JP2002353521A - Plastic or glass thermoelectric power generating module, and manufacturing method therefor - Google Patents

Plastic or glass thermoelectric power generating module, and manufacturing method therefor

Info

Publication number
JP2002353521A
JP2002353521A JP2001157065A JP2001157065A JP2002353521A JP 2002353521 A JP2002353521 A JP 2002353521A JP 2001157065 A JP2001157065 A JP 2001157065A JP 2001157065 A JP2001157065 A JP 2001157065A JP 2002353521 A JP2002353521 A JP 2002353521A
Authority
JP
Japan
Prior art keywords
thermoelectric semiconductor
type thermoelectric
semiconductor substrate
type
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001157065A
Other languages
Japanese (ja)
Other versions
JP3919469B2 (en
Inventor
Atsushi Sugihara
杉原  淳
Original Assignee
Atsushi Sugihara
杉原 淳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsushi Sugihara, 杉原 淳 filed Critical Atsushi Sugihara
Priority to JP2001157065A priority Critical patent/JP3919469B2/en
Publication of JP2002353521A publication Critical patent/JP2002353521A/en
Application granted granted Critical
Publication of JP3919469B2 publication Critical patent/JP3919469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric power generating module and a thermoelectric power generator, capable of being easily molded into an arbitrary shape. SOLUTION: The thermoelectric power generating module is a composite of an n-type thermoelectric semiconductor substrate, where n-type thermoelectric semiconductor particles are dispersed in a conductive plastic or glass, and a p-type thermoelectric semiconductor substrate where p-type thermoelectric semiconductor particles are dispersed in the conductive plastic or glass; and for the thermoelectric power generator, the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate in the thermoelectric power generating module are provided with an electrode, respectively, with a circuit being formed between the electrodes, and the temperature difference between the n-type thermoelectric semiconductor substrate and a p-type thermoelectric semiconductor substrate is taken out of a circuit as a current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷却素子や熱電発
電器などとして幅広く使用できる熱電発電モジュール及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric power module that can be widely used as a cooling element, a thermoelectric generator, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】ビスマス・テルル、鉛・テルル、シリコ
ン・ゲルマニウム、珪化鉄などの合金は、熱電半導体と
して公知であり、種々の分野で広く利用されている。こ
のような熱電半導体の特徴は、電気の良導体であり、熱
の不良導体である。その性能は次の式で表される、
2. Description of the Related Art Alloys such as bismuth tellurium, lead tellurium, silicon germanium and iron silicide are known as thermoelectric semiconductors and are widely used in various fields. Such a thermoelectric semiconductor is a good conductor of electricity and a poor conductor of heat. Its performance is expressed by the following equation:

【式1】 Z = (α2・σ)/κ=α2/(κ・ρ) (式中、αは、ゼーベック係数、σは、電気伝導率、κ
は、熱伝導率、ρは、電気抵抗率である。) 従って、電気抵抗率が低く、熱伝導性が悪く、ゼーベッ
ク係数が大きいものが良い熱電発電素子ということにな
る。通常、電気の良導体は熱の良導体でもあるので、両
性質の折衷が望まれる。現行のZの値は大体3×10-3
/Kであり、素子の利用温度によって、この値は変わっ
てくる。また熱電発電素子を構成する物質において最大
のZの値が得られる温度は異なっており、物質によって
得意な使用温度領域がある。
[Equation 1] Z = (α 2 · σ) / κ = α 2 / (κ · ρ) (where α is the Seebeck coefficient, σ is the electric conductivity, κ
Is the thermal conductivity, and ρ is the electrical resistivity. Therefore, a thermoelectric power generation element having a low electric resistivity, poor thermal conductivity and a large Seebeck coefficient is a good thermoelectric power generation element. Usually, a good conductor of electricity is also a good conductor of heat, so a compromise between the two properties is desired. The current value of Z is about 3 × 10 -3
/ K, and this value changes depending on the use temperature of the element. In addition, the temperature at which the maximum value of Z is obtained differs among the substances constituting the thermoelectric power generation element, and there is an excellent use temperature range depending on the substance.

【0003】従来、熱電素子は、図1に示すように、p
型とn型の半導体をギリシャ文字のΠ(パイ)のような
形態に接合してあり、このモジュールによって2つの機
能、ペルチエ効果とゼーベック効果とを持たせている。
ここで、ペルチエ効果は、2つの素子の回路へ直流電圧
を印加することによって、Πの素子A側又はB側のどち
らか一方が冷やされたり、温められたりする効果であ
る。電圧の極性を逆にすれば、温と冷を逆に出来る。ゼ
ーベック効果は温度差により発電するという効果であ
る。たとえば素子Aを温め、素子Bを冷やし、素子Aと
Bの間で温度差をつくると、図1のVで示したように起
電力が発生する。つまりひとつのモジュールで、冷却
(あるいは加熱)と発電の両特性を持たせることができ
ることが熱電半導体を使ったモジュールの特徴である。
しかしながら、従来、熱電半導体は合金で形成されてい
るため、その形状は珪化鉄を使ったモジュールが馬蹄形
であることを除くと、図1に示すようなΠ型が主たるも
のであり、利用しやすい形態に成型することが困難であ
った。
Conventionally, as shown in FIG.
Type and n-type semiconductors are joined in the form of the Greek letter Π (pi), and this module provides two functions, the Peltier effect and the Seebeck effect.
Here, the Peltier effect is an effect in which one of the element A side and the element B side is cooled or heated by applying a DC voltage to a circuit of two elements. By reversing the polarity of the voltage, the temperature and the cold can be reversed. The Seebeck effect is an effect of generating power by a temperature difference. For example, when the element A is heated and the element B is cooled, and a temperature difference is created between the elements A and B, an electromotive force is generated as shown by V in FIG. That is, it is a feature of a module using a thermoelectric semiconductor that one module can have both characteristics of cooling (or heating) and power generation.
However, conventionally, since a thermoelectric semiconductor is formed of an alloy, its shape is mainly a Π shape as shown in FIG. 1 except that a module using iron silicide has a horseshoe shape, and it is easy to use. It was difficult to mold into a form.

【0004】[0004]

【発明が解決しようとする課題】本発明は、任意の形態
に簡易に成型できる熱電発電モジュールを提供すること
を目的とする。本発明は、又、このような優れた熱電発
電モジュールを効率よく製造できる製造法を提供するこ
とを目的とする。本発明は、又、上記熱電発電モジュー
ルを用いた熱電発電器を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermoelectric power module which can be easily formed into an arbitrary form. Another object of the present invention is to provide a manufacturing method capable of efficiently manufacturing such an excellent thermoelectric power generation module. Another object of the present invention is to provide a thermoelectric generator using the thermoelectric power module.

【0005】[0005]

【課題を解決するための手段】本発明は、熱電半導体の
微粉末を、導電性を付与したゴムや樹脂などのプラスチ
ックスといった有機物やガラスへ添加・分散させ、混練
すると、使う場所に応じた形状に熱電半導体基体を容易
に成型でき、上記課題を効率的に解決できるとの知見に
基づいてなされたのである。すなわち、本発明は、導電
性プラスチック又はガラス中にn型熱電半導体粒子を分
散させてなるn型熱電半導体基体と、導電性プラスチッ
ク又はガラス中にp型熱電半導体粒子を分散させてなる
p型熱電半導体基体とを複合化させたことを特徴とする
熱電発電モジュールを提供する。本発明は、又、導電性
プラスチック又はガラス中にn型熱電半導体粒子を分散
させてなるn型熱電半導体基体と、導電性プラスチック
又はガラス中にp型熱電半導体粒子を分散させてなるp
型熱電半導体基体とを複合化させることを特徴とする上
記熱電発電モジュールの製造方法を提供する。本発明
は、又、上記熱電発電モジュールにおけるn型熱電半導
体基体とp型熱電半導体基体のそれぞれに電極が設けら
れ、該電極間に回路が形成されており、n型熱電半導体
基体とp型熱電半導体基体間の温度差を電流として回路
から取り出すことを特徴とする熱電発電器を提供する。
SUMMARY OF THE INVENTION According to the present invention, a fine powder of a thermoelectric semiconductor is added to and dispersed in an organic material such as plastics such as rubber or resin having conductivity, or glass, and kneaded. This is based on the finding that a thermoelectric semiconductor substrate can be easily formed into a shape, and the above problem can be solved efficiently. That is, the present invention provides an n-type thermoelectric semiconductor substrate in which n-type thermoelectric semiconductor particles are dispersed in conductive plastic or glass, and a p-type thermoelectric semiconductor in which p-type thermoelectric semiconductor particles are dispersed in conductive plastic or glass. Provided is a thermoelectric power generation module characterized by being combined with a semiconductor substrate. The present invention also provides an n-type thermoelectric semiconductor substrate in which n-type thermoelectric semiconductor particles are dispersed in conductive plastic or glass, and a p-type in which p-type thermoelectric semiconductor particles are dispersed in conductive plastic or glass.
And a method for manufacturing the above thermoelectric power generation module, wherein the thermoelectric power generation module is combined with a thermoelectric semiconductor substrate. According to the present invention, the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate in the thermoelectric power generation module are each provided with an electrode, and a circuit is formed between the electrodes. Provided is a thermoelectric generator characterized in that a temperature difference between semiconductor substrates is taken out of a circuit as a current.

【0006】[0006]

【発明の実施の形態】本発明で用いる導電性プラスチッ
ク又はガラスとしては、電気伝導度が体積固有抵抗値で
10の3乗からマイナス4乗のものを用いるのが好まし
く、より好ましくは10の0乗以下である。このような
導電性ガラスとしては、銀やリチウムを含むモリブデン
系ガラスをあげることが出来る。また、導電性プラスチ
ックとしては、導電性粒子、例えば、グラファイト、カ
ーボンブラック、金属粉、導電性セラミック粉等を充填
した各種熱可塑性樹脂、熱硬化性樹脂、天然及び合成ゴ
ムなどがあげられる。これらの導電性プラスチックのう
ち、導電性エラストマーが好ましい。又、導電性粒子と
して特に好ましいのは、ハイペリオン・キャタリシス・
インターナショナル社のグラファイト・フィブリルBN
あるいはCC、ケッチェン・ブラック・インターナショ
ナル社のケッチェン・ブラックECあるいはEC600
JDである。これらは1種又は2種以上の混合物として
用いることができる。これらのうち、グラファイト・フ
ィブリル及び導電性カーボンブラックを組み合わせて用
いるのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As the conductive plastic or glass used in the present invention, it is preferable to use one having an electrical conductivity of 10 3 to −4 in terms of volume resistivity, more preferably 10 0. It is less than the power. As such a conductive glass, a molybdenum-based glass containing silver or lithium can be given. Examples of the conductive plastic include various thermoplastic resins, thermosetting resins, natural and synthetic rubbers filled with conductive particles such as graphite, carbon black, metal powder, and conductive ceramic powder. Among these conductive plastics, a conductive elastomer is preferable. Particularly preferred as the conductive particles are Hyperion Catalysis.
International's Graphite Fibril BN
Or CC, Ketjen Black EC or EC600 from Ketjen Black International
JD. These can be used alone or as a mixture of two or more. Among these, it is preferable to use a combination of graphite fibrils and conductive carbon black.

【0007】プラスチックとしては、具体的には、ポリ
エチレン、ポリプロピレン、ナイロン、ポリエステル、
(メタ)アクリル樹脂、ABS樹脂、ポリウレタン、エ
ポキシ樹脂、EPDM、NBR、SBR、PIB、C
R、シリコーンゴム、ヒドリルゴムなどがあげられる。
これらのうちEPDMおよびシリコーンが好ましい。本
発明で用いるn型及びp型熱電半導体粒子としては、ビ
スマス・テルル(BiTe)、アンチモン・テルル(S
bTe)、ビスマス・アンチモン・テルル(BiSbT
e)、ビスマス・セレン(BiSe)、アンチモン・セ
レン(SbSe)、ビスマス・セレン・テルル(BiS
eTe)、鉛・テルル、シリコン・ゲルマニウム、珪化
鉄などを用いることができる。又、これらにドーピング
材を添加することもできる。具体的には、ビスマス・ア
ンチモン・テルル(BiSbTe)をp型熱電半導体と
し、ビスマス・セレン・テルル(BiSeTe)をn型
熱電半導体とすることもでき、さらにビスマス・セレン
・テルル(BiSeTe)にn型のドーピング材として
CuBrあるいはSbI3を加えることもできる。これ
らのうち、n型としてビスマス・セレン・テルル、p型
としてビスマス・アンチモン・テルルが好ましい。
[0007] As the plastic, specifically, polyethylene, polypropylene, nylon, polyester,
(Meth) acrylic resin, ABS resin, polyurethane, epoxy resin, EPDM, NBR, SBR, PIB, C
R, silicone rubber, hydryl rubber and the like.
Of these, EPDM and silicone are preferred. The n-type and p-type thermoelectric semiconductor particles used in the present invention include bismuth tellurium (BiTe) and antimony tellurium (S
bTe), bismuth antimony tellurium (BiSbT)
e), bismuth selenium (BiSe), antimony selenium (SbSe), bismuth selenium tellurium (BiS)
eTe), lead / tellurium, silicon / germanium, iron silicide, or the like can be used. Further, a doping material can be added to these. Specifically, bismuth antimony tellurium (BiSbTe) can be a p-type thermoelectric semiconductor, bismuth selenium tellurium (BiSeTe) can be an n-type thermoelectric semiconductor, and bismuth selenium tellurium (BiSeTe) can have n CuBr or SbI 3 can also be added as a doping material for the mold. Among them, n-type is preferably bismuth selenium tellurium, and p-type is preferably bismuth antimony tellurium.

【0008】本発明で用いるn型及びp型熱電半導体粒
子としては粉状物をものを用いるのが好ましく、平均粒
子径が500μm以下のものが好ましく、例えば10ミ
クロン以下の粒子や200−300ミクロンの粒子を用
いることができる。熱電半導体粒子の導電性プラスチッ
クやガラスへの添加量は、電気伝導度が10の3乗以下
となる限り任意の量とすることができるが、一般的には
30重量%以上にするのが良い。又所望の形状に成形で
きる限度で添加するのがよく、80重量%以下であるの
が好ましい。本発明では、導電性プラスチック中への熱
電半導体粒子の分散を良好にするために、分散剤を併用
してもよい。
As the n-type and p-type thermoelectric semiconductor particles used in the present invention, it is preferable to use powdery ones, and those having an average particle diameter of 500 μm or less, for example, particles of 10 μm or less and 200-300 μm or less. Can be used. The amount of the thermoelectric semiconductor particles added to the conductive plastic or glass can be any amount as long as the electric conductivity is not more than 10.sup.3, but is generally preferably 30% by weight or more. . Also, it is preferable to add it to the extent that it can be formed into a desired shape, and it is preferably 80% by weight or less. In the present invention, a dispersant may be used in combination to improve the dispersion of the thermoelectric semiconductor particles in the conductive plastic.

【0009】熱電半導体粒子の導電性プラスチックへの
分散は、バンバリーミキサー、1軸や2軸押出機などの
各種混練機を用いることができる。又、ガラス中への分
散は、ガラス原料と熱電半導体粒子とを均一に混合し、
次いで溶融することにより行うことができる。n型熱電
半導体基体とp型熱電半導体基体との複合化は、両者を
固定させる常法により行うことができる。例えば、両者
を幾何学的に接合させること、通常の固定手段を用いて
接合させること、n型熱電半導体基体とp型熱電半導体
基体を中間層を介して接合させることなどにより行うこ
とができる。ここで、中間層としては、絶縁層や導電層
を用いることができる。尚、本発明では、n型熱電半導
体基体とp型熱電半導体基体との複合化を、一端を導電
層を介して、他端を絶縁層を介して行うのがよい。
For dispersing the thermoelectric semiconductor particles in the conductive plastic, various kneaders such as a Banbury mixer, a single screw or a twin screw extruder can be used. Also, the dispersion in the glass, glass material and thermoelectric semiconductor particles are uniformly mixed,
Then, it can be performed by melting. The composite of the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate can be performed by a conventional method of fixing both. For example, the bonding can be performed by geometrically bonding the two, bonding by using ordinary fixing means, and bonding the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate via an intermediate layer. Here, an insulating layer or a conductive layer can be used as the intermediate layer. In the present invention, it is preferable that the combination of the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate be performed at one end via a conductive layer and at the other end via an insulating layer.

【0010】本発明で用いるn型熱電半導体基体とp型
熱電半導体基体は、組成物のベースがプラスチックスや
ガラスであるため、従来用いられていた金属に比べて加
工が容易であり、所望の形態及び大きさに簡易に成形す
ることができる。このうち、図2に示すドーナツ状に形
成するのが好ましい。ここで、熱電発電モジュール1
は、n型熱電半導体基体2とp型熱電半導体基体3と
が、中央に空間(内部ともいう)4を有するドーナツ型
になるように、n型熱電半導体基体2とp型熱電半導体
基体3のそれぞれの端部5と6とを上述した手段により
接合して複合化されている。一方、本発明では、上記熱
電発電モジュールにおけるn型熱電半導体基体とp型熱
電半導体基体のそれぞれに電極を設け、該電極間に回路
を形成し、n型熱電半導体基体とp型熱電半導体基体間
の温度差を設けると、n型熱電半導体基体とp型熱電半
導体基体間に電流が生じ、この電流を回路から取り出す
ことを特徴とする熱電発電器を構築することができる。
The n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate used in the present invention are easy to process as compared with conventionally used metals, since the base of the composition is plastics or glass. It can be easily formed into a shape and size. Of these, it is preferable to form the donut shown in FIG. Here, the thermoelectric generation module 1
Is such that the n-type thermoelectric semiconductor substrate 2 and the p-type thermoelectric semiconductor substrate 3 have a donut shape having a space (also referred to as an interior) 4 at the center. The ends 5 and 6 are joined by the above-described means to form a composite. On the other hand, in the present invention, an electrode is provided on each of the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate in the thermoelectric power generation module, and a circuit is formed between the electrodes. When the temperature difference is provided, a current is generated between the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate, and a thermoelectric generator characterized by extracting this current from the circuit can be constructed.

【0011】この際、図2に示すドーナツ型の熱電発電
モジュール1を用いて熱電発電器をの構築するのが好ま
しい。このようにして構築した熱電発電器7の概略図を
図3に示す。図3中、数値1〜6は図2におけるのと同
じものを示し、n型熱電半導体基体2とp型熱電半導体
基体3のそれぞれに電極8、9を設け、該電極間に回路
10が形成されている。ここで、電極8、9は、n型熱
電半導体基体2とp型熱電半導体基体3のそれぞれの全
体を覆うように形成してもよいが、少なくともその一部
に接触していればよい。電極の材質及び形状は特に限定
されず、通常発電機に用いるものを使用することができ
る。又、n型熱電半導体基体2とp型熱電半導体基体3
のそれぞれの端部5と6を、一方を導電体で他方を絶縁
体で接着するのがよい。又、ドーナツ状の内部、例えば
片側に導電部材11を設けても良い。このような構造の
熱電発電器7の内部4を加熱し、一方、熱電発電器7の
外面を室温又は冷却すると、熱電発電器7の外部と内部
との間に温度差が生じ、ゼーベック効果により電子の流
れ(図中eが電子を表す。)が生じ、回路を電流が流れ
て、電気を取り出すことができる。図中、負荷とは、例
えば、充電するための器具(携帯電話など)、電球やヒ
ーターなどである。
At this time, it is preferable to construct a thermoelectric generator using the doughnut-shaped thermoelectric generation module 1 shown in FIG. FIG. 3 shows a schematic diagram of the thermoelectric generator 7 constructed in this manner. In FIG. 3, numerical values 1 to 6 indicate the same as those in FIG. Have been. Here, the electrodes 8 and 9 may be formed so as to cover the entirety of the n-type thermoelectric semiconductor substrate 2 and the entirety of the p-type thermoelectric semiconductor substrate 3, but only need to be in contact with at least a part thereof. The material and shape of the electrode are not particularly limited, and those usually used for a generator can be used. An n-type thermoelectric semiconductor substrate 2 and a p-type thermoelectric semiconductor substrate 3
The ends 5 and 6 are preferably bonded to each other with a conductor and the other with an insulator. Further, the conductive member 11 may be provided inside the donut shape, for example, on one side. When the inside 4 of the thermoelectric generator 7 having such a structure is heated, and the outer surface of the thermoelectric generator 7 is cooled to room temperature or cooled, a temperature difference occurs between the outside and the inside of the thermoelectric generator 7, and the Seebeck effect occurs. A flow of electrons (e represents an electron in the drawing) occurs, a current flows through the circuit, and electricity can be extracted. In the figure, the load is, for example, a charging device (such as a mobile phone), a light bulb, a heater, or the like.

【0012】[0012]

【発明の効果】本発明によると、任意の形態に簡易に成
型できる熱電発電モジュールを提供することができる。
この熱電発電モジュールを用いると、クリーンで、静か
な局所エネルギ−を創出できる熱電発電器を製造するこ
とができる。特に、廃熱利用のように温度差をもった所
では、それを利用して、発電をすることも出来る。又、
熱電発電モジュールを冷却素子として使う要請があれ
ば、電流を流し、高温と低温部分をつくることができ
る。従って、本発明によれば、色々な形状や大きさの熱
電発電モジュールができ、複雑な場所、円筒形の所、さ
らには建材など、様々な場所において、冷やしたり、暖
めたりできる。具体的には、光ファイバーのコネクタ部
分に巻いて冷却することができる。さらには建材などで
は、冷暖房として、また外と内の温度差から、発電も可
能となる。僅かな温度差での発電を考えたとき、本発明
の熱電発電モジュールを利用して、体温と空気の温度差
で発電をすることによって、携帯電話などの充電用への
使用の可能性が出てくることから広範囲の分野で利用で
きる。次に実施例により本発明を説明する。
According to the present invention, it is possible to provide a thermoelectric power module that can be easily formed into an arbitrary form.
Using this thermoelectric generator module, a thermoelectric generator that can create clean and quiet local energy can be manufactured. In particular, where there is a temperature difference, such as the use of waste heat, power can be generated by using the difference. or,
If there is a request to use a thermoelectric power generation module as a cooling element, a current can be applied to create a high and low temperature part. Therefore, according to the present invention, thermoelectric power generation modules having various shapes and sizes can be formed, and can be cooled or heated in various places such as a complicated place, a cylindrical place, and a building material. Specifically, it can be cooled by winding it around the connector portion of the optical fiber. Furthermore, in the case of building materials and the like, it is possible to generate electricity as a cooling and heating system or due to a temperature difference between outside and inside. When power generation with a slight temperature difference is considered, by using the thermoelectric power generation module of the present invention to generate power with a temperature difference between body temperature and air, there is a possibility of use for charging mobile phones and the like. Can be used in a wide range of fields. Next, the present invention will be described with reference to examples.

【0013】[0013]

【実施例】実施例1 プラスチックスとして、EPDMゴム(日本合成ゴム社
のEP21)を使用し、これにn型またはp型半導体で
あるビスマス・テルル(Bi2Te3)(平均粒子径300μ
m)をそれぞれ35重量%となるように添加し(n型半
導体にはドーピング材としてSbI3を添加した)、二本ロ
ールで混練し、混合物をプレス成形し、厚さ5mm、幅
200mm、長さ200mmの板状の熱電半導体基体
を、直方体状(50×50×5mm)の形態に作り、図
1のように銀電極を上下に取り付け下部をホットプレー
トで加熱し、上部を氷水で冷却し、起電力をデジタルボ
ルトメーターで測定した。測定した結果を表1に示す。
尚、基体の電気抵抗は数オームcmのオーダーであっ
た。
EXAMPLES Example 1 EPDM rubber (EP21 manufactured by Japan Synthetic Rubber Co., Ltd.) was used as plastics, and bismuth tellurium (Bi 2 Te 3 ), an n-type or p-type semiconductor, having an average particle diameter of 300 μm was used.
m) was added to each so as to be 35% by weight (SbI 3 was added as a doping material to the n-type semiconductor), kneaded with two rolls, and the mixture was press-formed to a thickness of 5 mm, a width of 200 mm and a length of A plate-shaped thermoelectric semiconductor substrate having a thickness of 200 mm is formed in the shape of a rectangular parallelepiped (50 × 50 × 5 mm), silver electrodes are mounted vertically as shown in FIG. 1, the lower part is heated with a hot plate, and the upper part is cooled with ice water. The electromotive force was measured with a digital voltmeter. Table 1 shows the measurement results.
The electric resistance of the substrate was on the order of several ohm cm.

【0014】[0014]

【表1】 表1 低温部(℃) 高温部(℃) 温度差 起電力(mV) 20 31 11 0.099 22 35 13 0.154 25 41 16 0.325 30 55 25 0.733 40 70 30 0.911 [Table 1] Table 1 Low temperature part (° C) High temperature part (° C) Temperature difference Electromotive force (mV) 20 31 11 0.099 22 35 13 0.154 25 41 16 0.325 30 55 25 0.733 40 70 30 0.911

【0015】実施例2 実施例1で製造した板状ゴム形態のn型熱電半導体基体
及びp型熱電半導体基体を所定の大きさに切り、半円型
にした。n型熱電半導体基体の内側11及び端部5に銀
ペーストを塗布し(導電層を形成)、端部6にはαシア
ノアクリレート系接着剤(商品名アロンアルファー:絶
縁層を形成)を塗布してn型熱電半導体基体及びp型熱
電半導体基体を接合して、図3に示すドーナツ型熱電発
電モジュールを組み立てた。さらに、このドーナツ型熱
電発電モジュール7の外側の一部8と9にも銀ペースト
を塗布して電極8と9を形成し、これらの電極を導線で
つないで回路10を形成した。このようにして製造した
ドーナツ型熱電発電モジュール7の内部4を体温(T
i:36.5℃)で暖め、ドーナツ型熱電発電モジュー
ル7の外部が室温(例えば、Tr:20℃)であると、
導電層5と11から電子がn型熱電半導体基体2に入
り、外側の電極8へ拡散し、導線を通って負荷を経由
し、電極9へ入る。その結果、温度差ΔT(16.5)=
Ti−Tr(36.5−20)に応じた起電力が発生す
る。この場合、推定される発電は0.325mVであ
り、0.1mA程度の電流が流れる。
Example 2 The n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate in the form of a rubber plate manufactured in Example 1 were cut into a predetermined size to form a semicircle. A silver paste is applied to the inner side 11 and the end 5 of the n-type thermoelectric semiconductor substrate (forming a conductive layer), and an α-cyanoacrylate-based adhesive (trade name: Aron Alpha: forming an insulating layer) is applied to the end 6. Then, the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate were joined to assemble the donut-type thermoelectric power generation module shown in FIG. Further, silver paste was applied also to parts 8 and 9 outside the donut-type thermoelectric power generation module 7 to form electrodes 8 and 9, and these electrodes were connected by a conductor to form a circuit 10. The inside 4 of the donut-type thermoelectric generation module 7 manufactured in this manner is heated to the body temperature (T
i: 36.5 ° C.), and when the outside of the donut type thermoelectric generation module 7 is at room temperature (for example, Tr: 20 ° C.),
Electrons from the conductive layers 5 and 11 enter the n-type thermoelectric semiconductor substrate 2, diffuse to the outer electrode 8, pass through a conductor, pass through a load, and enter the electrode 9. As a result, the temperature difference ΔT (16.5) =
An electromotive force corresponding to Ti-Tr (36.5-20) is generated. In this case, the estimated power generation is 0.325 mV, and a current of about 0.1 mA flows.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のΠ(パイ)型形態の熱電発電モジュー
ルの概略図を示す。
FIG. 1 shows a schematic view of a conventional Π-type thermoelectric power generation module.

【図2】 本発明の熱電発電モジュールをドーナツ型に
形成したものの概略図を示す。
FIG. 2 shows a schematic view of a thermoelectric power generation module of the present invention formed in a donut shape.

【図3】 図2に示す本発明のドーナツ型熱電発電モジ
ュールを組み込んだ熱電発電器の概略図を示す。図中、
1は熱電発電モジュール、2はn型熱電半導体基体、3
はp型熱電半導体基体、5は熱電半導体基体の導電層を
介した接合部,6は熱電半導体基体の絶縁層を介した接
合部、7は熱電発電器、8、9は電極、10は回路を表
す。
3 shows a schematic view of a thermoelectric generator incorporating the donut-type thermoelectric power module of the present invention shown in FIG. In the figure,
1 is a thermoelectric power generation module, 2 is an n-type thermoelectric semiconductor substrate, 3
Is a p-type thermoelectric semiconductor substrate, 5 is a junction of the thermoelectric semiconductor substrate via a conductive layer, 6 is a junction of the thermoelectric semiconductor substrate via an insulating layer, 7 is a thermoelectric generator, 8, 9 are electrodes, and 10 is a circuit. Represents

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02N 11/00 H02N 11/00 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02N 11/00 H02N 11/00 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性プラスチック又はガラス中にn型
熱電半導体粒子を分散させてなるn型熱電半導体基体
と、導電性プラスチック又はガラス中にp型熱電半導体
粒子を分散させてなるp型熱電半導体基体とを複合化さ
せたことを特徴とする熱電発電モジュール。
1. An n-type thermoelectric semiconductor substrate comprising n-type thermoelectric semiconductor particles dispersed in conductive plastic or glass, and a p-type thermoelectric semiconductor comprising p-type thermoelectric semiconductor particles dispersed in conductive plastic or glass. A thermoelectric power generation module characterized by being combined with a base.
【請求項2】 n型熱電半導体基体とp型熱電半導体基
体とを接合させることにより複合化されている請求項1
記載の熱電発電モジュール。
2. The composite of claim 1, wherein the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate are joined together.
A thermoelectric generation module as described.
【請求項3】 n型熱電半導体基体とp型熱電半導体基
体が中間層を介して接合されることにより複合化されて
いる請求項1記載の熱電発電モジュール。
3. The thermoelectric power generation module according to claim 1, wherein the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate are combined by being joined via an intermediate layer.
【請求項4】 導電性プラスチックが、導電性熱可塑性
樹脂、熱硬化性樹脂又はゴムである請求項1〜3のいず
れか1項記載の熱電発電モジュール。
4. The thermoelectric power module according to claim 1, wherein the conductive plastic is a conductive thermoplastic resin, a thermosetting resin, or a rubber.
【請求項5】 n型熱電半導体基体とp型熱電半導体基
体が、中央に空間を有するドーナツ型に複合化されてい
る請求項1〜4のいずれか1項記載の熱電発電モジュー
ル。
5. The thermoelectric power module according to claim 1, wherein the n-type thermoelectric semiconductor substrate and the p-type thermoelectric semiconductor substrate are combined in a donut shape having a space in the center.
【請求項6】 導電性プラスチック又はガラス中にn型
熱電半導体粒子を分散させてなるn型熱電半導体基体
と、導電性プラスチック又はガラス中にp型熱電半導体
粒子を分散させてなるp型熱電半導体基体とを複合化さ
せることを特徴とする請求項1〜5のいずれか1項記載
の熱電発電モジュールの製造方法。
6. An n-type thermoelectric semiconductor substrate in which n-type thermoelectric semiconductor particles are dispersed in conductive plastic or glass, and a p-type thermoelectric semiconductor in which p-type thermoelectric semiconductor particles are dispersed in conductive plastic or glass. The method for manufacturing a thermoelectric power module according to any one of claims 1 to 5, wherein the method comprises forming a composite with a substrate.
【請求項7】 請求項1〜5のいずれか1項記載の熱電
発電モジュールにおけるn型熱電半導体基体とp型熱電
半導体基体のそれぞれに電極が設けられ、該電極間に回
路が形成されており、n型熱電半導体基体とp型熱電半
導体基体間の温度差を電流として回路から取り出すこと
を特徴とする熱電発電器。
7. An n-type thermoelectric semiconductor substrate and a p-type thermoelectric semiconductor substrate in the thermoelectric power generation module according to any one of claims 1 to 5, wherein a circuit is formed between the electrodes. A thermoelectric generator for extracting a temperature difference between an n-type thermoelectric semiconductor substrate and a p-type thermoelectric semiconductor substrate from a circuit as a current.
JP2001157065A 2001-05-25 2001-05-25 Thermoelectric generator module made of plastic or glass and manufacturing method thereof Expired - Fee Related JP3919469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157065A JP3919469B2 (en) 2001-05-25 2001-05-25 Thermoelectric generator module made of plastic or glass and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157065A JP3919469B2 (en) 2001-05-25 2001-05-25 Thermoelectric generator module made of plastic or glass and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002353521A true JP2002353521A (en) 2002-12-06
JP3919469B2 JP3919469B2 (en) 2007-05-23

Family

ID=19000986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157065A Expired - Fee Related JP3919469B2 (en) 2001-05-25 2001-05-25 Thermoelectric generator module made of plastic or glass and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3919469B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061982A1 (en) * 2002-12-27 2004-07-22 Japan Science And Technology Agency Cooling device for electronic component using thermo-electric conversion material
JP2005217353A (en) * 2004-02-02 2005-08-11 Yokohama Teikoki Kk Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same
EP1875524A2 (en) * 2005-04-28 2008-01-09 Cool Shield, Inc. Moldable peltier thermal transfer device and method of manufacturing same
WO2015022197A1 (en) * 2013-08-12 2015-02-19 Siemens Aktiengesellschaft Thermoelectric element
KR20180121601A (en) * 2016-03-09 2018-11-07 웨이크 포리스트 유니버시티 Thermoelectric generator
GB2577572A (en) * 2018-09-28 2020-04-01 Sumitomo Chemical Co Thermoelectric device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145582A (en) * 1983-02-09 1984-08-21 Futaba Corp Iron silicide thermoelectric conversion element
JPH0428461U (en) * 1990-07-02 1992-03-06
JPH05343746A (en) * 1992-06-09 1993-12-24 Matsushita Electric Ind Co Ltd Thermoelectric material and manufacture thereof
JPH07106641A (en) * 1993-10-06 1995-04-21 Hitachi Metals Ltd Integral ring type thermoelectric conversion element and device employing same
JPH08104575A (en) * 1994-08-09 1996-04-23 Toyota Central Res & Dev Lab Inc Composite material and its production
WO1999022411A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
JP2000258256A (en) * 1999-03-10 2000-09-22 Babcock Hitachi Kk Thermocouple for measuring temperature of pipe wall and its manufacture
JP2002076452A (en) * 2000-09-04 2002-03-15 Japan Aviation Electronics Industry Ltd Thermoelectric transducing material and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145582A (en) * 1983-02-09 1984-08-21 Futaba Corp Iron silicide thermoelectric conversion element
JPH0428461U (en) * 1990-07-02 1992-03-06
JPH05343746A (en) * 1992-06-09 1993-12-24 Matsushita Electric Ind Co Ltd Thermoelectric material and manufacture thereof
JPH07106641A (en) * 1993-10-06 1995-04-21 Hitachi Metals Ltd Integral ring type thermoelectric conversion element and device employing same
JPH08104575A (en) * 1994-08-09 1996-04-23 Toyota Central Res & Dev Lab Inc Composite material and its production
WO1999022411A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
JP2000258256A (en) * 1999-03-10 2000-09-22 Babcock Hitachi Kk Thermocouple for measuring temperature of pipe wall and its manufacture
JP2002076452A (en) * 2000-09-04 2002-03-15 Japan Aviation Electronics Industry Ltd Thermoelectric transducing material and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061982A1 (en) * 2002-12-27 2004-07-22 Japan Science And Technology Agency Cooling device for electronic component using thermo-electric conversion material
JP2005217353A (en) * 2004-02-02 2005-08-11 Yokohama Teikoki Kk Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same
EP1875524A2 (en) * 2005-04-28 2008-01-09 Cool Shield, Inc. Moldable peltier thermal transfer device and method of manufacturing same
EP1875524A4 (en) * 2005-04-28 2008-12-31 Cool Shield Inc Moldable peltier thermal transfer device and method of manufacturing same
WO2015022197A1 (en) * 2013-08-12 2015-02-19 Siemens Aktiengesellschaft Thermoelectric element
KR20180121601A (en) * 2016-03-09 2018-11-07 웨이크 포리스트 유니버시티 Thermoelectric generator
JP2019512879A (en) * 2016-03-09 2019-05-16 ウェイク フォレスト ユニバーシティ Thermal voltage generator
KR102379266B1 (en) * 2016-03-09 2022-03-29 웨이크 포리스트 유니버시티 thermoelectric piezoelectric generator
GB2577572A (en) * 2018-09-28 2020-04-01 Sumitomo Chemical Co Thermoelectric device

Also Published As

Publication number Publication date
JP3919469B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
US7868242B2 (en) Thermoelectric conversion module
JP6683132B2 (en) Peltier cooling element and manufacturing method thereof
JP2004214279A (en) Cooling device of electronic component using thermoelectric conversion material
JP3919469B2 (en) Thermoelectric generator module made of plastic or glass and manufacturing method thereof
JP2003258323A (en) Thermoelectric device
CN105633264A (en) Thermoelectric battery with series-wound electric leg structure
US8865997B2 (en) Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same
KR101446424B1 (en) Thermoelectric Conversion Material
JP2004228147A (en) Thermoelectric transducer module and its producing process
US20130160808A1 (en) Thermoelectric generating apparatus and module
JP2010160954A (en) Surface heater
Fatima et al. Semi-transparent thermo-electric cells based on bismuth telluride and its composites with CNTs and graphene
JP2836950B2 (en) Thermoelectric semiconductor element
EP3982431A1 (en) Thermoelectric device
KR101411437B1 (en) Thermoelectric Device, Array, Module, Generating Apparatus, Thermal Sensor, Peltier Apparatus and the Method thereof
Saso et al. Seebeck coefficient of kondo insulators
KR20140101121A (en) Thermo electric device
KR102220946B1 (en) Thermo electric element
JPH07235370A (en) Heater
JP3254609B2 (en) Carrier injection device, carrier injection method and carrier injection body
CN112312597A (en) High-uniformity electric heating film and preparation method thereof
KR20200073674A (en) Thermoelectric module
KR20210029521A (en) Electric generator
Kušnerová et al. An innovative method of generating current and thermoelectric equipment for its realization
KR20190044236A (en) Thermoelectric element and thermoelectric conversion device comprising the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050526

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050905

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees