JP2002350661A - Optical waveguide element and method of manufacturing the same - Google Patents

Optical waveguide element and method of manufacturing the same

Info

Publication number
JP2002350661A
JP2002350661A JP2001156838A JP2001156838A JP2002350661A JP 2002350661 A JP2002350661 A JP 2002350661A JP 2001156838 A JP2001156838 A JP 2001156838A JP 2001156838 A JP2001156838 A JP 2001156838A JP 2002350661 A JP2002350661 A JP 2002350661A
Authority
JP
Japan
Prior art keywords
core
optical waveguide
groove
clad
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001156838A
Other languages
Japanese (ja)
Other versions
JP3943862B2 (en
Inventor
Takashi Shioda
剛史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001156838A priority Critical patent/JP3943862B2/en
Publication of JP2002350661A publication Critical patent/JP2002350661A/en
Application granted granted Critical
Publication of JP3943862B2 publication Critical patent/JP3943862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide element which exhibits low light propagation loss even if there are dents in a sectional shape after embedment of a core material without increasing the number of process steps. SOLUTION: A clad 1 subjected to hollow grooving of a width 10 μm and depth 12 μm is formed by injection molding or the like. These grooves are then spin coated with a polyamide acid solution of a resin concentration 15 wt.% which is the precursor of a polyimide as the core material 2 and thereafter the polyamide acid is imidized by heat treatment. The dent depth 12 attains 5 μm greater than the thickness 11 (2 μm) of the core film formed except in the grooves. When the grooves are then coated with the polyamide acid solution to constitute an upper clad is coated by a method, such as spin coating, and is imidized by heating, by which the polymeric optical waveguide having a width 10 μm and a height 7 μm is spuriously obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば光集積回
路、光インターコネクション、光合分波等の光学部品に
適用可能な光導波路素子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device applicable to optical components such as an optical integrated circuit, an optical interconnection, and an optical multiplexing / demultiplexing device, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】光部品、あるいは光ファイバの基材とし
ては、光伝搬損失が小さく、伝送帯域が広いという特徴
を有する石英ガラスや多成分ガラス等の無機系の材料が
広く使用されている。
2. Description of the Related Art As an optical component or a base material of an optical fiber, inorganic materials such as quartz glass and multi-component glass, which are characterized by low light propagation loss and a wide transmission band, are widely used.

【0003】最近では高分子系の材料も開発され、無機
系材料に比べて加工性や価格の点で優れていることか
ら、光導波路用材料として注目されている。例えば、ポ
リメチルメタクリレート(PMMA)、あるいは、ポリ
スチレンのような透明性に優れた高分子をコアとし、そ
のコア材料よりも屈折率の低い高分子をクラッド材料と
したコア−クラッド構造からなる平板型光導波路が作製
されている(特開平3−188402号)。また、松浦
らにより耐熱性の高い透明性高分子であるポリイミドを
用い低損失の平板型光導波路が実現されている(特開平
2−110500号)。
Recently, a polymer-based material has been developed, and is attracting attention as a material for an optical waveguide because it is superior in workability and price as compared with an inorganic material. For example, a flat plate type having a core-clad structure in which a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core and a polymer having a lower refractive index than the core material is used as a clad material. An optical waveguide has been manufactured (Japanese Patent Application Laid-Open No. 3-188402). Further, Matsuura et al. Have realized a low-loss planar optical waveguide using polyimide which is a transparent polymer having high heat resistance (Japanese Patent Laid-Open No. 2-110500).

【0004】しかし、これらの方法はいずれにおいて
も、クラッド層の表面にコア構造を形成するに際して、
一枚毎にフォトレジストを用いたコアパターンの形成や
これに引き続いての反応性イオンエッチングなどによる
凹凸加工が必要であり、量産性や低価格化の点で課題が
あった。
However, in each of these methods, when forming a core structure on the surface of a cladding layer,
It is necessary to form a core pattern using a photoresist for each sheet, and to perform concavo-convex processing by reactive ion etching and the like following this, and there have been problems in terms of mass productivity and cost reduction.

【0005】そこで、導波路のコアパターン上に表面を
凹凸加工した金型を、溶融状態や溶液状態の高分子に押
し当てそのまま高分子を硬化させ凹凸の転写を高分子表
面に行う方法により量産性を向上しようとする検討が行
われている。微細な溝が表面に形成された高分子クラッ
ド基板表面に、硬化させると基板よりも屈折率が高くな
るコア材料をモノマー状態で滴下した後、スキージなど
を使って表面を掃くことによって、溝の中にだけモノマ
ー材料を充填した後、重合、硬化させることによって、
ポリマー光導波路を製造する方法がある。
[0005] Therefore, mass production is performed by a method in which a mold having an irregular surface formed on a core pattern of a waveguide is pressed against a polymer in a molten state or a solution state and the polymer is cured as it is to transfer the irregularities to the polymer surface. Studies are being made to improve the performance. After the core material, which has a higher refractive index than the substrate when cured, is dropped in the monomer state on the polymer clad substrate surface with fine grooves formed on the surface, the surface is swept with a squeegee etc. After filling the monomer material only inside, polymerize and cure,
There is a method of manufacturing a polymer optical waveguide.

【0006】[0006]

【発明が解決しようとする課題】しかしながらスキージ
でモノマー材料を溝に埋め込む方法では、スキージする
方向が溝を横切る方向かそれと直角方向かによって埋め
込み量が異なるので、溝が互いに平行でない箇所では埋
め込み量が異なる。
However, in the method of embedding the monomer material into the groove with a squeegee, the embedding amount differs depending on whether the direction of squeegee traverses the groove or at right angles thereto. Are different.

【0007】その対策として、まずコア材料を厚目に埋
め込み、その後プラズマエッチング等でエッチバック
し、余分なコアを除去している。この方法では、プラズ
マエッチング装置が必要となり、製造コストも高くなっ
てしまう。
[0007] As a countermeasure, a core material is first buried in a thicker thickness and then etched back by plasma etching or the like to remove an extra core. In this method, a plasma etching apparatus is required, and the manufacturing cost is increased.

【0008】本発明の目的は、上記従来の問題点を解消
すべくなされたものであり、工程数を増やすことなくコ
ア材の埋め込み後の断面形状に窪みがあっても低い光伝
搬損失を示す光導波路素子およびその製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, and shows a low light propagation loss even if there is a depression in the cross-sectional shape after embedding the core material without increasing the number of steps. An object of the present invention is to provide an optical waveguide element and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、鋭意検討し
た結果、コア窪み深さとコア膜厚を最適化することによ
り前記課題を解決することを見出し、本発明を完成させ
た。
As a result of intensive studies, the present inventor has found that the above problems can be solved by optimizing the core recess depth and the core film thickness, and has completed the present invention.

【0010】[1]本発明は、表面に凹溝を有するクラ
ッド部材と、凹溝および凹溝周辺を覆うように配置され
たコア部材とを備え、コア部材の表面は、凹溝周辺より
も凹溝で低くなる窪みが存在し、窪み深さは、凹溝周辺
でのコア部材の厚さと比べて同等もしくは大きいことを
特徴とする光導波路素子である。
[1] The present invention comprises a clad member having a concave groove on the surface, and a core member arranged so as to cover the concave groove and the periphery of the concave groove. The optical waveguide device is characterized in that there is a depression that is reduced by the concave groove, and the depth of the depression is equal to or greater than the thickness of the core member around the concave groove.

【0011】[2]また本発明は、コア部材は高分子材
料で形成されることが好ましい。 [3]また本発明は、コア部材の表面を覆うように配置
された第2のクラッド部材を備えることが好ましい。
[2] In the present invention, the core member is preferably formed of a polymer material. [3] Further, the present invention preferably includes a second clad member arranged so as to cover the surface of the core member.

【0012】[4]また本発明は、表面に凹溝を有する
第1のクラッド部材を用意する工程と、第1のクラッド
部材の上に第1の液状高分子材料を塗布し、凹溝および
凹溝周辺を覆う工程と、塗布した第1の液状高分子材料
を熱処理して、表面に凹溝周辺よりも凹溝で低くなる窪
みを有し、かつ、窪み深さが凹溝周辺での厚さと比べて
同等もしくは大きいコア部材を形成する工程と、第1の
クラッド部材およびコア部材の上に第2の液状高分子材
料を塗布する工程と、塗布した第2の液状高分子材料を
熱処理して、第2のクラッド部材を形成する工程とを含
むことを特徴とする光導波路素子の製造方法である。
[4] Also, the present invention provides a step of preparing a first clad member having a concave groove on the surface, and applying a first liquid polymer material on the first clad member, A step of covering the periphery of the concave groove, and heat-treating the applied first liquid polymer material to form a depression on the surface that is lower than the periphery of the concave groove, and that the depth of the depression is around the concave groove. A step of forming a core member having a thickness equal to or larger than the thickness, a step of applying a second liquid polymer material on the first clad member and the core member, and a heat treatment of the applied second liquid polymer material And forming a second clad member.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。ここでは、ポリイミドの前
駆体であるポリアミド酸溶液を用いたポリイミド光導波
路の作製を例に挙げて説明するが、光導波路の材料とし
てポリアミド酸溶液以外の光学用材料の樹脂溶液などを
用いて作製することももちろん可能である。
Embodiments of the present invention will be described below in detail with reference to the drawings. Here, the production of a polyimide optical waveguide using a polyamic acid solution which is a precursor of polyimide will be described as an example, but the production is performed using a resin solution of an optical material other than the polyamic acid solution as a material of the optical waveguide. It is of course possible to do so.

【0014】図1は、本発明の光導波路製造工程の一例
を工程図として示す。図1の符号1は溝加工下部クラッ
ド、符号2はコア材料、符号3は上部クラッドである。
図2は、コアの埋め込み断面形状の一例を示す部分拡大
図である。図2の符号11は凹溝周辺でのコア膜厚、符
号12は凹溝での窪み深さである。
FIG. 1 is a process diagram showing an example of an optical waveguide manufacturing process according to the present invention. 1 is a grooved lower clad, 2 is a core material, and 3 is an upper clad.
FIG. 2 is a partially enlarged view showing an example of the embedded cross-sectional shape of the core. Reference numeral 11 in FIG. 2 denotes a core film thickness around the concave groove, and reference numeral 12 denotes a depression depth in the concave groove.

【0015】まず、射出成形などにより幅10μm、深
さ12μmの凹溝加工を施したクラッド1を形成する。
次にその溝にコア材料2としてポリイミドの前駆体であ
る樹脂濃度15wt%ポリアミド酸溶液を溝部にスピン
コートし、その後熱処理によってイミド化させる。この
とき溝部以外に形成されたコア膜厚11は2μmであ
る。この膜厚はスピンコートの回転数を変えるだけで調
整することが出来る。窪み深さ12は溝部以外に形成さ
れたコア膜厚よりも大きい5μmである。
First, a clad 1 having a width of 10 μm and a depth of 12 μm is formed by injection molding or the like.
Next, a polyamic acid solution having a resin concentration of 15 wt%, which is a polyimide precursor, is spin-coated as a core material 2 in the groove, and then imidized by heat treatment. At this time, the core film thickness 11 formed in portions other than the groove portions is 2 μm. This film thickness can be adjusted only by changing the rotation speed of spin coating. The depression depth 12 is 5 μm, which is larger than the thickness of the core formed except for the groove.

【0016】次に、上部クラッドとなるポリアミド酸溶
液をスピンコート等の方法でコートし、加熱イミド化さ
せる。このとき、幅10μm、高さ7μmのコアが擬似
的に形成できていることになる。このようにして、溶液
状態の高分子についても溝部への埋め込み方法を用い
て、高分子光導波路が作製できる。
Next, a polyamic acid solution to be an upper clad is coated by spin coating or the like, and is heated and imidized. At this time, a core having a width of 10 μm and a height of 7 μm has been pseudo-formed. In this manner, a polymer optical waveguide can be manufactured using the method of embedding the polymer in the solution state in the groove.

【0017】[0017]

【実施例】引き続いて、いくつかの実施例を用いて本発
明を更に詳しく説明する。なお、分子構造の異なる種々
の高分子の溶液を用いることにより数限りない本発明の
高分子光導波路が得られることは明らかである。したが
って、本発明はこれらの実施例のみに限定されるもので
はない。
The present invention will be described in more detail with reference to several examples. It is apparent that an unlimited number of polymer optical waveguides of the present invention can be obtained by using solutions of various polymers having different molecular structures. Therefore, the present invention is not limited to only these examples.

【0018】(実施例1)射出成形により形成した2,
2−ビス(3,4−ジカルボキシフェニル)ヘキサフル
オロプロパン二無水物(6FDA)と2,2−ビス(ト
リフルオロメチル)−4, 4' −ジアミノビフェニル
(TFDB)の幅10μm×深さ12μm×長さ5cm
×100本の溝加工ポリイミド上にコア材料となる6F
DAと4, 4' −オキシジアニリン(ODA)の15w
t%ポリアミド酸溶液をスピンコートし、加熱イミド化
させた。コアはみ出し厚さ11は1.5μm、溝部の窪
み深さ12は5μmであった。
(Example 1) 2, formed by injection molding
2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFDB) width 10 μm × depth 12 μm X length 5cm
6F to be the core material on 100 grooved polyimide
15w of DA and 4,4'-oxydianiline (ODA)
A t% polyamic acid solution was spin-coated and imidized by heating. The protruding thickness 11 of the core was 1.5 μm, and the recess depth 12 of the groove was 5 μm.

【0019】次にその上から、6FDA/TFDBの1
5wt%ポリアミド酸溶液をスピンコートにより塗布
し、加熱イミド化させ上部クラッドを形成した。
Next, from above, 1 of 6FDA / TFDB
A 5 wt% polyamic acid solution was applied by spin coating, and heated and imidized to form an upper clad.

【0020】このようにして擬似的にコア径10μm×
7μmの埋込型ポリイミド光導波路が作製できた。
In this way, a core diameter of 10 μm ×
A 7 μm embedded polyimide optical waveguide was produced.

【0021】モードフィールド径9.5μmの光ファイ
バとこの光導波路の結合損失は、両端で約0.4dBで
あり、光伝搬損失は0.5dB/cmであった。また、
はみ出し部への光の漏洩は無かった。これは次の述べる
コア部以外のコア材を除去した場合と同等の性能であ
り、煩雑な除去工程を用いなくてもよいことがわかる。
The coupling loss between the optical fiber having a mode field diameter of 9.5 μm and this optical waveguide was about 0.4 dB at both ends, and the light propagation loss was 0.5 dB / cm. Also,
There was no light leakage to the protruding part. This is the same performance as the case where the core material other than the core portion described below is removed, and it is understood that a complicated removal process does not need to be used.

【0022】(比較例1)射出成形により形成した6F
DA/TFDBの幅10μm×深さ7μm×長さ5cm
×100本の溝加工ポリイミド上にコア材料となる6F
DA/ODAの20wt%ポリアミド酸溶液を厚さ10
μmの条件で滴下し、加熱イミド化させた。
(Comparative Example 1) 6F formed by injection molding
DA / TFDB width 10 μm × depth 7 μm × length 5 cm
6F to be the core material on 100 grooved polyimide
DA / ODA 20wt% polyamic acid solution with thickness 10
The solution was dropped under the condition of μm, and imidized by heating.

【0023】次に、溝からはみ出た余分なコア材をドラ
イエッチングによって除去した。次にその上から、6F
DA/TFDBの15wt%ポリアミド酸溶液をスピン
コートにより塗布し、加熱イミド化させ上部クラッドを
形成した。
Next, excess core material protruding from the groove was removed by dry etching. Next, from above, 6F
A 15 wt% polyamic acid solution of DA / TFDB was applied by spin coating and heat imidized to form an upper clad.

【0024】モードフィールド径9.5μmの光ファイ
バとこの光導波路の結合損失は、両端で約0.4dBで
あり、光伝搬損失は0.5dB/cmであった。しかし
ながら、量産性などに不向きなドライエッチング工程が
増えてしまう。
The coupling loss between the optical fiber having a mode field diameter of 9.5 μm and this optical waveguide was about 0.4 dB at both ends, and the light propagation loss was 0.5 dB / cm. However, the number of dry etching steps that are not suitable for mass productivity or the like increases.

【0025】(比較例2)射出成形により形成した6F
DA/TFDBの幅10μm×深さ7μm×長さ5cm
×100本の溝加工ポリイミド上にコア材料となる6F
DA/ODAの20wt%ポリアミド酸溶液を厚さ7μ
mの条件で滴下し、加熱イミド化させた。コアはみ出し
厚さ11は7μm、溝部の窪み深さ12は4μmであっ
た。
(Comparative Example 2) 6F formed by injection molding
DA / TFDB width 10 μm × depth 7 μm × length 5 cm
6F to be the core material on 100 grooved polyimide
DA / ODA 20wt% polyamic acid solution with thickness 7μ
The mixture was dropped under the condition of m, and imidized by heating. The core protrusion thickness 11 was 7 μm, and the recess depth 12 of the groove was 4 μm.

【0026】次にその上から、6FDA/TFDBの1
5wt%ポリアミド酸溶液をスピンコートにより塗布
し、加熱イミド化させ上部クラッドを形成した。
Next, from above, 1 of 6FDA / TFDB
A 5 wt% polyamic acid solution was applied by spin coating, and heated and imidized to form an upper clad.

【0027】このとき、光はコアのはみ出し部に漏洩し
てしまった。そのため、光伝搬損失は、10dB/cm
以上となってしまった。
At this time, the light leaked to the protruding portion of the core. Therefore, the light propagation loss is 10 dB / cm
That's it.

【0028】[0028]

【発明の効果】以上詳説したように本発明によれば、コ
ア部材の表面に存在する窪み深さと凹溝周辺でのコア部
材の厚さとの関係を最適化することによって、凹溝周辺
にコア部材が残っていても光伝搬損失の低減化が図られ
る。そのため、溶液状態の高分子材料の塗布によって光
導波路素子を製造できるようになり、種々の材料の高分
子光導波路が安価に量産できるようになる。
As described above in detail, according to the present invention, by optimizing the relationship between the depth of the dent present on the surface of the core member and the thickness of the core member around the concave groove, the core is formed around the concave groove. Light propagation loss can be reduced even if the members remain. Therefore, an optical waveguide element can be manufactured by applying a polymer material in a solution state, and polymer optical waveguides of various materials can be mass-produced at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるコア材料の埋め込み工程を含む光
導波路作製の一例を示す工程図である。
FIG. 1 is a process chart showing an example of manufacturing an optical waveguide including a step of embedding a core material according to the present invention.

【図2】コアの埋め込み断面形状の一例を示す部分拡大
図である。
FIG. 2 is a partially enlarged view showing an example of an embedded cross-sectional shape of a core.

【符号の説明】[Explanation of symbols]

1 溝加工下部クラッド 2 コア 3 上部クラッド 11 凹溝周辺でのコア膜厚 12 凹溝での窪み深さ DESCRIPTION OF SYMBOLS 1 Groove processing lower clad 2 Core 3 Upper clad 11 Core film thickness around a concave groove 12 Depression depth in a concave groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に凹溝を有するクラッド部材と、 凹溝および凹溝周辺を覆うように配置されたコア部材と
を備え、 コア部材の表面は、凹溝周辺よりも凹溝で低くなる窪み
が存在し、 窪み深さは、凹溝周辺でのコア部材の厚さと比べて同等
もしくは大きいことを特徴とする光導波路素子。
A cladding member having a concave groove on a surface thereof; and a core member disposed so as to cover the concave groove and the periphery of the concave groove, wherein the surface of the core member is lower in the concave groove than in the peripheral groove. An optical waveguide device having a depression, wherein the depth of the depression is equal to or greater than the thickness of the core member around the concave groove.
【請求項2】 コア部材は高分子材料で形成されること
を特徴とする請求項1記載の光導波路素子。
2. The optical waveguide device according to claim 1, wherein the core member is formed of a polymer material.
【請求項3】 コア部材の表面を覆うように配置された
第2のクラッド部材を備えることを特徴とする請求項1
記載の光導波路素子。
3. The semiconductor device according to claim 1, further comprising a second clad member disposed so as to cover a surface of the core member.
An optical waveguide device as described in the above.
【請求項4】 表面に凹溝を有する第1のクラッド部材
を用意する工程と、 第1のクラッド部材の上に第1の液状高分子材料を塗布
し、凹溝および凹溝周辺を覆う工程と、 塗布した第1の液状高分子材料を熱処理して、表面に凹
溝周辺よりも凹溝で低くなる窪みを有し、かつ、窪み深
さが凹溝周辺での厚さと比べて同等もしくは大きいコア
部材を形成する工程と、 第1のクラッド部材およびコア部材の上に第2の液状高
分子材料を塗布する工程と、 塗布した第2の液状高分子材料を熱処理して、第2のク
ラッド部材を形成する工程とを含むことを特徴とする光
導波路素子の製造方法。
4. A step of preparing a first clad member having a groove on the surface, and a step of applying a first liquid polymer material on the first clad member to cover the groove and the periphery of the groove. And heat-treating the applied first liquid polymer material to have a depression on the surface that is lower in the groove than in the vicinity of the groove, and the depth of the depression is equal to or less than the thickness in the vicinity of the groove. Forming a large core member; applying a second liquid polymer material onto the first clad member and the core member; heat treating the applied second liquid polymer material to form a second liquid polymer material; Forming a clad member.
JP2001156838A 2001-05-25 2001-05-25 Optical waveguide device and manufacturing method thereof Expired - Fee Related JP3943862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156838A JP3943862B2 (en) 2001-05-25 2001-05-25 Optical waveguide device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156838A JP3943862B2 (en) 2001-05-25 2001-05-25 Optical waveguide device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002350661A true JP2002350661A (en) 2002-12-04
JP3943862B2 JP3943862B2 (en) 2007-07-11

Family

ID=19000785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156838A Expired - Fee Related JP3943862B2 (en) 2001-05-25 2001-05-25 Optical waveguide device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3943862B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035516B2 (en) 2002-11-29 2006-04-25 Nitto Denko Corporation Process for producing polyimide optical waveguide
US7181121B2 (en) 2003-05-23 2007-02-20 Sanyo Electric Co., Ltd. Optical device and method for manufacturing the same
EP1770418A1 (en) * 2004-06-28 2007-04-04 Omron Corporation Optical waveguide, optical waveguide module, optical transmission apparatus, and method for fabricating optical waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035516B2 (en) 2002-11-29 2006-04-25 Nitto Denko Corporation Process for producing polyimide optical waveguide
US7181121B2 (en) 2003-05-23 2007-02-20 Sanyo Electric Co., Ltd. Optical device and method for manufacturing the same
EP1770418A1 (en) * 2004-06-28 2007-04-04 Omron Corporation Optical waveguide, optical waveguide module, optical transmission apparatus, and method for fabricating optical waveguide
EP1770418A4 (en) * 2004-06-28 2010-05-26 Omron Tateisi Electronics Co Optical waveguide, optical waveguide module, optical transmission apparatus, and method for fabricating optical waveguide

Also Published As

Publication number Publication date
JP3943862B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US6500603B1 (en) Method for manufacturing polymer optical waveguide
EP0616234B1 (en) Method of manufacturing a polyimide optical waveguide
KR100437628B1 (en) Optical guide
US20040001684A1 (en) Optical waveguide and method for manufacturing the same
JP4799764B2 (en) Photosensitive polyimide precursor composition for optical waveguide, photosensitive polyimide composition for optical waveguide, and optical waveguide using the same
JP3943862B2 (en) Optical waveguide device and manufacturing method thereof
Tamaki et al. Recent progress on polymer waveguide materials
JP2007152724A (en) Molding method for resin, and manufacturing method for optical element
JP3327356B2 (en) Fluorinated polyimide optical waveguide and method for manufacturing the same
JPH04328504A (en) Optical waveguide made of polyimide
JP3943827B2 (en) Method for producing polymer optical waveguide
EP1828824A1 (en) Method for manufacturing optical devices
JP2001228350A (en) Method for manufacturing polymer optical waveguide
JP2000056147A (en) Manufacture of polymer optical waveguide
JP2002202426A (en) Method for manufacturing optical waveguide
JP3249340B2 (en) Method for manufacturing polymer flexible optical waveguide
JP2007033776A (en) Manufacturing method of stacked type optical waveguide
JP2003172837A (en) Optical waveguide element with lens and method of manufacturing the same
JP2001318257A (en) Method for producing polymeric optical waveguide
KR20090042354A (en) Optical waveguide using epoxy resin and the fabricating methods thereof
EP1778462B1 (en) Method for manufacturing optical devices
JPH04235505A (en) Manufacture of polyimide opticalwaveguide
JP2000321456A (en) Production of polyimide optical waveguide
JPH08327844A (en) Production of optical waveguide
JP3921900B2 (en) Manufacturing method of polymer optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees