JP2002353527A - Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby - Google Patents

Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby

Info

Publication number
JP2002353527A
JP2002353527A JP2001159958A JP2001159958A JP2002353527A JP 2002353527 A JP2002353527 A JP 2002353527A JP 2001159958 A JP2001159958 A JP 2001159958A JP 2001159958 A JP2001159958 A JP 2001159958A JP 2002353527 A JP2002353527 A JP 2002353527A
Authority
JP
Japan
Prior art keywords
sintering
sintered body
temperature
thermoelectric material
skutterudite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001159958A
Other languages
Japanese (ja)
Inventor
Reiko Hara
麗子 原
Shinichiro Inoue
真一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2001159958A priority Critical patent/JP2002353527A/en
Publication of JP2002353527A publication Critical patent/JP2002353527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric material comprising a skutterudites compound which is acquired by baking a material, to provide it making it larger in size without damages, and to provide a manufacturing method for it which has a thermoelectric performance for a practical use. SOLUTION: Materials are mixed by a mechanical alloying method for turning a part of it into an alloy, and then baking it the first time; this is crushed and mixed for finer particles, which is baked second time; and these are repeated, as required, to manufacture a thermoelectric material whose diameter exceeds 20 mm. At baking, the temperature is raised to a prescribed hot region, which is lower than the baking temperature, when baking is started, then the alloy is gradually raised to the baking temperature range, and it is gradually cooled after completion of baking.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電発電や熱電冷
却に適用される熱電材料とその製造方法に関し、特にC
oSb3 を主成分とするスクッテルダイト型の結晶構造
を有する化合物からなる熱電材料とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric material applied to thermoelectric power generation and thermoelectric cooling and a method for producing the same, and more particularly, to C
The present invention relates to a thermoelectric material comprising a compound having a skutterudite-type crystal structure containing oSb 3 as a main component and a method for producing the same.

【0002】[0002]

【従来の技術】熱電材料は、導体の一端を加熱すると高
温のキャリヤが低温側に拡散して、導体両端に熱起電力
が発生するゼーベック効果により、熱を直接電気に変換
して発電させ、或いはペルチェ効果による熱電冷却に用
いることができる材料であって、高温域に適用されるS
iGe系、中温域に適用されるGeTe系、ZnSb
系、低温域に適用されるBiTe系、BiSb系などか
らなる熱電半導体材料が知られているが、近年、更に熱
電変換効率の高いスクッテルダイト型結晶構造を有する
様々な化合物からなる熱電材料が開発されている。
2. Description of the Related Art Thermoelectric materials generate heat by directly converting heat to electricity by the Seebeck effect in which a high-temperature carrier diffuses to a low-temperature side when one end of a conductor is heated and a thermoelectromotive force is generated at both ends of the conductor. Alternatively, a material that can be used for thermoelectric cooling by the Peltier effect,
iGe system, GeTe system applied to medium temperature range, ZnSb
Semiconductor materials such as BiTe, BiSb, etc., which are applied to low temperature regions, are known. In recent years, thermoelectric materials comprising various compounds having a skutterudite type crystal structure having higher thermoelectric conversion efficiency have been developed. Is being developed.

【0003】このスクッテルダイト系化合物からなる熱
電材料として、例えば特開平11−40860号公報に
挙げられているような、CoSb3 、RhSb3 、Ir
Sb 3 などの二元系、Co1-X Rhx Iry Sb3 らな
る擬四元系、Co1-x x Sb3 からなる擬三元系(M
はPd,Rh,Ruの一種以上で、x=0.001〜
0.2)からなる熱電材料が開示されている。
The heat generated from this skutterudite compound
For example, Japanese Patent Application Laid-Open No. 11-40860 discloses
As mentioned, CoSbThree, RhSbThree, Ir
Sb ThreeBinary system such as Co1-XRhxIrySbThreeLana
Pseudo quaternary system, Co1-xMxSbThreePseudo-ternary system (M
Is at least one of Pd, Rh, and Ru, and x = 0.001 to
0.2) is disclosed.

【0004】更に同公報によれば、その熱電材料の製造
方法として、原料を粉砕して平均粒径1μm以下の粉末
にし、この粉末を温度300〜700℃、圧力2MPa
以上で20時間以内加圧焼結するとしている。ここで、
多結晶体のスクッテルダイト系熱電材料の熱伝導率は、
その平均結晶粒径をきわめて小さくすることにより、熱
伝導率が大幅に低下することを発見して、平均結晶粒径
を1μm以下まで微細化している。
Further, according to the publication, as a method for producing the thermoelectric material, a raw material is pulverized into powder having an average particle diameter of 1 μm or less, and the powder is heated to a temperature of 300 to 700 ° C. and a pressure of 2 MPa.
The pressure sintering is performed within 20 hours. here,
The thermal conductivity of a polycrystalline skutterudite-based thermoelectric material is
By finding that the average crystal grain size is extremely small, the thermal conductivity is greatly reduced, and the average crystal grain size is reduced to 1 μm or less.

【0005】そのため、原料を平均粒径1μm以下の粉
末に粉砕し、同時に焼結時の結晶粒の成長を抑制する。
すなわち、焼結体の製造を温度300〜700℃、圧力
2MPa以上で20時間以内加圧焼結することによって
行なっている。焼結温度の上限を700℃とするのは、
これを超えると結晶粒の成長速度が大きくなって、焼結
体の平均結晶粒径を1μm以下にするのが困難になるた
めでありた、焼結温度の下限を300℃、圧力の下限を
2MPaとするのは、そのいずれかがこれらの値未満で
は、焼結体の機械的強度が十分大きくならないためであ
る。さらに、加圧焼結の時間の上限を20時間とするの
は、これを超えても焼結体の強度はあまり向上せず、逆
に結晶粒が成長するおそれがあって好ましくないためで
あるとしている。
[0005] Therefore, the raw material is pulverized into powder having an average particle diameter of 1 µm or less, and at the same time, the growth of crystal grains during sintering is suppressed.
That is, the sintered body is manufactured by pressure sintering at a temperature of 300 to 700 ° C. and a pressure of 2 MPa or more within 20 hours. The upper limit of the sintering temperature is set to 700 ° C.
If it exceeds this, the growth rate of the crystal grains increases, and it becomes difficult to reduce the average crystal grain size of the sintered body to 1 μm or less. The reason for setting the pressure to 2 MPa is that if any of them is less than these values, the mechanical strength of the sintered body will not be sufficiently high. Furthermore, the reason why the upper limit of the time for the pressure sintering is set to 20 hours is that if it exceeds this, the strength of the sintered body does not improve much, and conversely, crystal grains may grow, which is not preferable. And

【0006】そして、好ましい焼結温度と焼結時間と
は、温度400〜500℃では10〜20時間、温度5
00〜600℃では2〜10時間が好ましく、原料の平
均粒径を1μm以下の粉末に粉砕するには、メカニカル
アロイング法を採用するとともに、前記加圧焼結をプラ
ズマ放電焼結法により行なうことが望ましいともしてい
る。
The preferred sintering temperature and sintering time are 10 to 20 hours at a temperature of 400 to 500 ° C. and 5
A temperature of 00 to 600 ° C. is preferably 2 to 10 hours. To pulverize the raw material into powder having an average particle diameter of 1 μm or less, a mechanical alloying method is employed and the pressure sintering is performed by a plasma discharge sintering method. It is also desirable.

【0007】同公報には、その具体的な製造方法が記載
されている。その実施例3の記載によれば、原料粉末の
混合と粉砕にメカニカルアロイングを使うと共に、焼結
はプラズマ放電焼結法を採用しており、メカニカルアロ
イングは原料をAr雰囲気中で回転数200rpm、3
0時間かけて処理し、プラズマ放電焼結法による焼結条
件は焼結温度を500℃、焼結圧力30MPa、焼結時
間0.25(時間)としている。因みに、通常のホット
プレスでは、焼結圧力を30MPaとして、加圧温度を
550℃で10時間の焼結時間が必要であったとしてい
る。
[0007] The publication discloses a specific manufacturing method. According to the description of Example 3, mechanical alloying is used for mixing and pulverizing the raw material powder, and plasma discharge sintering is used for sintering. 200 rpm, 3
The treatment is performed for 0 hours, and the sintering conditions by the plasma discharge sintering method are as follows: sintering temperature is 500 ° C., sintering pressure is 30 MPa, and sintering time is 0.25 (hour). Incidentally, it is stated that in a normal hot press, a sintering pressure of 30 MPa, a pressing temperature of 550 ° C., and a sintering time of 10 hours are required.

【0008】[0008]

【発明が解決しようとする課題】一般に、この種の熱電
材料は、原料粉末を、例えば上述の公報に記載された圧
力及び温度条件にて高圧で加圧すると共に長時間高温で
加熱して、一次製品である、例えば厚さ3mm、20m
m径の円板状の焼結体として製造されたのち、これを例
えば3mm×7mmの角柱状チップに切断して熱電素子
材料を得ている。
Generally, this kind of thermoelectric material is obtained by pressing a raw material powder at a high pressure under the pressure and temperature conditions described in the above-mentioned publications and heating it at a high temperature for a long time to obtain a primary powder. Product, eg 3mm, 20m thick
After being manufactured as a disc-shaped sintered body having a diameter of m, this is cut into, for example, 3 mm × 7 mm prismatic chips to obtain a thermoelectric element material.

【0009】一方、前記熱電材料と電極材料とを接合一
体化した発電モジュールを製造するには、焼結体をチッ
プ状に切断して得られる熱電素子を極めて多数の必要と
する。現状では、この熱電材料の製造期間は略1週間が
かかるとされる。そのため、可能な限り大きな径を有す
る熱電材料である前記焼結体が得られることが、発電モ
ジュールの生産効率を向上させるとともに、歩留りが向
上することからも望ましい。
On the other hand, in order to manufacture a power generation module in which the thermoelectric material and the electrode material are joined and integrated, an extremely large number of thermoelectric elements obtained by cutting a sintered body into chips are required. At present, it takes about one week to manufacture this thermoelectric material. Therefore, it is desirable to obtain the sintered body, which is a thermoelectric material having a diameter as large as possible, from the viewpoint of improving the production efficiency of the power generation module and improving the yield.

【0010】しかるに、前記焼結体製造時の焼結温度を
径方向に均一に分布させることは、その製造装置の密閉
高圧下におかれる構造の点から極めて困難である。も
し、径方向における温度分布に大きな差があると、中心
部分と周縁部分とでは焼結時の化合物の組成分布が不均
一となり、熱応力にも大きな差が生じ、焼結後に大きな
クラックが発生し破損してしまい、歩留りが大きく低下
するばかりでなく、製品化することも到底不可能であ
る。
However, it is extremely difficult to uniformly distribute the sintering temperature during the manufacture of the sintered body in the radial direction in view of the structure of the manufacturing apparatus which is placed under a high pressure in a closed state. If there is a large difference in the temperature distribution in the radial direction, the composition distribution of the compound during sintering becomes uneven between the central part and the peripheral part, and a large difference occurs in thermal stress, and a large crack occurs after sintering. Not only will the yield be greatly reduced, but it will be impossible to commercialize it.

【0011】そのため、上記公報に開示された焼結体
も、例えばプラズマ放電焼結が15分であるという極め
て短時間で焼結を完了させており、焼結体の中心部と周
縁部との間の温度差の影響を少ないと考えられることか
ら、明示はされていないが、従来と同様に得られる焼結
体も20mm径が上限であると考えられる。
[0011] Therefore, the sintered body disclosed in the above-mentioned publication also completes sintering in a very short time, for example, plasma discharge sintering is 15 minutes. Although it is considered that the influence of the temperature difference between them is small, the sintered body obtained as in the conventional case is considered to have an upper limit of 20 mm in diameter, though not explicitly stated.

【0012】また、焼結時における上記温度差は、焼結
体の中心部と周縁部とでは、例えば合金化或いは化合す
べき原子が周辺部において単独で残存することが多くな
り、或いは周縁部の気孔率が中心部よりも大きくなり、
熱電材料としての物性値が大きく異なるばかりでなく、
試料全体の密度の低下、周縁部の脆性が高くなるという
不具合を発生させる。
The temperature difference during sintering may be caused by the fact that, for example, atoms to be alloyed or combined often remain alone in the peripheral portion between the central portion and the peripheral portion of the sintered body. Porosity is greater than in the center,
Not only are the physical properties of thermoelectric materials significantly different,
Inconveniences such as a decrease in the density of the entire sample and an increase in brittleness of the peripheral portion occur.

【0013】本発明の目的は、焼結体からなる熱電材料
を切断して得られる熱電素子の歩留りの大幅な向上を図
るとともに、均質で従来の熱電素子に劣らない性能指数
をもつ大型の熱電材料を得ることにある。
An object of the present invention is to significantly improve the yield of a thermoelectric element obtained by cutting a thermoelectric material made of a sintered body, and at the same time, to provide a large thermoelectric element having a uniform and a performance index not inferior to that of a conventional thermoelectric element. To get the material.

【0014】[0014]

【課題を解決するための手段及び作用効果】本発明者等
は、上記目的を達成するには、まず熱電材料である焼結
体の焼結径を大きくすることにあると考えた。しかしな
がら、単にその焼結径を大きくするだけでは、上述のご
とく、かえってクラックによる歩留りの大幅な低下を招
くことになる。そのクラックが発生する大きな要因の一
つに焼結時の焼結中心から周縁にかけての制御が不可能
な焼結温度差があるとの認識に立って、焼結時における
加熱量の分布を中心から周縁にかけて大きくしたり、或
いはその温度分布を少なくするための可能な限りの制御
を試みた。その結果、焼結装置の大型化を招き、実用化
に馴染まないことを知った。
Means for Solving the Problems and Functions and Effects The inventors of the present invention considered that in order to achieve the above object, it was first to increase the sintered diameter of a sintered body as a thermoelectric material. However, simply increasing the sintering diameter, as described above, rather causes a large decrease in yield due to cracks. Recognizing that one of the major causes of the cracks is the sintering temperature difference that cannot be controlled from the sintering center to the periphery during sintering, we focus on the distribution of heating amount during sintering. Attempts were made to control as much as possible to increase the temperature from the edge to the periphery or to reduce the temperature distribution. As a result, I learned that the sintering equipment was enlarged and it was not suitable for practical use.

【0015】次に、上記焼結温度の分布が不均一である
以外に、焼結体の径方向に分布するスクッテルダイト型
の結晶構造を有する様々な化合物相や単独原子相の分布
は、物性面ばかりでなくクラックの発生とも無関係では
ないとの推測に立って、様々な実験を重ねたところ、上
記相分布、特に単独原子相の存在は物性以外にも強度分
布を不均一にするとの結論に達した。
Next, in addition to the non-uniform distribution of the sintering temperature, the distribution of various compound phases having a skutterudite type crystal structure and a single atomic phase distributed in the radial direction of the sintered body are as follows: Based on the presumption that it is not unrelated to not only physical properties but also the occurrence of cracks, various experiments were repeated, and it was found that the above phase distribution, especially the presence of a single atomic phase, makes the intensity distribution non-uniform in addition to physical properties. The conclusion has been reached.

【0016】請求項1に係る発明は、その結果創出され
たものであり、スクッテルダイト型結晶構造を有するA
3 型化合物を含む熱電材料の製造方法であって、原料
粉末をメカニカルアロイング法により混合し一次合金化
すること、この混合物を高圧・高温下で1回目の焼結を
行うこと、この焼結体を粉砕して混合すること、及びそ
の混合物を高圧・高温下で少なくとも2回目の焼結を行
うことを含んでなることを特徴とするスクッテルダイト
系熱電材料の製造方法にある。
The invention according to claim 1 has been created as a result and has an A-type structure having a skutterudite-type crystal structure.
A method of manufacturing a thermoelectric material containing B 3 type compound, mixing with the primary alloy by mechanical alloying method raw material powder, by performing the first sintering the mixture under high pressure and high temperature, the burnt A method for producing a skutterudite-based thermoelectric material, comprising pulverizing and mixing the compact, and performing at least a second sintering of the mixture under high pressure and high temperature.

【0017】上記AB3 型化合物とは、AB3 、A1-x
x 3 、AB3-Z Z 、A1-x x 3-Z Z の一般
式で表される化合物であって、元素AはCo,Rh,I
rのうちの一種以上、BはP,As,Sbのうちの一種
以上、Mは元素Aと置換する元素でx=0〜0.2、元
素Cはスクッテルダイト型結晶構造内に侵入して置換す
る元素でz=0〜0.3である。元素Aと置換する元素
MはPd,Pt,PdPtのうちのいずれかであり、C
はNi,Te,Pdのいずれかである。
ABThreeType compound is ABThree, A1-x
MxBThree, AB3-ZCZ, A1-xM xB3-ZCZGeneral
A compound represented by the formula, wherein the element A is Co, Rh, I
one or more of r, B is one of P, As, Sb
As described above, M is an element that substitutes for the element A, x = 0 to 0.2,
Element C penetrates and replaces the skutterudite-type crystal structure
And z = 0 to 0.3. Element that replaces element A
M is one of Pd, Pt, PdPt, and C
Is any of Ni, Te, and Pd.

【0018】ここで、本発明にあって最も重要な点は、
最終的な焼結体を製造するために、少なくとも1回目の
混合・粉砕をメカニカルアロイング法により行い、これ
を加圧・加熱して得られる焼結体を再度粉砕して混合
し、改めて加圧・加熱して焼結体を得ることにある。本
発明にあっては、更に2回目の焼結で製品とせずに、同
様の操作を繰り返して3回目以上の焼結を行って最終的
な製品を得るようにしてもよい。
Here, the most important point in the present invention is as follows.
In order to produce a final sintered body, at least the first mixing and pulverization are performed by a mechanical alloying method, and the resulting sintered body is pressurized and heated, pulverized again, mixed, and added again. It is to obtain a sintered body by applying pressure and heating. In the present invention, a final product may be obtained by repeating the same operation and performing the sintering for the third or more times, without forming the product in the second sintering.

【0019】なお、2回目以降の焼結体の粉砕・混合は
必ずしも微粉状に粉砕して、その一部を合金化する必要
はなく、したがって、回転翼をもつ通常のミキサーなど
による粉砕と混合或いは遊星ボールミルを用いて短時間
で粉砕・混合を行えばよい。
In the second and subsequent grinding and mixing of the sintered body, it is not always necessary to pulverize the powder into a fine powder and partly alloy it. Alternatively, grinding and mixing may be performed in a short time using a planetary ball mill.

【0020】このように、1回目の焼結体を粉砕すると
共に、同粉砕物を原料として更に少なくとも1回以上の
焼結を行うことにより、採取的な焼結体における径方向
の成分相分布が均一化されるばかりなく、単独に存在し
た原子相までが化合物化して消滅し、物性的にも優れた
ものが得られる。更に、驚くべきことには、例えば従
来、限度とされていた20mm径の焼結体の2倍以上の
径をもつ50mm径の大径の焼結体をクラックを発生さ
せることなく、高密度で且つ高性能な熱電材料を製造す
ることが可能となったことである。
As described above, the first sintered body is pulverized, and at least one more sintering is performed using the pulverized material as a raw material, so that the radial component phase distribution in the collected sintered body is obtained. Is not only homogenized, but also a single atomic phase is converted into a compound and disappears, so that a material having excellent physical properties is obtained. Furthermore, surprisingly, for example, a large-diameter sintered body having a diameter of 50 mm having a diameter twice or more that of a sintered body having a diameter of 20 mm, which has been conventionally regarded as a limit, is formed at a high density without generating cracks. In addition, a high-performance thermoelectric material can be manufactured.

【0021】本発明にあって、上記焼結にはホットプレ
ス法とプラズマ焼結法のいずれも採用することができ
る。例えば、まず原料粉末をホットプレスにより焼結体
を得て、これを粉砕したのちに、その粉末材料を使って
プラズマ焼結法によって最終製品を製造する。この逆で
あってもよい。或いは、粉砕を挟んでホットプレス法に
よる2回以上の焼結を行うことも可能であり、更には粉
砕を挟んでプラズマ焼結法による2回以上の焼結を行う
こともできる。
In the present invention, any of a hot press method and a plasma sintering method can be employed for the sintering. For example, first, a sintered body is obtained by hot pressing a raw material powder, and after pulverizing the sintered body, a final product is manufactured by using the powder material by a plasma sintering method. The reverse is also possible. Alternatively, it is possible to perform sintering two or more times by a hot press method with pulverization in between, and it is also possible to perform sintering two or more times by plasma sintering with pulverization in between.

【0022】請求項2に係る発明は、前記焼結をプラズ
マ放電焼結法により行うことを特徴とする請求項3記載
のスクッテルダイト系熱電材料の製造方法にある。上記
公報にも記載されているように、この種の代表的な焼結
手法としては、ホットプレス法とプラズマ放電焼結法が
ある。プラズマ放電焼結法は、ホットプレス法と比較す
ると、短時間に焼結処理が行えることと、得られる焼結
体の気孔率が小さく緻密性に優れることから、本発明の
ごとく、プラズマ放電焼結法を採用することが好まし
い。
According to a second aspect of the present invention, there is provided the method of manufacturing a skutterudite-based thermoelectric material according to the third aspect, wherein the sintering is performed by a plasma discharge sintering method. As described in the above publication, hot press method and plasma discharge sintering method are typical examples of this kind of sintering method. Compared with the hot press method, the plasma discharge sintering method can perform the sintering process in a shorter time and has a small porosity of the obtained sintered body and is excellent in denseness. It is preferable to adopt the conclusion method.

【0023】請求項3に係る発明は、前記焼結時におけ
る加熱温度をと、当初は所定の高温まで急激に昇温させ
たのち、焼結温度に達するまで緩やかに昇温させ、所要
の焼結温度に達したのち、所定の焼結時間を経過させて
焼結処理してから、緩やかに冷却することを含んでなる
ことを特徴としている。
According to a third aspect of the present invention, the heating temperature at the time of sintering is initially increased rapidly to a predetermined high temperature, and then gradually increased until the sintering temperature is reached. After reaching the sintering temperature, a predetermined sintering time elapses, followed by sintering, and then gradual cooling.

【0024】一般に、焼結径が20mm径を超えたと
き、例えば50mm径の焼結体を得ようとして、その中
心部の温度を740℃に設定すると、周縁部の温度は6
00℃程度となり、その差は100℃以上にも達する。
焼結体の中心部と周縁部に、このように大きな温度差が
生じると、例えばCoSb3 を主成分とするスクッテル
ダイト系熱電材料を製造しようとする場合、中心部では
低融点(630℃)であるSb3 が溶融状態にあり、周
縁部では固相に近い状態となる。
In general, when the sintering diameter exceeds 20 mm, if the temperature at the center is set to 740 ° C. in order to obtain a sintered body having a diameter of 50 mm, for example, the temperature at the periphery becomes 6 mm.
It is about 00 ° C, and the difference reaches 100 ° C or more.
When such a large temperature difference occurs between the central portion and the peripheral portion of the sintered body, for example, when manufacturing a skutterudite-based thermoelectric material containing CoSb 3 as a main component, a low melting point (630 ° C.) is required at the central portion. ) Sb 3 is is in the molten state, a state close to a solid phase at the periphery.

【0025】しかも、他の材料についてはともかくとし
て、特にCoSb3 の生成は温度とCo、Sbの成分割
合に厳しく影響されることが知られている。すなわち、
温度条件が623℃〜859℃の範囲内で、且つCo原
子が75%、Sb原子が25%の原子割合にあるとき、
初めてCoSb3 が生成される。従って、前記温度差に
基づく熱拡散と前記生成条件の分布斑とにより、CoS
3 が生成される領域も均一に分布せず、特に中心部と
比較すると周縁部にSb原子が単独で相を形成する割合
が多くなる傾向が強い。
In addition, apart from other materials, it is known that the formation of CoSb 3 is severely affected by the temperature and the proportions of Co and Sb. That is,
When the temperature condition is in the range of 623 ° C. to 859 ° C. and the atomic ratio of Co atom is 75% and Sb atom is 25%,
CoSb 3 is generated for the first time. Therefore, due to the thermal diffusion based on the temperature difference and the distribution unevenness of the generation condition, CoS
The region where b 3 is generated is not evenly distributed, and in particular, compared to the central portion, there is a strong tendency that the ratio of single phase formation of Sb atoms at the peripheral portion increases.

【0026】そこで、本発明では、初期の加熱勾配を大
きくして、例えば短時間で600℃まで上昇させ、次い
で緩かな温度勾配で2時間ほどかけて740℃程度まで
上昇させ、所要の時間を同温度に維持して焼結処理を行
い、3〜8時間かけて徐冷する。このように、従来のご
とく一気に焼結温度まで昇温させて焼結を行ったのちに
急冷させる場合と比較すると、多少は焼結時間が長くな
るものの、径方向の温度分布が緩和されて、周縁部にお
ける緻密度が確保されるとともに、2回以上の粉砕及び
焼結と相まって大径の焼結体が得られるようになる。
Therefore, in the present invention, the initial heating gradient is increased, for example, to 600 ° C. in a short time, and then to 740 ° C. in about 2 hours with a gentle temperature gradient, and the required time is reduced. The sintering process is performed while maintaining the same temperature, and the temperature is gradually cooled for 3 to 8 hours. Thus, compared with the conventional case where the temperature is rapidly raised to the sintering temperature and sintering is performed and then quenched, the sintering time is somewhat longer, but the temperature distribution in the radial direction is relaxed, The denseness in the peripheral portion is ensured, and a large-diameter sintered body can be obtained in combination with pulverization and sintering two or more times.

【0027】請求項4に係る発明は、請求項1〜3のい
ずれかの製造方法により製造されるスクッテルダイト系
熱電材料であって、その最終焼結時の製品形態が、直径
20mmより大きな径をもつ円板状焼結体であることを
特徴とするスクッテルダイト系熱電材料にある。
According to a fourth aspect of the present invention, there is provided a skutterudite-based thermoelectric material produced by the production method according to any one of the first to third aspects, wherein the final sintering product form is larger than 20 mm in diameter. A skutterudite-based thermoelectric material characterized by being a disk-shaped sintered body having a diameter.

【0028】このように、熱電素子の材料であるスクッ
テルダイト系焼結体からなる円板状の熱電材料を、従来
の設備を使って径方向の密度分布が従来の20mm径以
下の焼結体とほぼ同一の径方向の密度分布を有し、しか
もクラックを発生させることなく、従来の上限径である
20mmよりも大きな径をもつ焼結体を得ることが可能
となったため、製品の歩留りが大幅に向上して高生産性
が実現される。
As described above, a disc-shaped thermoelectric material made of a skutterudite-based sintered body, which is a material of a thermoelectric element, is sintered by using conventional equipment with a radial density distribution of 20 mm or less. It is possible to obtain a sintered body having a diameter distribution larger than the conventional upper limit diameter of 20 mm, having substantially the same radial density distribution as the body and without generating cracks. Is greatly improved, and high productivity is realized.

【0029】請求項5に係る発明は、前記焼結体の粉末
に対するX線回折によるSb単体の量が試料の最大ピー
クの1%以下であることを特徴としている。このように
Sb単体の存在が少ない場合には、焼結体の径方向にあ
ってSbが単独で存在しないことを意味しており、この
ことは焼結体中に存在するSbのような不純物が均一に
分散ており、より均一で且つ単相に近い試料ができたこ
とを意味するといえる。その結果、熱電素子としての性
能も密度も高く、この熱電素子を使って製造される熱電
モジュールなどの性能も一段と向上する。
The invention according to claim 5 is characterized in that the amount of Sb alone by X-ray diffraction with respect to the powder of the sintered body is 1% or less of the maximum peak of the sample. When the presence of Sb alone is small, it means that Sb does not exist alone in the radial direction of the sintered body, which means that impurities such as Sb existing in the sintered body are present. Can be said to mean that a more uniform and nearly single-phase sample was obtained. As a result, the performance and density of the thermoelectric element are high, and the performance of a thermoelectric module manufactured using the thermoelectric element is further improved.

【0030】[0030]

【発明の実施形態】以下、本発明の代表的な実施形態で
ある熱電材料の製造方法と同製造方法により得られる熱
電材料を、図面やグラフ使って具体的に説明する。本発
明のAB3 型化合物からなるスクッテルダイト系熱電材
料は、AB3 、A 1-x x 3 、AB3-Z Z 、A1-x
x 3-Z z の一般式で表される化合物を含むもので
ある。ここで、元素AはCo,Rh,Irの単独又はそ
の組合せからなり、BはP,As,Sbの単独又はその
組合せであって、Cはスクッテルダイト型結晶構造内に
侵入して置換する元素でNi,Te,Pdのいずれか、
Mは元素Aと置換する元素Pd,Pt,PdPtのうち
のいずれかであり、xは0〜0.2、zは0〜0.3で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, typical embodiments of the present invention will be described.
A method of manufacturing a thermoelectric material and the heat obtained by the method
The electrical material will be specifically described using drawings and graphs. Departure
Ming ABThreeSkutterudite-based thermoelectric material composed of a tertiary compound
The fee is ABThree, A 1-xMxBThree, AB3-ZCZ, A1-x
MxB3-ZCzIncluding compounds represented by the general formula
is there. Here, the element A is Co, Rh, Ir alone or its element.
B is P, As, or Sb alone or a combination thereof.
A combination wherein C is in the skutterudite-type crystal structure
Any of Ni, Te, Pd
M is one of the elements Pd, Pt, and PdPt that replace the element A.
X is 0 to 0.2, z is 0 to 0.3
is there.

【0031】本実施形態にあっては、AB3 型の代表的
な化合物であるCoSb3 を主成分とするスクッテルダ
イト型結晶構造からなる熱電材料を例示する。原料とし
て、純度99.9985%のCo粉末と99.9999
%の粒状Sbとを秤量し、重量比で86.5:13.5
に調整してメカニカルアロイング法により混合して一部
を合金化した。次いで、分級し平均粒径を38μmに揃
えた。こうして得られた混合粒体を、プラズマ放電焼結
装置を使い、焼結圧力30MPaで、図1に実線で示す
時間(min)/温度(℃)曲線に倣い、原料円板の周
縁温度を制御して1回目の焼結を終了させて、50mm
の大径の焼結体を製造した。参考のため、図1には従来
の同質の熱電原料による20mm径の焼結体を得るとき
の一般的な時間/温度曲線を破線で示している。
In the present embodiment, a thermoelectric material having a skutterudite-type crystal structure containing CoSb 3 as a main component, which is a typical AB 3 type compound, will be exemplified. As raw materials, 99.9985% pure Co powder and 99.9999%
% Of granular Sb and weighed at 86.5: 13.5 by weight.
, And mixed by a mechanical alloying method to partially alloy. Next, the particles were classified and the average particle size was adjusted to 38 μm. Using the plasma discharge sintering apparatus, the thus obtained mixed granules are controlled at a sintering pressure of 30 MPa according to the time (min) / temperature (° C.) curve shown by the solid line in FIG. 1 to control the peripheral temperature of the raw material disc. To finish the first sintering,
Was produced with a large diameter. For reference, FIG. 1 shows a general time / temperature curve by a broken line when obtaining a sintered body having a diameter of 20 mm from a conventional thermoelectric raw material of the same quality.

【0032】同図からも理解できるように、本発明によ
る焼結は焼結開始時に素早く所定の焼結温度の手前の高
温域まで温度を上昇させ、その後、焼結温度域まで緩や
かに昇温させて焼結し、所要の焼結時間の経過後に冷却
を開始する。このときの冷却は、長時間をかけて徐々に
冷却する。これに対して、従来の焼結では、焼結の開始
直後に焼結温度域まで一気に昇温させて焼結を行い、冷
却も短時間で急激に冷却している。
As can be understood from the figure, in the sintering according to the present invention, at the start of sintering, the temperature is quickly raised to a high temperature range just before a predetermined sintering temperature, and then gradually raised to the sintering temperature range. Then, after the required sintering time has elapsed, cooling is started. The cooling at this time is performed gradually over a long time. On the other hand, in the conventional sintering, immediately after the start of sintering, the temperature is raised to a sintering temperature range at a stretch to perform sintering, and the cooling is rapidly cooled in a short time.

【0033】すなわち、本実施形態によるプラズマ放電
焼結法によれば、図1に実線で示すごとく、12分間で
600℃まで急激に昇温させたのち、95分かけて焼結
温度である740℃までゆっくりと加熱してから、同温
度を維持して120分間で焼結させる。この焼結の終了
後の冷却を、3段階の温度勾配をもたせてトータル21
5分をかけて徐々に冷却していく。
That is, according to the plasma discharge sintering method of the present embodiment, as shown by the solid line in FIG. 1, after the temperature is rapidly raised to 600 ° C. in 12 minutes, the sintering temperature is 740 in 95 minutes. C. and slowly sinter for 120 minutes while maintaining the same temperature. Cooling after the completion of this sintering is performed with a total of 21
Cool slowly over 5 minutes.

【0034】焼結開始直後の昇温を短時間(12分間)
で行ったのちに、ある程度の時間(95分間)をかけて
ゆっくりと焼結温度である740℃まで昇温させるの
は、本実施形態による熱電材料の主成分がCoSb3
あることに起因する。CoSb 3 の生成条件は極めて厳
しく、例えばCoとSbの成分割合についてみると、C
oが13.5(重量%)であり、一方のSbが86.5
(重量%)であって、且つその合成温度を623〜85
9℃としたとき初めてCoSb3 が生成され、例えばC
oを19.0(重量%)、Sbを81.0(重量%)と
して、その合成温度が859〜919℃の範囲でCoS
2 などが生成されてしまう。
The temperature rise immediately after the start of sintering is short (12 minutes)
Take some time (95 minutes) after going in
Slowly raise the temperature to 740 ° C, the sintering temperature
Means that the main component of the thermoelectric material according to the present embodiment is CoSbThreeso
Due to being. CoSb ThreeIs extremely strict
For example, looking at the component ratio of Co and Sb,
o is 13.5 (% by weight) and one Sb is 86.5
(% By weight) and the synthesis temperature is 623-85.
CoSb for the first time at 9 ° CThreeIs generated, for example, C
o was 19.0 (% by weight) and Sb was 81.0 (% by weight).
When the synthesis temperature is in the range of 859 to 919 ° C., CoS
bTwoIs generated.

【0035】そのため、本実施形態ではCoとSbの成
分割合を上述のごとく設定し、焼結にあたって短時間で
合成温度に近い600℃の付近まで昇温させ、原料全体
の温度分布を可能な限り均一にすべく、充分な時間をか
けて焼結温度である740℃まで昇温させている。ま
た、焼結が終了したのちの冷却を急激に行うと、特に本
実施形態による大径の焼結体にあっては、その中心部と
周縁部との間に大きな温度差が生じて、径方向に均一な
性能上の分布が得られない。更に、この大きな温度差の
ために中心部と周縁部との間で大きな熱応力が生じ、且
つSbの単独原子が多く存在するようになる。その結
果、焼結体の熱電性能が低いばかりでなく、クラックが
多発する。
For this reason, in this embodiment, the component ratios of Co and Sb are set as described above, and the temperature is raised to around 600 ° C., which is close to the synthesis temperature, in a short time in sintering, so that the temperature distribution of the entire raw material is reduced as much as possible. The temperature was raised to 740 ° C., which is the sintering temperature, over a sufficient time to make the temperature uniform. Further, when the cooling is rapidly performed after the sintering is completed, especially in the large-diameter sintered body according to the present embodiment, a large temperature difference is generated between the center portion and the peripheral edge portion, and the diameter becomes large. A uniform performance distribution in the direction cannot be obtained. Further, due to the large temperature difference, a large thermal stress is generated between the central portion and the peripheral portion, and more single atoms of Sb are present. As a result, not only the thermoelectric performance of the sintered body is low, but also cracks occur frequently.

【0036】そこで本発明では、上述の実施形態のごと
く、焼結開始時には短時間で化合物の生成温度付近まで
昇温させたのち、焼結体全体を均一に加熱すべく所要の
時間をかけて焼結温度まで昇温させるとともに、焼結後
の冷却を焼結体の中心部と周縁部との間に熱応力差など
が発生しない充分な時間をかけて徐々に冷却している。
しかるに、こうして得られる1回目の焼結体にあって
は、上述の焼結条件によりクラックの発生は阻止し得た
ものの、理論密度に対する相対密度が90%と低く、ま
た僅かではあるがSbの単独原子が残存しており、性能
的にも従来の20mm径の熱電材料と比較して劣ってい
る。
Therefore, in the present invention, as in the above-described embodiment, at the start of sintering, the temperature is increased to a temperature near the compound formation temperature in a short time, and it takes a necessary time to uniformly heat the entire sintered body. In addition to raising the temperature to the sintering temperature, cooling after sintering is gradually cooled over a sufficient time period such that a difference in thermal stress between the center portion and the peripheral portion of the sintered body does not occur.
However, in the first sintered body thus obtained, although the generation of cracks could be prevented by the sintering conditions described above, the relative density with respect to the theoretical density was as low as 90%, and the Sb A single atom remains, and the performance is inferior to that of a conventional thermoelectric material having a diameter of 20 mm.

【0037】本実施形態では、上述のようにして得られ
た焼結体を、更めて破砕し、その破砕物を通常の回転翼
を有するミキサーや遊星ボールミルにより粉砕混合して
平均粒径が38μmの混合物を得た。次いで、同混合物
を、上述のプラズマ放電焼結装置を使って、2回目の焼
結を行った。このときの焼結条件は、1回目の焼結条件
と同じであり、得られる焼結体も、1回目の焼結体と同
様に50mm径とした。
In the present embodiment, the sintered body obtained as described above is further crushed, and the crushed material is crushed and mixed by a mixer having a usual rotating blade or a planetary ball mill to obtain an average particle size. A 38 μm mixture was obtained. Next, the same mixture was sintered for the second time using the above-described plasma discharge sintering apparatus. The sintering conditions at this time were the same as those for the first sintering, and the obtained sintered body had a diameter of 50 mm as in the first sintering.

【0038】こうして、2回の焼結処理がなされた50
mm径の焼結体は、図2に示すごとく、クラックが発生
せず、相対密度が理論密度の98%以上の熱電材料が得
られた。その熱電性能の分布は径方向において一律とな
り、図3に示す従来の20mm径の焼結体と比較して
も、同様の熱電性能をもつものであった。
Thus, the two sintering processes are performed.
As shown in FIG. 2, the sintered body having a diameter of mm did not crack, and a thermoelectric material having a relative density of 98% or more of the theoretical density was obtained. The distribution of the thermoelectric performance was uniform in the radial direction, and had the same thermoelectric performance as compared with the conventional sintered body having a diameter of 20 mm shown in FIG.

【0039】図4は、本発明による1回目の上記プラズ
マ放電焼結法により焼結して得られる径が50mmから
なる焼結体Aと、この焼結体Aを破砕混合して、同一条
件で2回目の焼結を行って得られる本発明の焼結体Bと
の定性試験結果を示す。この試験は、各焼結体A,Bを
粉砕し、その各粉末を試料としてX線回折法により測定
したものであり、その結果を回折強度分布で示してい
る。
FIG. 4 shows a sintered body A having a diameter of 50 mm obtained by sintering by the first plasma discharge sintering method according to the present invention, and crushing and mixing the sintered body A under the same conditions. 3 shows the results of a qualitative test with the sintered body B of the present invention obtained by performing the second sintering. In this test, each of the sintered bodies A and B was crushed, and each powder was used as a sample to measure the powder by an X-ray diffraction method. The results are shown by a diffraction intensity distribution.

【0040】この図においてブラック角θの2倍の角度
2θが28.68°となるところで、ピークが現れてお
り、このことはSb単体が焼結体中に存在することを示
唆している。そのピーク強度がCoSb3 の最大ピーク
(2θ=31.15)の強度に対して1%より低けれ
ば、熱電性能に対する影響が無視できる。1回目の焼結
体Aでは前記ピーク値が1%程度であるが、本発明によ
る2回目の焼結がなされた焼結体Bでは、そのピーク値
が視認できない程度まで低下している。このことから、
本発明による2回の焼結が如何に有効であるかが理解で
きる。
In this figure, a peak appears where the angle 2θ, which is twice the black angle θ, becomes 28.68 °, which suggests that Sb alone exists in the sintered body. If the peak intensity is lower than 1% with respect to the intensity of the maximum peak (2θ = 31.15) of CoSb 3, the influence on the thermoelectric performance can be ignored. In the first sintered body A, the peak value is about 1%, but in the sintered body B that has been subjected to the second sintering according to the present invention, the peak value is reduced to such a degree that it cannot be visually recognized. From this,
It can be seen how effective the two sinters according to the invention are.

【0041】図5〜図8は、実質的に同じ原材料からな
り、1回目の焼結により得られた50mm径の焼結体
A、本発明に係る2回の焼結により得られた50mm径
の焼結体B、及び図1に破線で示した焼結温度制御によ
り得られる従来の20mm径の焼結体Cからなる各熱電
材料の温度変化に基づく各種性能の変動をグラフで示し
ている。
FIGS. 5 to 8 show a sintered body A of substantially the same raw material and having a diameter of 50 mm obtained by the first sintering, and having a diameter of 50 mm obtained by the second sintering according to the present invention. 1 is a graph showing fluctuations in various performances of the thermoelectric material composed of the sintered body B having a diameter of 20 mm and the conventional sintered body C having a diameter of 20 mm obtained by the sintering temperature control indicated by the broken line in FIG. .

【0042】熱電材料の性能は、一般に単位温度差当た
り素子に発生する熱起電力の大きさを示すゼーベック係
数をα、電気抵抗率をρ、熱伝導率をκとしたとき、熱
電材料の性能を示す性能指数Zは、Z=α2 /ρ・κで
示される。この性能指数Zは、熱電変換効率を決める重
要な材料パラメーターであり、ゼーベック係数αの2乗
と電気抵抗率ρとの商α2 /ρは出力因子と称せられ、
ゼーベック係数αが大きく、電気抵抗率ρが小さい材料
ほど出力因子が高くなり、更に熱伝導率κは小さいほど
前記性能指数Zが大きくなり、熱電性能に優れたものと
なる。
In general, the performance of a thermoelectric material is expressed as follows: α is the Seebeck coefficient indicating the magnitude of the thermoelectromotive force generated in the element per unit temperature difference, ρ is the electrical resistivity, and κ is the thermal conductivity. Is represented by Z = α 2 / ρ · κ. The figure of merit Z is an important material parameter that determines the thermoelectric conversion efficiency, and the quotient α 2 / ρ of the square of the Seebeck coefficient α and the electric resistivity ρ is called an output factor.
The larger the Seebeck coefficient α and the smaller the electrical resistivity ρ, the higher the output factor. The smaller the thermal conductivity κ, the greater the figure of merit Z, and the better the thermoelectric performance.

【0043】これらの図を参照して、1回目の焼結によ
り得られた50mm径の焼結体A、本発明に係る2回の
焼結により得られた50mm径の焼結体B、及び図1に
破線で示した焼結温度制御により得られる従来の20m
m径の焼結体Cの熱電性能を比較する。
Referring to these figures, a 50 mm diameter sintered body A obtained by the first sintering, a 50 mm diameter sintered body B obtained by the second sintering according to the present invention, and The conventional 20 m obtained by controlling the sintering temperature indicated by the broken line in FIG.
The thermoelectric performance of the sintered body C having the m diameter is compared.

【0044】まず、焼結体Bと焼結体Cとを比較する。
ゼーベック係数αについては、図5において、両者の値
は全温度範囲(300〜950K)でほぼ同一の値を示
している。更に、図6を参照して電気抵抗率ρについて
みると、焼結体Bの電気抵抗率ρが焼結体Cの略1.1
5倍と大きい。熱伝導率κの値は、焼結体Bと焼結体C
とが700Kで逆転しており、700K以下では焼結体
Bの熱伝導率κが焼結体Cのそれよりも高く、700K
以上では焼結体Bの熱伝導率κが焼結体Cを下回る。性
能指数Zでみると、焼結体Bが焼結体Cの性能指数Zの
8割以上の値を示している。
First, the sintered body B and the sintered body C are compared.
As for the Seebeck coefficient α, in FIG. 5, both values show almost the same value in the entire temperature range (300 to 950 K). Further, looking at the electric resistivity ρ with reference to FIG.
5 times larger. The value of the thermal conductivity κ is determined between the sintered body B and the sintered body C.
Are reversed at 700 K. Below 700 K, the thermal conductivity κ of the sintered body B is higher than that of the sintered body C, and
In the above, the thermal conductivity κ of the sintered body B is lower than that of the sintered body C. In terms of the performance index Z, the sintered body B has a value of 80% or more of the performance index Z of the sintered body C.

【0045】次に、本発明による焼結体Bと、同一の径
ではもち1回の焼結により得られる焼結体Aとの熱電性
能について、図5〜図8に基づいて比較する。これらの
図から明らかなように、焼結体Bのゼーベック係数αは
焼結体Aよりも15%高くなり、電気抵抗率ρについて
は焼結体Bが焼結体Aより5%低下している。また、焼
結体A及び焼結体Bの熱伝導率κはほぼ一致している。
全体の性能指数Zについてみると、焼結体Bが焼結体A
よりも30%向上している。焼結体Aの相対密度は理論
密度の90%であるのに対して、焼結体Bの相対密度は
理論密度の98%と高い値となり緻密なものが得られて
いる。
Next, the thermoelectric performance of the sintered body B according to the present invention and the sintered body A having the same diameter and obtained by one sintering will be compared with each other with reference to FIGS. As is apparent from these figures, the Seebeck coefficient α of the sintered body B is 15% higher than that of the sintered body A, and the electric resistivity ρ of the sintered body B is 5% lower than that of the sintered body A. I have. The thermal conductivity κ of the sintered body A and that of the sintered body B are almost the same.
Looking at the overall performance index Z, the sintered body B
30% higher than that. The relative density of the sintered body A is 90% of the theoretical density, whereas the relative density of the sintered body B is as high as 98% of the theoretical density, and a dense product is obtained.

【0046】なお、従来の焼結体Cに、大気中で550
〜650℃程度のアニーリング処理を行っところ、アニ
ーリング処理を行わないものと比較すると、アニーリン
グ処理を行った方の性能指数Zが向上することを実験に
よって確認した。このことから、本発明による大型の熱
電材料にあってもアニーリング処理を行うことで、熱電
性能の向上が期待できる。
The conventional sintered body C was added with 550 in air.
It was confirmed by experiments that the annealing treatment at about 650 ° C. was performed, and the performance index Z of the one subjected to the annealing treatment was improved as compared with the case where the annealing treatment was not performed. From this, improvement of the thermoelectric performance can be expected by performing the annealing treatment even for the large thermoelectric material according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例におけるCoSb3 焼結体と従来のC
oSb3 焼結体の焼結時における昇温、焼結、冷却を説
明する線図である。
FIG. 1 shows a CoSb3 sintered body in this embodiment and a conventional C
FIG. 4 is a diagram illustrating temperature rise, sintering, and cooling during sintering of an oSb3 sintered body.

【図2】本実施例により得られた大径のCoSb3 焼結
体の平面写真である。
FIG. 2 is a plan photograph of a large-diameter CoSb3 sintered body obtained according to this example.

【図3】従来の小径のCoSb3 焼結体の平面写真であ
る。
FIG. 3 is a plan photograph of a conventional small-diameter CoSb3 sintered body.

【図4】本発明による1回目及び2回目の焼結を終了し
たときの、それぞれの熱電材料中に含まれるSb原子の
単独相の変化を示すX線回折図である。
FIG. 4 is an X-ray diffraction diagram showing a change in a single phase of Sb atoms contained in each thermoelectric material when the first and second sintering according to the present invention are completed.

【図5】本発明による1回目及び2回目の焼結を終了し
たときの、それぞれの電熱材料の温度変化に伴うゼーベ
ック係数αの変化を示す相関図である。
FIG. 5 is a correlation diagram showing a change in the Seebeck coefficient α due to a change in temperature of each electrothermal material when the first and second sintering according to the present invention are completed.

【図6】従来の焼結法による小径焼結体と本発明による
1回目及び2回目の焼結を終了した大径焼結体からなる
各熱電材料の温度変化に伴う電気抵抗率ρの変化を示す
相関図である。
FIG. 6 shows a change in electrical resistivity ρ with temperature change of each thermoelectric material composed of a small-diameter sintered body obtained by the conventional sintering method and a large-diameter sintered body after the first and second sintering according to the present invention. FIG.

【図7】従来の焼結法による小径焼結体と本発明による
1回目及び2回目の焼結を終了した大径焼結体からなる
各熱電材料の温度変化に伴う熱伝導率κの変化を示す相
関図である。
FIG. 7 shows a change in thermal conductivity κ due to a temperature change of each thermoelectric material composed of a small-diameter sintered body according to the conventional sintering method and a large-diameter sintered body after the first and second sintering according to the present invention. FIG.

【図8】従来の焼結法による小径焼結体と本発明による
1回目及び2回目の焼結を終了した大径焼結体からなる
各熱電材料の温度変化に伴う性能指数Zの変化を示す相
関図である。
FIG. 8 is a graph showing the change in the figure of merit Z with the temperature change of each thermoelectric material composed of a small-diameter sintered body according to the conventional sintering method and a large-diameter sintered body after the first and second sintering according to the present invention. FIG.

【符号の説明】[Explanation of symbols]

A 1回の焼結で得られる50mm径の焼結
体 B 2回の焼結で得られる50mm径の焼結
体 C 1回の焼結で得られる20mm径の従来
の焼結体
A Sintered body of 50 mm diameter obtained by one sintering B Sintered body of 50 mm diameter obtained by two sintering C Conventional sintered body of 20 mm diameter obtained by one sintering

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 スクッテルダイト型結晶構造を有するA
3 型化合物を含む熱電材料の製造方法であって、 原料粉末をメカニカルアロイング法により混合し一次合
金化すること、 この混合物を高圧・高温下で1回目の焼結を行うこと、 この焼結体を粉砕して混合すること、及びその混合物を
高圧・高温下で少なくとも2回目の焼結を行うこと、 を含んでなることを特徴とするスクッテルダイト系熱電
材料の製造方法。ただし、元素AはCo,Rh,Irの
うちの一種以上、BはP,As,Sbのうちの一種以上
である。
1. A compound having a skutterudite crystal structure
A method of manufacturing a thermoelectric material containing B 3 type compound, mixing with the primary alloy by mechanical alloying method raw material powder, by performing the first sintering the mixture under high pressure and high temperature, the burnt A method for producing a skutterudite-based thermoelectric material, comprising: crushing and mixing the compact; and performing at least a second sintering of the mixture under high pressure and high temperature. However, element A is at least one of Co, Rh, and Ir, and B is at least one of P, As, and Sb.
【請求項2】 複数回の焼結をプラズマ放電焼結法によ
り行うことを特徴とする請求項1記載のスクッテルダイ
ト系熱電材料の製造方法。
2. The method for producing a skutterudite-based thermoelectric material according to claim 1, wherein the sintering is performed a plurality of times by a plasma discharge sintering method.
【請求項3】 前記焼結が、所定の高温まで急激に昇温
させたのち、焼結温度まで緩やかに昇温させ、所要の焼
結時間の経過後に緩やかに冷却することを含んでなるこ
とを特徴とする請求項1又は2記載のスクッテルダイト
系熱電材料の製造方法。
3. The sintering comprises rapidly increasing the temperature to a predetermined high temperature, then gradually increasing the temperature to the sintering temperature, and gradually cooling after a required sintering time has elapsed. The method for producing a skutterudite-based thermoelectric material according to claim 1 or 2, wherein:
【請求項4】 請求項1〜3のいずれかの製造方法によ
り製造されるスクッテルダイト系熱電材料であって、 その最終焼結体が20mmを越える直径をもつ円板状で
あることを特徴とするスクッテルダイト系熱電材料。
4. A skutterudite-based thermoelectric material produced by the production method according to claim 1, wherein the final sintered body is a disk having a diameter exceeding 20 mm. Skutterudite-based thermoelectric material.
【請求項5】 前記焼結体の粉末X線回折によるSb単
体の量が試料の最大ピークの1%以下であることを特徴
とする請求項4記載のスクッテルダイト系熱電材料。
5. The skutterudite-type thermoelectric material according to claim 4, wherein the amount of Sb alone in the sintered body by powder X-ray diffraction is 1% or less of the maximum peak of the sample.
JP2001159958A 2001-05-29 2001-05-29 Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby Pending JP2002353527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159958A JP2002353527A (en) 2001-05-29 2001-05-29 Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159958A JP2002353527A (en) 2001-05-29 2001-05-29 Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby

Publications (1)

Publication Number Publication Date
JP2002353527A true JP2002353527A (en) 2002-12-06

Family

ID=19003450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159958A Pending JP2002353527A (en) 2001-05-29 2001-05-29 Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby

Country Status (1)

Country Link
JP (1) JP2002353527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069090A (en) * 2001-08-22 2003-03-07 Kyocera Corp Method of manufacturing thermoelectric material
CN100344544C (en) * 2005-11-29 2007-10-24 武汉理工大学 Process for preparing skutterudite thermoelectric compound nano powder by alcohol Sol-Gel process
JP2009542034A (en) * 2006-06-26 2009-11-26 ダイヤモンド イノベーションズ、インク. Increase in Seebeck coefficient of semiconductors by high pressure / high temperature sintering
US9123856B2 (en) 2010-03-11 2015-09-01 Diamond Innovations, Inc. Affecting the thermoelectric figure of merit (ZT) and the power factor by high pressure, high temperature sintering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069090A (en) * 2001-08-22 2003-03-07 Kyocera Corp Method of manufacturing thermoelectric material
JP4666841B2 (en) * 2001-08-22 2011-04-06 京セラ株式会社 Method for manufacturing thermoelectric material
CN100344544C (en) * 2005-11-29 2007-10-24 武汉理工大学 Process for preparing skutterudite thermoelectric compound nano powder by alcohol Sol-Gel process
JP2009542034A (en) * 2006-06-26 2009-11-26 ダイヤモンド イノベーションズ、インク. Increase in Seebeck coefficient of semiconductors by high pressure / high temperature sintering
US8394729B2 (en) 2006-06-26 2013-03-12 Diamond Innovations, Inc. Increasing the seebeck coefficient of semiconductors by HPHT sintering
KR101398824B1 (en) * 2006-06-26 2014-05-27 다이아몬드 이노베이션즈, 인크. Increasing the seebeck coefficient of semiconductors by hpht sintering
US9123856B2 (en) 2010-03-11 2015-09-01 Diamond Innovations, Inc. Affecting the thermoelectric figure of merit (ZT) and the power factor by high pressure, high temperature sintering

Similar Documents

Publication Publication Date Title
CN1084527C (en) Co-Sb thermoelectric materials and mfg. method thereof
JP4876501B2 (en) Thermoelectric conversion material and manufacturing method thereof
CN107408618B (en) Compound semiconductor thermoelectric material and method for producing same
JPH0316281A (en) Thermoelectric semiconductor material and manufacture thereof
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
KR20070117270A (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP3458587B2 (en) Thermoelectric conversion material and its manufacturing method
TW405273B (en) Manufacturing method of sintered material for thermo-electric converter elements, sintered materials for thermo-electric converter elements, and a thermoelectric converter element made by using the same
US20230284532A1 (en) Alloy, sintered article, thermoelectric module and method for the production of a sintered article
JP2002353527A (en) Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JP2005019713A (en) M1-xAx/Ni1-yBy/Snz-1Cz-BASED HALF-HEUSLER TYPE THERMOELECTRIC MATERIAL FOR HIGH TEMPERATURE AND ITS MANUFACTURING METHOD
KR101114252B1 (en) Method for fabricating thermoelectric material
JPH06144825A (en) Production of thermoelectric element
JP7343853B2 (en) Thermoelectric conversion material, sintering method for thermoelectric conversion material, and manufacturing method for thermoelectric conversion material
JP2002359406A (en) Thermoelectric element and manufacturing method therefor
JPH10209508A (en) Thermoelectric transducer and its manufacture
JP4666841B2 (en) Method for manufacturing thermoelectric material
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JPH1140860A (en) Skutterudite thermoelectric material and manufacture thereof
JP2002274831A (en) Clathrate compound and high-efficiency thermoelectric material as well as method of manufacturing for the same and thermoelectric module using the high- efficiency thermoelectric material
JP3564541B2 (en) Sintered zinc antimony compound and method for producing the same
JP4601206B2 (en) Method for manufacturing thermoelectric element
JP7449549B2 (en) Thermoelectric element and its manufacturing method
JP2019218592A (en) Silicide alloy material and element including the same