JP2002353475A - Solar battery element - Google Patents

Solar battery element

Info

Publication number
JP2002353475A
JP2002353475A JP2001161508A JP2001161508A JP2002353475A JP 2002353475 A JP2002353475 A JP 2002353475A JP 2001161508 A JP2001161508 A JP 2001161508A JP 2001161508 A JP2001161508 A JP 2001161508A JP 2002353475 A JP2002353475 A JP 2002353475A
Authority
JP
Japan
Prior art keywords
electrode
current collecting
solar cell
surface side
collecting electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001161508A
Other languages
Japanese (ja)
Inventor
Yuko Fukawa
祐子 府川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001161508A priority Critical patent/JP2002353475A/en
Publication of JP2002353475A publication Critical patent/JP2002353475A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a cell cracking by concentrating stresses caused by a difference in the coefficient of thermal expansion by overlapping a collecting electrode part and an electrode leadout part or that the cell is cracked by solder stacking. SOLUTION: Different conductive regions are formed on one principal surface side and the other principal surface side of a semiconductor wafer, a surface electrode is formed on one principal surface side, and a rear surface electrode composed of the band-shaped electrode leadout part and the collecting electrode part formed on the part except for this electrode leadout part is formed on the other principal surface side. In such a solar battery, the peripheral edge part of the electrode leadout part of the rear surface electrode is provided close to the collecting electrode part, so as not to overlap with the collecting electrode part and the collecting electrode part is connected striding the electrode leadout part at a plurality of spots in the lengthwise direction of the electrode leadout part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池素子に関す
る。
The present invention relates to a solar cell device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来の
太陽電池素子の代表的な製造工程を図3に示す。まず、
図3(a)のように、P型半導体基板1を準備する。そ
して、図3(b)に示すように、半導体基板1をN型不
純物雰囲気中で熱処理などして半導体基板1の表面近傍
の全面にN型不純物を一定の深さまで拡散させてN型を
呈する拡散層2を形成する。次に、図3(c)に示すよ
うに、半導体基板1の表面にプラズマCVD法などで反
射防止膜3を形成する。また、半導体基板1の裏面側の
端部にV字溝を形成して拡散層2を物理的に分離する。
2. Description of the Related Art A typical manufacturing process of a conventional solar cell device is shown in FIG. First,
As shown in FIG. 3A, a P-type semiconductor substrate 1 is prepared. Then, as shown in FIG. 3B, the semiconductor substrate 1 is heat-treated in an N-type impurity atmosphere to diffuse the N-type impurity to a certain depth over the entire surface near the surface of the semiconductor substrate 1 so as to exhibit N-type. The diffusion layer 2 is formed. Next, as shown in FIG. 3C, an antireflection film 3 is formed on the surface of the semiconductor substrate 1 by a plasma CVD method or the like. Further, a V-shaped groove is formed at an end on the back surface side of the semiconductor substrate 1 to physically separate the diffusion layer 2.

【0003】次に、表面には銀ペーストをスクリーン印
刷するとともに、裏面にはアルミニウムペーストおよび
銀ペーストをスクリーン印刷して焼成することにより、
図3(d)に示すような表面電極4と裏面電極5を有す
る太陽電池を得る。
Next, a silver paste is screen-printed on the front surface, and an aluminum paste and a silver paste are screen-printed on the back surface and fired.
A solar cell having a front surface electrode 4 and a back surface electrode 5 as shown in FIG.

【0004】裏面電極5は、図4に示すように、半導体
基板1の裏面の電極取出部5aを形成する領域に銀ペー
ストを塗布して乾燥した後、その領域5aの銀ペースト
の周縁部に重なるように集電電極部5bとなる領域にア
ルミニウムペーストを塗布して乾燥し、この銀ペースト
とアルミニウムペーストとを同時に焼成して電極取出部
5aと集電電極部5bを同時に形成する同時焼成法(一
段階焼成)が用いられている(例えば特開平5−326
990号公報および特表平6−509910号公報参
照)。
As shown in FIG. 4, the back electrode 5 is formed by applying a silver paste to a region of the back surface of the semiconductor substrate 1 where an electrode extraction portion 5a is to be formed, drying the silver paste, and then forming a silver paste on the periphery of the silver paste in the region 5a. A simultaneous firing method in which an aluminum paste is applied to a region to be the current collecting electrode portion 5b so as to overlap and is dried, and the silver paste and the aluminum paste are simultaneously fired to simultaneously form the electrode extraction portion 5a and the current collecting electrode portion 5b. (One-step firing) is used (for example, Japanese Patent Application Laid-Open No. 5-326).
990 and Japanese Patent Publication No. 6-509910).

【0005】このようにして製造された太陽電池素子
は、複数の素子同志を配線材(不図示)を用いて直列に
接続して電圧を昇圧して使用するのが一般的である。こ
の複数の素子同志の接続にははんだが必要となるため、
配線材にはんだコーティングを行っている。しかしなが
ら、集電電極部5bのアルミニウムははんだ濡れ性が悪
くてはんだコーティングが困難であることから、電極取
出部5aをはんだ濡れ性の良好な銀で形成してこれに配
線材をはんだ付けしている。
[0005] The solar cell element manufactured in this manner is generally used by boosting the voltage by connecting a plurality of elements in series using a wiring member (not shown). Since soldering is required to connect these multiple elements,
Wiring materials are coated with solder. However, since the aluminum of the current collecting electrode portion 5b has poor solder wettability and is difficult to be solder coated, the electrode extraction portion 5a is formed of silver having good solder wettability, and a wiring material is soldered thereto. I have.

【0006】このように、電極取出部をアルミニウムに
比べて電気抵抗率の低い銀で形成することにより、太陽
電池の曲線因子の低下を防ぎ、作業性を向上させること
ができる。
As described above, by forming the electrode extraction portion from silver having a lower electric resistivity than aluminum, it is possible to prevent the fill factor of the solar cell from being reduced and to improve the workability.

【0007】ところで、上記のような裏面電極5の構造
では、シリコンなどからなる半導体基板1の裏面に集電
電極部5bとなるアルミニウムペーストと電極取出部5
aとなる銀ペーストとが同時焼成によって形成される
が、シリコン、アルミニウム、あるいは銀といった材料
の熱膨張率がそれぞれ異なるため、アルミニウムから成
る集電電極部5bと銀から成る電極取出部5aとの界面
に残留応力による応力集中がおこり、半導体基板1の割
れ強度が低下してセル割れが発生するという問題があっ
た。
In the structure of the back electrode 5 as described above, an aluminum paste serving as a current collecting electrode portion 5b and an electrode extracting portion 5 are formed on the back surface of the semiconductor substrate 1 made of silicon or the like.
The silver paste to be a is formed by co-firing. However, since materials such as silicon, aluminum, and silver have different coefficients of thermal expansion, the current collecting electrode portion 5b made of aluminum and the electrode extraction portion 5a made of silver are different. There has been a problem that stress concentration due to residual stress occurs at the interface, the crack strength of the semiconductor substrate 1 is reduced, and cell cracks occur.

【0008】これを解決するために特開2000−13
3826号公報には、電極取出部5aとなる銀ペースト
を集電電極部5bとなるアルミニウムペーストの上に塗
布する方法、および集電電極部5bとなるアルミニウム
ペーストとは隙間を開けて電極取出部5aとなる銀ペー
ストを塗布する方法が示されている。
To solve this problem, Japanese Patent Laid-Open Publication No. 2000-13
Japanese Patent No. 3826 discloses a method in which a silver paste serving as an electrode extraction portion 5a is coated on an aluminum paste serving as a current collecting electrode portion 5b, and a gap is provided between the electrode paste and the aluminum paste serving as a current collecting electrode portion 5b. A method of applying a silver paste to be 5a is shown.

【0009】しかし、集電電極部5bとなるアルミニウ
ムペーストの上から電極取出部5aとなる銀ペーストを
塗布する方法では、セル同士を接続する配線材のはんだ
付けを行う電極取出部5aとなる銀ペーストの部分の電
極強度が弱いという問題がある。また、集電電極部5b
となるアルミニウムペーストとは隙間を開けて電極取出
部5aとなる銀ペーストを塗布する方法では、曲線因子
が低下するという問題があった。
However, in the method of applying a silver paste for forming the electrode take-out portion 5a from above the aluminum paste for forming the current collecting electrode portion 5b, the silver for forming the electrode take-out portion 5a for soldering the wiring material for connecting the cells to each other is provided. There is a problem that the electrode strength of the paste portion is weak. In addition, the collecting electrode portion 5b
In the method of applying a silver paste that becomes the electrode extraction portion 5a with a gap between the aluminum paste and the aluminum paste, there is a problem that the fill factor is reduced.

【0010】また、低コスト化のために、はんだ付けを
浸漬式で行った場合、引き上げの下側のはんだ盛りが大
きくなり、後工程の作業時にセル割れが発生するという
問題があった。
Further, when soldering is carried out by immersion for the purpose of cost reduction, there is a problem that the solder pile on the lower side of the pull-up becomes large and cell cracks occur at the time of work in a later step.

【0011】本発明は上記問題に鑑み、集電電極部と電
極取出部の重なり部分に熱膨張率の相違に起因する応力
が集中してセル割れを発生したり、はんだ盛りによって
セル割れが発生することを解消した太陽電池素子を提供
することを目的とする。
In view of the above problems, the present invention concentrates stress caused by a difference in the coefficient of thermal expansion on an overlapping portion between a current collecting electrode portion and an electrode take-out portion to cause cell cracking, or cell cracking due to solder pile. It is an object of the present invention to provide a solar cell element that eliminates the problem.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に請求項1に係る太陽電池では、半導体基板の一主面側
と他の主面側に異なる導電領域を形成して、一主面側に
表面電極を形成するとともに、他の主面側に帯状の電極
取出部とこの電極取出部以外の部分に形成された集電電
極部とから成る裏面電極を形成した太陽電池において、
前記裏面電極の電極取出部の周縁部を前記集電電極部と
は重ならないように前記集電電極部に近接して設けると
ともに、前記集電電極部を前記電極取出部の長手方向の
複数箇所で前記電極取出部を跨いで接続するようにす
る。
In order to achieve the above object, in the solar cell according to the first aspect, different conductive regions are formed on one main surface side of the semiconductor substrate and another main surface side, and the one main surface is formed. A solar cell with a front surface electrode formed on the side and a back electrode composed of a strip-shaped electrode extraction portion on the other main surface side and a current collecting electrode portion formed in a portion other than this electrode extraction portion,
A peripheral portion of an electrode extraction portion of the back electrode is provided near the current collection electrode portion so as not to overlap with the current collection electrode portion, and the current collection electrode portion is provided at a plurality of positions in a longitudinal direction of the electrode extraction portion. To connect over the electrode take-out part.

【0013】従来の太陽電池素子では、裏面電極の電極
取出部の周縁部で集電電極部を重ねていたため、電極取
出部の厚みが薄い部分と集電電極部の端部が重なってい
た。しかし、電極取出部の周縁部と集電電極部の端部が
重ならないように形成するとともに、電極取出部の長手
方向の複数箇所でこの電極取出部を跨いで集電電極部が
接続されるようにすると、電極取出部の厚みの厚い部分
に集電電極部が形成され、また連続して電極を重ねてい
ないことから、応力が分散されることになる。これによ
り、応力の集中が緩和され、問題となっていたセル割れ
が発生しない。
In the conventional solar cell element, since the collecting electrode portion is overlapped on the peripheral portion of the electrode extracting portion of the back electrode, the thin portion of the electrode extracting portion and the end portion of the collecting electrode portion overlap. However, the peripheral portion of the electrode extracting portion and the end of the current collecting electrode portion are formed so as not to overlap with each other, and the current collecting electrode portion is connected across the electrode extracting portion at a plurality of locations in the longitudinal direction of the electrode extracting portion. By doing so, the current collecting electrode portion is formed in the thick portion of the electrode extraction portion, and the stress is dispersed because the electrodes are not continuously stacked. Thereby, the concentration of stress is reduced, and the problematic cell crack does not occur.

【0014】また、電極取出部が集電電極部によって分
割されていることから、はんだが被着する部分が細分化
され、はんだ盛りが均一化される。これにより、はんだ
盛りの違いによる後工程でのセル割れを防止することが
できる。
Further, since the electrode take-out portion is divided by the current collecting electrode portion, the portion to which the solder is applied is subdivided, and the solder pile is made uniform. As a result, it is possible to prevent cell cracking in a later step due to a difference in solder height.

【0015】上記太陽電池素子では、前記裏面電極の電
極取出部が複数本に分割されていることが望ましい。
In the above-mentioned solar cell element, it is desirable that the electrode extraction portion of the back electrode is divided into a plurality of pieces.

【0016】また、上記太陽電池素子では、前記表面電
極と裏面電極の電極取出部が銀を主成分として構成され
るとともに、前記裏面電極の集電電極部がアルミニウム
を主成分として構成されることが望ましい。
In the above solar cell element, the electrode extraction portions of the front electrode and the back electrode are mainly composed of silver, and the current collecting electrode part of the back electrode is mainly composed of aluminum. Is desirable.

【0017】このように構成すると、太陽電池の高効率
化とはんだ盛りの低減を最適化することができる。
With this configuration, it is possible to optimize the efficiency of the solar cell and reduce the amount of solder.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を詳細に
説明する。図1(a)のようにP型半導体基板1を準備
する。そして図1(b)に示すように半導体基板1をN
型不純物雰囲気中で熱処理などして、半導体基板1の表
面近傍の全面に一定の深さまでN型不純物を拡散させて
N型を呈する拡散層2を形成する。次に、図1(c)に
示すように、半導体基板1の表面にプラズマCVD装置
などで反射防止膜3を形成する。また、半導体基板1の
裏面側の端部にV字溝を形成して拡散層2を物理的に分
離する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. A P-type semiconductor substrate 1 is prepared as shown in FIG. Then, as shown in FIG.
An N-type impurity is diffused to a certain depth over the entire surface near the surface of the semiconductor substrate 1 by performing a heat treatment or the like in a type impurity atmosphere to form an N-type diffusion layer 2. Next, as shown in FIG. 1C, an antireflection film 3 is formed on the surface of the semiconductor substrate 1 by a plasma CVD apparatus or the like. Further, a V-shaped groove is formed at the end on the back surface side of the semiconductor substrate 1 to physically separate the diffusion layer 2.

【0019】次に、半導体基板1の表面に銀ペーストを
スクリーン印刷するとともに、裏面に銀ペーストおよび
アルミニウムペーストをスクリーン印刷して焼成するこ
とにより、図1(d)に示すような表面電極4と裏面電
極5を有する太陽電池を得ることができる。従来は半導
体基板1上にアルミニウムペーストを付けた上から銀ペ
ーストを付けるのに対し、本発明は半導体基板1上に銀
ペーストを付けた上からアルミニウムペーストを付け
る。
Next, a silver paste is screen-printed on the front surface of the semiconductor substrate 1, and a silver paste and an aluminum paste are screen-printed on the back surface and fired, so that the surface electrode 4 as shown in FIG. A solar cell having the back electrode 5 can be obtained. Conventionally, the silver paste is applied from the top of the semiconductor substrate 1 on which the aluminum paste is applied, whereas the present invention applies the aluminum paste from the top of the semiconductor substrate 1 on which the silver paste is applied.

【0020】この裏面電極5の構造を図2に示す。図2
(a)に示す太陽電池素子では、裏面電極5の電極取出
部5aを半導体基板1の裏面側の略全幅にわたって二カ
所平行に設けるとともに、この電極取出部5aの周縁部
に重ならないように集電電極部5bを設けたものであ
る。この電極取出部5aは集電電極部5bと上下方向に
重ならないように設ければよく、端部が接するのは構わ
ない。また、電極取出部5aの長さ方向の複数箇所に
は、この電極取出部5aを跨ぐように集電電極部5bが
接続されている。集電電極部5bで集電された電子を電
極取出部5aに供給するとともに、電極取出部5aの露
出部分を細分化してはんだ盛りを低減させるためであ
る。
FIG. 2 shows the structure of the back electrode 5. FIG.
In the solar cell element shown in (a), the electrode extraction portions 5a of the back electrode 5 are provided in two places in parallel over substantially the entire width on the rear surface side of the semiconductor substrate 1, and are collected so as not to overlap the peripheral edge of the electrode extraction portion 5a. This is provided with an electrode part 5b. The electrode extraction portion 5a may be provided so as not to overlap the current collecting electrode portion 5b in the vertical direction, and the end portions may be in contact. Further, at a plurality of positions in the length direction of the electrode extraction portion 5a, the current collecting electrode portion 5b is connected so as to straddle the electrode extraction portion 5a. This is because the electrons collected by the current collecting electrode portion 5b are supplied to the electrode extracting portion 5a, and the exposed portion of the electrode extracting portion 5a is subdivided to reduce the solder pile.

【0021】この電極取出部5aは、例えば厚み0.0
5から1mm、幅1から10mm、長さ145mm程度
に形成され、集電電極部5bの跨ぎ部5b’は幅2mm
程度に、5mmピッチに形成される。なお、ピッチを狭
くすれば、幅は狭くする必要があり、逆にピッチが広け
れば幅は広く取る必要がある。
The electrode extraction portion 5a has a thickness of, for example, 0.0
5 to 1 mm, a width of 1 to 10 mm, and a length of about 145 mm.
It is formed at a pitch of 5 mm. If the pitch is reduced, the width must be reduced. Conversely, if the pitch is increased, the width must be increased.

【0022】この裏面電極5は、図2(b)に示すよう
に、電極取出部5aの周縁部と集電電極部5bとの間に
一定の隙間6が生じるように形成してもよい。このよう
に形成すると、電極取出部5aと集電電極部5bの境界
部分の応力をより一層緩和することができる。
As shown in FIG. 2B, the back electrode 5 may be formed such that a constant gap 6 is formed between the periphery of the electrode extraction portion 5a and the collecting electrode portion 5b. With such a configuration, the stress at the boundary between the electrode extraction portion 5a and the current collecting electrode portion 5b can be further reduced.

【0023】なお、電極取出部5aと集電電極部5b
は、応力集中を緩和するにはできるだけ広い間隔となる
ように離間させた方がよいが、アルミニウム電極で同時
に得ているBSF効果を上げるためには、集電電極部5
bができるだけ広面積となるように、できるだけ近接し
て設けた方がよい。したがって、電極取出部5aと集電
電極部5bとは、電極取出部5aの周縁部に重ならない
ように集電電極部5bの端部を当接して設けるところか
ら、3mm程度まで離間して設けてもよい。
The electrode extraction section 5a and the current collecting electrode section 5b
In order to reduce the stress concentration, it is better to keep the gap as wide as possible, but in order to enhance the BSF effect obtained simultaneously with the aluminum electrode,
It is better to provide b as close as possible so that b has as large an area as possible. Therefore, the electrode extraction portion 5a and the current collecting electrode portion 5b are provided at a distance of about 3 mm from a position where the end portion of the current collecting electrode portion 5b is abutted so as not to overlap the peripheral portion of the electrode extraction portion 5a. You may.

【0024】また、この裏面電極5は、図2(c)に示
すように、電極取出部5aが長手方向に複数本形成され
るようにしてもよい。このように電極取出部5aを長手
方向に複数本形成すると、この電極取出部5aに配線材
(不図示)をはんだ付けする際に、複数の電極取出部5
aの間にはんだ溜まりを形成でき、配線材を取出電極部
5aにより安定してはんだ付けできるようになる。
Further, as shown in FIG. 2 (c), the back electrode 5 may have a plurality of electrode extraction portions 5a formed in the longitudinal direction. When a plurality of electrode extraction portions 5a are formed in the longitudinal direction in this way, when soldering a wiring member (not shown) to the electrode extraction portions 5a, the plurality of electrode extraction portions 5a are formed.
a, a solder pool can be formed between them, and the wiring material can be stably soldered to the extraction electrode portion 5a.

【0025】その後、半導体基板1をベルト炉等の焼成
炉で焼成することによって、表面電極4および裏面電極
5が同時に形成される。また、表面電極4と裏面電極5
が形成された半導体基板1をはんだ槽に浸漬して表面電
極4と裏面電極5の電極取出部5aにはんだをコーティ
ングしてはんだ層を形成する。
Then, the front surface electrode 4 and the back surface electrode 5 are formed simultaneously by firing the semiconductor substrate 1 in a firing furnace such as a belt furnace. The front electrode 4 and the back electrode 5
The semiconductor substrate 1 on which is formed is immersed in a solder bath, and the electrode extraction portions 5a of the front surface electrode 4 and the back surface electrode 5 are coated with solder to form a solder layer.

【0026】なお、本発明は上記実施形態に限定される
ものではなく、本発明の範囲内で多くの変更を加えるこ
とができる。例えばアルミニウムペーストに代えてガリ
ウムやインジウムをベースとした金属ペーストを用いて
もよいし、またボロンを塗布してもよい。また、銀ペー
ストに代えて銅、金、白金をベースとした金属ペースト
を用いてもよい。
It should be noted that the present invention is not limited to the above embodiment, and that many changes can be made within the scope of the present invention. For example, a metal paste based on gallium or indium may be used instead of the aluminum paste, or boron may be applied. Further, a metal paste based on copper, gold, or platinum may be used instead of the silver paste.

【0027】[0027]

【実施例】以下に、本発明の実施例を示す。図1(a)
に示すように半導体基板として15cm角で厚さ0.3
mm、比抵抗1.5Ω・cmのP型シリコン基板を準備
した。そして図1(b)に示すように熱拡散法でオキシ
塩化リン(POCl3)を拡散源として、深さ0.5μ
mのN型拡散層を形成した。
Examples of the present invention will be described below. FIG. 1 (a)
As shown in FIG.
A P-type silicon substrate having a specific resistance of 1.5 Ω · cm was prepared. Then, as shown in FIG. 1 (b), phosphorus oxychloride (POCl 3 ) was used as a diffusion source by a thermal diffusion method to a depth of 0.5 μm.
m N-type diffusion layers were formed.

【0028】次に、表面にプラズマCVD法で窒化シリ
コンの反射防止膜を800Åの厚さで形成し、裏面は噴
射ノズルを上記半導体基板に対して80度の角度で当て
て、噴射剤としてアルミナを直接噴射して、図1(c)
に示すように接合分離部を形成した。
Next, an antireflection film made of silicon nitride is formed on the front surface by plasma CVD at a thickness of 800 °, and the back surface is sprayed with an injection nozzle at an angle of 80 ° to the semiconductor substrate. Is directly injected, and FIG. 1 (c)
As shown in FIG.

【0029】最後に、図2(a)、(b)、(c)に示
すパターンで裏面に銀ペースト、アルミニウムペースト
をスクリーン印刷し、表面にも銀ペーストをスクリーン
印刷して700℃で焼成することで集電極を形成した
後、200℃の半田浴槽に上記基板を浸漬して引き上げ
ることで、上記集電極表面を半田被覆して太陽電池を製
造した。
Finally, a silver paste and an aluminum paste are screen-printed on the back surface in the pattern shown in FIGS. 2A, 2B and 2C, and a silver paste is screen-printed on the front surface and fired at 700 ° C. After forming the collector electrode, the substrate was immersed in a solder bath at 200 ° C. and pulled up to coat the surface of the collector electrode with solder, thereby manufacturing a solar cell.

【0030】本発明の製法で得られた太陽電池と従来の
製法で得られた太陽電池の割れ発生率について表1に示
す。
Table 1 shows the cracking rates of the solar cells obtained by the method of the present invention and the solar cells obtained by the conventional method.

【0031】[0031]

【表1】 [Table 1]

【0032】本発明の太陽電池では割れ発生率が3〜1
4%であり、従来の27%よりも大きく低下する。
The solar cell of the present invention has a crack occurrence rate of 3 to 1
4%, which is much lower than the conventional 27%.

【0033】またクラック発生までの破壊強度を測定す
る曲げ試験結果を表2に示す。
Table 2 shows the results of a bending test for measuring the breaking strength up to the occurrence of cracks.

【0034】[0034]

【表2】 [Table 2]

【0035】本発明の太陽電池では、破壊強度が0.7
5〜1.06Kgであり、従来の0.38Kgよりも大
きく向上する。この試験結果からも、本発明の効果がわ
かる。
In the solar cell of the present invention, the breaking strength is 0.7
It is 5 to 1.06 Kg, which is much higher than the conventional 0.38 Kg. The effect of the present invention can be understood from the test results.

【0036】[0036]

【発明の効果】以上詳細に説明したように、本発明によ
れば、裏面電極の電極取出部の周縁部を集電電極部とは
重ならないように集電電極部に近接して設けるととも
に、集電電極部を電極取出部の長手方向の複数箇所で電
極取出部を跨いで接続したことから、従来問題となって
いたアルミニウム電極と銀電極との境界部分の応力集中
をなくすことができ、割れ強度が高まって割れの発生を
防止でき、高品質なセルが得られる。また、浸漬法によ
るはんだ塗布を行っても部分的にはんだ盛りが大きくな
るという問題が発生せず、後工程でのセル割れの発生も
抑制される。
As described above in detail, according to the present invention, the peripheral portion of the electrode extraction portion of the back electrode is provided close to the current collecting electrode portion so as not to overlap with the current collecting electrode portion. Since the collecting electrode portion is connected across the electrode extracting portion at a plurality of locations in the longitudinal direction of the electrode extracting portion, stress concentration at the boundary between the aluminum electrode and the silver electrode, which has conventionally been a problem, can be eliminated, The crack strength can be increased to prevent the occurrence of cracks, and a high-quality cell can be obtained. In addition, even when the solder is applied by the immersion method, the problem that the solder height is partially increased does not occur, and the occurrence of the cell crack in the subsequent process is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池素子の製造方法を示す図
である。
FIG. 1 is a diagram showing a method for manufacturing a solar cell element according to the present invention.

【図2】本発明に係る太陽電池素子の裏面電極を示す図
である。
FIG. 2 is a diagram showing a back electrode of the solar cell element according to the present invention.

【図3】従来の太陽電池素子の製造方法を示す図であ
る。
FIG. 3 is a view illustrating a conventional method for manufacturing a solar cell element.

【図4】従来の太陽電池の裏面電極を示す図である。FIG. 4 is a diagram showing a back electrode of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1;半導体基板、2;n型拡散層、3;反射防止膜、
4;・表面電極、5;・裏面電極、5a;電極取出部、5
b;アルミニウム電極
1; semiconductor substrate, 2; n-type diffusion layer, 3; antireflection film,
4; front surface electrode, 5; back surface electrode, 5a; electrode extraction portion, 5
b; aluminum electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面側と他の主面側に異
なる導電領域を形成して、一主面側に表面電極を形成す
るとともに、他の主面側に帯状の電極取出部とこの電極
取出部以外の部分に形成された集電電極部とから成る裏
面電極を形成した太陽電池において、前記裏面電極の電
極取出部の周縁部を前記集電電極部とは重ならないよう
に前記集電電極部に近接して設けるとともに、前記集電
電極部を前記電極取出部の長手方向の複数箇所で前記電
極取出部を跨いで接続したことを特徴とする太陽電池素
子。
1. A semiconductor device according to claim 1, wherein a conductive region is formed on one main surface side of the semiconductor substrate and another conductive region is formed on another main surface side to form a surface electrode on one main surface side and a strip-shaped electrode extraction portion on the other main surface side. And a current collecting electrode portion formed in a portion other than the electrode extracting portion, in a solar cell, in which the peripheral portion of the electrode extracting portion of the rear electrode does not overlap with the current collecting electrode portion. A solar cell element, wherein the solar cell element is provided close to the current collecting electrode portion, and the current collecting electrode portion is connected across the electrode extracting portion at a plurality of locations in the longitudinal direction of the electrode extracting portion.
【請求項2】 前記裏面電極の電極取出部が複数本に分
割されていることを特徴とする請求項1に記載の太陽電
池素子。
2. The solar cell element according to claim 1, wherein an electrode extraction portion of the back electrode is divided into a plurality of pieces.
【請求項3】 前記表面電極と裏面電極の電極取出部が
銀を主成分として構成されるとともに、前記裏面電極の
集電電極部がアルミニウムを主成分として構成されるこ
とを特徴とする請求項1または請求項2に記載の太陽電
池素子。
3. The electrode extraction portion of the front surface electrode and the back surface electrode is mainly composed of silver, and the current collecting electrode portion of the back surface electrode is mainly composed of aluminum. The solar cell element according to claim 1 or 2.
JP2001161508A 2001-05-29 2001-05-29 Solar battery element Pending JP2002353475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161508A JP2002353475A (en) 2001-05-29 2001-05-29 Solar battery element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161508A JP2002353475A (en) 2001-05-29 2001-05-29 Solar battery element

Publications (1)

Publication Number Publication Date
JP2002353475A true JP2002353475A (en) 2002-12-06

Family

ID=19004772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161508A Pending JP2002353475A (en) 2001-05-29 2001-05-29 Solar battery element

Country Status (1)

Country Link
JP (1) JP2002353475A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156693A (en) * 2004-11-29 2006-06-15 Kyocera Corp Solar battery element and solar battery module using it
JP2007059503A (en) * 2005-08-23 2007-03-08 Shin Etsu Handotai Co Ltd Solar cell
WO2007043428A1 (en) * 2005-10-14 2007-04-19 Sharp Kabushiki Kaisha Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
US7754973B2 (en) 2004-05-21 2010-07-13 Neomax Materials Co., Ltd. Electrode wire for solar cell
WO2011040489A1 (en) * 2009-09-29 2011-04-07 京セラ株式会社 Solar cell element and solar cell module
JP2012525703A (en) * 2009-05-01 2012-10-22 シリコー マテリアルズ インコーポレイテッド Double-sided solar cell with back reflector
JP2012209316A (en) * 2011-03-29 2012-10-25 Kyocera Corp Solar cell element and solar cell module
US8440907B2 (en) 2006-04-14 2013-05-14 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
US8748734B2 (en) 2004-08-13 2014-06-10 Hitachi Metals, Ltd. Rectangular conductor for solar battery, method for fabricating same and lead wire for solar battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754973B2 (en) 2004-05-21 2010-07-13 Neomax Materials Co., Ltd. Electrode wire for solar cell
US8748734B2 (en) 2004-08-13 2014-06-10 Hitachi Metals, Ltd. Rectangular conductor for solar battery, method for fabricating same and lead wire for solar battery
US9842953B2 (en) 2004-08-13 2017-12-12 Hitachi Metals, Ltd. Solar battery rectangular conductor, method for fabricating same and solar battery lead wire
US9530918B2 (en) 2004-08-13 2016-12-27 Hitachi Metals, Ltd. Solar battery rectangular conductor, method for fabricating same and solar battery lead wire
US9508883B2 (en) 2004-08-13 2016-11-29 Hitachi Metals, Ltd. Rectangular conductor for solar battery, method for fabricating same and lead wire for solar battery
JP2006156693A (en) * 2004-11-29 2006-06-15 Kyocera Corp Solar battery element and solar battery module using it
JP2007059503A (en) * 2005-08-23 2007-03-08 Shin Etsu Handotai Co Ltd Solar cell
WO2007043428A1 (en) * 2005-10-14 2007-04-19 Sharp Kabushiki Kaisha Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
US8440907B2 (en) 2006-04-14 2013-05-14 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
JP2012525703A (en) * 2009-05-01 2012-10-22 シリコー マテリアルズ インコーポレイテッド Double-sided solar cell with back reflector
JP2012525702A (en) * 2009-05-01 2012-10-22 シリコー マテリアルズ インコーポレイテッド Double-sided solar cell with overlaid backside grid
WO2011040489A1 (en) * 2009-09-29 2011-04-07 京セラ株式会社 Solar cell element and solar cell module
JP5289578B2 (en) * 2009-09-29 2013-09-11 京セラ株式会社 Solar cell element and solar cell module
US8912431B2 (en) 2009-09-29 2014-12-16 Kyocera Corporation Solar cell element and solar cell module
JP2013102217A (en) * 2009-09-29 2013-05-23 Kyocera Corp Solar cell element and solar cell module
CN102388465A (en) * 2009-09-29 2012-03-21 京瓷株式会社 Solar cell element and solar cell module
JP2012209316A (en) * 2011-03-29 2012-10-25 Kyocera Corp Solar cell element and solar cell module

Similar Documents

Publication Publication Date Title
EP1267419A2 (en) Solar cell and method of producing the same
US9252300B2 (en) Method for backside-contacting a silicon solar cell, silicon solar cell and silicon solar module
WO2013179282A1 (en) Solar cell electrically conductive structure and method
JP2001068699A (en) Solar cell
JP2002353475A (en) Solar battery element
US20140137934A1 (en) Photovoltaic cell and method of manufacturing such a cell
JP4780953B2 (en) Solar cell element and solar cell module using the same
JP3497996B2 (en) Photoelectric conversion device and method of manufacturing the same
JP2001044459A (en) Solar battery
JP4185332B2 (en) Solar cell and solar cell module using the same
JP2003273379A (en) Solar cell element
JP3847188B2 (en) Solar cell element
JP2002198546A (en) Formation method for solar cell element
JPH05326990A (en) Manufacture of photoelectric device
JP2004235272A (en) Solar cell element and its fabricating process
JP2002353478A (en) Solar battery cell and solar battery module using the same
JP2002164550A (en) Solar cell
JP2003017721A (en) Solar battery element
JP2003273378A (en) Solar cell element
JP4203247B2 (en) Method for forming solar cell element
JP2003197931A (en) Solar battery element
JP4471532B2 (en) Method for manufacturing solar cell element
JP2005136148A (en) Solar cell device and method of manufacturing the same
JP5196418B2 (en) Solar cell and solar cell module with interconnector
JP4146656B2 (en) Solar cell element