JP2002349355A - Exhaust refluxing device for internal combustion engine - Google Patents

Exhaust refluxing device for internal combustion engine

Info

Publication number
JP2002349355A
JP2002349355A JP2001157426A JP2001157426A JP2002349355A JP 2002349355 A JP2002349355 A JP 2002349355A JP 2001157426 A JP2001157426 A JP 2001157426A JP 2001157426 A JP2001157426 A JP 2001157426A JP 2002349355 A JP2002349355 A JP 2002349355A
Authority
JP
Japan
Prior art keywords
passage
exhaust gas
intake
gas recirculation
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001157426A
Other languages
Japanese (ja)
Inventor
Akira Shirakawa
暁 白河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001157426A priority Critical patent/JP2002349355A/en
Publication of JP2002349355A publication Critical patent/JP2002349355A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids

Abstract

PROBLEM TO BE SOLVED: To fully promote mixing of the intake air and EGR without reducing the volumetric efficiency in spite of a very simple structure. SOLUTION: A branching passage 8 is formed as a bypass of an intake throttle valve 7, and an EGR passage 18 is connected to the branching passage 8. An orifice 22 for disturbing the flow is provided in the branching passage 8. The branching passage 8 and an intake passage 2 are reconnected in the turbulence developing range of the intake air formed just after the intake throttle valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気還
流装置(以下、排気還流をEGRともいう)に関し、詳
細には、吸入空気とEGRガスとの混合を促進して、各
気筒におけるEGR率を均一にするための技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recirculation system for an internal combustion engine (hereinafter, exhaust gas recirculation is also referred to as EGR). More specifically, the present invention promotes mixing of intake air and EGR gas to reduce EGR in each cylinder. The present invention relates to a technique for making the rate uniform.

【0002】[0002]

【従来の技術】排気ガスに含まれる窒素酸化物(NO
x)を減少させるのに有効な手法としてEGRがある。
EGRとは、排気ガスの一部を吸気系に再循環させるこ
とにより燃焼温度を低下させて、NOxの発生を抑制す
る技術である。これまで、EGR装置における問題の1
つの原因として、吸入空気とEGRガスとの比重の違い
が挙げられていた。すなわち、両者は比重が異なり混ざ
りにくいうえ、一般的には、EGR通路と吸気通路との
接続位置から各気筒までの距離が異なるので、気筒間で
EGR率にバラツキが生じるのである。また、他の問題
として、吸気圧と排気圧とが近くなると、EGRに必要
な吸入負圧が発生しないために所望のEGR量が得られ
ないことが挙げられていた。
2. Description of the Related Art Nitrogen oxides (NO
EGR is an effective method for reducing x).
EGR is a technique for reducing the combustion temperature by recirculating a part of the exhaust gas to an intake system to suppress the generation of NOx. Until now, one of the problems in EGR equipment
One of the causes was a difference in specific gravity between the intake air and the EGR gas. That is, the two have different specific gravities, are hard to mix, and generally have different distances from the connection position of the EGR passage and the intake passage to each cylinder, so that the EGR rate varies among the cylinders. Another problem is that when the intake pressure and the exhaust pressure are close to each other, a desired amount of EGR cannot be obtained because an intake negative pressure required for EGR does not occur.

【0003】このような吸入空気とEGRガスとの不均
一混合及びEGR量の不足の問題を解消するための技術
として、従来より、吸気通路において吸気絞り弁の下流
側にベンチュリ型の流路を形成したものが開示されてい
る(特開2000−329010号公報参照)。この技
術によれば、EGRガスは、ベンチュリ負圧により吸気
通路に吸入されるとともに、末広がり部において吸入空
気との混合が促進される。
As a technique for solving such problems of uneven mixing of intake air and EGR gas and a shortage of EGR amount, a venturi type flow path has been conventionally provided in the intake passage downstream of the intake throttle valve. The formed one is disclosed (see JP-A-2000-329010). According to this technique, the EGR gas is sucked into the intake passage by the Venturi negative pressure, and the mixing with the intake air is promoted in the divergent portion.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな構成では、吸気絞り弁の動作によらず流路自体が常
に絞られた状態となるので、吸気系の体積効率(新気ガ
スの入る度合い)が低下して、燃費や全開出力が低下す
るという問題がある。また、吸入空気量が少なくなる
と、粒子状物質の排出量が増加してしまう。そして、E
GRガスの吸気系導入部が吸気絞り弁に近ければ、EG
Rガスに含まれる粒子状物質や炭化水素がこの弁に固着
して、その円滑な動作を妨げることがある。
However, in such a configuration, the flow passage itself is always throttled regardless of the operation of the intake throttle valve, so that the volumetric efficiency of the intake system (the degree to which fresh gas enters) is reduced. ) Is reduced, and the fuel efficiency and the full-open output are reduced. Also, when the amount of intake air decreases, the amount of particulate matter discharged increases. And E
If the GR gas intake system introduction part is close to the intake throttle valve, EG
Particulate matter and hydrocarbons contained in the R gas may adhere to the valve and hinder its smooth operation.

【0005】ベンチュリ負圧をEGRに利用する他の技
術として、SAE2000−01−0225には、吸気
絞り弁のバイパス通路を形成し、該通路にベンチュリ管
を介装することにより、全開時の体積効率を維持するよ
うにしたものが開示されている。ところが、このような
方法によっても、EGRガスの混合度合いを充分に高め
ようとすればベンチュリ後部の末広がり部を相当に長く
しなければならないので、吸気系が大型化し、エンジン
ルーム内でのレイアウトが困難となる。また、これに伴
い、EGRガスの流路容積が増大するので、EGRの応
答性も悪化してしまう。
[0005] As another technique for utilizing the Venturi negative pressure for EGR, a bypass passage for an intake throttle valve is formed in SAE2000-01-0225, and a Venturi pipe is interposed in the bypass passage so that the volume when fully opened is reduced. An arrangement for maintaining efficiency is disclosed. However, even with such a method, in order to sufficiently increase the degree of mixing of the EGR gas, the divergent portion at the rear of the venturi must be considerably lengthened, so that the intake system becomes large, and the layout in the engine room is reduced. It will be difficult. In addition, since the flow volume of the EGR gas increases with this, the responsiveness of the EGR also deteriorates.

【0006】このような実情に鑑み、本発明は、体積効
率の低下を来すことなく、かつ、非常にコンパクトな構
成で吸入空気とEGRガスとの混合を充分促進すること
ができる内燃機関の排気還流装置を提供することを目的
とする。また、本発明は、内燃機関の排気還流装置にお
いて、吸排気差圧の不足しがちな運転状態にあってもE
GRに必要な吸入負圧を発生させて、充分なEGR量を
得ることを目的とする。
[0006] In view of such circumstances, the present invention provides an internal combustion engine capable of sufficiently promoting the mixing of intake air and EGR gas with a very compact structure without lowering the volumetric efficiency. An object of the present invention is to provide an exhaust gas recirculation device. Further, the present invention provides an exhaust gas recirculation system for an internal combustion engine that operates in a state where the intake and exhaust differential pressure tends to be insufficient.
An object of the present invention is to generate a necessary suction negative pressure for the GR to obtain a sufficient EGR amount.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に記
載の発明に係る内燃機関の排気還流装置は、吸気系にお
いて、吸気絞り弁の上流側の分岐部より吸気通路から分
岐した後に該吸気絞り弁の下流側の再結合部において吸
気通路と再結合する分岐通路を形成して、吸気通路内の
流れに実質的に沿う吸入空気の分流を形成し、排気通路
から延伸する排気還流通路を、前記分岐部及び再結合部
の間の接続部において前記分岐通路と接続して、排気ガ
スの一部である排気還流ガスを、前記排気還流通路を介
して前記接続部から前記分岐通路に導入し、前記分岐通
路内を流れる排気還流ガスと吸入空気との混合ガスを前
記再結合部から吸気通路に導入して、前記吸気絞り弁を
介した吸入空気と混合することを特徴とする。
Therefore, an exhaust gas recirculation system for an internal combustion engine according to the present invention is characterized in that, in an intake system, after branching from an intake passage from a branch portion on the upstream side of an intake throttle valve. An exhaust recirculation passage that extends from the exhaust passage by forming a branch passage that rejoins the intake passage at a recombining portion downstream of the intake throttle valve to form a branch of the intake air substantially along the flow in the intake passage; Is connected to the branch passage at a connection portion between the branch portion and the recombination portion, and the exhaust gas recirculation gas that is a part of the exhaust gas is transferred from the connection portion to the branch passage via the exhaust gas recirculation passage. The mixed gas of the exhaust recirculated gas and the intake air flowing in the branch passage is introduced into the intake passage from the recombining portion, and is mixed with the intake air through the intake throttle valve.

【0008】このような構成によれば、EGRガスは、
分岐通路及び排気還流通路の接続部と、分岐通路及び吸
気通路の再結合部との2段で吸入空気と混合し、各段に
おいて希釈されることとなる。請求項2に記載の発明に
係る内燃機関の排気還流装置は、燃焼室からの排気ガス
の一部を吸気通路に還流する内燃機関の排気還流装置で
あって、吸気通路に介装された吸気絞り弁と、該吸気絞
り弁を迂回する分岐通路であって、該吸気絞り弁の上流
側の分岐部において吸気通路から分岐した後に吸気通路
に実質的に沿って延伸し、かつ、該吸気絞り弁の下流側
の再結合部において吸気通路と再結合する分岐通路と、
前記分岐部及び再結合部の間の接続部において前記分岐
通路に接続する排気還流通路と、該排気還流通路に介装
された排気還流制御弁と、を含んで構成される。
According to such a configuration, the EGR gas is
The air is mixed with the intake air in two stages, that is, the connection between the branch passage and the exhaust gas recirculation passage, and the recombination portion between the branch passage and the intake passage, and is diluted in each stage. An exhaust gas recirculation device for an internal combustion engine according to the second aspect of the present invention is an exhaust gas recirculation device for an internal combustion engine that recirculates a part of exhaust gas from a combustion chamber to an intake passage, wherein the intake air interposed in the intake passage is provided. A throttle valve, a branch passage detouring around the intake throttle valve, and extending substantially along the intake passage after branching off from the intake passage at a branch portion upstream of the intake throttle valve; A branch passage that rejoins the intake passage at a rejoining section downstream of the valve;
An exhaust gas recirculation passage connected to the branch passage at a connection between the branch portion and the recombining portion, and an exhaust gas recirculation control valve interposed in the exhaust gas recirculation passage are configured.

【0009】このような構成によれば、排気通路からの
EGRガスは、まず、分岐通路に流入し、そこで、吸気
通路から分岐した吸入空気の分流と混合する。さらに、
その下流において吸気通路に流れ込み、吸気絞り弁を介
した吸入空気と再度混合する。このように、EGRガス
は、吸入空気と2段で混合し、各段において希釈される
こととなる。
[0009] According to such a configuration, the EGR gas from the exhaust passage first flows into the branch passage, where it mixes with the branched flow of the intake air branched from the intake passage. further,
Downstream, it flows into the intake passage and mixes again with the intake air through the intake throttle valve. As described above, the EGR gas is mixed with the intake air in two stages, and is diluted in each stage.

【0010】請求項3に記載の発明に係る内燃機関の排
気還流装置は、前記分岐通路を吸気通路に隣接させて一
体成型したことを特徴とする。請求項4に記載の発明に
係る内燃機関の排気還流装置は、前記分岐通路におい
て、前記接続部の上流側に乱れ促進手段を設けたことを
特徴とする。このような構成によれば、上記乱れ促進手
段により乱された吸入空気の流れに対してEGRガスが
流入するので、EGRガスの希釈に乱れのエネルギーが
寄与することとなる。
According to a third aspect of the present invention, there is provided an exhaust gas recirculation apparatus for an internal combustion engine, wherein the branch passage is formed integrally with the intake passage adjacent to the intake passage. According to a fourth aspect of the present invention, in the exhaust gas recirculation device for an internal combustion engine, a turbulence promoting unit is provided in the branch passage on an upstream side of the connection portion. According to such a configuration, since the EGR gas flows into the flow of the intake air disturbed by the turbulence promoting means, the turbulent energy contributes to the dilution of the EGR gas.

【0011】請求項5に記載の発明に係る内燃機関の排
気還流装置は、前記乱れ促進手段がオリフィスであるこ
とを特徴とする。請求項6に記載の発明に係る内燃機関
の排気還流装置は、吸気通路において、前記再結合部
を、吸気絞り弁通過後の吸入空気の乱流発達域に形成し
たことを特徴とする。
According to a fifth aspect of the present invention, there is provided an exhaust gas recirculation system for an internal combustion engine, wherein the turbulence promoting means is an orifice. According to a sixth aspect of the present invention, in the exhaust gas recirculation device for an internal combustion engine, the recombining portion is formed in a turbulent flow development region of the intake air after passing through the intake throttle valve in the intake passage.

【0012】請求項7に記載の発明に係る内燃機関の排
気還流装置は、排気通路において、前記排気還流通路を
排気後処理装置の下流側から延伸させたことを特徴とす
る。請求項8に記載の発明に係る内燃機関の排気還流装
置は、前記排気還流通路において、排気還流制御弁と排
気通路との間に冷却装置を介装したことを特徴とする。
According to a seventh aspect of the present invention, in the exhaust gas recirculation device for an internal combustion engine, the exhaust gas recirculation passage extends from a downstream side of the exhaust aftertreatment device in the exhaust passage. An exhaust gas recirculation device for an internal combustion engine according to an eighth aspect of the invention is characterized in that a cooling device is interposed between the exhaust gas recirculation control valve and the exhaust gas passage in the exhaust gas recirculation passage.

【0013】請求項9に記載の発明に係る内燃機関の排
気還流装置は、運転状態が排気還流実施領域にあるとき
に、前記排気還流通路に介装された排気還流制御弁を全
開制御しつつ前記吸気絞り弁を開度調整して、排気還流
量を制御することを特徴とする。
According to a ninth aspect of the present invention, in the exhaust gas recirculation apparatus for an internal combustion engine, when the operating state is in the exhaust gas recirculation execution region, the exhaust gas recirculation control valve provided in the exhaust gas recirculation passage is controlled to fully open. The opening degree of the intake throttle valve is adjusted to control the exhaust gas recirculation amount.

【0014】[0014]

【発明の効果】請求項1及び2に記載の発明によれば、
EGRガスを吸入空気と2段で混合することとしたの
で、EGRガスの希釈が均一化され、気筒間でのEGR
率のバラツキを抑えることができる。また、吸気絞り弁
全開時における体積効率が確保されるので、燃費や全開
出力の低下を招くこともない。
According to the first and second aspects of the present invention,
Since the EGR gas is mixed with the intake air in two stages, the dilution of the EGR gas is made uniform, and the EGR gas between the cylinders is reduced.
Variation in rate can be suppressed. Further, since the volumetric efficiency at the time when the intake throttle valve is fully opened is ensured, the fuel efficiency and the fully opened output are not reduced.

【0015】さらに、分岐通路が吸気通路に実質的に沿
って形成されるので、これらの通路を非常にコンパクト
に構成することが可能である。従って、エンジンルーム
内での設置が容易であり、レイアウト性も良い。請求項
3に記載の発明によれば、生産が効率化されるととも
に、レイアウト性も更に向上する。
Further, since the branch passages are formed substantially along the intake passages, these passages can be made very compact. Therefore, installation in the engine room is easy and layout is good. According to the third aspect of the present invention, the production efficiency is improved and the layout is further improved.

【0016】請求項4に記載の発明によれば、分岐通路
と排気還流通路との接続部において乱れのエネルギーに
よりEGRガスの希釈が促進されるので、各気筒のEG
R率をより均一なものとすることができる。請求項5に
記載の発明によれば、オリフィスにより分岐通路におい
て乱れが形成されると同時に、吸排気差圧の拡大効果が
得られるので、EGRに必要な吸入負圧を確保すること
ができる。
According to the fourth aspect of the present invention, the turbulent energy promotes the dilution of the EGR gas at the connection between the branch passage and the exhaust gas recirculation passage.
The R rate can be made more uniform. According to the fifth aspect of the present invention, since a turbulence is formed in the branch passage by the orifice, and at the same time an effect of increasing the intake / exhaust differential pressure is obtained, the suction negative pressure required for EGR can be secured.

【0017】請求項6に記載の発明によれば、分岐通路
と吸気通路との再結合部でのEGRガスの希釈が、乱流
発達域における乱れのエネルギーにより促進されるの
で、各気筒のEGR率をより均一なものとすることがで
きる。請求項7に記載の発明によれば、後処理後の排気
ガスが再循環される構成としたことで、EGRガスに含
まれる粒子状物質や炭化水素が大幅に減少するため、吸
気絞り弁にこれらの物質が固着することがなく、その円
滑な動作を維持することができる。
According to the sixth aspect of the present invention, the dilution of the EGR gas in the reconnection portion between the branch passage and the intake passage is promoted by the turbulent energy in the turbulent flow development region. The rate can be made more uniform. According to the seventh aspect of the present invention, since the exhaust gas after the post-processing is configured to be recirculated, the particulate matter and hydrocarbons contained in the EGR gas are significantly reduced. These substances are not fixed, and the smooth operation can be maintained.

【0018】請求項8に記載の発明によれば、EGR制
御弁が冷却装置の下流側に位置するので、該制御弁の排
気温度に基づく劣化を抑えることができる。また、EG
R制御弁が吸気系の近くに配置されるので、EGRの応
答性が向上する。請求項9に記載の発明によれば、EG
R実施時においてEGR制御弁について求められる制御
が全開制御のみであり、また、EGR量の制御が、該制
御弁の全開制御時における吸気絞り弁の開度調整による
ので、EGR制御系の構成が簡素化される。
According to the eighth aspect of the present invention, since the EGR control valve is located downstream of the cooling device, deterioration of the control valve based on the exhaust gas temperature can be suppressed. EG
Since the R control valve is arranged near the intake system, the responsiveness of EGR is improved. According to the ninth aspect, the EG
The control required for the EGR control valve at the time of performing R is only the full-open control, and the control of the EGR amount is performed by adjusting the opening degree of the intake throttle valve at the time of the full-open control of the control valve. Simplified.

【0019】[0019]

【発明の実施の形態】以下に、図面を参照して、本発明
の実施の形態について説明する。図1は、本発明の一実
施形態に係るEGR装置を備える内燃機関(ディーゼル
エンジン)1の構成を示す断面図である。同図を参照す
ると、吸気通路2の導入部には、エアフィルタ3が取り
付けられている。ここで、吸入空気中に浮遊する粉塵等
が除去される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a configuration of an internal combustion engine (diesel engine) 1 including an EGR device according to one embodiment of the present invention. Referring to FIG. 1, an air filter 3 is attached to an introduction portion of the intake passage 2. Here, dust and the like floating in the intake air are removed.

【0020】エアフィルタ3の直ぐ下流には、熱線式エ
アフローメータ4が設置されており、その検出信号は、
電子制御ユニット(ECU)101に入力される。EC
U101は、この入力信号に基づいて吸入空気量Qai
rを算出する。エンジン1は、可変ノズル型ターボチャ
ージャ5を備えており、エアフローメータ4を介した吸
入空気は、コンプレッサ部51により圧縮されて送り出
される。吸気通路2には、ターボチャージャ5とともに
インタークーラ6が併設されており、コンプレッサ部5
1から圧送された吸入空気は、ここで冷却される。
Immediately downstream of the air filter 3, a hot-wire type air flow meter 4 is installed, and its detection signal is
It is input to an electronic control unit (ECU) 101. EC
U101 determines the intake air amount Qai based on the input signal.
Calculate r. The engine 1 is provided with a variable nozzle type turbocharger 5, and the intake air via the air flow meter 4 is compressed by a compressor unit 51 and sent out. An intercooler 6 is provided in the intake passage 2 together with the turbocharger 5.
The intake air pumped from 1 is cooled here.

【0021】インタークーラ6の下流側には、吸気絞り
弁7が設置されている。吸気絞り弁7は、ECU101
からの制御信号を受ける駆動モータ71により駆動され
て、吸気通路2の開度調整を行う。また、エンジン1
は、吸気系において、吸気絞り弁7を迂回するバイパス
としての分岐通路8を備えている。
An intake throttle valve 7 is provided downstream of the intercooler 6. The intake throttle valve 7 is provided by the ECU 101
Driven by a drive motor 71 that receives a control signal from the controller, the opening degree of the intake passage 2 is adjusted. Also, Engine 1
Is provided with a branch passage 8 as a bypass that bypasses the intake throttle valve 7 in the intake system.

【0022】従って、吸入空気は、吸気通路2とこの分
岐通路8とに分かれ、吸気通路2をそのまま流れる吸入
空気は、吸気絞り弁7を通過し、他方の分岐通路8を流
れる吸入空気は、吸気絞り弁7を迂回する。これらは、
その後に合流して更に下流に進み、マニホールド部9に
おいて各気筒に分配される。燃焼室10には、上部略中
央に面してインジェクタ11及びグロープラグ12が設
置されている。インジェクタ11へは、高圧燃料ポンプ
13により圧送された燃料が、燃料供給配管14及びそ
の一部を構成するコモンレール15を介して供給され
る。
Accordingly, the intake air is divided into the intake passage 2 and the branch passage 8, and the intake air flowing through the intake passage 2 as it is passes through the intake throttle valve 7, and the intake air flowing through the other branch passage 8 is: Bypass the intake throttle valve 7. They are,
Thereafter, they merge and proceed further downstream, and are distributed to each cylinder in the manifold section 9. In the combustion chamber 10, an injector 11 and a glow plug 12 are installed so as to face substantially the upper center. The fuel pumped by the high-pressure fuel pump 13 is supplied to the injector 11 via a fuel supply pipe 14 and a common rail 15 which constitutes a part thereof.

【0023】排気系において、排気通路16には、ター
ボチャージャ5のタービン部52が設置されている。タ
ービン部52の下流側には、排気後処理装置17が取り
付けられ、その更に下流側にEGR通路18の一端が接
続している。従って、EGR通路18へは、後処理によ
り粒子状物質の殆どと、炭化水素の90%以上とが除去
された排気ガスが流入するので、これらの物質の吸気系
への循環を抑えることができる。これにより、炭化水素
を媒体とした粒子状物質の吸気絞り弁7及び吸気系管路
壁面への固着を防ぐことができる。EGR通路18の他
端は、吸気系において分岐通路8に接続される。
In the exhaust system, a turbine section 52 of the turbocharger 5 is provided in the exhaust passage 16. An exhaust after-treatment device 17 is attached downstream of the turbine section 52, and one end of the EGR passage 18 is connected further downstream thereof. Therefore, the exhaust gas from which most of the particulate matter and 90% or more of the hydrocarbons have been removed by the after-treatment flows into the EGR passage 18, so that the circulation of these substances to the intake system can be suppressed. . Thereby, it is possible to prevent the particulate matter using the hydrocarbon as a medium from sticking to the intake throttle valve 7 and the intake system pipe wall surface. The other end of the EGR passage 18 is connected to the branch passage 8 in the intake system.

【0024】EGR通路18には、冷却装置(EGRク
ーラ)19が取り付けられており、その下流側に制御弁
(EGR制御弁)20が設置されている。従って、EG
R制御弁20が未冷却である高温の排気ガスにさらされ
ることはなく、排気温度に起因するEGR制御弁20の
故障が防止される。また、このような構成では、EGR
制御弁20が吸気絞り弁7に対して比較的近い位置に配
置されることとなるので、EGRの応答性が向上する。
A cooling device (EGR cooler) 19 is attached to the EGR passage 18, and a control valve (EGR control valve) 20 is installed downstream of the cooling device. Therefore, EG
The R control valve 20 is not exposed to the uncooled high-temperature exhaust gas, and the failure of the EGR control valve 20 due to the exhaust gas temperature is prevented. In such a configuration, the EGR
Since the control valve 20 is disposed at a position relatively close to the intake throttle valve 7, the responsiveness of EGR is improved.

【0025】EGR制御弁20は、ECU101からの
制御信号を受けるソレノイド式駆動装置21により駆動
され、運転状態に応じてEGR通路18を全開か全閉か
のいずれかに設定する。全開時には、吸排気差圧に応じ
た量のEGRガスが吸気通路2に再循環される。エンジ
ン1において設けられるセンサ類としては、以上の他
に、冷却水温度(水温)センサ31及びクランク角度セ
ンサ32等がある。これらの検出信号は、いずれもEC
U101に入力される。
The EGR control valve 20 is driven by a solenoid type driving device 21 which receives a control signal from the ECU 101, and sets the EGR passage 18 to either fully open or fully closed according to the operation state. When fully opened, the amount of EGR gas corresponding to the intake / exhaust differential pressure is recirculated to the intake passage 2. Other sensors provided in the engine 1 include a cooling water temperature (water temperature) sensor 31, a crank angle sensor 32, and the like. These detection signals are all EC
It is input to U101.

【0026】図2は、吸気絞り弁7及びその周辺構造
(図1の2点鎖線で示すEGRガス希釈部D)を拡大し
たものである。エンジン1は、既述のように、吸気絞り
弁7を迂回するバイパスとしての分岐通路8を備えてい
る。分岐通路8は、吸気絞り弁7の上流側(インターク
ーラ6付きのエンジン1においては、その下流側)の分
岐部201において吸気通路2から分岐し、吸気通路2
に沿って、かつ、共通の管壁を挟んで隣接して延伸して
いる。そして、吸気絞り弁7直後の再結合部202にお
いて吸気通路2と再結合し、ここで終結している。
FIG. 2 is an enlarged view of the intake throttle valve 7 and its peripheral structure (an EGR gas diluting section D indicated by a two-dot chain line in FIG. 1). The engine 1 includes the branch passage 8 as a bypass that bypasses the intake throttle valve 7 as described above. The branch passage 8 branches from the intake passage 2 at a branch portion 201 upstream of the intake throttle valve 7 (downstream of the engine 1 with the intercooler 6).
Along and adjacent to each other with a common pipe wall interposed therebetween. Then, it is recombined with the intake passage 2 at the recombining section 202 immediately after the intake throttle valve 7 and ends here.

【0027】吸気通路2において、吸気絞り弁7を介し
た吸入空気は、弁通過によりジェット気流となり、弁後
方に乱流発達域を形成する。再結合部202は、この乱
流発達域に設けられている。また、再結合部202は、
吸気絞り弁7と吸気通路壁面との間に形成される開口部
に対応させて、2箇所(202a,202b)に形成さ
れているが、本発明はこれに限定されない。再結合部2
02は、1箇所であっても、また、第3の若しくはそれ
以上の他の再結合部を更に含んでもよい。
In the intake passage 2, the intake air passing through the intake throttle valve 7 becomes a jet stream by passing through the valve, and forms a turbulent flow development region behind the valve. The recombination unit 202 is provided in this turbulence development area. Also, the recombining unit 202
Two openings (202a, 202b) are formed corresponding to the openings formed between the intake throttle valve 7 and the intake passage wall surface, but the present invention is not limited to this. Recombination part 2
02 may be at one location or may further include a third or more other recombination portion.

【0028】分岐通路8には、分岐部201と再結合部
202との間の接続部801において、排気通路16か
ら延伸するEGR通路18が接続している。接続部80
1の上流側には、乱れ促進手段としてのオリフィス22
が設置されている。このような構成のEGRガス希釈部
Dは、吸気絞り弁7が取り付けられて吸気通路2を構成
する管と、分岐通路8を構成する管とが、アルミ鋳物等
として一体成型される。
The EGR passage 18 extending from the exhaust passage 16 is connected to the branch passage 8 at a connection portion 801 between the branch portion 201 and the reconnection portion 202. Connection unit 80
Upstream of the orifice 22 is a turbulence promoting means.
Is installed. In the EGR gas diluting section D having such a configuration, a pipe forming the intake passage 2 to which the intake throttle valve 7 is attached and a pipe forming the branch passage 8 are integrally formed as an aluminum casting or the like.

【0029】以上のようにEGR希釈部Dが構成された
ことで、吸入空気a1は、まず、分岐部201におい
て、そのまま吸気通路2を流れるものa2と、分岐通路
8に流入するものa3との2つに分かれる。従って、分
岐通路8には、吸気通路2に実質的に沿って流れる吸入
空気の分流が形成される。この吸入空気の分流は、その
後、オリフィス22において加速及び減圧されるととも
に、その後流において乱れを形成する。オリフィス22
によるこの減圧作用も働いて、EGRガスは、分岐通路
8に吸い込まれて吸入空気に混入し、乱れのエネルギー
により吸入空気との希釈混合が促進される。
With the EGR dilution section D configured as described above, first, the intake air a1 flows into the branch section 201 between the section a2 flowing directly through the intake passage 2 and the section a3 flowing into the branch passage 8. Divided into two. Therefore, a branch flow of the intake air flowing substantially along the intake passage 2 is formed in the branch passage 8. This diverted flow of intake air is then accelerated and depressurized at orifice 22 and creates turbulence in the wake. Orifice 22
, The EGR gas is sucked into the branch passage 8 and mixed into the intake air, and the turbulent energy promotes the dilution and mixing with the intake air.

【0030】このようにして混合した吸入空気とEGR
ガスとの混合ガスa4は、再結合部202から吸気通路
2に流入し、吸気絞り弁7を介して加速した吸入空気a
2と混合する。従って、EGRガスに関して言えば、こ
こで吸入空気と再度混合することとなり、接続部801
と再結合部202との2段で希釈されることとなる。そ
して、再結合部202においても乱れのエネルギーが働
いて、EGRガスの希釈が促進される。
The intake air thus mixed and EGR
The mixed gas a4 with the gas flows into the intake passage 2 from the recombining part 202, and the intake air a4 accelerated through the intake throttle valve 7.
Mix with 2. Therefore, regarding the EGR gas, it is mixed again with the intake air here, and the connection portion 801 is connected.
And the recombining unit 202 in two stages. Then, the turbulent energy also works in the recombination unit 202 to promote the dilution of the EGR gas.

【0031】EGR装置における問題として、従来よ
り、EGRガスと吸入空気との温度及び比重の違いに基
づく混合不足が挙げられていた。これに対して、これら
のガスを上記のように2段に分けて混合することで、E
GRガスの希釈が促進され、両者の混合度合いが充分に
高められる。従って、各気筒のEGR率を均一にするこ
とができる。
As a problem in the EGR device, there has been a problem of insufficient mixing based on a difference in temperature and specific gravity between the EGR gas and the intake air. On the other hand, by mixing these gases in two stages as described above, E
The dilution of the GR gas is promoted, and the degree of mixing of the two is sufficiently increased. Therefore, the EGR rate of each cylinder can be made uniform.

【0032】また、EGRガス希釈部Dがユニットとし
て一体成型されているので、コンパクトであり、エンジ
ンルームでのレイアウトが容易である。加えて、EGR
ガスの流路容積が殆ど増加しないので、EGRの応答性
悪化もなく、また、全開時の吸気系開口面積も確保され
るので、出力悪化もない。図2においてアルファベット
で示す寸法は、φAが吸気通路2の内径であり、Bが分
岐部201から吸気絞り弁7の先端までの距離であり、
φCがEGR通路18の内径であり、φDがオリフィス
開口径(一定の分岐通路内径に対する絞り率に相当す
る)であり、E,Fが吸気絞り弁7の先端(開口部)か
ら各対応の再結合部202a,202bまでの距離であ
る。
Further, since the EGR gas dilution section D is integrally molded as a unit, it is compact and the layout in the engine room is easy. In addition, EGR
Since the gas flow volume hardly increases, the EGR responsiveness does not deteriorate, and the opening area of the intake system when fully opened is secured, so that the output does not deteriorate. In the dimensions indicated by the alphabets in FIG. 2, φA is the inner diameter of the intake passage 2, B is the distance from the branch portion 201 to the tip of the intake throttle valve 7,
φC is the inner diameter of the EGR passage 18, φD is the orifice opening diameter (corresponding to the restricting rate for a constant branch passage inner diameter), and E and F are the respective openings from the tip (opening) of the intake throttle valve 7. This is the distance to the coupling portions 202a and 202b.

【0033】これらの寸法は、エンジン1のサイズや要
求性能に基づいて、シュミレーション及び実験により決
定される。その決定に際して、最大EGR量は、吸気流
路総断面積(φA+φD)及びEGR通路断面積(φ
C)で、全開時体積効率は、吸気流路総断面積(φA+
φD)で、また、EGRガスと吸入空気との混合度合い
(EGRガスの希釈強さ)は、オリフィス開口径φD及
び吸気絞り弁7の開口部から再結合部202a,202
bまでの距離E,Fで、それぞれ評価することができ
る。
These dimensions are determined by simulation and experiments based on the size and required performance of the engine 1. At the time of the determination, the maximum EGR amount is determined by the total cross-sectional area of the intake passage (φA + φD) and the cross-sectional area of the EGR passage (φ
C), the volumetric efficiency at full open is the total cross-sectional area of the intake passage (φA +
φD), and the degree of mixing of the EGR gas and the intake air (the dilution strength of the EGR gas) depends on the orifice opening diameter φD and the opening of the intake throttle valve 7 from the recombination parts 202a, 202.
The evaluation can be made based on the distances E and F to b.

【0034】次に、ECU101の動作について、図3
のフローチャートを参照して説明する。S(ステップ)
1では、吸入空気量Qair、エンジン回転数NE及び
水温Tw等の各種運転状態を読み込む。S2では、現在
の運転状態がEGR領域にあるか否かを判定する。この
判定は、図4のマップに示すように、エンジン回転数N
E[rpm]及び負荷(BMEP:正味平均有効圧[M
Pa])に基づいて行われる。エンジン1がEGR領域
にあると判定された場合には、S3へ進む。
Next, the operation of the ECU 101 will be described with reference to FIG.
This will be described with reference to the flowchart of FIG. S (step)
In step 1, various operation states such as an intake air amount Qair, an engine speed NE, and a water temperature Tw are read. In S2, it is determined whether or not the current operation state is in the EGR range. This determination is made as shown in the map of FIG.
E [rpm] and load (BMEP: net mean effective pressure [M
Pa]). If it is determined that the engine 1 is in the EGR range, the process proceeds to S3.

【0035】S3では、水温Tw等に基づいてEGRカ
ット条件が成立しているか否かを判定する。運転状態が
EGR領域にないか又はEGRカット条件が成立してい
る場合には、S4へ進んで、EGR制御弁20を閉じて
EGRを停止し、さらにS5で吸気絞り弁7を全開とす
る。
In S3, it is determined whether the EGR cut condition is satisfied based on the water temperature Tw and the like. If the operating state is not in the EGR range or the EGR cut condition is satisfied, the process proceeds to S4, where the EGR control valve 20 is closed to stop the EGR, and further in S5, the intake throttle valve 7 is fully opened.

【0036】一方、S3でEGRカット条件不成立とな
った場合には、S6に進んで、EGR制御弁20を全開
とする。そして、S7では、吸気絞り弁7を次のように
開度調整して、本ルーチンをリターンする。ここで、吸
気絞り弁7の開度調整について、図4を参照して説明す
る。
On the other hand, if the EGR cut condition is not satisfied in S3, the process proceeds to S6, and the EGR control valve 20 is fully opened. In S7, the opening degree of the intake throttle valve 7 is adjusted as follows, and the routine returns. Here, the adjustment of the opening degree of the intake throttle valve 7 will be described with reference to FIG.

【0037】まず、低回転低負荷運転領域Aでは、排気
圧が低いために、EGR制御弁前後差圧(以下、差圧)
δPが小さくなる。そこで、吸気絞り弁7を絞ることに
より吸入負圧を形成し、要求EGR量を得る。ここから
エンジン回転数NE及び負荷BMEPが増加していく
と、差圧δPが大きくなるので、吸気絞り弁7を開いて
EGR量を調節する。
First, in the low-speed low-load operation region A, since the exhaust pressure is low, the differential pressure across the EGR control valve (hereinafter referred to as differential pressure)
δP decreases. Then, the intake negative pressure is formed by reducing the intake throttle valve 7 to obtain the required EGR amount. As the engine speed NE and the load BMEP increase from this point, the differential pressure δP increases. Therefore, the intake throttle valve 7 is opened to adjust the EGR amount.

【0038】中回転高負荷運転領域Bでは、ターボチャ
ージャ5の効率が良くなるので、差圧δPは、小さくな
る。従って、ここで再び吸気絞り弁7を絞る。なお、こ
の運転状態では、吸入空気量Qairが最高出力点の約
半分程度なので、吸気絞り弁7を多少絞ったとしても、
燃費悪化は少ない。さらに、高回転運転領域Cでは、差
圧δPが再び増加してくるので、吸気絞り弁7を開く。
In the middle rotation high load operation region B, the efficiency of the turbocharger 5 is improved, so that the differential pressure δP is reduced. Therefore, the intake throttle valve 7 is throttled again. In this operating state, since the intake air amount Qair is about half of the maximum output point, even if the intake throttle valve 7 is slightly reduced,
There is little deterioration in fuel efficiency. Further, in the high-speed operation region C, since the differential pressure δP increases again, the intake throttle valve 7 is opened.

【0039】このような方法に対して、従来は、差圧δ
Pが要求EGR量に対して充分であればEGR制御弁の
開度調整によりEGR量を制御し、差圧δPが足りなけ
れば吸気絞り弁を絞る、という構成が一般的であった。
これについて簡単に説明する(図5参照)。まず、吸気
通路開口面積(本発明では、吸気通路2及び分岐通路8
の各開口面積の和に相当する)をAthc、EGR通路
開口面積をAegr、吸気絞り弁上流側圧力をPin
1、同下流側圧力をPin2、EGR制御弁上流側圧力
をPexhとすると、これらのパラメータとEGR量Q
egr及び吸入空気量Qairとの関係は、次式で与え
られる。
In contrast to such a method, conventionally, the differential pressure δ
A general configuration is that if P is sufficient with respect to the required EGR amount, the EGR amount is controlled by adjusting the opening of the EGR control valve, and if the differential pressure δP is not sufficient, the intake throttle valve is throttled.
This will be described briefly (see FIG. 5). First, the intake passage opening area (in the present invention, the intake passage 2 and the branch passage 8
Athc, EGR passage opening area is Aegr, and intake throttle valve upstream pressure is Pin.
1. If the downstream pressure is Pin2 and the upstream pressure of the EGR control valve is Pexh, these parameters and the EGR amount Q
The relationship between egr and the intake air amount Qair is given by the following equation.

【0040】 Qegr=Aegr√(2・ρ・(Pexh−Pin2)) …(1) Qair=Athc√(2・ρ・(Pin1−Pin2)) …(2) 通常(吸気絞り弁全開時)は、EGR制御弁20を開度
調整してEGR通路開口面積Aegrを制御することに
より、要求EGR量を得る。ここで、差圧δP(=Pe
xh−Pin2)が小さければ、吸気絞り弁7を絞るこ
とにより吸気絞り弁下流側圧力Pin2を減少させる。
そして、その結果形成された差圧δPにおいて、EGR
制御弁20を再び開度調整するのである。
Qegr = Aegr√ (2 · ρ · (Pexh−Pin2)) (1) Qair = Athc√ (2 · ρ · (Pin1−Pin2)) (2) Normally (when the intake throttle valve is fully opened) The required EGR amount is obtained by adjusting the opening of the EGR control valve 20 to control the EGR passage opening area Aegr. Here, the differential pressure δP (= Pe
If xh-Pin2) is small, the intake throttle valve 7 is throttled to reduce the intake throttle valve downstream pressure Pin2.
Then, at the resulting differential pressure δP, the EGR
The opening of the control valve 20 is adjusted again.

【0041】このように、従来の方法では、EGR制御
弁20を全開にしてもなお要求EGR量に満たない場合
に、それから吸気絞り弁7が作動されるので、充分な吸
入負圧が形成されるまでに相当の時間を要し、応答性に
その分の遅れが含まれてしまう。また、EGR実施時に
2つのデバイスを適宜制御しなければならないため、制
御ロジックも複雑であった。
As described above, in the conventional method, even if the EGR control valve 20 is fully opened, if the required EGR amount is still less than the required amount, the intake throttle valve 7 is actuated therefrom, so that a sufficient suction negative pressure is formed. It takes a considerable amount of time to respond, and the responsiveness includes a corresponding delay. In addition, since the two devices must be appropriately controlled during the EGR, the control logic is complicated.

【0042】本実施形態に係る上記の方法によれば、E
GR量が吸気絞り弁7の開度調整のみで制御されるの
で、このような遅れがなく、また、そのような簡単な制
御により、必要十分な運転状態で要求EGR量を得るこ
とができる。すなわち、本実施形態にあっても上式
(1)及び(2)に基づいてEGR量Qegr及び吸入
空気量Qairが決定されるが、EGR領域において、
まず、EGR制御弁20が全開に固定される。そして、
吸気絞り弁7の開度調整により吸気絞り弁下流側圧力P
in2を自在に変化させ、このようにして積極的に形成
される吸入負圧によりEGR量が制御される。
According to the above method according to the present embodiment, E
Since the GR amount is controlled only by adjusting the opening of the intake throttle valve 7, there is no such delay, and the required EGR amount can be obtained in a necessary and sufficient operating state by such simple control. That is, even in the present embodiment, the EGR amount Qegr and the intake air amount Qair are determined based on the above equations (1) and (2).
First, the EGR control valve 20 is fixed to a fully open state. And
By adjusting the opening degree of the intake throttle valve 7, the downstream pressure P of the intake throttle valve is adjusted.
In2 is freely changed, and the EGR amount is controlled by the suction negative pressure thus positively formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るディーゼルエンジン
1のEGR装置の構成を示す断面図
FIG. 1 is a sectional view showing a configuration of an EGR device of a diesel engine 1 according to an embodiment of the present invention.

【図2】エンジン1におけるEGRガス希釈部Dの断面
FIG. 2 is a sectional view of an EGR gas dilution section D in the engine 1.

【図3】EGR制御のフローチャートFIG. 3 is a flowchart of EGR control;

【図4】EGR領域及びEGR制御弁前後差圧δPの増
減傾向を示す図
FIG. 4 is a graph showing an increase / decrease tendency of an EGR region and an EGR control valve differential pressure δP.

【図5】EGR量計算式の説明図FIG. 5 is an explanatory diagram of an EGR amount calculation formula;

【符号の説明】[Explanation of symbols]

1…エンジン 2…吸気通路 4…エアフローメータ 5…ターボチャージャ 6…インタークーラ 7…吸気絞り弁 8…分岐通路 11…インジェクタ 12…グローランプ 16…排気通路 17…排気後処理装置 18…EGR通路 19…EGRクーラ 20…EGR制御弁 31…水温センサ 32…クランク角度センサ 101…電子制御ユニット D…EGRガス希釈部 DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Intake passage 4 ... Air flow meter 5 ... Turbocharger 6 ... Intercooler 7 ... Intake throttle valve 8 ... Branch passage 11 ... Injector 12 ... Glow lamp 16 ... Exhaust passage 17 ... Exhaust after-treatment device 18 ... EGR passage 19 ... EGR cooler 20 ... EGR control valve 31 ... water temperature sensor 32 ... crank angle sensor 101 ... electronic control unit D ... EGR gas dilution section

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 9/02 F02D 9/02 S 351 351M 11/10 11/10 F 21/08 301 21/08 301A 41/02 360 41/02 360 41/04 360 41/04 360Z 43/00 301 43/00 301K 301N Fターム(参考) 3G062 AA01 AA05 BA06 EB14 EC08 ED02 ED04 ED07 ED08 ED10 FA06 FA11 GA01 GA06 GA08 3G065 AA01 AA03 AA04 AA11 CA12 DA05 DA06 EA07 EA10 GA00 GA05 GA09 GA10 GA16 KA02 KA12 3G084 AA01 BA05 BA08 BA20 DA04 DA10 DA13 EB08 FA07 FA20 FA33 3G092 AA02 AA17 AA18 AB03 DC01 DC08 DG08 DG09 EC09 FA15 FA17 FA22 HA01Z HE03Z HE08Z 3G301 HA02 HA11 HA13 JA05 JA25 LA03 LC04 NC02 ND03 PA01Z PA11A PE01Z PE08Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 9/02 F02D 9/02 S 351 351M 11/10 11/10 F 21/08 301 21/08 301A 41 / 02 360 41/02 360 41/04 360 41/04 360Z 43/00 301 43/00 301K 301N F-term (reference) 3G062 AA01 AA05 BA06 EB14 EC08 ED02 ED04 ED07 ED08 ED10 FA06 FA11 GA01 GA06 GA08 3G065 AA01 AA03A CA12 DA05 DA06 EA07 EA10 GA00 GA05 GA09 GA10 GA16 KA02 KA12 3G084 AA01 BA05 BA08 BA20 DA04 DA10 DA13 EB08 FA07 FA20 FA33 3G092 AA02 AA17 AA18 AB03 DC01 DC08 DG08 DG09 EC09 FA15 FA17 FA02 HA01Z HE03Z03 HA08 PA01Z PA11A PE01Z PE08Z

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】吸気系において、吸気絞り弁の上流側の分
岐部より吸気通路から分岐した後に該吸気絞り弁の下流
側の再結合部において吸気通路と再結合する分岐通路を
形成して、吸気通路内の流れに実質的に沿う吸入空気の
分流を形成し、 排気通路から延伸する排気還流通路を、前記分岐部及び
再結合部の間の接続部において前記分岐通路と接続し
て、排気ガスの一部である排気還流ガスを、前記排気還
流通路を介して前記接続部から前記分岐通路に導入し、 前記分岐通路内を流れる排気還流ガスと吸入空気との混
合ガスを前記再結合部から吸気通路に導入して、前記吸
気絞り弁を介した吸入空気と混合することを特徴とする
内燃機関の排気還流装置。
In an intake system, a branch passage that branches from an intake passage from a branch portion on an upstream side of an intake throttle valve and then rejoins with an intake passage at a rejoining portion on a downstream side of the intake throttle valve is formed. Forming a branch of the intake air substantially in line with the flow in the intake passage, connecting an exhaust recirculation passage extending from the exhaust passage to the branch passage at a connection between the branch portion and the recombination portion, and An exhaust gas recirculation gas, which is a part of the gas, is introduced from the connection portion to the branch passage through the exhaust gas recirculation passage, and a mixed gas of the exhaust gas recirculated gas flowing through the branch passage and the intake air is mixed with the recombined portion. An exhaust gas recirculation device for an internal combustion engine, wherein the exhaust gas is introduced into the intake passage from the intake air passage and mixed with the intake air through the intake throttle valve.
【請求項2】燃焼室からの排気ガスの一部を吸気通路に
還流する内燃機関の排気還流装置であって、 吸気通路に介装された吸気絞り弁と、 該吸気絞り弁を迂回する分岐通路であって、該吸気絞り
弁の上流側の分岐部において吸気通路から分岐した後に
吸気通路に実質的に沿って延伸し、かつ、該吸気絞り弁
の下流側の再結合部において吸気通路と再結合する分岐
通路と、 前記分岐部及び再結合部の間の接続部において前記分岐
通路に接続する排気還流通路と、 該排気還流通路に介装された排気還流制御弁と、を含ん
で構成される内燃機関の排気還流装置。
2. An exhaust gas recirculation device for an internal combustion engine for recirculating a part of exhaust gas from a combustion chamber to an intake passage, comprising: an intake throttle valve interposed in the intake passage; and a branch bypassing the intake throttle valve. A passage, which extends substantially along the intake passage after branching from the intake passage at a branch portion on the upstream side of the intake throttle valve, and is connected to the intake passage at a recombination portion on the downstream side of the intake throttle valve. A branch passage to be rejoined; an exhaust gas recirculation passage connected to the branch passage at a connection between the branch portion and the recombining portion; and an exhaust gas recirculation control valve interposed in the exhaust gas recirculation passage. Exhaust gas recirculation system for internal combustion engines.
【請求項3】前記分岐通路を吸気通路に隣接させて一体
成型したことを特徴とする請求項1又は2に記載の内燃
機関の排気還流装置。
3. The exhaust gas recirculation system for an internal combustion engine according to claim 1, wherein the branch passage is formed integrally with the intake passage adjacent to the intake passage.
【請求項4】前記分岐通路において、前記接続部の上流
側に乱れ促進手段を設けたことを特徴とする請求項1〜
3のいずれか1つに記載の内燃機関の排気還流装置。
4. A turbulence promoting means is provided in said branch passage upstream of said connecting portion.
3. The exhaust gas recirculation device for an internal combustion engine according to any one of 3.
【請求項5】前記乱れ促進手段がオリフィスであること
を特徴とする請求項4に記載の内燃機関の排気還流装
置。
5. An exhaust gas recirculation system for an internal combustion engine according to claim 4, wherein said turbulence promoting means is an orifice.
【請求項6】吸気通路において、前記再結合部を、吸気
絞り弁通過後の吸入空気の乱流発達域に形成したことを
特徴とする請求項1〜5のいずれか1つに記載の内燃機
関の排気還流装置。
6. The internal combustion engine according to claim 1, wherein said recombination portion is formed in a turbulent flow development region of the intake air after passing through the intake throttle valve in the intake passage. Exhaust gas recirculation device for the engine.
【請求項7】排気通路において、前記排気還流通路を排
気後処理装置の下流側から延伸させたことを特徴とする
請求項1〜6のいずれか1つに記載の内燃機関の排気還
流装置。
7. The exhaust gas recirculation device for an internal combustion engine according to claim 1, wherein the exhaust gas recirculation passage extends from a downstream side of the exhaust aftertreatment device in the exhaust gas passage.
【請求項8】前記排気還流通路において、排気還流制御
弁と排気通路との間に冷却装置を介装したことを特徴と
する請求項1〜7のいずれか1つに記載の内燃機関の排
気還流装置。
8. The exhaust gas of an internal combustion engine according to claim 1, wherein a cooling device is interposed between said exhaust gas recirculation passage and said exhaust gas recirculation control valve. Reflux device.
【請求項9】運転状態が排気還流実施領域にあるとき
に、前記排気還流通路に介装された排気還流制御弁を全
開制御しつつ前記吸気絞り弁を開度調整して、排気還流
量を制御することを特徴とする請求項1〜8のいずれか
1つに記載の内燃機関の排気還流装置。
9. An exhaust gas recirculation amount is controlled by fully opening an exhaust gas recirculation control valve disposed in the exhaust gas recirculation passage and adjusting an opening degree of the intake throttle valve when the operating state is in an exhaust gas recirculation execution region. The exhaust gas recirculation device for an internal combustion engine according to any one of claims 1 to 8, wherein the exhaust gas recirculation device is controlled.
JP2001157426A 2001-05-25 2001-05-25 Exhaust refluxing device for internal combustion engine Pending JP2002349355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157426A JP2002349355A (en) 2001-05-25 2001-05-25 Exhaust refluxing device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157426A JP2002349355A (en) 2001-05-25 2001-05-25 Exhaust refluxing device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002349355A true JP2002349355A (en) 2002-12-04

Family

ID=19001287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157426A Pending JP2002349355A (en) 2001-05-25 2001-05-25 Exhaust refluxing device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002349355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895028A1 (en) * 2005-12-20 2007-06-22 Renault Sas Fluid e.g. exhaust gas/fresh air, mixing device for power train circuit, has secondary duct with section connected to main and branch ducts so that air and gas are mixed, and flap moved between closed/open positions to close/open orifice
EP2090770A1 (en) * 2008-02-15 2009-08-19 IVECO S.p.A. Engine with exhaust gas recirculation, method for recirculating and vehicle provided with such engine
JP2011208601A (en) * 2010-03-30 2011-10-20 Isuzu Motors Ltd Egr device
JP2020012449A (en) * 2018-07-20 2020-01-23 三菱自動車工業株式会社 Recirculation mechanism of exhaust recirculation gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895028A1 (en) * 2005-12-20 2007-06-22 Renault Sas Fluid e.g. exhaust gas/fresh air, mixing device for power train circuit, has secondary duct with section connected to main and branch ducts so that air and gas are mixed, and flap moved between closed/open positions to close/open orifice
EP2090770A1 (en) * 2008-02-15 2009-08-19 IVECO S.p.A. Engine with exhaust gas recirculation, method for recirculating and vehicle provided with such engine
JP2011208601A (en) * 2010-03-30 2011-10-20 Isuzu Motors Ltd Egr device
JP2020012449A (en) * 2018-07-20 2020-01-23 三菱自動車工業株式会社 Recirculation mechanism of exhaust recirculation gas
JP7110786B2 (en) 2018-07-20 2022-08-02 三菱自動車工業株式会社 Recirculation mechanism for exhaust gas recirculation

Similar Documents

Publication Publication Date Title
US8056340B2 (en) EGR mixer for high-boost engine systems
EP1138928B1 (en) Turbocharged engine with exhaust gas recirculation
US20080098733A1 (en) Exhaust gas throttle for divided turbine housing turbocharger
JP5747483B2 (en) Low pressure loop EGR device
JP4492406B2 (en) Diesel engine intake / exhaust system
JP6051881B2 (en) Internal combustion engine and EGR gas mixing device
US20060124116A1 (en) Clean gas injector
JP2007515583A (en) Exhaust pressure limiting device
JP5332674B2 (en) Exhaust gas recirculation device for internal combustion engine
US6827054B2 (en) Integrated inlet manifold tuning valve and charge motion control device for internal combustion engines
JP2002349355A (en) Exhaust refluxing device for internal combustion engine
JP2002221103A (en) Internal combustion engine system with exhaust gas recirculating device
JP2006233940A (en) Variable displacement turbocharger
JP2020002787A (en) Supercharging system
JP5679776B2 (en) Exhaust gas recirculation control method for internal combustion engine
JP5682245B2 (en) Low pressure loop EGR device
JP2012167638A (en) Exhaust gas recirculation control method for internal combustion engine
KR101526390B1 (en) Engine system
US20140238362A1 (en) Mixing chamber of exhaust gas recirculation system
JP2010168954A (en) Control device for internal combustion engine
JP2005163684A (en) Internal combustion engine with exhaust gas recirculation system
JPH11351071A (en) Egr system for internal-combustion engine
JP6671328B2 (en) Control device for internal combustion engine
JP2013002377A (en) Internal combustion engine
JP2003097279A (en) Variable swirl device