JP2002352819A - Fluorine ion exchange resin film - Google Patents

Fluorine ion exchange resin film

Info

Publication number
JP2002352819A
JP2002352819A JP2002029450A JP2002029450A JP2002352819A JP 2002352819 A JP2002352819 A JP 2002352819A JP 2002029450 A JP2002029450 A JP 2002029450A JP 2002029450 A JP2002029450 A JP 2002029450A JP 2002352819 A JP2002352819 A JP 2002352819A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
fluorine
membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002029450A
Other languages
Japanese (ja)
Other versions
JP4067315B2 (en
Inventor
Naoto Miyake
直人 三宅
Takuya Hasegawa
卓也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002029450A priority Critical patent/JP4067315B2/en
Publication of JP2002352819A publication Critical patent/JP2002352819A/en
Application granted granted Critical
Publication of JP4067315B2 publication Critical patent/JP4067315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fluorine ion exchange resin film of low dry weight (EW) per one equivalent weight, being excellent in durability, which is used for a fuel cell. SOLUTION: The dry weight (EW) per one equivalent weight of ion exchange group is 250-940, while decrease in weight after boiling process for eight hours under water is 5 wt.% or less according to a dry weight reference before boiling process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に用いら
れるフッ素系イオン交換樹脂膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorine-based ion exchange resin membrane used for a fuel cell.

【0002】[0002]

【従来の技術】フッ素系イオン交換樹脂は、高分子鎖中
にスルホン酸基やカルボン酸基等の強酸基を有する高分
子材料であって特定のイオンを選択的に透過する性質を
有しているため、固体高分子型燃料電池をはじめ、クロ
ルアルカリ、水電解、ハロゲン化水素酸電解、食塩電
解、酸素濃縮器、湿度センサー、ガスセンサー等の様々
な用途に用いられている。中でも燃料電池は、水素やメ
タノール等を電気化学的に酸化する事により、燃料の化
学エネルギーを電気エネルギーに変換するものであり、
クリーンな電気エネルギー供給源として注目されてい
る。このようなフッ素系イオン交換樹脂としては、例え
ば、ナフィオン(登録商標、デュポン社製)に代表され
るパーフルオロ系固体高分子電解質が知られている。パ
ーフルオロ系固体高分子電解質は、イオン伝導度が高
く、かつ化学的安定性が非常に高い事が特徴である。
2. Description of the Related Art A fluorinated ion exchange resin is a polymer material having a strong acid group such as a sulfonic acid group or a carboxylic acid group in a polymer chain and having a property of selectively transmitting specific ions. Therefore, it is used in various applications such as polymer electrolyte fuel cells, chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors, and the like. Among them, fuel cells convert the chemical energy of fuel into electric energy by electrochemically oxidizing hydrogen, methanol, etc.
It is drawing attention as a clean source of electrical energy. As such a fluorine-based ion exchange resin, for example, a perfluoro-based solid polymer electrolyte represented by Nafion (registered trademark, manufactured by DuPont) is known. Perfluoro-based solid polymer electrolytes are characterized by high ionic conductivity and extremely high chemical stability.

【0003】フッ素系イオン交換樹脂膜を燃料電池用固
体高分子電解質膜として用いる場合、発電時の電気抵抗
をできるだけ低くするため、イオン伝導度の高い電解質
膜が望まれている。膜のイオン伝導度は、イオン交換基
の数に大きく依存し、通常1当量当たりの乾燥重量(E
W)が950〜1200程度のフッ素系イオン交換樹脂
膜が使用されている。EWが950未満のフッ素系イオ
ン交換樹脂膜はより大きなイオン伝導度を示すものの、
水や温水に溶解しやすくなり、燃料電池用途に用いた場
合に耐久性に劣るという大きな問題があった。特開平6
−322034号公報に、高分子量のフッ素系イオン交
換樹脂前駆体の製造方法が示されている。この中で、フ
ッ素系イオン交換樹脂膜が良好な物理的性質を有するた
めには、高分子量の該前駆体を用いて作製する事が望ま
しいと示唆されている。しかしながら、水溶解性を改善
させるために、該前駆体がどのようなEW及び分子量を
有するべきか、具体的な解決方法が示されていない。ま
た、特開平4−366137号公報が、EWが700〜
1000で水吸収が100重量%以下であるフッ素系イ
オン交換樹脂膜について開示している。このようなフッ
素系イオン交換樹脂膜を燃料電池に用いた場合、高い出
力が得られるものの、水溶解性に関しては何ら解決方法
を示しておらず、長期間燃料電池を運転した時の耐久性
に問題があった。従って、低EWであっても水溶解性を
改善させる具体的な解決方法を見出す必要があった。
When a fluorine-based ion exchange resin membrane is used as a solid polymer electrolyte membrane for a fuel cell, an electrolyte membrane having a high ion conductivity is desired in order to minimize the electric resistance during power generation. The ionic conductivity of a membrane greatly depends on the number of ion-exchange groups and is usually a dry weight per equivalent (E
A fluorine-based ion exchange resin membrane having a W) of about 950 to 1200 is used. Although the fluorinated ion exchange resin membrane having an EW of less than 950 shows a higher ionic conductivity,
There is a major problem that the composition is easily dissolved in water or hot water and has poor durability when used for fuel cell applications. JP 6
JP-A-322034 discloses a method for producing a high molecular weight fluorine-based ion exchange resin precursor. Among them, it has been suggested that in order for the fluorine-based ion-exchange resin membrane to have good physical properties, it is desirable to prepare it using the high molecular weight precursor. However, no specific solution is given as to what EW and molecular weight the precursor should have in order to improve the water solubility. Japanese Patent Application Laid-Open No. 4-366137 discloses that EW is 700 to
A fluorinated ion exchange resin membrane having a water absorption of 1000 or less by weight at 1000 is disclosed. When such a fluorine-based ion-exchange resin membrane is used for a fuel cell, a high output is obtained, but no solution is shown with respect to water solubility, and the durability when the fuel cell is operated for a long time is not shown. There was a problem. Therefore, it was necessary to find a specific solution for improving water solubility even at low EW.

【0004】[0004]

【発明が解決しようとする課題】本発明は、燃料電池に
用いる事のできる低EWのフッ素系イオン交換樹脂膜を
提供する事を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low EW fluorine ion exchange resin membrane which can be used for a fuel cell.

【0005】[0005]

【課題を解決するための手段】本発明者は前記課題を解
決するため鋭意検討した結果、JIS K−7210に
基づいた、温度270℃、荷重2.16kgで測定され
るメルトインデックス(MI(g/10分))が低い、
つまり分子量の高いフッ素系イオン交換樹脂前駆体を用
いて低EWのフッ素系イオン交換樹脂膜を作製する事で
水への溶解性を改善できる事を見出した。そして驚くべ
き事にどんなにEWが低い場合でも、前記前駆体が下記
式(1)を満たす事で、該フッ素系イオン交換樹脂膜を
沸騰処理しても、臨界的に水に溶解しない事を見出し
た。 log10MI≦〔(EW−850)/90〕+3・・・・・(1) さらに、水中8時間沸騰処理による重量減少が沸騰処理
前の乾燥重量基準で5wt%以下、好ましくは1wt%
以下である低EWのフッ素系イオン交換樹脂膜が、固体
高分子型燃料電池用途に有用である事を見出した。即
ち、本発明は、 1.イオン交換基1当量当たりの乾燥重量(EW)が2
50以上940以下であり、かつ水中8時間沸騰処理に
よる重量減少が沸騰処理前の乾燥重量基準で5wt%以
下である事を特徴とするフッ素系イオン交換樹脂膜、 2.該重量減少が1wt%以下である事を特徴とする
1.記載のフッ素系イオン交換樹脂膜、 3.該EWが250以上700以下である事を特徴とす
る1.又は2.記載のフッ素系イオン交換樹脂膜、 4.1.〜3.のいずれかに記載のフッ素系イオン交換
樹脂膜を備える事を特徴とする膜電極接合体、 5.1.〜3.のいずれかに記載のフッ素系イオン交換
樹脂膜を備える事を特徴とする固体高分子型燃料電池、
に関する。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems, and as a result, based on JIS K-7210, a melt index (MI (g) measured at a temperature of 270 ° C. under a load of 2.16 kg. / 10 min)) is low,
That is, it was found that the solubility in water can be improved by preparing a low EW fluorine-based ion exchange resin membrane using a fluorine-based ion-exchange resin precursor having a high molecular weight. Surprisingly, no matter how low the EW is, even if the precursor satisfies the following formula (1), even if the fluorine-based ion exchange resin membrane is subjected to boiling treatment, it is found that the precursor is not critically dissolved in water. Was. log 10 MI ≦ [(EW-850) / 90] +3 (1) Further, the weight loss due to boiling treatment in water for 8 hours is 5 wt% or less, preferably 1 wt%, based on the dry weight before boiling treatment.
The following low EW fluorine-based ion exchange resin membrane was found to be useful for polymer electrolyte fuel cell applications. That is, the present invention provides: The dry weight (EW) per equivalent of ion exchange group is 2
1. a fluorine-based ion-exchange resin membrane characterized in that it has a weight loss of 50 to 940 and a weight loss by boiling for 8 hours in water of 5 wt% or less based on a dry weight before the boiling. The weight loss is 1 wt% or less. 2. The fluorinated ion exchange resin membrane according to the above. The EW is 250 or more and 700 or less. Or 2. 4.1. The fluorinated ion exchange resin membrane described in 4.1. ~ 3. 5. A membrane electrode assembly comprising the fluorine-based ion exchange resin membrane according to any one of the above, 5.1. ~ 3. A polymer electrolyte fuel cell, comprising the fluorine-based ion exchange resin membrane according to any one of the above,
About.

【0006】以下に本発明のフッ素系イオン交換樹脂膜
を詳細に説明する。本発明のフッ素系イオン交換樹脂膜
は、下記式(2)で表されるようなスルホン酸型又はカ
ルボン酸型のイオン交換基を有するフルオロカーボン重
合体である。
Hereinafter, the fluorine-based ion exchange resin membrane of the present invention will be described in detail. The fluorine-based ion exchange resin membrane of the present invention is a fluorocarbon polymer having a sulfonic acid type or carboxylic acid type ion exchange group represented by the following formula (2).

【化1】 Embedded image

【0007】本発明のフッ素系イオン交換樹脂膜の当量
重量(EW)、つまりイオン交換基1当量当たりの乾燥
重量は250以上940以下であり、好ましくは250
以上800以下、より好ましくは250以上700以
下、更により好ましくは250以上600以下である。
EWが小さい方が、イオン伝導度が高くなるため好まし
い。尚、EWが小さい場合には、水への溶解性が大きく
なるため、後述するメルトインデックスが小さいほど好
ましい。また、本発明のフッ素系イオン交換樹脂膜を水
中8時間沸騰処理した時の重量減少割合は、沸騰処理前
の乾燥重量基準で5wt%以下であり、望ましくは1w
t%以下である。該重量減少が5wt%以下であると、
燃料電池に用いた場合の耐久性が向上するため好まし
い。
The equivalent weight (EW) of the fluorinated ion exchange resin membrane of the present invention, that is, the dry weight per equivalent of the ion exchange group is from 250 to 940, preferably from 250 to 940.
It is from 800 to 700, more preferably from 250 to 700, even more preferably from 250 to 600.
A smaller EW is preferable because the ionic conductivity becomes higher. When the EW is small, the solubility in water increases, so that the smaller the melt index described later, the better. The weight reduction ratio when the fluorine-based ion exchange resin membrane of the present invention is subjected to boiling treatment in water for 8 hours is 5 wt% or less based on the dry weight before the boiling treatment, and preferably 1 watt.
t% or less. When the weight loss is 5 wt% or less,
This is preferable because durability when used in a fuel cell is improved.

【0008】本発明のフッ素系イオン交換樹脂膜の厚み
としては1μm以上500μm以下である事が好まし
い。ガス透過率を低くでき燃料電池運転時の発電特性を
向上できるので1μm以上の膜厚が好ましく、発電時の
直流抵抗を小さくできるので500μm以下の膜厚が好
ましい。また、特開平8−162132号公報記載のよ
うにPTFE膜を延伸処理した多孔質膜や、特開昭53
−149881号公報及び特公昭63−61337号公
報に示されるフィブリル化繊維を有している場合もあ
る。本発明の低EWのフッ素系イオン交換樹脂膜は、長
期間にわたり、水や温水に溶解しにくいため、固体高分
子型燃料電池に用いる事が可能である。
The thickness of the fluorine-based ion exchange resin membrane of the present invention is preferably 1 μm or more and 500 μm or less. The thickness is preferably 1 μm or more because the gas permeability can be reduced and the power generation characteristics during fuel cell operation can be improved, and the thickness is preferably 500 μm or less because the DC resistance during power generation can be reduced. Further, as described in JP-A-8-162132, a porous membrane obtained by stretching a PTFE membrane,
In some cases, it has fibrillated fibers disclosed in JP-A-1499881 and JP-B-63-61337. The low EW fluorine-based ion exchange resin membrane of the present invention is difficult to dissolve in water or hot water for a long period of time, and thus can be used for a polymer electrolyte fuel cell.

【0009】本発明のフッ素系イオン交換樹脂膜は、下
記式(3)で表されるフッ素系イオン交換樹脂前駆体か
ら製造される。
The fluorinated ion exchange resin membrane of the present invention is produced from a fluorinated ion exchange resin precursor represented by the following formula (3).

【化2】 Embedded image

【0010】この際用いられるフッ素系イオン交換樹脂
前駆体の、JIS K−7210に基づいた、温度27
0℃、荷重2.16kgで測定されるメルトインデック
ス(MI(g/10分))としては2000以下0.0
1以上、好ましくは1000以下0.01以上、より好
ましくは100以下0.01以上、更により好ましくは
10以下0.01以上である事を特徴とする。また、最
適なMIは下記式(1)を満たしてEWに依存し、EW
が低いものほどMIが低い事が好ましい。 log10MI≦〔(EW−850)/90〕+3・・・・・(1)
The fluorine-based ion exchange resin precursor used at this time has a temperature of 27 based on JIS K-7210.
The melt index (MI (g / 10 minutes)) measured at 0 ° C. and a load of 2.16 kg is 2,000 or less and 0.0
It is characterized by being 1 or more, preferably 1000 or less and 0.01 or more, more preferably 100 or less and 0.01 or more, and still more preferably 10 or less and 0.01 or more. Further, the optimum MI satisfies the following equation (1) and depends on the EW.
It is preferable that the lower the value, the lower the MI. log 10 MI ≦ [(EW-850) / 90] +3 (1)

【0011】以下に本発明のフッ素系イオン交換樹脂膜
の製造方法を説明する。本発明のフッ素系イオン交換樹
脂膜は、フッ素系イオン交換樹脂前駆体を重合する工
程、成形工程、加水分解処理によりイオン交換基を形成
させる工程からなる。 (重合)フッ素系イオン交換樹脂前駆体としては、スル
ホン酸基又はカルボン酸基などのイオン交換基前駆体を
有するフルオロカーボン重合体の事を言う。かかるフル
オロカーボン重合体としては、CF2 =CX1 2 (X
1 及びX2は独立にハロゲン元素又は炭素数1〜3のパ
ーフルオロアルキル基)で表されるフッ化オレフィン
と、CF2 =CF(−O−(CF2 −CF(CF
2 3 ))b−Oc −(CFR1 d −(CFR2 e
−(CF2 f −X5 )で表されるフッ化ビニル化合物
(X3 はハロゲン元素又は炭素数1〜3のパーフルオロ
アルキル基、bは0〜8の整数、cは0又は1、d及び
e及びfは独立に0〜6の整数(但しd+e+fは0に
等しくない)、R1 及びR2 は独立にハロゲン元素ない
しは炭素数1〜10のパーフルオロアルキル基又はフル
オロクロロアルキル基、X5 はCO2 3 、COR4
又はSO2 4 (R3 は炭素数1〜3の炭化水素系アル
キル基、R4 はハロゲン元素))とのフルオロカーボン
共重合体が好ましい。
Hereinafter, a method for producing the fluorine-based ion exchange resin membrane of the present invention will be described. The fluorinated ion exchange resin membrane of the present invention comprises a step of polymerizing a fluorinated ion exchange resin precursor, a molding step, and a step of forming an ion exchange group by a hydrolysis treatment. (Polymerization) The fluorocarbon ion exchange resin precursor refers to a fluorocarbon polymer having an ion exchange group precursor such as a sulfonic acid group or a carboxylic acid group. Such fluorocarbon polymers include CF 2 = CX 1 X 2 (X
And 1 and X 2 are fluorinated olefin represented by the halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms) independently, CF 2 = CF (-O- ( CF 2 -CF (CF
2 X 3)) b -O c - (CFR 1) d - (CFR 2) e
— (CF 2 ) f —X 5 ) (X 3 is a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, b is an integer of 0 to 8, c is 0 or 1, d, e and f are each independently an integer of 0 to 6 (however, d + e + f is not equal to 0); R 1 and R 2 are each independently a halogen element or a perfluoroalkyl group or a fluorochloroalkyl group having 1 to 10 carbon atoms; X 5 is CO 2 R 3 , COR 4 ,
Alternatively, a fluorocarbon copolymer with SO 2 R 4 (R 3 is a hydrocarbon alkyl group having 1 to 3 carbon atoms, and R 4 is a halogen element) is preferable.

【0012】代表的なフッ化オレフィンとしては、CF
2 =CF2 、CF2 =CFCl、CF2 =CCl2 が挙
げられる。フッ化ビニル化合物としては、具体的には、
CF 2 =CFO(CF2 Z −SO2 F、CF2 =CF
OCF2 CF(CF3 )O(CF2 Z −SO2 F、C
2 =CF(CF2 Z −SO2 F、CF2 =CF(O
CF2 CF(CF3 ))Z-1 −(CF2 2 −SO
2 F、CF2 =CFO(CF2 Z −CO2 R、CF2
=CFOCF2 CF(CF3 )O(CF2 Z −CO2
R、CF2 =CF(CF2 Z −CO2 R、CF2 =C
F(OCF2 CF(CF3 ))Z −(CF2 2 −CO
2 R(zは1〜8の整数、Rは炭素数1〜3の炭化水素
系アルキル基を表す)が挙げられる。なお、上記フルオ
ロカーボン共重合体は、ヘキサフルオロプロピレン、ク
ロロトリフルオロエチレン等のパーフルオロオレフィ
ン、又はパーフルオロアルキルビニルエーテル等の第三
成分を含む共重合体であってもよい。
Typical fluorinated olefins include CF
Two= CFTwo, CFTwo= CFCl, CFTwo= CClTwoIs raised
I can do it. As the vinyl fluoride compound, specifically,
CF Two= CFO (CFTwo)Z-SOTwoF, CFTwo= CF
OCFTwoCF (CFThree) O (CFTwo)Z-SOTwoF, C
FTwo= CF (CFTwo)Z-SOTwoF, CFTwo= CF (O
CFTwoCF (CFThree))Z-1− (CFTwo)Two-SO
TwoF, CFTwo= CFO (CFTwo)Z-COTwoR, CFTwo
= CFOCFTwoCF (CFThree) O (CFTwo)Z-COTwo
R, CFTwo= CF (CFTwo)Z-COTwoR, CFTwo= C
F (OCFTwoCF (CFThree))Z− (CFTwo)Two-CO
TwoR (z is an integer of 1 to 8, R is a hydrocarbon of 1 to 3 carbon atoms)
Represents an alkyl group). The above-mentioned Fluo
Hydrocarbon copolymers are hexafluoropropylene,
Perfluoroolefin such as lorotrifluoroethylene
Tertiary or perfluoroalkyl vinyl ether
It may be a copolymer containing components.

【0013】このようなフッ素系イオン交換樹脂前駆体
の重合方法としては、上記フッ化ビニル化合物をフロン
等の溶媒に溶かした後、フッ化オレフィンのガスと反応
させ重合する溶液重合法、フロン等の溶媒を使用せずに
重合する塊状重合法、フッ化ビニル化合物を界面活性剤
とともに水中に仕込んで乳化させた後、フッ化オレフィ
ンのガスと反応させ重合する乳化重合法等が挙げられ
る。特に低いEWかつ低いMIのフッ素系イオン交換樹
脂前駆体を得るには、例えば、特開平7−252322
号公報に示される方法が好適に用いられる。本発明で
は、MIが2000以下0.01以上、好ましくは10
00以下0.01以上、より好ましくは100以下0.
01以上、更により好ましくは10以下0.01以上の
フッ素系イオン交換樹脂前駆体を使用する。
As a polymerization method of such a fluorine-based ion exchange resin precursor, a solution polymerization method in which the above vinyl fluoride compound is dissolved in a solvent such as Freon and then reacted with a gas of fluorinated olefin to carry out polymerization, And a emulsion polymerization method in which a vinyl fluoride compound is charged and emulsified in water together with a surfactant and then reacted with a fluorinated olefin gas for polymerization. In order to obtain a fluorine-based ion-exchange resin precursor having particularly low EW and low MI, for example, JP-A-7-252322
The method disclosed in Japanese Patent Application Laid-Open Publication No. H10-205,837 is preferably used. In the present invention, MI is not more than 2000 and not less than 0.01, preferably 10
0.01 or less, more preferably 100 or less.
A fluorinated ion exchange resin precursor of 01 or more, still more preferably 10 or less and 0.01 or more is used.

【0014】(成形)このようなフッ素系イオン交換樹
脂前駆体を膜状に成形するには、一般的な溶融押出成形
法(Tダイ法、インフレーション法、カレンダー法等)
が用いられる。また別の方法として、上記のフッ素系イ
オン交換樹脂前駆体の溶液又は分散液の溶媒を蒸発させ
てキャスト製膜する、溶剤キャスト法が挙げられる。こ
の時、特開平8−162132号公報記載のPTFE膜
を延伸処理した多孔質膜や、特開昭53−149881
号公報及び特公昭63−61337号公報に示されるフ
ィブリル化繊維に上記分散液をキャストしても良い。ま
た、フッ素系イオン交換樹脂前駆体をペレタイザー等で
溶融押出する事によりペレット状に成形する事もある。
(Molding) In order to form such a fluorine-based ion exchange resin precursor into a film, a general melt extrusion molding method (T-die method, inflation method, calendering method, etc.)
Is used. As another method, there is a solvent casting method in which the solvent of the solution or dispersion of the above-mentioned fluorine-based ion exchange resin precursor is evaporated to form a cast film. At this time, a porous membrane obtained by stretching a PTFE membrane described in JP-A-8-162132 or JP-A-53-149881 can be used.
The above dispersion may be cast on fibrillated fibers disclosed in JP-B-63-61337 and JP-B-63-61337. In some cases, the fluorine-based ion exchange resin precursor is melt-extruded with a pelletizer or the like to form a pellet.

【0015】(加水分解処理)このように成形したフッ
素系イオン交換樹脂前駆体を、反応液体に接触させる事
でイオン交換基前駆体を加水分解してフッ素系イオン交
換樹脂膜を製造する。この場合、イオン交換基前駆体の
加水分解は、水酸化アルカリ水溶液中で実施する事がで
き、さらに加水分解反応速度を増加させるために比較的
高温の溶液を使用するのが有利である。例えば、特開昭
61−19638号公報に示されている水酸化ナトリウ
ムを20〜25%含んだ水溶液を用い70〜90℃にお
いて16時間加水分解処理する方法等がこれである。ま
た、膜を膨潤させ加水分解反応速度を促進するために水
酸化アルカリ水溶液とメチルアルコール、エチルアルコ
ール、プロピルアルコールのようなアルコール系溶剤、
もしくはジメチルスルオキシド等の水溶性有機溶剤との
混合物により加水分解する方法が用いられている。例え
ば、特開昭57−139127号公報に記載の水酸化カ
リウムを11〜13%とジメチルスルオキシドを30%
含んだ水溶液を用い90℃で1時間加水分解処理する方
法、特開平3−6240号公報に記載の水酸化アルカリ
を15〜50wt%と水溶性有機化合物を0.1〜30
wt%含んだ水溶液を用いて60〜130℃で20分〜
24時間加水分解処理する方法がこれである。また、フ
ッ素系イオン交換樹脂前駆体をペレット状、溶液又は分
散液の状態のまま、加水分解処理を行う事もある。
(Hydrolysis treatment) The fluorinated ion-exchange resin precursor is hydrolyzed by contacting the thus formed fluorinated ion-exchange resin precursor with a reaction liquid to produce a fluorinated ion-exchange resin membrane. In this case, the hydrolysis of the ion exchange group precursor can be carried out in an aqueous alkali hydroxide solution, and it is advantageous to use a relatively high temperature solution in order to further increase the hydrolysis reaction rate. For example, Japanese Patent Application Laid-Open No. 61-19638 discloses a method in which an aqueous solution containing 20 to 25% of sodium hydroxide is used and subjected to a hydrolysis treatment at 70 to 90 ° C. for 16 hours. Also, an aqueous solution of an alkali hydroxide and methyl alcohol, ethyl alcohol, an alcohol solvent such as propyl alcohol, to swell the film and accelerate the hydrolysis reaction rate,
Alternatively, a method of hydrolyzing with a mixture with a water-soluble organic solvent such as dimethyl sulfoxide has been used. For example, 11 to 13% of potassium hydroxide and 30% of dimethyl sulfoxide described in JP-A-57-139127 are disclosed.
Hydrolyzing at 90 ° C. for 1 hour using an aqueous solution containing the aqueous solution, 15 to 50% by weight of an alkali hydroxide and 0.1 to 30% of a water-soluble organic compound described in JP-A-3-6240.
20% at 60-130 ° C using an aqueous solution containing wt%
This is the method of performing the hydrolysis treatment for 24 hours. Further, the hydrolysis treatment may be performed in a state where the fluorine-based ion exchange resin precursor is in the form of a pellet, a solution or a dispersion.

【0016】このように加水分解処理によりイオン交換
基を形成させた後、水洗する事で、アルカリ金属型イオ
ン交換基ないしはアルカリ土類金属型イオン交換基を有
する本発明のフッ素系イオン交換樹脂膜を得る事ができ
る。さらに塩酸等の無機酸で酸処理する事で、酸型イオ
ン交換基を有する本発明のフッ素系イオン交換樹脂膜を
製造する事も可能である。加水分解処理後のフッ素系イ
オン交換樹脂を、アルコール溶媒等に溶解させた溶液又
は分散液にしてキャスト製膜した後に必要応じて酸処理
をする、又は酸処理後にアルコール溶媒等に溶解させた
溶液又は分散液にしてキャスト製膜する事により、本発
明のフッ素系イオン交換樹脂膜を得る事もできる。これ
らキャスト製膜で得られたフィルムでは、水への溶解性
を低減するために、100℃以上の温度で加熱固定する
のが好ましい場合がある。これらキャスト製膜の際にお
いても、特開平8−162132号公報記載のPTFE
膜を延伸処理した多孔質膜や、特開昭53−14988
1号公報及び特公昭63−61337号公報に示される
フィブリル化繊維を用いても良い。
After the ion exchange group is formed by the hydrolysis treatment, the membrane is washed with water, whereby the fluorinated ion exchange resin membrane of the present invention having an alkali metal type ion exchange group or an alkaline earth metal type ion exchange group is obtained. Can be obtained. Further, by performing an acid treatment with an inorganic acid such as hydrochloric acid, it is possible to produce the fluorinated ion exchange resin membrane of the present invention having an acid type ion exchange group. A solution prepared by dissolving the hydrofluoric ion-exchange resin in an alcohol solvent or the like after the hydrolysis treatment, and performing an acid treatment as necessary after casting to form a film, or a solution in which the acid treatment is dissolved in an alcohol solvent or the like. Alternatively, the fluorine-based ion-exchange resin membrane of the present invention can be obtained by forming a dispersion into a cast film. In some cases, it is preferable to heat and fix the film obtained by the cast film formation at a temperature of 100 ° C. or higher in order to reduce the solubility in water. In the case of these cast films, PTFE described in JP-A-8-162132 is also used.
A porous membrane obtained by stretching a membrane;
Fibrillated fibers disclosed in JP-A-1 and JP-B-63-61337 may be used.

【0017】(膜電極接合体)本発明のフッ素系イオン
交換樹脂膜を固体高分子型燃料電池に用いる場合、アノ
ードとカソード2種類の電極が両側に接合された膜電極
接合体(MEA)として使用される。電極は触媒金属の
微粒子とこれを担持した導電剤より構成され、必要に応
じて撥水剤が含まれる。電極に使用される触媒としては
水素の酸化反応および酸素の還元反応を促進する金属で
あれば特に限定されず、白金、金、銀、パラジウム、イ
リジウム、ロジウム、ルテニウム、鉄、コバルト、ニッ
ケル、クロム、タングステン、マンガン、バナジウムあ
るいはそれらの合金が挙げられる。この中では主として
白金が用いられる。前記電極とイオン交換膜よりMEA
を作成するには、例えば次のような方法が行われる。フ
ッ素系イオン交換樹脂をアルコールと水の混合溶液に溶
解したものに電極物質となる白金担持カーボンを分散さ
せてペースト状にする。これをPTFEシートに一定量
塗布して乾燥させる。次に当該PTFEシートの塗布面
を向かい合わせにしてその間にイオン交換膜を挟み込
み、熱プレスにより転写接合する。熱プレス温度はイオ
ン交換膜の種類によるが、通常は100℃以上であり、
好ましくは130℃以上、さらに好ましくは150℃以
上である。
(Membrane Electrode Assembly) When the fluorine-based ion exchange resin membrane of the present invention is used in a polymer electrolyte fuel cell, a membrane electrode assembly (MEA) in which two kinds of electrodes, an anode and a cathode, are joined on both sides. used. The electrode is composed of fine particles of catalytic metal and a conductive agent carrying the fine particles, and optionally contains a water repellent. The catalyst used for the electrode is not particularly limited as long as it promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen.Platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium , Tungsten, manganese, vanadium or alloys thereof. Among them, platinum is mainly used. MEA from the electrode and ion exchange membrane
For example, the following method is performed. Platinum-supporting carbon serving as an electrode substance is dispersed in a solution in which a fluorine-based ion exchange resin is dissolved in a mixed solution of alcohol and water to form a paste. A predetermined amount of this is applied to a PTFE sheet and dried. Next, the application surfaces of the PTFE sheet are faced to each other, and an ion exchange membrane is interposed therebetween, and transfer bonding is performed by hot pressing. The hot pressing temperature depends on the type of ion exchange membrane, but is usually 100 ° C. or higher,
It is preferably at least 130 ° C, more preferably at least 150 ° C.

【0018】(燃料電池)固体高分子電解質型燃料電池
は、MEA、集電体、燃料電池フレーム、ガス供給装置
等より構成される。このうち集電体(バイポーラプレー
ト)は、表面などにガス流路を有するグラファイト製あ
るいは金属製のフランジの事であり、電子を外部負荷回
路へ伝達する他に水素や酸素をMEA表面に供給する流
路としての機能を持っている。こうした集電体の間にM
EAを挿入して複数積み重ねる事により、燃料電池を作
製される。燃料電池の運転は、一方の電極に水素を、他
方の電極に酸素あるいは空気を供給する事によって行わ
れる。燃料電池の作動温度は高温であるほど触媒活性が
上がるために好ましく通常は水分管理が容易な50℃〜
100℃で運転する事が多いが、100℃〜150℃で
作動させる事もある。酸素や水素の供給圧力については
高いほど燃料電池出力が高まるため好ましいが、膜の破
損が起きないように適当な圧力範囲に調整する事が好ま
しい。本発明のフッ素系イオン交換樹脂膜は、クロルア
ルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸
素濃縮器、湿度センサー、ガスセンサー等に用いる事も
可能である。
(Fuel Cell) A solid polymer electrolyte fuel cell comprises an MEA, a current collector, a fuel cell frame, a gas supply device, and the like. Among these, the current collector (bipolar plate) is a graphite or metal flange having a gas flow path on the surface and the like, and supplies hydrogen and oxygen to the MEA surface in addition to transmitting electrons to an external load circuit. It has a function as a flow path. M between these current collectors
A fuel cell is manufactured by inserting EAs and stacking a plurality of them. The operation of the fuel cell is performed by supplying hydrogen to one electrode and oxygen or air to the other electrode. The operating temperature of the fuel cell is preferably 50 ° C. or higher, since the higher the temperature, the higher the catalytic activity.
Although it is often operated at 100 ° C., it may be operated at 100 ° C. to 150 ° C. The higher the supply pressure of oxygen or hydrogen, the higher the output of the fuel cell is, which is preferable. However, it is preferable to adjust the pressure to an appropriate pressure range so that the membrane is not damaged. The fluorinated ion exchange resin membrane of the present invention can be used for chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいて更に詳細に
説明するが、本発明は実施例に制限されるものではな
い。 (実施例1)初めに次の様にして、フッ素系イオン交換
樹脂前駆体である、CF2 =CF2(以下、TFEとい
う。)とCF2 =CFOCF2 CF(CF3 )O(CF
2 2 −SO2 F(以下、Sモノマーという。)とのフ
ルオロカーボン共重合体を重合生成した。1リットルの
ステンレス製オートクレーブに、CF2 ClCFCl2
(以下、CFC113という。)の580g、Sモノマ
ーの280gを仕込んだ後、窒素でパージし、続いてT
FEでパージした。温度を35℃とし、TFEの圧力を
0.157MPa−G(ゲージ圧力)とした後、(n−
3 7 COO−)2 を5wt%含むCFC113溶液
を0.55g添加し、約3時間半重合を実施した。この
間、TFE圧力が一定となるように、系外からTFEを
フィードした。得られた重合液からTFEをパージした
後、90℃、常圧でCFC113を留去し、続いて、9
0℃、減圧下に残存するSモノマーを留去した。更に、
150℃で2日間、減圧乾燥し、10.5gのフッ素系
イオン交換樹脂前駆体を得た。
EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples.
Although described, the present invention is not limited to the embodiments.
No. (Example 1) First, fluorine ion exchange was performed as follows.
A resin precursor, CF2 = CF2 (hereinafter referred to as TFE)
U. ) And CFTwo= CFOCFTwoCF (CFThree) O (CF
Two) Two-SOTwoF (hereinafter referred to as S monomer).
A fluorocarbon copolymer was polymerized. One liter
CF in stainless steel autoclaveTwoClCFClTwo
580 g of S monomer (hereinafter referred to as CFC 113)
, After purging with nitrogen,
Purged with FE. The temperature was 35 ° C and the pressure of TFE was
After adjusting to 0.157 MPa-G (gauge pressure), (n-
CThreeF7COO-)Two113 solution containing 5wt%
Was added, and polymerization was carried out for about three and a half hours. this
During this time, TFE is supplied from outside the system so that the TFE pressure is constant.
Feeded. TFE was purged from the obtained polymerization solution.
Thereafter, CFC113 was distilled off at 90 ° C. and normal pressure.
The remaining S monomer was distilled off at 0 ° C. under reduced pressure. Furthermore,
Dry at 150 ° C. for 2 days under reduced pressure and dry 10.5 g of fluorine
An ion exchange resin precursor was obtained.

【0020】このフッ素系イオン交換樹脂前駆体のEW
は796、MIは18であった。このフッ素系イオン交
換樹脂前駆体を溶融押出して500μm厚に成形したフ
ィルム1g程度を、15wt%の水酸化カリウムと30
wt%のジメチルスルオキシドと55wt%の水を含有
する反応液体に、60℃にて4時間接触させて、加水分
解処理を行った。その後、フィルムを60℃水中に4時
間浸漬し、次に60℃の2N塩酸水溶液に3時間浸漬し
た後、イオン交換水にて酸を洗い出し、スルホン酸基を
有するフッ素系イオン交換樹脂膜を得た。このフッ素系
イオン交換樹脂膜を30℃で8時間真空乾燥し、フィル
ム重量W1 (g)を測定した。秤量後、フィルムを再び
イオン交換水中に入れ、水を8時間沸騰させた。冷却
後、フィルムを水中から取りだしイオン交換水で洗浄し
た。そして、フィルムを再び、30℃で8時間真空乾燥
し、フィルム重量W2 (g)を測定した。沸騰処理前の
乾燥重量基準での沸騰処理による重量減少割合Y(%)
を以下の式で算出した。 Y=(W1 −W2 )/W1 ×100 以上の結果を表1に示す。
EW of this fluorine-based ion exchange resin precursor
Was 796 and MI was 18. About 1 g of a film formed by extruding this fluorine-based ion exchange resin precursor into a 500 μm-thick film is mixed with 15 wt% of potassium hydroxide and 30 wt.
A hydrolysis treatment was performed by contacting a reaction liquid containing wt% dimethylsulfoxide and 55 wt% water at 60 ° C. for 4 hours. Thereafter, the film is immersed in water at 60 ° C. for 4 hours, and then immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, and then the acid is washed out with ion exchanged water to obtain a fluorinated ion exchange resin membrane having a sulfonic acid group. Was. This fluorine-based ion exchange resin membrane was vacuum dried at 30 ° C. for 8 hours, and the film weight W 1 (g) was measured. After weighing, the film was put again in ion-exchanged water and the water was boiled for 8 hours. After cooling, the film was taken out of the water and washed with ion-exchanged water. Then, the film was vacuum dried again at 30 ° C. for 8 hours, and the film weight W 2 (g) was measured. Weight reduction ratio Y (%) due to boiling on a dry weight basis before boiling
Was calculated by the following equation. Y = (W 1 −W 2 ) / W 1 × 100 The results are shown in Table 1.

【0021】(実施例2)初めに次の様にして、フッ素
系イオン交換樹脂前駆体である、TFEとSモノマーと
の共重合体を重合生成した。1リットルのステンレス製
オートクレーブに、Sモノマー:850gを仕込んだ
後、窒素でパージし、続いてTFEでパージした。温度
を35℃とし、TFEの圧力を0.392MPa−Gと
した後、(n−C3 7 COO−)2 を5wt%含むC
FC113溶液を1.70g添加し、約1時間半重合を
実施した。この間、TFE圧力が一定となるように、系
外からTFEをフィードした。得られた重合液からTF
Eをパージした後、90℃、減圧下に残存するSモノマ
ーを留去した。更に、150℃で2日間、減圧乾燥し、
18.2gのフッ素系イオン交換樹脂前駆体を得た。こ
のフッ素系イオン交換樹脂前駆体のEWは706、MI
は23であった。このフッ素系イオン交換樹脂前駆体を
用いて、実施例1と同様な方法でフッ素系イオン交換樹
脂膜を作製し、沸騰処理による重量減少割合を求めた。
その結果を表1に示す。
Example 2 First, a copolymer of TFE and S monomer, which is a precursor of a fluorinated ion exchange resin, was polymerized as follows. A 1-liter stainless steel autoclave was charged with 850 g of the S monomer, and then purged with nitrogen and subsequently with TFE. After setting the temperature to 35 ° C. and the pressure of TFE to 0.392 MPa-G, C containing 5 wt% of (n-C 3 F 7 COO—) 2 was used.
1.70 g of FC113 solution was added, and polymerization was carried out for about one and a half hours. During this time, TFE was fed from outside the system so that the TFE pressure was constant. From the obtained polymerization solution, TF
After purging E, the remaining S monomer was distilled off at 90 ° C. under reduced pressure. Furthermore, it was dried under reduced pressure at 150 ° C. for 2 days,
18.2 g of a fluorine-based ion exchange resin precursor was obtained. The EW of this fluorine-based ion exchange resin precursor is 706, MI
Was 23. Using this fluorine-based ion-exchange resin precursor, a fluorine-based ion-exchange resin membrane was prepared in the same manner as in Example 1, and the weight reduction ratio due to the boiling treatment was determined.
Table 1 shows the results.

【0022】(比較例1)EWが673、かつMIが2
061である以外は実施例1と同様のフッ素系イオン交
換樹脂前駆体を用い、実施例1と同様な方法でフッ素系
イオン交換樹脂膜を作製し、沸騰処理による重量減少割
合を求めた。その結果を表1に示す。 (比較例2)EWが614、かつMIが44230であ
る以外は実施例1と同様のフッ素系イオン交換樹脂前駆
体を500μm厚に成形したフィルム1g程度を、15
wt%の水酸化カリウムと30wt%のジメチルスルオ
キシドと55wt%の水を含有する反応液体に、60℃
にて4時間接触させて、加水分解処理を行った。その
後、フィルムを60℃水中に4時間浸漬したところ、全
て水に溶解した。その結果を表1に示す。
(Comparative Example 1) EW was 673 and MI was 2
A fluorine-based ion-exchange resin membrane was prepared in the same manner as in Example 1 using the same fluorine-based ion-exchange resin precursor as in Example 1 except that the value was 061, and the weight reduction ratio due to the boiling treatment was determined. Table 1 shows the results. (Comparative Example 2) Approximately 1 g of a 500 μm thick film of the same fluorinated ion exchange resin precursor as in Example 1 except that EW was 614 and MI was 44230,
A reaction liquid containing wt% of potassium hydroxide, 30 wt% of dimethylsulfoxide and 55 wt% of water was added at 60 ° C.
For 4 hours to carry out a hydrolysis treatment. Thereafter, when the film was immersed in water at 60 ° C. for 4 hours, all of the film was dissolved in water. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例3)フッ素系イオン交換樹脂前駆
体として、TFEとCF2 =CFO(CF2 2−SO
2 Fとのフルオロカーボン共重合体を重合生成した。こ
のフッ素系イオン交換樹脂前駆体のEWは698、MI
は3.0であった(上記式(1)の関係を満足す
る。)。このフッ素系イオン交換樹脂前駆体を溶融押出
して100μm厚に成形したフィルムを、15wt%の
水酸化カリウムと30wt%のジメチルスルオキシドと
55wt%の水を含有する反応液体に、60℃にて4時
間接触させて、加水分解処理を行った。その後、フィル
ムを60℃水中に4時間浸漬し、次に60℃の2N塩酸
水溶液に3時間浸漬した後、イオン交換水にて酸を洗い
出し、スルホン酸基を有するフッ素系イオン交換樹脂膜
を得た。このフッ素系イオン交換樹脂膜を110℃で8
時間真空乾燥し、フィルム重量W1 (g)を測定した。
秤量後、フィルムを再びイオン交換水中に入れ、水を8
時間沸騰させた。冷却後、フィルムを水中から取りだし
イオン交換水で洗浄した。そして、フィルムを再び、1
10℃で8時間真空乾燥し、フィルム重量W2 (g)を
測定した。沸騰処理前の乾燥重量基準での沸騰処理によ
る重量減少割合Y(%)を以下の式で算出した。 Y=(W1 −W2 )/W1 ×100 この時の重量減少割合は−1.1%で、水に溶解してい
なかった。
Example 3 TFE and CF 2 CFCFO (CF 2 ) 2 —SO as precursors of a fluorine ion exchange resin
A fluorocarbon copolymer of 2 F was polymerized product. The EW of this fluorine-based ion exchange resin precursor is 698, MI
Was 3.0 (satisfies the relationship of the above formula (1)). A film formed by melt-extruding the fluorine-based ion exchange resin precursor to a thickness of 100 μm was mixed with a reaction liquid containing 15 wt% of potassium hydroxide, 30 wt% of dimethyl sulfoxide and 55 wt% of water at 60 ° C. The contact was carried out for a time to carry out a hydrolysis treatment. Thereafter, the film is immersed in water at 60 ° C. for 4 hours, and then immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, and then the acid is washed out with ion exchanged water to obtain a fluorinated ion exchange resin membrane having a sulfonic acid group. Was. This fluorinated ion exchange resin membrane is heated at 110 ° C. for 8 hours.
After vacuum drying for a time, the film weight W 1 (g) was measured.
After weighing, place the film in ion-exchanged water again,
Boil for hours. After cooling, the film was taken out of the water and washed with ion-exchanged water. And again, the film
After vacuum drying at 10 ° C. for 8 hours, the film weight W 2 (g) was measured. The weight loss ratio Y (%) due to the boiling treatment on a dry weight basis before the boiling treatment was calculated by the following equation. Y = (W 1 −W 2 ) / W 1 × 100 The weight reduction ratio at this time was −1.1%, and the compound was not dissolved in water.

【0025】また、上記フッ素系イオン交換樹脂膜のプ
ロトン伝導度を以下のように測定した。まず、湿潤状態
にて膜を切りだし、厚みTを測定する。そして、幅1c
m、長さ5cmの膜長さ方向の伝導度を測定する2端子
式の伝導度測定セルに装着した。このセルを80℃のイ
オン交換水中に入れ、交流インピーダンス法により、周
波数が10kHzにおける実数成分の抵抗値Rを測定
し、以下の式からプロトン伝導度σを導出した。 σ=L/(R×T×W) σ:プロトン伝導度(S/cm) T:厚み(cm) R:抵抗値(Ω) L(=5):膜長(cm) W(=1):膜幅(cm) この時のプロトン伝導度は0.27S/cmであった。
以上の結果を表2に示す。
Further, the proton conductivity of the fluorine-based ion exchange resin membrane was measured as follows. First, a film is cut out in a wet state, and the thickness T is measured. And width 1c
m, a two-terminal conductivity measurement cell for measuring conductivity in the length direction of the membrane having a length of 5 cm. This cell was placed in ion-exchanged water at 80 ° C., and the resistance R of a real component at a frequency of 10 kHz was measured by the AC impedance method, and the proton conductivity σ was derived from the following equation. σ = L / (R × T × W) σ: proton conductivity (S / cm) T: thickness (cm) R: resistance value (Ω) L (= 5): film length (cm) W (= 1) : Membrane width (cm) The proton conductivity at this time was 0.27 S / cm.
Table 2 shows the above results.

【0026】(実施例4)フッ素系イオン交換樹脂前駆
体として、TFEとCF2 =CFO(CF2 2−SO
2 Fとのフルオロカーボン共重合体を重合生成した。こ
のフッ素系イオン交換樹脂前駆体のEWは805、MI
は3.8であった(上記式(1)の関係を満足す
る。)。このフッ素系イオン交換樹脂前駆体を用いて、
実施例3と同様な方法でフッ素系イオン交換樹脂膜を作
製し、沸騰処理による重量減少割合及びプロトン伝導度
を測定した。この時の重量減少割合は0.5%で、水に
溶解していなかった。また、プロトン伝導度は0.23
S/cmであった。その結果を表2に示す。 (実施例5)フッ素系イオン交換樹脂前駆体として、T
FEとCF2 =CFO(CF2 2−SO2 Fとのフル
オロカーボン共重合体を重合生成した。このフッ素系イ
オン交換樹脂前駆体のEWは861、MIは2.4であ
った(上記式(1)の関係を満足する。)。このフッ素
系イオン交換樹脂前駆体を用いて、実施例3と同様な方
法でフッ素系イオン交換樹脂膜を作製し、沸騰処理によ
る重量減少割合及びプロトン伝導度を測定した。この時
の重量減少割合は−1.1%で、水に溶解していなかっ
た。また、プロトン伝導度は0.22S/cmであっ
た。その結果を表2に示す。
Example 4 TFE and CF 2 CFCFO (CF 2 ) 2 —SO as precursors of a fluorine-based ion exchange resin
A fluorocarbon copolymer of 2 F was polymerized product. The EW of this fluorine-based ion exchange resin precursor is 805, MI
Was 3.8 (satisfies the relationship of the above formula (1)). Using this fluorine-based ion exchange resin precursor,
A fluorine-based ion-exchange resin membrane was produced in the same manner as in Example 3, and the weight loss ratio and the proton conductivity due to the boiling treatment were measured. At this time, the weight reduction ratio was 0.5%, and it was not dissolved in water. The proton conductivity is 0.23
S / cm. Table 2 shows the results. Example 5 As a fluorine-based ion exchange resin precursor, T
A fluorocarbon copolymer of FE and CF 2 CFCFO (CF 2 ) 2 —SO 2 F was polymerized. The EW of the fluorine-based ion exchange resin precursor was 861 and the MI was 2.4 (satisfies the relationship of the above formula (1)). Using this fluorine-based ion-exchange resin precursor, a fluorine-based ion-exchange resin membrane was prepared in the same manner as in Example 3, and the weight loss ratio due to boiling treatment and the proton conductivity were measured. At this time, the weight reduction ratio was -1.1%, which was not dissolved in water. The proton conductivity was 0.22 S / cm. Table 2 shows the results.

【0027】(比較例3)フッ素系イオン交換樹脂前駆
体として、TFEとCF2 =CFO(CF2 2−SO
2 Fとのフルオロカーボン共重合体を重合生成した。こ
のフッ素系イオン交換樹脂前駆体のEWは670、MI
は16.4(上記式(1)の関係を満足しない。)であ
った。このフッ素系イオン交換樹脂前駆体を用いて、実
施例3と同様な方法でフッ素系イオン交換樹脂膜を作製
し、沸騰処理による重量減少割合及びプロトン伝導度を
測定した。この時の重量減少割合は7.6%で、水への
溶解がみられた。また、プロトン伝導度は0.30S/
cmであった。その結果を表2に示す。
Comparative Example 3 TFE and CF 2 CFCFO (CF 2 ) 2 —SO
A fluorocarbon copolymer of 2 F was polymerized product. The EW of this fluorine-based ion exchange resin precursor is 670, MI
Was 16.4 (not satisfying the relationship of the above formula (1)). Using this fluorine-based ion-exchange resin precursor, a fluorine-based ion-exchange resin membrane was prepared in the same manner as in Example 3, and the weight loss ratio due to boiling treatment and the proton conductivity were measured. At this time, the weight reduction ratio was 7.6%, and dissolution in water was observed. The proton conductivity is 0.30 S /
cm. Table 2 shows the results.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】MIが2000以下であるフッ素系イオ
ン交換樹脂前駆体から製造された、EWが250以上9
40以下のフッ素系イオン交換樹脂膜は、水中8時間沸
騰処理による重量減少が沸騰処理前の乾燥重量基準で5
wt%以下であり、燃料電池用途に用いた場合高い耐久
性を実現できる。特に、下記式(1)を満たす該前駆体
から製造された、EWが700以下のフッ素系イオン交
換樹脂膜は、水中8時間沸騰処理による重量減少がな
く、かつ高いプロトン伝導度を示し、燃料電池用途に有
効である。 log10MI≦〔(EW−850)/90〕+3・・・・・(1)
According to the present invention, an EW of 250 to 9 produced from a fluorine-based ion exchange resin precursor having an MI of 2000 or less is used.
For a fluorine-based ion exchange resin membrane of 40 or less, the weight loss due to the boiling treatment in water for 8 hours is 5% based on the dry weight before the boiling treatment.
wt% or less, and high durability can be realized when used for fuel cell applications. In particular, a fluorine-based ion exchange resin membrane having an EW of 700 or less, produced from the precursor satisfying the following formula (1), has no weight loss due to boiling treatment in water for 8 hours, shows high proton conductivity, and has a high fuel conductivity. Effective for battery applications. log 10 MI ≦ [(EW-850) / 90] +3 (1)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 // C08L 27:12 C08L 27:12 Fターム(参考) 4F071 AA07C AF36C AF42C AH15 FA02 FA05 FA06 FB01 FB07 FC01 5H026 AA06 BB01 CX05 HH05 HH08 HH10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/10 H01M 8/10 // C08L 27:12 C08L 27:12 F term (Reference) 4F071 AA07C AF36C AF42C AH15 FA02 FA05 FA06 FB01 FB07 FC01 5H026 AA06 BB01 CX05 HH05 HH08 HH10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 当量重量(EW)が250以上940以
下であり、かつ水中8時間沸騰処理による重量減少が沸
騰処理前の乾燥重量基準で5wt%以下である事を特徴
とする、フッ素系イオン交換樹脂膜。
1. A fluorine-based ion having an equivalent weight (EW) of 250 or more and 940 or less, and a weight loss by boiling for 8 hours in water of 5 wt% or less on a dry weight basis before the boiling. Exchange resin membrane.
【請求項2】 該重量減少が1wt%以下である事を特
徴とする、請求項1記載のフッ素系イオン交換樹脂膜。
2. The fluorine-based ion exchange resin membrane according to claim 1, wherein the weight loss is 1 wt% or less.
【請求項3】 該EWが250以上700以下である事
を特徴とする、請求項1又は請求項2記載のフッ素系イ
オン交換樹脂膜。
3. The fluorine-based ion exchange resin membrane according to claim 1, wherein the EW is 250 or more and 700 or less.
【請求項4】 請求項1〜3のいずれかに記載のフッ素
系イオン交換樹脂膜を備える事を特徴とする、膜電極接
合体。
4. A membrane-electrode assembly comprising the fluorine-based ion-exchange resin membrane according to claim 1.
【請求項5】 請求項1〜3のいずれかに記載のフッ素
系イオン交換樹脂膜を備える事を特徴とする、固体高分
子型燃料電池。
5. A polymer electrolyte fuel cell comprising the fluorinated ion exchange resin membrane according to claim 1.
JP2002029450A 2001-02-07 2002-02-06 Fluorine ion exchange resin membrane Expired - Lifetime JP4067315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029450A JP4067315B2 (en) 2001-02-07 2002-02-06 Fluorine ion exchange resin membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-30427 2001-02-07
JP2001030427 2001-02-07
JP2002029450A JP4067315B2 (en) 2001-02-07 2002-02-06 Fluorine ion exchange resin membrane

Publications (2)

Publication Number Publication Date
JP2002352819A true JP2002352819A (en) 2002-12-06
JP4067315B2 JP4067315B2 (en) 2008-03-26

Family

ID=26609029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029450A Expired - Lifetime JP4067315B2 (en) 2001-02-07 2002-02-06 Fluorine ion exchange resin membrane

Country Status (1)

Country Link
JP (1) JP4067315B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029624A1 (en) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha Membrane-electrode assembly for solid polymer fuel cell
WO2008066048A1 (en) * 2006-11-28 2008-06-05 Asahi Glass Company, Limited Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
WO2008072673A1 (en) * 2006-12-14 2008-06-19 Asahi Glass Company, Limited Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
WO2009116446A1 (en) 2008-03-19 2009-09-24 旭化成イーマテリアルズ株式会社 Polyelectrolyte and process for producing the polyelectrolyte
JP2009228009A (en) * 2001-12-06 2009-10-08 Gore Enterp Holdings Inc Low equivalent weight ionomer
WO2009145570A3 (en) * 2008-05-28 2010-03-11 주식회사 엘지화학 Ion-conductive resin fibers, ion-conductive composite membrane, membrane electrode assembly, and fuel cell
DE112008001332T5 (en) 2007-05-22 2010-03-25 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Solid polymer electrolyte, process for producing the same and solid polymer fuel cell
JP2010225585A (en) * 2009-02-26 2010-10-07 Asahi Kasei E-Materials Corp Electrode catalyst layer for fuel cell, membrane electrode assembly, and solid polymer fuel cell
WO2011034179A1 (en) 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same
US20140342268A1 (en) * 2011-12-28 2014-11-20 Asahikaseie-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102333840B1 (en) 2016-06-22 2021-12-01 에이지씨 가부시키가이샤 Electrolyte material, method for manufacturing the same, and use thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057999A (en) * 2001-12-06 2011-03-24 Gore Enterprise Holdings Inc Low equivalent weight ionomer
JP2014005471A (en) * 2001-12-06 2014-01-16 Gore Enterprise Holdings Inc Ionomer of low equivalent weight
JP2009228009A (en) * 2001-12-06 2009-10-08 Gore Enterp Holdings Inc Low equivalent weight ionomer
WO2005029624A1 (en) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha Membrane-electrode assembly for solid polymer fuel cell
WO2008066048A1 (en) * 2006-11-28 2008-06-05 Asahi Glass Company, Limited Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
US8673517B2 (en) * 2006-12-14 2014-03-18 Asahi Glass Company, Limited Polymer electrolyte membrane composed of a fluorinated proton conductive polymer and a fluorinated reinforcing material
JP5251515B2 (en) * 2006-12-14 2013-07-31 旭硝子株式会社 Solid polymer electrolyte membrane and membrane electrode assembly for polymer electrolyte fuel cell
WO2008072673A1 (en) * 2006-12-14 2008-06-19 Asahi Glass Company, Limited Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
US20100009236A1 (en) * 2006-12-14 2010-01-14 Asahi Glass Company, Limited Polymer electrolyte membrane for polymer electrolyte fuel cells, and membrane/electrode assembly
DE112008001332T5 (en) 2007-05-22 2010-03-25 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Solid polymer electrolyte, process for producing the same and solid polymer fuel cell
US8993682B2 (en) 2008-03-19 2015-03-31 Asahi Kasei E-Materials Corporation Polyelectrolyte and process for producing the polyelectrolyte
WO2009116446A1 (en) 2008-03-19 2009-09-24 旭化成イーマテリアルズ株式会社 Polyelectrolyte and process for producing the polyelectrolyte
JP5474762B2 (en) * 2008-03-19 2014-04-16 旭化成イーマテリアルズ株式会社 POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME
JP2011523982A (en) * 2008-05-28 2011-08-25 エルジー・ケム・リミテッド Ion conductive resin fiber, ion conductive composite membrane, membrane electrode assembly and fuel cell
US8617764B2 (en) 2008-05-28 2013-12-31 Lg Chem, Ltd. Ion conductive resin fiber, ion conductive hybrid membrane, membrane electrode assembly and fuel cell
WO2009145570A3 (en) * 2008-05-28 2010-03-11 주식회사 엘지화학 Ion-conductive resin fibers, ion-conductive composite membrane, membrane electrode assembly, and fuel cell
JP2010225585A (en) * 2009-02-26 2010-10-07 Asahi Kasei E-Materials Corp Electrode catalyst layer for fuel cell, membrane electrode assembly, and solid polymer fuel cell
WO2011034179A1 (en) 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same
US9133316B2 (en) 2009-09-18 2015-09-15 Asahi Kasei E-Materials Corporation Electrolyte emulsion and process for producing same
US9406958B2 (en) 2009-09-18 2016-08-02 Asahi Kasei Kabushiki Kaisha Electrolyte emulsion and process for producing same
US9627702B2 (en) 2009-09-18 2017-04-18 Asahi Kasei Kabushiki Kaisha Electrolyte emulsion and process for producing same
US20140342268A1 (en) * 2011-12-28 2014-11-20 Asahikaseie-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US10211474B2 (en) 2011-12-28 2019-02-19 Asahi Kasei E-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery

Also Published As

Publication number Publication date
JP4067315B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP5461566B2 (en) Electrolyte emulsion and method for producing the same
US7488788B2 (en) Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
US8993682B2 (en) Polyelectrolyte and process for producing the polyelectrolyte
WO2008046816A1 (en) Process for stabilizing fluoropolymer having ion exchange groups
JP2010534274A (en) Cation-conducting membrane comprising a polysulfonic acid polymer and a metal salt having an F-containing anion
KR20070008544A (en) Polymer electrolyte membranes crosslinked by direct fluorination
JP4067315B2 (en) Fluorine ion exchange resin membrane
JP2014099415A (en) Fuel battery electrode catalyst layer, film-electrode assembly, and solid polymer molecule-type fuel battery
JPWO2002062879A1 (en) Fluorine ion exchange membrane
JP4911822B2 (en) Production method of ion exchange resin membrane
JP5465840B2 (en) Method for producing polymer electrolyte fuel cell
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JP4454217B2 (en) Manufacturing method of membrane electrode assembly
JP2005060516A (en) Fluorine-based ion exchange membrane
JP4049633B2 (en) Fluorine ion exchange membrane
JP5328081B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL USING FLUORINE COPOLYMER AS PRECURSOR, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL USING THE FLUORINE COPOLYMER PRECURSOR, AND ELECTROLYTE MEMBRANE USING THE FLUORINE COPOLYMER PRECURSOR Fuel cell having
JP6158377B2 (en) Solid polymer electrolyte fuel cell
JP2005048121A (en) Perfluorosulfonic acid polymer
JP4601243B2 (en) Fluorine ion exchange membrane
JP2000188110A (en) Solid high polymer electrolyte fuel cell and its gas diffusion electrode
JP2014222666A (en) Membrane electrode assembly and solid polymer electrolyte fuel cell
JP2004071362A (en) Membrane electrode assembly
JP2008280458A (en) Cation exchange membrane, electrode catalyst layer, polymer electrolyte membrane, and solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4067315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term