the first working electrode with the electron movement. As a result, in the electrode film of the second working electrode, water molecules are reduced by electrons to generate hydrogen, and in the electrode film of the first working electrode, oxidation of water molecules or oxidation of alcohol molecules occurs due to remaining holes. The former produces oxygen, and the latter produces carbon dioxide.

【0015】従って、色素担持を図った光触媒を電極膜
として用いた場合には、太陽光、蛍光灯光等の可視光照
射により、水素生成を起こすことができ、その生成効率
をより高めることもできる。
Therefore, when a photocatalyst carrying a dye is used as an electrode film, hydrogen can be generated by irradiation with visible light such as sunlight or fluorescent light, and the generation efficiency can be further increased. .

【0016】[0016]

【発明の他の態様】本発明は、水を電気分解する方法或
いは装置に適用した態様を採ることも可能である。即
ち、 光の照射を受けると正孔と電子を生成する光触媒
活性を呈する光触媒の膜が電極膜として形成された第1
作用極と、電極触媒作用を果たす電極材料の膜が電極膜
として形成された第2作用極とを、前記水或いは前記電
解質溶液中に浸漬された状態とし、その上で、前記第1
作用極の電極膜に、前記光触媒活性の励起可能な光を照
射すると共に、前記第1と第2の作用極の電極膜間に、
前記第1作用極の側をプラス側にして直流電圧を印加す
る。こうすれば、簡単な構成で効率よく水を電気分解で
きる。
Other Embodiments of the Invention The present invention can be applied to a method or an apparatus for electrolyzing water. That is, a photocatalytic film exhibiting photocatalytic activity of generating holes and electrons when irradiated with light is formed as an electrode film.
The working electrode and the second working electrode, in which a film of an electrode material performing an electrode catalyst is formed as an electrode film, are immersed in the water or the electrolyte solution.
While irradiating the electrode film of the working electrode with light capable of exciting the photocatalytic activity, between the electrode films of the first and second working electrodes,
A DC voltage is applied with the first working electrode side being a plus side. In this case, water can be efficiently electrolyzed with a simple configuration.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施の形態を実施
例に基づき説明する。図1は第1実施例の水素生成装置
10の模式構成図である。
Next, embodiments of the present invention will be described based on examples. FIG. 1 is a schematic configuration diagram of the hydrogen generator 10 of the first embodiment.

【0018】図示するように、水素生成装置10は、水
を貯留する反応槽12に、第1作用極20と第2作用極
30とを浸漬させて備え、両作用極を定直流電源40を
介在して導通する。この場合、定直流電源40は、第1
作用極20の側がプラス、第2作用極30の側がマイナ
スとなるようにして導電ライン41で繋がれており、ス
イッチ42の回路閉動作で、両作用極間に一定の直流電
圧を印加する。
As shown in the figure, the hydrogen generator 10 is provided with a first working electrode 20 and a second working electrode 30 immersed in a reaction tank 12 for storing water. Conducted by intervening. In this case, the constant DC power supply 40
The working electrode 20 is connected to the conductive line 41 such that the side of the working electrode 20 is positive and the side of the second working electrode 30 is negative, and a constant DC voltage is applied between the two working electrodes by closing the circuit of the switch 42.

【0019】水素生成装置10は、可視光を照射するタ
ングステンランプ44(出力約500W)と、当該ラン
プの点灯制御並びにスイッチ42の開閉制御を行う制御
装置46とを有する。なお、この制御装置46は、定直
流電源40の印加する直流電圧値を調整可能とされてい
る。
The hydrogen generator 10 has a tungsten lamp 44 (approximately 500 W output) for irradiating visible light, and a control device 46 for controlling the lighting of the lamp and controlling the opening and closing of the switch 42. The control device 46 can adjust the DC voltage value applied by the constant DC power supply 40.

【0020】第1作用極20は、所定形状に切り出した
ガラス基板21を電極基材として備え、その表面に、酸
化インジウムスズ(ITO)を用いて薄膜成形された透
明電極22を有し、この電極面に、光触媒電極膜23を
有する。この作用極の制作手順は次の通りである。
The first working electrode 20 is provided with a glass substrate 21 cut out into a predetermined shape as an electrode base material, and has on its surface a transparent electrode 22 formed into a thin film using indium tin oxide (ITO). The photocatalyst electrode film 23 is provided on the electrode surface. The procedure for producing this working electrode is as follows.

【0021】まず、ITO製の透明電極22が薄膜形成
済みのガラス基板21を準備する。次いで、光触媒とし
ての二酸化チタンの粉末(平均粒径約2μm)を水に分
散させたペーストを、スピンコート法等の薄膜形成手法
にて透明電極22の表面に塗布し(約20cm)、そ
の後、約300℃以上の焼成温度で焼成する。これによ
り、透明電極22の電極面上に、二酸化チタン薄膜が光
触媒電極膜23として形成される。この薄膜形成の際、
ペーストの塗布厚が約10μmとなるように調整され
る。
First, a glass substrate 21 on which a transparent electrode 22 made of ITO has been formed into a thin film is prepared. Next, a paste obtained by dispersing titanium dioxide powder (average particle size: about 2 μm) as a photocatalyst in water is applied to the surface of the transparent electrode 22 by a thin film forming technique such as spin coating (about 20 cm 2 ), and thereafter And firing at a firing temperature of about 300 ° C. or more. Thus, a titanium dioxide thin film is formed as a photocatalyst electrode film 23 on the electrode surface of the transparent electrode 22. When forming this thin film,
The thickness of the paste is adjusted to be about 10 μm.

【0022】更に、二酸化チタン薄膜形成済みのガラス
基板21を、ルテニウム錯体溶液中に浸漬して引き上
げ、乾燥処理に処す。これにより、光触媒電極膜23を
形成する薄膜における二酸化チタン(光触媒)にルテニ
ウム錯体が担持され、光触媒電極膜23は、ルテニウム
錯体(色素)を担持した光触媒の膜(電極膜)となる。
これらの工程を経て、第1作用極20が完成する。この
場合、ルテニウム錯体は、光触媒(二酸化チタン)が呈
する最低空軌道(LUMO)エネルギ準位よりも低い最
低空軌道(LUMO)エネルギ準位を有する。
Further, the glass substrate 21 on which the titanium dioxide thin film has been formed is dipped in a ruthenium complex solution, pulled up, and subjected to a drying treatment. As a result, the ruthenium complex is supported on the titanium dioxide (photocatalyst) in the thin film forming the photocatalyst electrode film 23, and the photocatalyst electrode film 23 becomes a photocatalyst film (electrode film) supporting the ruthenium complex (dye).
Through these steps, the first working electrode 20 is completed. In this case, the ruthenium complex has a lowest unoccupied orbital (LUMO) energy level lower than that of the photocatalyst (titanium dioxide).

【0023】なお、透明電極22に塗布するペースト
を、二酸化チタン粉末に加えてルテニウム錯体の粉末を
配合・分散させたものとし、透明電極22へのペースト
塗布・焼成を経て、第1作用極20を制作するようにす
ることもできる。
The paste to be applied to the transparent electrode 22 is prepared by mixing and dispersing a ruthenium complex powder in addition to the titanium dioxide powder, and applying the paste to the transparent electrode 22 and firing the first working electrode 20. Can also be produced.

【0024】第2作用極30は、ガラス基板21とほぼ
同形状に切り出したガラス基板31とその表面に薄膜形
成された白金電極32を有する。この白金電極32は、
真空蒸着法等の薄膜形成手法にて形成される。
The second working electrode 30 has a glass substrate 31 cut out in substantially the same shape as the glass substrate 21 and a platinum electrode 32 formed on the surface thereof in a thin film. This platinum electrode 32
It is formed by a thin film forming technique such as a vacuum deposition method.

【0025】こうして作成した第1作用極20と第2作
用極30とを図示しない電極保持基材に固定して機械強
度を確保し、その上で、各作用極の透明電極22と白金
電極32とを導電ライン41で接続する。そして、両作
用極を反応槽12の水に浸漬させた状態とする。
The first working electrode 20 and the second working electrode 30 thus formed are fixed to an electrode holding base (not shown) to secure mechanical strength, and then the transparent electrode 22 and the platinum electrode 32 of each working electrode are secured. Are connected by a conductive line 41. Then, both working electrodes are immersed in the water of the reaction tank 12.

【0026】上記した構成を有する水素生成装置10
は、制御装置46によるタングステンランプ44の点灯
制御と、スイッチ42の回路閉制御により、第2作用極
30で水素を生成し、第1作用極20で酸素を生成す
る。生成能力については後述する。
The hydrogen generator 10 having the above configuration
Generates hydrogen at the second working electrode 30 and oxygen at the first working electrode 20 by the lighting control of the tungsten lamp 44 by the control device 46 and the circuit closing control of the switch 42. The generation capability will be described later.

【0027】第2実施例の水素生成装置は、上記した第
1実施例の水素生成装置10と、第1作用極構成とラン
プ構成が相違する。つまり、第2実施例では、透明電極
22に、色素担持のない二酸化チタンを用いて光触媒電
極膜23が形成されている。また、ランプは、二酸化チ
タンの光触媒活性を励起可能な約400nmの紫外線
(出力約500W)を発する紫外線ランプ44とされて
いる。
The hydrogen generator of the second embodiment differs from the hydrogen generator 10 of the first embodiment in the first working electrode configuration and the lamp configuration. That is, in the second embodiment, the photocatalyst electrode film 23 is formed on the transparent electrode 22 using titanium dioxide having no dye. The lamp is an ultraviolet lamp 44 that emits ultraviolet light of about 400 nm (output of about 500 W) capable of exciting the photocatalytic activity of titanium dioxide.

【0028】上記した構成を有する第2実施例の水素生
成装置にあっても、制御装置46による紫外線ランプ4
4の点灯制御と、スイッチ42の回路閉制御により、第
2作用極30で水素を生成し、第1作用極20で酸素を
生成する。生成能力については後述する。
In the hydrogen generator of the second embodiment having the above-described configuration, the control unit 46 controls the ultraviolet lamp 4.
By the lighting control of 4 and the circuit closing control of the switch 42, hydrogen is generated at the second working electrode 30 and oxygen is generated at the first working electrode 20. The generation capability will be described later.

【0029】ここで、上記の実施例の水素生成装置が有
する水素生成能力について説明する。図2は定直流電源
40による印加電圧値(直流電圧値)と水素発生量の関
係を示すグラフである。
Here, the hydrogen generation capability of the hydrogen generator of the above embodiment will be described. FIG. 2 is a graph showing the relationship between the applied voltage value (DC voltage value) from the constant DC power supply 40 and the amount of generated hydrogen.

【0030】図2に示すグラフは、第1実施例の水素生
成装置10について、定直流電源40の印加電圧値を0
〜2Vの範囲で種々調整し、各電圧値の電圧を継続印加
した状況下で、タングステンランプ44による光照射が
無い場合と有る場合のそれぞれの水素発生量を測定した
結果である。第2実施例についても同様であり、各電圧
値の電圧を継続印加した状況下で、紫外線ランプ44に
よる光照射が無い場合と有る場合のそれぞれの水素発生
量を測定した結果である。この場合、電圧値ゼロの結果
は、第1、第2の作用電極をただ単に導通しただけの水
素生成の結果(光照射有り・無し)である。なお、ガス
生成量は、図1の各電極から生成したガスをガスクロマ
トグラフィーに導いて、時間当たりの生成量をガスクロ
マトグラフィーで測定した。
The graph shown in FIG. 2 shows that the applied voltage value of the constant DC power supply 40 is 0 for the hydrogen generator 10 of the first embodiment.
These are the results of measuring the amount of hydrogen generation in the case where there is no light irradiation by the tungsten lamp 44 and in the case where there is light irradiation under the condition that various adjustments are made in the range of up to 2 V and the voltage of each voltage value is continuously applied. The same applies to the second embodiment, which is a result of measuring the amount of hydrogen generated when there is no light irradiation by the ultraviolet lamp 44 and when there is light irradiation by the ultraviolet lamp 44 under the condition that the voltage of each voltage value is continuously applied. In this case, the result of zero voltage value is the result of hydrogen generation (with / without light irradiation) simply by conducting the first and second working electrodes. In addition, the gas generation amount was measured by introducing the gas generated from each electrode in FIG. 1 to gas chromatography, and measuring the generation amount per time by gas chromatography.

【0031】この図2から判るように、第1、第2の作
用電極を導通しただけであっても(電圧ゼロ)、光照射
により水素を生成できた。また、光照射が無い場合は、
印加電圧が1V程度から増加するに連れて、水素生成量
が増える。光照射が無ければ、第1作用極20は光触媒
活性の無い通常の電極として機能するに過ぎないので、
上記の水素生成の状況は、通常の水の電気分解、つま
り、水中で対向する電極間に電圧を印加させて水を電気
分解する場合に観察される状況と同じである。
As can be seen from FIG. 2, even when the first and second working electrodes were merely turned on (zero voltage), hydrogen could be generated by light irradiation. If there is no light irradiation,
As the applied voltage increases from about 1 V, the amount of generated hydrogen increases. Without light irradiation, the first working electrode 20 only functions as a normal electrode without photocatalytic activity,
The situation of the above-mentioned hydrogen generation is the same as the situation observed when normal water is electrolyzed, that is, when water is electrolyzed by applying a voltage between electrodes facing each other in water.

【0032】ところが、色素担持の光触媒を用いた第1
実施例と、色素担持のない光触媒を用いた第2実施例と
も、2V未満という僅かな直流電圧を印加するだけで、
電圧ゼロの場合の水素生成量の約1.3〜3倍の水素を
生成でき、水素生成効率を高めることができた。なお、
水の電気分解であるところから、第1作用極20の側で
の酸素生成効率も同様に高めることができた。
However, the first method using a dye-carrying photocatalyst
In both the embodiment and the second embodiment using the photocatalyst having no dye, only a small DC voltage of less than 2 V is applied.
About 1.3 to 3 times the amount of hydrogen generated when the voltage was zero could be generated, and the hydrogen generation efficiency could be increased. In addition,
Owing to the electrolysis of water, the oxygen generation efficiency on the side of the first working electrode 20 could be similarly increased.

【0033】また、このような効率向上に際して、定直
流電源40を、その印加電圧値の関係から、乾電池等の
簡便な電源とすることができるので、装置構成を簡略化
できる。しかも、色素担持の光触媒を用いた第1実施例
では、光源をタングステンランプ44や蛍光灯、或いは
太陽光とすることができるので、この点からも構成の簡
略化を図ることができる。
In order to improve the efficiency, the constant DC power supply 40 can be a simple power supply such as a dry battery in view of the applied voltage value, so that the device configuration can be simplified. Moreover, in the first embodiment using the dye-carrying photocatalyst, the light source can be a tungsten lamp 44, a fluorescent lamp, or sunlight, so that the configuration can be simplified from this point as well.

【0034】なお、電圧が2Vとなると光照射の有無に
拘わらずほぼ同じ水素生成量となるのは、この電圧(2
V)では、第1作用極20での酸素生成が電圧印加に伴
う水の電気分解自体により起きて、その生成酸素が第1
作用極20の光触媒電極膜23への光の到達を妨げ、電
極膜での光触媒活性の影響を無視できるものとなると考
えられる。
It is to be noted that when the voltage becomes 2 V, almost the same amount of hydrogen is produced regardless of the presence or absence of light irradiation.
In V), the oxygen generation at the first working electrode 20 is caused by the electrolysis of water accompanying the voltage application, and the generated oxygen is converted to the first working electrode 20.
It is considered that the arrival of light at the working electrode 20 to the photocatalytic electrode film 23 is prevented, and the effect of photocatalytic activity on the electrode film can be ignored.

【0035】上記のようにして生成した水素および酸素
は、図示しない採集管を得てそれぞれのガス貯留部に集
められ、その後の加圧等を経て、ボンベ内に加圧ガスと
して保管される。こうして得られたガス、例えば水素ガ
スは、水素を燃料ガスとする燃料電池発電装置や、燃料
電池自動車に用いるようにすることができる。
The hydrogen and oxygen generated as described above are collected in respective gas reservoirs by obtaining a collecting tube (not shown), and are stored as pressurized gas in a cylinder through subsequent pressurization and the like. The gas thus obtained, for example, hydrogen gas, can be used for a fuel cell power generation device using hydrogen as a fuel gas or a fuel cell vehicle.

【0036】以上本発明の実施例について説明したが、
本発明は上記の実施例や実施形態になんら限定されるも
のではなく、本発明の要旨を逸脱しない範囲において種
々なる態様で実施し得ることは勿論である。
The embodiments of the present invention have been described above.
The present invention is not limited to the above-described examples and embodiments at all, and it goes without saying that the present invention can be implemented in various modes without departing from the gist of the present invention.

【0037】例えば、上記実施例では、反応槽12に水
を満たした場合について説明したが、反応槽12にアル
コールを満たしたり、水やアルコールを溶媒とする電解
質溶液を満たして、これら水溶液から、第1、第2の作
用極間の電圧印加、光照射を経て、水素と酸素、或いは
水素と二酸化炭素を生成するようにもできる。
For example, in the above-described embodiment, the case where the reaction tank 12 is filled with water is described. However, the reaction tank 12 is filled with alcohol or an electrolyte solution using water or alcohol as a solvent. Through application of a voltage between the first and second working electrodes and light irradiation, hydrogen and oxygen or hydrogen and carbon dioxide can be generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の水素生成装置10の模式構成図で
ある。
FIG. 1 is a schematic configuration diagram of a hydrogen generator 10 according to a first embodiment.

【図2】定直流電源40による印加電圧値(直流電圧
値)と水素発生量の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between an applied voltage value (DC voltage value) by a constant DC power supply 40 and an amount of generated hydrogen.

【符号の説明】[Explanation of symbols]

10…水素生成装置 12…反応槽 20…第1作用極 21…ガラス基板 22…透明電極 23…光触媒電極膜 30…第2作用極 31…ガラス基板 32…白金電極 40…定直流電源 41…導電ライン 42…スイッチ 44…タングステンランプ 44…紫外線ランプ 46…制御装置 DESCRIPTION OF SYMBOLS 10 ... Hydrogen generator 12 ... Reaction tank 20 ... First working electrode 21 ... Glass substrate 22 ... Transparent electrode 23 ... Photocatalytic electrode film 30 ... Second working electrode 31 ... Glass substrate 32 ... Platinum electrode 40 ... Constant DC power supply 41 ... Conduction Line 42 switch 44 tungsten lamp 44 ultraviolet lamp 46 control device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25B 9/00 C25B 11/08 Z 11/08 11/10 B 11/10 9/00 A Fターム(参考) 4G069 AA03 BA04A BA04B BA14A BA14B BA48A BB04A BC35A BC54A BC60A CC40 EA07 4K011 AA20 AA25 AA26 AA32 CA04 DA01 DA10 4K021 AA01 BA02 BA06 DA02 DA09 DA13 DC03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C25B 9/00 C25B 11/08 Z 11/08 11/10 B 11/10 9/00 A F term (Reference) 4G069 AA03 BA04A BA04B BA14A BA14B BA48A BB04A BC35A BC54A BC60A CC40 EA07 4K011 AA20 AA25 AA26 AA32 CA04 DA01 DA10 4K021 AA01 BA02 BA06 DA02 DA09 DA13 DC03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水或いはアルコールもしくはこれらを溶
媒とする電解質溶液のいずれかから水素を生成する方法
であって、 光の照射を受けると正孔と電子を生成する光触媒活性を
呈する光触媒の膜が電極膜として形成された第1作用極
と、電極触媒作用を果たす電極材料の膜が電極膜として
形成された第2作用極とを、前記水或いは前記電解質溶
液中に浸漬された状態とする工程Aと、 前記第1作用極の電極膜に、前記光触媒活性の励起可能
な光を照射すると共に、前記第1と第2の作用極の電極
膜間に、前記第1作用極の側をプラス側にして直流電圧
を印加する工程Bとを備え、 前記第2作用極の電極膜で水素を生成することを特徴と
する水素生成方法。
1. A method for producing hydrogen from either water or an alcohol or an electrolyte solution using these as a solvent, wherein a film of a photocatalyst exhibiting photocatalytic activity of generating holes and electrons when irradiated with light is provided. A step of immersing the first working electrode formed as an electrode film and the second working electrode formed of an electrode film having an electrode material that performs electrode catalysis in the water or the electrolyte solution; A, and irradiating the electrode film of the first working electrode with light capable of exciting the photocatalytic activity, and adding the first working electrode side between the electrode films of the first and second working electrodes. And a step B of applying a DC voltage to the second working electrode, wherein hydrogen is generated by the electrode film of the second working electrode.
【請求項2】 請求項1記載の水素生成方法であって、 前記工程Bは、2V未満の直流電圧を印加する、水素生
成方法。
2. The hydrogen generation method according to claim 1, wherein the step B applies a DC voltage of less than 2V.
【請求項3】 請求項1または請求項2記載の水素生成
方法であって、 前記第1作用極の電極膜は、可視光の照射を受けると光
のエネルギを吸収する色素を担持した前記光触媒の膜で
形成され、前記色素は、前記光触媒が呈する最低空軌道
(LUMO)エネルギ準位よりも低い最低空軌道(LU
MO)エネルギ準位を有するものとされ、前記工程B
は、前記光触媒活性の励起可能な光に替えて、可視光を
前記第1作用極に照射する、水素生成方法。
3. The hydrogen generating method according to claim 1, wherein the electrode film of the first working electrode carries a dye that absorbs light energy when irradiated with visible light. And the dye is formed in the lowest unoccupied orbit (LUMO) lower than the lowest unoccupied orbit (LUMO) energy level exhibited by the photocatalyst.
MO) has an energy level, and the step B
Is a method for generating hydrogen, which comprises irradiating the first working electrode with visible light instead of light capable of exciting the photocatalytic activity.
【請求項4】 請求項3記載の水素生成方法であって、 前記色素は、ビピリジン金属錯体、金属ポルフィリン、
金属フタロシアニン、或いはこれらの誘導体の少なくと
も一つである、水素生成方法。
4. The method for producing hydrogen according to claim 3, wherein the dye is a bipyridine metal complex, a metal porphyrin,
A method for producing hydrogen, which is at least one of a metal phthalocyanine and a derivative thereof.
【請求項5】 水或いはアルコールもしくはこれらを溶
媒とする電解質溶液のいずれかから水素を生成する装置
であって、 光の照射を受けると正孔と電子を生成する光触媒活性を
呈する光触媒の膜が電極膜として形成された第1作用極
と、電極触媒作用を果たす電極材料の膜が電極膜として
形成された第2作用極とを、前記水或いは前記電解質溶
液中に浸漬された状態で備える電極反応槽と、 前記第1作用極の電極膜に、前記光触媒活性の励起可能
な光を照射する光照射手段と、 該光照射手段による光照射の実行の間に、前記第1と第
2の作用極の電極膜間に、前記第1作用極の側をプラス
側にして直流電圧を印加する電圧印加手段とを備え、 前記第2作用極の電極膜で水素を生成することを特徴と
する水素生成装置。
5. An apparatus for generating hydrogen from either water or an alcohol or an electrolyte solution using these as a solvent, wherein a film of a photocatalyst having photocatalytic activity of generating holes and electrons when irradiated with light is provided. An electrode comprising a first working electrode formed as an electrode film and a second working electrode formed as an electrode film with a film of an electrode material that performs an electrode catalysis in a state immersed in the water or the electrolyte solution. A reaction vessel, light irradiation means for irradiating the electrode film of the first working electrode with light capable of exciting the photocatalytic activity, and between the execution of light irradiation by the light irradiation means, Voltage applying means for applying a DC voltage with the first working electrode side being a plus side between the electrode films of the working electrode, wherein hydrogen is generated by the electrode film of the second working electrode. Hydrogen generator.
【請求項6】 請求項5記載の水素生成装置であって、 前記電圧印加手段は、2V未満の直流電圧を印加する、
水素生成方法。
6. The hydrogen generator according to claim 5, wherein the voltage applying unit applies a DC voltage of less than 2V.
Hydrogen generation method.
【請求項7】 請求項4または請求項5記載の水素生成
装置であって、 前記第1作用極の電極膜は、可視光の照射を受けると光
のエネルギを吸収する色素を担持した前記光触媒の膜で
形成され、前記色素は、前記光触媒が呈する最低空軌道
(LUMO)エネルギ準位よりも低い最低空軌道(LU
MO)エネルギ準位を有するものとされ、 前記電圧印加手段は、前記光触媒活性の励起可能な光に
替えて、可視光を前記第1作用極に照射する、水素生成
装置。
7. The hydrogen generating apparatus according to claim 4, wherein the electrode film of the first working electrode carries a dye that absorbs light energy when irradiated with visible light. And the dye is formed in the lowest unoccupied orbit (LUMO) lower than the lowest unoccupied orbit (LUMO) energy level exhibited by the photocatalyst.
MO) The hydrogen generating apparatus, wherein the voltage applying means irradiates the first working electrode with visible light instead of light capable of exciting the photocatalytic activity.
【請求項8】 請求項7記載の水素生成装置であって、 前記色素は、ビピリジン金属錯体、金属ポルフィリン、
金属フタロシアニン、或いはこれらの誘導体の少なくと
も一つである、水素生成装置。
8. The hydrogen generator according to claim 7, wherein the dye is a bipyridine metal complex, a metal porphyrin,
A hydrogen generator, which is at least one of a metal phthalocyanine and a derivative thereof.
JP2001168418A 2001-06-04 2001-06-04 Production method for hydrogen and its apparatus Pending JP2002356301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168418A JP2002356301A (en) 2001-06-04 2001-06-04 Production method for hydrogen and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168418A JP2002356301A (en) 2001-06-04 2001-06-04 Production method for hydrogen and its apparatus

Publications (1)

Publication Number Publication Date
JP2002356301A true JP2002356301A (en) 2002-12-13

Family

ID=19010651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168418A Pending JP2002356301A (en) 2001-06-04 2001-06-04 Production method for hydrogen and its apparatus

Country Status (1)

Country Link
JP (1) JP2002356301A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082801A1 (en) * 2005-02-02 2006-08-10 Japan Science And Technology Agency Process for producing gas, process for producing acidic water and alkaline water, and apparatus for producing the same
JP2006264992A (en) * 2005-03-22 2006-10-05 Taiyoko Kenkyusho:Kk Hydrogen production apparatus utilizing condensation of sunlight
KR100699556B1 (en) 2005-10-12 2007-03-26 한국에너지기술연구원 The equipment for producing hydrogen gas by using photocatalyst and biocatalyst
JP2007524762A (en) * 2004-02-18 2007-08-30 ゼネラル・モーターズ・コーポレーション Method and apparatus for hydrogen generation
JP2009219958A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Oxidative decomposition method using photocatalyst and water purification apparatus
JP2010168608A (en) * 2009-01-21 2010-08-05 Panasonic Corp Hydrogen production apparatus, hydrogen production method using the same and energy system
JP2011200748A (en) * 2010-03-24 2011-10-13 National Institute Of Advanced Industrial Science & Technology Catalyst for electrochemical oxidation of alcohol
JP5824363B2 (en) * 2009-10-21 2015-11-25 IFTL−Solar株式会社 Photoelectrode material and photovoltaic cell material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524762A (en) * 2004-02-18 2007-08-30 ゼネラル・モーターズ・コーポレーション Method and apparatus for hydrogen generation
WO2006082801A1 (en) * 2005-02-02 2006-08-10 Japan Science And Technology Agency Process for producing gas, process for producing acidic water and alkaline water, and apparatus for producing the same
JPWO2006082801A1 (en) * 2005-02-02 2008-08-07 独立行政法人科学技術振興機構 Gas production method, acidic water and alkaline water production method, and production apparatus thereof
JP2006264992A (en) * 2005-03-22 2006-10-05 Taiyoko Kenkyusho:Kk Hydrogen production apparatus utilizing condensation of sunlight
KR100699556B1 (en) 2005-10-12 2007-03-26 한국에너지기술연구원 The equipment for producing hydrogen gas by using photocatalyst and biocatalyst
JP2009219958A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Oxidative decomposition method using photocatalyst and water purification apparatus
JP2010168608A (en) * 2009-01-21 2010-08-05 Panasonic Corp Hydrogen production apparatus, hydrogen production method using the same and energy system
JP5824363B2 (en) * 2009-10-21 2015-11-25 IFTL−Solar株式会社 Photoelectrode material and photovoltaic cell material
JP2011200748A (en) * 2010-03-24 2011-10-13 National Institute Of Advanced Industrial Science & Technology Catalyst for electrochemical oxidation of alcohol

Similar Documents

Publication Publication Date Title
Fuku et al. Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias
Xu et al. Water splitting dye-sensitized solar cells
US7476607B2 (en) Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode
Kecsenovity et al. Decoration of ultra-long carbon nanotubes with Cu 2 O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO 2 reduction
Yang et al. Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination
Sun et al. N-doped TiO2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities
JP6774165B2 (en) Photochemical reaction device, electrode for oxidation reaction and electrode for reduction reaction used for it
JP5905839B2 (en) Hydroxylation catalyst
RU2424603C2 (en) Photocatalytic electrode and fuel element
Marschall et al. Composite proton-conducting polymer membranes for clean hydrogen production with solar light in a simple photoelectrochemical compartment cell
JP2007070675A (en) Semiconductor electrode and energy conversion system using the same
CN112844421B (en) MoS (MoS) enhanced by utilizing plasma2Method for electrocatalytic and/or photoelectrocatalytic properties
Tang et al. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity
JP2002356301A (en) Production method for hydrogen and its apparatus
CN102534725A (en) Method for preparing Ag2S-doped TiO2 nanotube electrode
Zeng et al. Wide potential CO2‐to‐CO electroreduction relies on pyridinic‐N/Ni–Nx sites and its Zn–CO2 battery application
CN107841763B (en) A kind of optoelectronic pole and preparation method thereof based on the regulation of surface hydrogen-oxygen shell
JP2017125242A (en) Electrode for reductive reaction and reaction device prepared therewith
JP4812953B2 (en) Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell
Kiyonaga et al. Au nanoparticle electrocatalysis in a photoelectrochemical solar cell using CdS quantum dot-sensitized TiO2 photoelectrodes
Antoniadou et al. Solar energy conversion using photo-fuel-cells
Tezcan et al. The investigation of CdS-quantum-dot-sensitized Ag-deposited TiO 2 NRAs in photoelectrochemical hydrogen production
Grinberg et al. Photoelectrocatalytical Kolbe synthesis on thin film electrode of n-TiO 2
García et al. Mild production of γ-valerolactone, a biofuel precursor, through the catalytic hydrogenation of a biomass derivative using hydrogen produced by photoelectrochemical water splitting
Li et al. Surface characterization and photocatalytic reactivity of innovative Ti/TiO 2 and Ti/Pt− TiO 2 mesh photoelectrodes