JP2002349316A - Exhaust emission purifying system for internal combustion engine - Google Patents

Exhaust emission purifying system for internal combustion engine

Info

Publication number
JP2002349316A
JP2002349316A JP2001150073A JP2001150073A JP2002349316A JP 2002349316 A JP2002349316 A JP 2002349316A JP 2001150073 A JP2001150073 A JP 2001150073A JP 2001150073 A JP2001150073 A JP 2001150073A JP 2002349316 A JP2002349316 A JP 2002349316A
Authority
JP
Japan
Prior art keywords
nox
rich
catalyst
purge control
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001150073A
Other languages
Japanese (ja)
Other versions
JP4389141B2 (en
Inventor
Kiyotaka Sasaki
浄隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001150073A priority Critical patent/JP4389141B2/en
Publication of JP2002349316A publication Critical patent/JP2002349316A/en
Application granted granted Critical
Publication of JP4389141B2 publication Critical patent/JP4389141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible, in an exhaust gas purifying system in which a three way catalyst is located upstream of an NOx catalyst, to supply, in just proportion, rich components to both of the catalysts, without being affected by the states of the three way catalyst and the NOx catalyst, operating conditions, or the like, at the time of an NOx purge control. SOLUTION: The NOx purge control, by which a target air-fuel ratio is temporarily switched to be rich during a lean operation and the adsorbed NOx of the NOx catalyst is purged, is performed. At the time of starting this NOx purge control, the target air-fuel ratio is set to be a first rich level at which the rich degree is large, thereby starting the NOx purge control. In the middle of the NOx purge control, the target air-fuel ratio is switched to a second rich level, at which the rich degree is smaller than that of the first rich level, when an output of an oxygen sensor in the downstream of the three way catalyst is changed from the vicinity of a stoichiometric amount to the rich side, thereby continuing the NOx purge control. Then, the NOx purge control is ended when an output of an oxygen sensor in the downstream of the NOx catalyst is changed from the vicinity of a stoichiometric amount to the rich side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気通
路に少なくともNOx吸蔵還元型の触媒を設置した内燃
機関の排気浄化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust purification system for an internal combustion engine having at least a NOx storage-reduction type catalyst installed in an exhaust passage of the internal combustion engine.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上等を目的とし
て、空燃比をストイキ(理論空燃比)よりもリーン側に
制御するいわゆるリーンバーンエンジンや筒内噴射エン
ジンが実用化されている。これらのエンジンでは、通常
のエンジンよりもNOx(窒素酸化物)の発生量が多く
なるため、NOx吸蔵還元型の触媒(以下「NOx触
媒」という)を採用して、NOx排出量を低減するよう
にしたものがある。このNOx触媒は、排出ガスの空燃
比がリーンのときにNOxを吸蔵し、空燃比がリッチ
(又はストイキ)になったときに吸蔵NOxを還元浄化
してパージ(放出)する。従って、リーン運転が長く続
くような場合は、NOx触媒のNOx吸蔵量が飽和する
のを防止するため、リーン運転中に間欠的に目標空燃比
をリッチに切り換えてNOx触媒の吸蔵NOxをパージ
するNOxパージ制御(NOx還元浄化制御)を実施す
るようにしている。
2. Description of the Related Art In recent years, so-called lean burn engines and in-cylinder injection engines, which control the air-fuel ratio to a side leaner than stoichiometric air (stoichiometric air-fuel ratio), have been put to practical use for the purpose of improving the fuel efficiency of automobiles. In these engines, the amount of generated NOx (nitrogen oxide) is larger than that of a normal engine. Therefore, a NOx storage-reduction type catalyst (hereinafter, referred to as “NOx catalyst”) is employed to reduce NOx emissions. There is something that I did. This NOx catalyst stores NOx when the air-fuel ratio of the exhaust gas is lean, and reduces and purifies and purges (releases) the stored NOx when the air-fuel ratio becomes rich (or stoichiometric). Therefore, when the lean operation continues for a long time, the target air-fuel ratio is intermittently switched to rich during the lean operation to purge the stored NOx of the NOx catalyst in order to prevent the NOx storage amount of the NOx catalyst from being saturated. The NOx purge control (NOx reduction purification control) is performed.

【0003】更に、最近では、排出ガス浄化率を高める
ために、特開平11−62666号公報に示すように、
NOx触媒の上流側に三元触媒を設置したものがある。
この公報のシステムでは、NOxパージ制御中に、NO
x触媒下流側の空燃比を空燃比センサで検出して、NO
xパージ制御開始後にNOx触媒下流側の空燃比がスト
イキ近傍に維持されている時間とその後のリッチ状態に
維持されている時間を測定して、その測定結果からNO
xパージ制御のリッチレベル(目標空燃比のリッチ度
合)とその継続時間を学習補正するようにしている。
Further, recently, as disclosed in Japanese Patent Application Laid-Open No. 11-62666, in order to increase the exhaust gas purification rate,
In some cases, a three-way catalyst is provided upstream of the NOx catalyst.
In the system of this publication, NOx purge control is performed during NOx purge control.
x The air-fuel ratio on the downstream side of the catalyst is detected by an air-fuel ratio sensor, and NO
After the start of the x purge control, the time during which the air-fuel ratio on the downstream side of the NOx catalyst is maintained in the vicinity of stoichiometry and the time during which the air-fuel ratio is maintained in the rich state thereafter are measured.
The rich level of x purge control (the degree of richness of the target air-fuel ratio) and the duration thereof are learned and corrected.

【0004】[0004]

【発明が解決しようとする課題】ところで、NOx触媒
の上流側に設置した三元触媒には、排出ガス中の酸素を
吸蔵する能力があるため、NOxパージ制御開始後、暫
くは、排出ガス中のリッチ成分(HC、CO等)が三元
触媒の吸蔵酸素と反応して消費され、その下流側のNO
x触媒には、十分なリッチ成分が供給されないが、NO
xパージ制御開始直後からNOx触媒に流入する排出ガ
ス中の酸素濃度(リーン成分濃度)がリーン運転中より
も低下するため、NOx触媒からリーン成分であるNO
xが離脱し始める。しかし、上述したように、NOxパ
ージ制御開始後、暫くは、NOx触媒に、吸蔵NOxの
還元剤となるリッチ成分が十分に供給されないため、N
Ox触媒から離脱するNOxが十分に還元浄化されずに
排出されてしまう。従って、NOxパージ制御開始後
に、三元触媒の吸蔵酸素をできるだけ早期に消費してN
Ox触媒に早期に十分なリッチ成分を供給するために
は、NOxパージ制御のリッチレベルをある程度大きく
する必要がある。
However, the three-way catalyst installed upstream of the NOx catalyst has the ability to occlude oxygen in the exhaust gas. (HC, CO, etc.) is consumed by reacting with the stored oxygen of the three-way catalyst, and the NO
x rich catalyst is not supplied with sufficient rich components,
Immediately after the start of the x purge control, the oxygen concentration (lean component concentration) in the exhaust gas flowing into the NOx catalyst becomes lower than that during the lean operation, so that NO from the NOx catalyst becomes lean component.
x begins to detach. However, as described above, after the start of the NOx purge control, for a while, the rich component serving as the reducing agent for the stored NOx is not sufficiently supplied to the NOx catalyst.
NOx released from the Ox catalyst is exhausted without being sufficiently reduced and purified. Therefore, after the start of the NOx purge control, the stored oxygen of the three-way catalyst is
In order to supply a sufficient rich component to the Ox catalyst at an early stage, it is necessary to increase the rich level of the NOx purge control to some extent.

【0005】しかし、リッチレベルを大きくした状態
で、NOx触媒下流側の空燃比がリッチに切り換わった
ときに、NOxパージ制御を終了すると、その終了時点
で、NOx触媒下流側の空燃比センサからエンジンの燃
焼室までの排気通路内に多量のリッチ成分が残ってしま
い、その多量のリッチ成分が2つの触媒で消費されずに
大気中に排出されてしまう。その結果、NOxパージ制
御終了直後の排気エミッションが悪化してしまう。
However, when the air-fuel ratio on the downstream side of the NOx catalyst is switched to rich with the rich level increased, the NOx purge control is terminated. A large amount of rich component remains in the exhaust passage to the combustion chamber of the engine, and the large amount of rich component is discharged to the atmosphere without being consumed by the two catalysts. As a result, the exhaust emission immediately after the end of the NOx purge control deteriorates.

【0006】この対策として、前述した特開平11−6
2666号公報では、NOxパージ制御開始時にリッチ
レベルを最大にして時間の経過と共にリッチレベルを低
下させるようにしている。しかし、前述したように、N
Ox触媒の上流側に三元触媒を設置した構成では、NO
xパージ制御開始後、暫くは、排出ガス中のリッチ成分
(HC、CO等)が三元触媒の吸蔵酸素と反応して消費
されるため、NOxパージ制御中のリッチレベルの低下
速度を速くすると、初期にNOx触媒から離脱するNO
xが十分に還元浄化されずに排出されてしまう可能性が
ある。その反対に、NOxパージ制御中のリッチレベル
の低下速度を遅くすると、NOxパージ制御終了直後に
過剰なリッチ成分が排出されてしまう可能性がある。
As a countermeasure against this, Japanese Patent Laid-Open Publication No.
In Japanese Patent No. 2666, the rich level is maximized at the time of starting the NOx purge control, and the rich level is reduced with time. However, as described above, N
In a configuration in which a three-way catalyst is installed upstream of the Ox catalyst, NO
Since the rich components (HC, CO, etc.) in the exhaust gas are consumed by reacting with the stored oxygen of the three-way catalyst for a while after the start of the x purge control, if the reduction rate of the rich level during the NOx purge control is increased, NO released from the NOx catalyst at the beginning
x may be discharged without being sufficiently reduced and purified. Conversely, if the rate of decrease of the rich level during the NOx purge control is reduced, an excess rich component may be discharged immediately after the end of the NOx purge control.

【0007】そこで、前述した特開平11−62666
号公報では、NOxパージ制御開始後にNOx触媒下流
側の空燃比センサの出力がストイキ近傍に維持されてい
る時間とその後のリッチ状態に維持されている時間を測
定して、その測定結果からNOxパージ制御開始時の最
大リッチレベルとリッチレベルの低下速度を学習補正す
るようにしている。
In view of the above, the above-mentioned Japanese Patent Application Laid-Open No. 11-62666 has been proposed.
In Japanese Patent Application Laid-Open Publication No. H11-260, the time during which the output of the air-fuel ratio sensor downstream of the NOx catalyst is maintained near the stoichiometric state after the start of the NOx purge control and the time during which the output is maintained in a rich state are measured. The maximum rich level at the start of the control and the rate of decrease of the rich level are learned and corrected.

【0008】しかし、三元触媒の酸素吸蔵量とNOx触
媒のNOx吸蔵量との関係は、複雑に変化する。例え
ば、NOxパージ制御開始時の運転条件が同じでも、そ
れ以前の運転条件が異なれば、三元触媒の酸素吸蔵量と
NOx触媒のNOx吸蔵量との関係が異なってくる。ま
た、各触媒の酸素吸蔵量やNOx吸蔵量は、各触媒の劣
化度合によっても変化してくる。従って、NOxパージ
制御中のリッチレベルを正確に学習補正するためには、
三元触媒の酸素吸蔵量とNOx触媒のNOx吸蔵量を正
確に推定する必要があるが、NOx触媒下流側の空燃比
センサの出力に基づいて三元触媒の酸素吸蔵量とNOx
触媒のNOx吸蔵量を推定してリッチレベルを正確に学
習補正することは不可能である。従って、NOx触媒下
流側の空燃比センサの出力に基づく学習補正では、NO
xパージ制御時にリッチ成分供給量に過不足が生じてし
まい、一時的に排気エミッションが悪化することは避け
られない。
However, the relationship between the oxygen storage amount of the three-way catalyst and the NOx storage amount of the NOx catalyst changes in a complicated manner. For example, even if the operating conditions at the start of the NOx purge control are the same, if the previous operating conditions are different, the relationship between the oxygen storage amount of the three-way catalyst and the NOx storage amount of the NOx catalyst becomes different. Further, the oxygen storage amount and the NOx storage amount of each catalyst also change depending on the degree of deterioration of each catalyst. Therefore, in order to accurately learn and correct the rich level during the NOx purge control,
Although it is necessary to accurately estimate the oxygen storage amount of the three-way catalyst and the NOx storage amount of the NOx catalyst, the oxygen storage amount of the three-way catalyst and NOx are determined based on the output of the air-fuel ratio sensor downstream of the NOx catalyst.
It is impossible to accurately learn and correct the rich level by estimating the NOx storage amount of the catalyst. Therefore, in the learning correction based on the output of the air-fuel ratio sensor on the downstream side of the NOx catalyst, NO
It is unavoidable that the rich component supply amount becomes excessive or deficient during the x purge control, and the exhaust emission temporarily deteriorates.

【0009】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、NOxパージ制御時
に三元触媒とNOx触媒の状態や運転条件等の影響を受
けずに両触媒にリッチ成分を過不足なく供給することが
できて、排気エミッションを低減することができる内燃
機関の排気浄化装置を提供することにある。
The present invention has been made in view of such circumstances, and accordingly, an object of the present invention is to provide both the three-way catalyst and the NOx catalyst without being affected by the conditions and operating conditions during the NOx purge control. An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can supply rich components without excess and deficiency and reduce exhaust emissions.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の排気浄化装置は、上
流側触媒として三元触媒を用い、下流側触媒としてNO
x吸蔵還元型の触媒(NOx触媒)を用いると共に、三
元触媒の下流側とNOx触媒の下流側に、それぞれ排出
ガスの空燃比又はリッチ/リーン又はガス成分濃度を検
出するセンサを設置し、NOxパージ制御手段によっ
て、目標空燃比をリッチ度合の大きい第1のリッチレベ
ルに設定してNOxパージ制御を開始し、NOxパージ
制御の途中で、三元触媒の下流側のセンサの出力に基づ
いて目標空燃比を前記第1のリッチレベルよりもリッチ
度合の小さい第2のリッチレベルに切り換えるようにし
たものである。
To achieve the above object, an exhaust gas purifying apparatus for an internal combustion engine according to the present invention uses a three-way catalyst as an upstream catalyst and NO as a downstream catalyst.
x storage reduction type catalyst (NOx catalyst) is used, and a sensor for detecting the air-fuel ratio of exhaust gas or rich / lean or gas component concentration is installed downstream of the three-way catalyst and downstream of the NOx catalyst, respectively. The NOx purge control means sets the target air-fuel ratio to the first rich level having a large rich degree and starts the NOx purge control. During the NOx purge control, based on the output of the sensor on the downstream side of the three-way catalyst. The target air-fuel ratio is switched to a second rich level having a smaller degree of richness than the first rich level.

【0011】この構成では、NOxパージ制御開始後、
暫くは、目標空燃比をリッチ度合の大きい第1のリッチ
レベルに維持して、三元触媒に対して多量のリッチ成分
を供給して三元触媒の吸蔵酸素を速やかにパージする。
これにより、三元触媒の吸蔵酸素が残り少なくなると、
三元触媒を通過してNOx触媒に供給されるリッチ成分
(HC、CO等)の濃度が増加し始め、それに伴って、
三元触媒下流側のセンサの出力がストイキ近傍からリッ
チ側に変化する。この特性から、三元触媒下流側のセン
サの出力に基づいて三元触媒へのリッチ成分供給量が増
加し始める時期を判定し、その時期に、目標空燃比を前
記第1のリッチレベルよりもリッチ度合の小さい第2の
リッチレベルに切り換えることで、NOx触媒へのリッ
チ成分供給量が過剰になるのを防止しながら、NOx触
媒に適量のリッチ成分を供給してNOx触媒の吸蔵NO
xをパージすることができる。
In this configuration, after the start of the NOx purge control,
For a while, the target air-fuel ratio is maintained at the first rich level where the degree of richness is large, and a large amount of rich component is supplied to the three-way catalyst to quickly purge the stored oxygen of the three-way catalyst.
As a result, when the stored oxygen of the three-way catalyst is low,
The concentration of the rich components (HC, CO, etc.) supplied to the NOx catalyst after passing through the three-way catalyst starts to increase.
The output of the sensor downstream of the three-way catalyst changes from near stoichiometric to rich. From this characteristic, it is determined when the rich component supply amount to the three-way catalyst starts to increase based on the output of the sensor on the downstream side of the three-way catalyst. At that time, the target air-fuel ratio is set to be lower than the first rich level. By switching to the second rich level having a small rich degree, an appropriate amount of rich component is supplied to the NOx catalyst while preventing the supply amount of rich component to the NOx catalyst from becoming excessive.
x can be purged.

【0012】更に、請求項2のように、NOx触媒下流
側のセンサの出力に基づいてNOxパージ制御の終了時
期を判定するようにすると良い。つまり、NOx触媒の
NOx吸蔵量が残り少なくなると、NOx触媒を通過す
るリッチ成分の濃度が増加し、それに伴って、NOx触
媒下流側のセンサの出力がストイキ近傍からリッチ側に
変化する。この特性から、NOx触媒下流側のセンサの
出力に基づいてNOx触媒の吸蔵NOxがほぼ無くなる
時期(NOx触媒の状態がストイキ付近に回復する時
期)を判定し、その時期にNOxパージ制御を終了し
て、通常のリーン運転に戻る。
Further, it is preferable to determine the end time of the NOx purge control based on the output of a sensor on the downstream side of the NOx catalyst. That is, when the NOx storage amount of the NOx catalyst decreases, the concentration of the rich component passing through the NOx catalyst increases, and accordingly, the output of the sensor downstream of the NOx catalyst changes from near stoichiometric to rich. From this characteristic, it is determined, based on the output of the sensor on the downstream side of the NOx catalyst, when the stored NOx of the NOx catalyst is almost gone (the time when the state of the NOx catalyst recovers to near stoichiometry). At that time, the NOx purge control is ended. To return to normal lean operation.

【0013】このように、NOx触媒下流側のセンサの
出力に基づいてNOxパージ制御の終了時期を判定し
て、NOxパージ制御を終了しても、その終了時に排気
通路中に存在するリッチガス成分が多いと、そのリッチ
ガス成分が大気中に排出されることで排気エミッション
が悪化してしまう。しかし、本発明では、NOxパージ
制御の途中で、目標空燃比を第1のリッチレベルよりも
リッチ度合の小さい第2のリッチレベルに切り換えるた
め、NOxパージ制御を終了するときに、排気通路中に
存在するリッチガス成分を低減することができ、大気中
に排出されるエミッションを低減することができる。
As described above, the end timing of the NOx purge control is determined based on the output of the sensor on the downstream side of the NOx catalyst, and even if the NOx purge control is ended, the rich gas component present in the exhaust passage at the end of the NOx purge control is determined. If the amount is large, the rich gas components are discharged into the atmosphere, so that the exhaust emission deteriorates. However, in the present invention, during the NOx purge control, the target air-fuel ratio is switched to the second rich level having a smaller degree of richness than the first rich level. Existing rich gas components can be reduced, and emissions emitted to the atmosphere can be reduced.

【0014】この場合、請求項3のように、NOxパー
ジ制御中にNOx触媒の下流側のセンサの出力がストイ
キ近傍からリッチ側に変化したときにNOxパージ制御
を終了するようにすると良い。このようにすれば、NO
x触媒の吸蔵NOxのパージがほぼ終了したことを確認
してNOxパージ制御を最も適切な時期に終了すること
ができる。
In this case, it is preferable to terminate the NOx purge control when the output of the sensor downstream of the NOx catalyst changes from near stoichiometric to rich during the NOx purge control. In this case, NO
After confirming that the purging of the stored NOx of the x catalyst is almost completed, the NOx purge control can be ended at the most appropriate time.

【0015】また、請求項4のように、NOxパージ制
御中に三元触媒の下流側のセンサの出力がストイキ近傍
からリッチ側に変化したときに目標空燃比を第1のリッ
チレベルから第2のリッチレベルに切り換えるようにす
ると良い。このようにすれば、三元触媒の吸蔵酸素のパ
ージがほぼ終了したことを確認して目標空燃比を最も適
切な時期に第2のリッチレベルに切り換えることができ
る。
Further, when the output of the sensor downstream of the three-way catalyst changes from near stoichiometric to rich during the NOx purge control, the target air-fuel ratio is changed from the first rich level to the second rich level. It is better to switch to the rich level. By doing so, it is possible to confirm that the purge of the stored oxygen of the three-way catalyst has been substantially completed, and to switch the target air-fuel ratio to the second rich level at the most appropriate time.

【0016】[0016]

【発明の実施の形態】以下、本発明をリーンバーンエン
ジンに適用した一実施形態を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略
構成を説明する。内燃機関であるエンジン11の吸気管
12の最上流部には、エアクリーナ13が設けられ、こ
のエアクリーナ13の下流側には、吸入空気量を検出す
るエアフローメータ14が設けられている。このエアフ
ローメータ14の下流側には、スロットルバルブ15と
スロットル開度を検出するスロットル開度センサ16と
が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a lean burn engine will be described below with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of an intake pipe 12 of an engine 11 which is an internal combustion engine, and an air flow meter 14 for detecting an intake air amount is provided downstream of the air cleaner 13. Downstream of the air flow meter 14, a throttle valve 15 and a throttle opening sensor 16 for detecting a throttle opening are provided.

【0017】更に、スロットルバルブ15の下流側に
は、サージタンク17が設けられ、このサージタンク1
7に、吸気管圧力を検出する吸気管圧力センサ18が設
けられている。また、サージタンク17には、エンジン
11の各気筒に空気を導入する吸気マニホールド19が
設けられ、各気筒の吸気マニホールド19の吸気ポート
近傍に、燃料を噴射する燃料噴射弁20が取り付けられ
ている。
Further, a surge tank 17 is provided downstream of the throttle valve 15.
7, an intake pipe pressure sensor 18 for detecting an intake pipe pressure is provided. In addition, the surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is mounted near an intake port of the intake manifold 19 of each cylinder. .

【0018】一方、エンジン11の排気管21(排気通
路)の途中には、排出ガス中のCO,HC,NOx等を
浄化する三元触媒22とNOx触媒23(NOx吸蔵還
元型の触媒)が直列に設置されている。この場合、NO
x触媒23の上流側に配置された三元触媒22は、始動
時に早期に暖機が完了して始動時の排気エミッションを
低減するように比較的小容量に形成されている。一方、
下流側のNOx触媒23は、排出ガスの空燃比がリーン
のときにNOxを吸蔵し、空燃比がリッチ(又はストイ
キ)になったときに吸蔵NOxを還元浄化して放出す
る。このNOx触媒23は、排出ガス中のNOx量が多
くなる高負荷域でも、NOxを十分に吸蔵できるように
比較的大容量に形成されている。
On the other hand, in the middle of an exhaust pipe 21 (exhaust passage) of the engine 11, a three-way catalyst 22 and a NOx catalyst 23 (NOx storage reduction type catalyst) for purifying CO, HC, NOx, etc. in exhaust gas are provided. They are installed in series. In this case, NO
The three-way catalyst 22 disposed on the upstream side of the x catalyst 23 is formed to have a relatively small capacity so that the warm-up is completed early at the time of starting and the exhaust emission at the time of starting is reduced. on the other hand,
The downstream NOx catalyst 23 stores NOx when the air-fuel ratio of the exhaust gas is lean, and reduces and purifies and releases the stored NOx when the air-fuel ratio becomes rich (or stoichiometric). The NOx catalyst 23 is formed to have a relatively large capacity so as to be able to occlude NOx sufficiently even in a high load region where the amount of NOx in the exhaust gas is large.

【0019】また、三元触媒22の上流側には、排出ガ
スの空燃比に応じたリニアな空燃比信号を出力する空燃
比センサ24(A/Fセンサ)が設けられ、三元触媒2
2の下流側とNOx触媒23の下流側には、それぞれ排
出ガスの空燃比がストイキ(理論空燃比)に対してリッ
チかリーンかによって出力電圧が反転する酸素センサ2
5,26が設けられている。以下、三元触媒22の下流
側の酸素センサ25を第1の酸素センサ25と呼び、N
Ox触媒23の下流側の酸素センサ26を第2の酸素セ
ンサ26と呼ぶ。
An air-fuel ratio sensor 24 (A / F sensor) for outputting a linear air-fuel ratio signal according to the air-fuel ratio of the exhaust gas is provided upstream of the three-way catalyst 22.
An oxygen sensor 2 whose output voltage is inverted depending on whether the air-fuel ratio of the exhaust gas is rich or lean with respect to the stoichiometric (the stoichiometric air-fuel ratio) is provided on the downstream side of the NOx catalyst 23 and the downstream side of the NOx catalyst 23, respectively.
5, 26 are provided. Hereinafter, the oxygen sensor 25 on the downstream side of the three-way catalyst 22 is referred to as a first oxygen sensor 25,
The oxygen sensor 26 on the downstream side of the Ox catalyst 23 is referred to as a second oxygen sensor 26.

【0020】尚、三元触媒22の上流側に空燃比センサ
24の代わりに酸素センサを設けても良く、また、三元
触媒22の下流側及び/又はNOx触媒23の下流側
に、酸素センサ25の代わりに空燃比センサ設けても良
く、或は、HC、CO等のガス成分濃度を検出するガス
センサ等を設けても良い。
An oxygen sensor may be provided upstream of the three-way catalyst 22 instead of the air-fuel ratio sensor 24, and an oxygen sensor may be provided downstream of the three-way catalyst 22 and / or downstream of the NOx catalyst 23. Instead of 25, an air-fuel ratio sensor may be provided, or a gas sensor or the like for detecting the concentration of gas components such as HC and CO may be provided.

【0021】また、エンジン11のシリンダブロックに
は、冷却水温を検出する冷却水温センサ27や、エンジ
ン回転速度を検出するクランク角センサ28が取り付け
られている。
The cylinder block of the engine 11 is provided with a cooling water temperature sensor 27 for detecting a cooling water temperature and a crank angle sensor 28 for detecting an engine speed.

【0022】これら各種のセンサ出力は、エンジン制御
回路(以下「ECU」と表記する)29に入力される。
このECU29は、マイクロコンピュータを主体として
構成され、内蔵されたROM(記憶媒体)に記憶された
図2のNOxパージ制御プログラムを実行することで、
特許請求の範囲でいうNOxパージ制御手段としての役
割を果たす。
These various sensor outputs are input to an engine control circuit (hereinafter referred to as "ECU") 29.
The ECU 29 is mainly configured by a microcomputer and executes the NOx purge control program of FIG. 2 stored in a built-in ROM (storage medium),
It functions as a NOx purge control means referred to in the claims.

【0023】図2のNOxパージ制御プログラムが起動
されると、まずステップ101で、NOxパージ制御実
行条件が成立しているか否かを判定する。ここで、NO
xパージ制御実行条件の判定は、リーン運転中にNOx
触媒23のNOx吸蔵量が飽和する前にNOxパージ制
御が実施されるように、例えば、リーン運転時間がNO
x触媒23のNOx吸蔵量が飽和しない範囲で設定され
た所定時間を経過したか否かによって判定すれば良い。
この際、エンジン運転条件に応じて排出ガス中のNOx
濃度が変化してNOx触媒23のNOx吸蔵量の増加率
が変化することを考慮して、NOxパージ制御を開始す
るまでのリーン運転時間(所定時間)をエンジン運転条
件(例えばエンジン回転速度、吸気管圧力、吸入空気
量、目標空燃比等)に応じて変化させるようにしても良
い。
When the NOx purge control program shown in FIG. 2 is started, first, at step 101, it is determined whether or not NOx purge control execution conditions are satisfied. Where NO
x Purge control execution conditions are determined by NOx during lean operation.
For example, the lean operation time is set to NO so that the NOx purge control is performed before the NOx storage amount of the catalyst 23 is saturated.
The determination may be made based on whether or not a predetermined time set within a range where the NOx storage amount of the x catalyst 23 is not saturated.
At this time, NOx in the exhaust gas depends on the engine operating conditions.
Considering that the concentration changes and the rate of increase of the NOx storage amount of the NOx catalyst 23 changes, the lean operation time (predetermined time) until the start of the NOx purge control is changed to the engine operating conditions (for example, engine speed, intake air). (Pipe pressure, intake air amount, target air-fuel ratio, etc.).

【0024】そして、NOxパージ制御実行条件が成立
した時点で、ステップ101からステップ102に進
み、図3に示すように、目標空燃比をリッチ度合の大き
い第1のリッチレベルに切り換えて、次式により燃料噴
射量TAUを算出し(ステップ103)、NOxパージ
制御を開始する。 TAU=TP×LFAF×FALL×K1
When the NOx purge control execution condition is satisfied, the process proceeds from step 101 to step 102, where the target air-fuel ratio is switched to the first rich level having a large rich degree as shown in FIG. , The fuel injection amount TAU is calculated (step 103), and the NOx purge control is started. TAU = TP × LFAF × FALL × K1

【0025】ここで、TPは基本噴射量であり、現在の
エンジン回転速度と吸気管圧力に応じてマップ等により
算出される。LFAFはリーン運転時の空燃比補正係
数、FALLは水温補正係数等の他の補正係数である。
K1 は、排出ガスの空燃比を第1のリッチレベルにリッ
チ化するための第1の燃料増量係数であり、後述する第
2の燃料増量係数K2 よりも大きな値に設定されてい
る。これにより、NOxパージ制御開始時の燃料噴射量
TAUは大幅に増量され、HC、CO等のリッチ成分を
多量に含む排出ガスがエンジン11から排出される。
Here, TP is a basic injection amount, which is calculated from a map or the like according to the current engine speed and intake pipe pressure. LFAF is an air-fuel ratio correction coefficient during lean operation, and FALL is another correction coefficient such as a water temperature correction coefficient.
K1 is a first fuel increase coefficient for enriching the air-fuel ratio of the exhaust gas to a first rich level, and is set to a value larger than a second fuel increase coefficient K2 described later. As a result, the fuel injection amount TAU at the start of the NOx purge control is greatly increased, and exhaust gas containing a large amount of rich components such as HC and CO is discharged from the engine 11.

【0026】NOxパージ制御開始後、リッチ化された
排出ガスが三元触媒22を通過し始めると、図3に示す
ように、三元触媒22の下流側の第1の酸素センサ25
の出力がストイキ近傍まで変化する。つまり、NOxパ
ージ制御開始後、三元触媒22の吸蔵酸素がある程度残
っている間は、排出ガス中のリッチ成分(HC、CO
等)が三元触媒22の吸蔵酸素と反応して消費されるた
め、三元触媒22から流出する排出ガスの空燃比はスト
イキ近傍となる。その結果、NOxパージ制御開始後、
三元触媒22の吸蔵酸素が残り少なくなるまでの間は、
三元触媒22の下流側の第1の酸素センサ25の出力が
ストイキ近傍に維持される。
When the enriched exhaust gas begins to pass through the three-way catalyst 22 after the start of the NOx purge control, as shown in FIG.
Changes to near stoichiometric. That is, after the start of the NOx purge control, while the stored oxygen of the three-way catalyst 22 remains to some extent, the rich components (HC, CO
) Reacts with the stored oxygen of the three-way catalyst 22 and is consumed, so that the air-fuel ratio of the exhaust gas flowing out of the three-way catalyst 22 becomes close to stoichiometric. As a result, after the start of the NOx purge control,
Until the stored oxygen of the three-way catalyst 22 becomes low,
The output of the first oxygen sensor 25 downstream of the three-way catalyst 22 is maintained near the stoichiometric state.

【0027】この期間中は、ステップ103で、第1の
酸素センサ25の出力がストイキ近傍からリッチに変化
したか否かを判定し、第1の酸素センサ25の出力がス
トイキ近傍であれば、目標空燃比をリッチ度合の大きい
第1のリッチレベルに維持して、三元触媒22に対して
多量のリッチ成分を供給して三元触媒22の吸蔵酸素を
速やかにパージする。
During this period, it is determined in step 103 whether the output of the first oxygen sensor 25 has changed from near stoichiometric to rich, and if the output of the first oxygen sensor 25 is near stoichiometric, The target air-fuel ratio is maintained at the first rich level having a large rich degree, and a large amount of rich component is supplied to the three-way catalyst 22 to quickly purge the stored oxygen of the three-way catalyst 22.

【0028】これにより、三元触媒22の吸蔵酸素が残
り少なくなると、三元触媒22を通過してNOx触媒2
3に供給されるリッチ成分の濃度が増加し始め、それに
伴って、図3に示すように、三元触媒22の下流側の第
1の酸素センサ25の出力がストイキ近傍からリッチ側
に変化する。
As a result, when the amount of oxygen stored in the three-way catalyst 22 decreases, the NOx catalyst 2 passes through the three-way catalyst 22 and passes through the three-way catalyst 22.
3, the output of the first oxygen sensor 25 downstream of the three-way catalyst 22 changes from near stoichiometric to rich as shown in FIG. .

【0029】そして、第1の酸素センサ25の出力がス
トイキ近傍からリッチ側に変化した時点で、ステップ1
03からステップ104に進み、図3に示すように、目
標空燃比を第1のリッチレベルよりもリッチ度合の小さ
い第2のリッチレベルに切り換えて、次式により燃料噴
射量TAUを算出し(ステップ104)、NOxパージ
制御を続行する。 TAU=TP×LFAF×FALL×K2
Then, when the output of the first oxygen sensor 25 changes from the vicinity of the stoichiometric state to the rich side, step 1
From step 03 to step 104, as shown in FIG. 3, the target air-fuel ratio is switched to the second rich level having a smaller rich degree than the first rich level, and the fuel injection amount TAU is calculated by the following equation (step 104). 104), NOx purge control is continued. TAU = TP × LFAF × FALL × K2

【0030】ここで、K2 は、排出ガスの空燃比を第2
のリッチレベルにリッチ化するための第2の燃料増量係
数であり、前述した第1の燃料増量係数K1 よりも小さ
い値に設定されている。これにより、燃料噴射量TAU
の増量度合をNOxパージ制御開始時よりも小さくし
て、リッチ成分量がNOxパージ制御開始時よりも少な
い排出ガスがエンジン11から排出される。これによ
り、NOx触媒23へのリッチ成分供給量が過剰になる
のを防止しながら、NOx触媒23に適量のリッチ成分
を供給してNOx触媒23の吸蔵NOxをパージする。
Here, K 2 is the air-fuel ratio of the exhaust gas,
This is a second fuel increase coefficient for enriching the fuel to a rich level, and is set to a value smaller than the first fuel increase coefficient K1 described above. Thereby, the fuel injection amount TAU
Is made smaller than when the NOx purge control is started, and the exhaust gas whose rich component amount is smaller than when the NOx purge control is started is discharged from the engine 11. Thus, while preventing the supply amount of the rich component to the NOx catalyst 23 from becoming excessive, an appropriate amount of the rich component is supplied to the NOx catalyst 23 to purge the NOx stored in the NOx catalyst 23.

【0031】この期間中は、ステップ105で、第2の
酸素センサ26の出力がストイキ近傍からリッチに変化
したか否かを判定し、第2の酸素センサ26の出力がス
トイキ近傍であれば、目標空燃比を第1のリッチレベル
よりもリッチ度合の小さい第2のリッチレベルに維持し
て、NOx触媒23の吸蔵NOxをパージする。これに
より、NOx触媒23のNOx吸蔵量が残り少なくなる
と、NOx触媒23を通過するリッチ成分の濃度が増加
し、それに伴って、NOx触媒23の下流側の第2の酸
素センサ26の出力がストイキ近傍からリッチ側に変化
する。
During this period, at step 105, it is determined whether or not the output of the second oxygen sensor 26 has changed from near the stoichiometric to a rich state. If the output of the second oxygen sensor 26 is near the stoichiometric, The NOx stored in the NOx catalyst 23 is purged while the target air-fuel ratio is maintained at the second rich level having a degree of richness smaller than the first rich level. Accordingly, when the NOx storage amount of the NOx catalyst 23 decreases, the concentration of the rich component passing through the NOx catalyst 23 increases, and accordingly, the output of the second oxygen sensor 26 on the downstream side of the NOx catalyst 23 becomes close to stoichiometric. To rich side.

【0032】そして、第2の酸素センサ26の出力がス
トイキ近傍からリッチ側に変化した時点で、NOxパー
ジ制御を終了し、図3に示すように、目標空燃比を第2
のリッチレベルからリーン運転時の目標空燃比に切り換
えて、前述した処理を繰り返す。
When the output of the second oxygen sensor 26 changes from the vicinity of the stoichiometric state to the rich side, the NOx purge control ends, and as shown in FIG.
Is switched from the rich level to the target air-fuel ratio at the time of the lean operation, and the above-described processing is repeated.

【0033】以上説明した本実施形態では、NOxパー
ジ制御開始時に目標空燃比をリッチ度合の大きい第1の
リッチレベルに設定してNOxパージ制御を開始し、N
Oxパージ制御の途中で、三元触媒22の下流側の第1
の酸素センサ25の出力がストイキ近傍からリッチ側に
変化したときに目標空燃比を第1のリッチレベルよりも
リッチ度合の小さい第2のリッチレベルに切り換えてN
Oxパージ制御を続行し、NOx触媒23の下流側の第
2の酸素センサ26の出力がストイキ近傍からリッチ側
に変化したときにNOxパージ制御を終了するようにし
たので、NOxパージ制御時に三元触媒22とNOx触
媒23の状態や運転条件等の影響を受けずに両触媒2
2,23にリッチ成分を過不足なく供給することができ
て、排気エミッションを低減することができる。
In the present embodiment described above, the NOx purge control is started by setting the target air-fuel ratio to the first rich level having a large rich degree at the start of the NOx purge control.
During the Ox purge control, the first downstream side of the three-way catalyst 22
When the output of the oxygen sensor 25 changes from the vicinity of the stoichiometric state to the rich side, the target air-fuel ratio is switched to the second rich level having a smaller rich degree than the first rich level, and N
Ox purge control is continued, and when the output of the second oxygen sensor 26 downstream of the NOx catalyst 23 changes from near stoichiometric to rich, the NOx purge control is terminated. The two catalysts 2 are not affected by the state of the catalyst 22 and the NOx catalyst 23 and the operating conditions.
It is possible to supply rich components to the components 2 and 23 without excess or deficiency, thereby reducing exhaust emissions.

【0034】尚、本実施形態では、NOxパージ制御時
に、排出ガスの空燃比を第1のリッチレベルにリッチ化
するための第1の燃料増量係数K1 と、排出ガスの空燃
比を第2のリッチレベルにリッチ化するための第2の燃
料増量係数K2 を用いて、燃料噴射量TAUを算出する
ようにしたが、NOxパージ制御中に、三元触媒22の
上流側の空燃比センサ24で検出した実空燃比と目標空
燃比(第1のリッチレベル又は第2のリッチレベル)と
の偏差に基づいて空燃比補正係数FAFを算出し、この
空燃比補正係数FAFとその他の補正係数FALLを基
本噴射量TPに乗算して燃料噴射量TAUを求めるよう
にしても良い。 TAU=TP×FAF×FALL
In the present embodiment, during the NOx purge control, the first fuel increase coefficient K1 for enriching the air-fuel ratio of the exhaust gas to the first rich level and the air-fuel ratio of the exhaust gas are set to the second value. The fuel injection amount TAU is calculated using the second fuel increase coefficient K2 for enrichment to a rich level. However, during the NOx purge control, the air-fuel ratio sensor 24 on the upstream side of the three-way catalyst 22 is used. An air-fuel ratio correction coefficient FAF is calculated based on a deviation between the detected actual air-fuel ratio and a target air-fuel ratio (first rich level or second rich level), and the air-fuel ratio correction coefficient FAF and other correction coefficients FALL are calculated. The fuel injection amount TAU may be obtained by multiplying the basic injection amount TP. TAU = TP × FAF × FALL

【0035】尚、本発明は、前記実施形態に限定される
ものではなく、排気管21に3個以上の触媒を設置して
も良く、要は、少なくとも1つの触媒をNOx触媒と
し、その上流側の触媒を三元触媒とした構成とすれば良
い。
The present invention is not limited to the above-described embodiment, and three or more catalysts may be provided in the exhaust pipe 21. In short, at least one catalyst is a NOx catalyst, The catalyst on the side may be a three-way catalyst.

【0036】その他、本発明は、リーンバーンエンジン
の他に、筒内噴射エンジン等、空燃比をリーンに制御す
るエンジンに適用して実施できる。
In addition, the present invention can be applied to an engine that controls the air-fuel ratio lean, such as a direct injection engine, in addition to a lean burn engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すエンジン制御システ
ム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment of the present invention.

【図2】NOxパージ制御プログラムの処理の流れを示
すフローチャート
FIG. 2 is a flowchart showing a flow of processing of a NOx purge control program;

【図3】NOxパージ制御時の目標空燃比、第1の酸素
センサ出力、第2の酸素センサ出力の挙動を示すタイム
チャート
FIG. 3 is a time chart showing behaviors of a target air-fuel ratio, a first oxygen sensor output, and a second oxygen sensor output during NOx purge control.

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、12…吸気管、20…燃
料噴射弁、21…排気管(排気通路)、22…三元触
媒、23…NOx触媒、24…空燃比センサ、25…第
1の酸素センサ、26…第2の酸素センサ、29…EC
U(NOxパージ制御手段)。
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 20 ... Fuel injection valve, 21 ... Exhaust pipe (exhaust passage), 22 ... Three-way catalyst, 23 ... NOx catalyst, 24 ... Air-fuel ratio sensor, 25 ... First Oxygen sensor, 26 ... second oxygen sensor, 29 ... EC
U (NOx purge control means).

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 103B 101B Fターム(参考) 3G091 AA12 AA17 AB03 AB05 AB06 BA11 BA14 BA27 BA31 BA32 BA33 CA18 CB02 DA02 DA03 DA10 DC01 EA01 EA05 EA06 EA07 EA16 EA34 FB10 FB11 FB12 FC01 HA10 HA36 HA37 HA42 3G301 HA01 HA15 JA21 JA25 LB02 LC01 MA01 ND01 NE02 NE07 PA01Z PA07Z PA11Z PD02Z PD09Z PE01Z PE03Z PE08Z 4D048 AA06 AA13 AA18 AB07 CC32 CC46 DA01 DA02 DA08 DA20 EA04 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F01N 3/28 301 B01D 53/36 103B 101B F term (reference) 3G091 AA12 AA17 AB03 AB05 AB06 BA11 BA14 BA27 BA31 BA32 BA33 CA18 CB02 DA02 DA03 DA10 DC01 EA01 EA05 EA06 EA07 EA16 EA34 FB10 FB11 FB12 FC01 HA10 HA36 HA37 HA42 3G301 HA01 HA15 JA21 JA25 LB02 LC01 MA01 ND01 NE02 NE07 PA01Z PA07Z PA11Z PD02Z PD09Z PE01Z PE03A PE08A02 A04 DA048

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に少なくとも2つの
触媒を直列に設置した内燃機関の排気浄化装置におい
て、 上流側触媒として三元触媒を用い、下流側触媒としてN
Ox吸蔵還元型の触媒(以下「NOx触媒」という)を
用い、 前記三元触媒の下流側と前記NOx触媒の下流側にそれ
ぞれ排出ガスの空燃比又はリッチ/リーン又はガス成分
濃度を検出するセンサを設置し、 リーン運転中に一時的に目標空燃比をリッチに切り換え
て前記NOx触媒に吸蔵されているNOxをパージする
NOxパージ制御を実施するNOxパージ制御手段を備
え、 前記NOxパージ制御手段は、目標空燃比をリッチ度合
の大きい第1のリッチレベルに設定してNOxパージ制
御を開始し、NOxパージ制御の途中で、前記三元触媒
の下流側のセンサの出力に基づいて目標空燃比を前記第
1のリッチレベルよりもリッチ度合の小さい第2のリッ
チレベルに切り換えることを特徴とする内燃機関の排気
浄化装置。
1. An exhaust gas purification apparatus for an internal combustion engine having at least two catalysts arranged in series in an exhaust passage of the internal combustion engine, wherein a three-way catalyst is used as an upstream catalyst, and N is used as a downstream catalyst.
Sensors using an Ox storage reduction type catalyst (hereinafter referred to as "NOx catalyst") to detect the air-fuel ratio or rich / lean or gas component concentration of exhaust gas on the downstream side of the three-way catalyst and the downstream side of the NOx catalyst, respectively. And NOx purge control means for temporarily switching the target air-fuel ratio to rich during lean operation to perform NOx purge control for purging NOx stored in the NOx catalyst, wherein the NOx purge control means The NOx purge control is started by setting the target air-fuel ratio to the first rich level having a large rich degree, and during the NOx purge control, the target air-fuel ratio is set based on the output of the sensor on the downstream side of the three-way catalyst. An exhaust gas purifying apparatus for an internal combustion engine, which switches to a second rich level having a degree of richness smaller than the first rich level.
【請求項2】 前記NOxパージ制御手段は、前記NO
x触媒の下流側のセンサの出力に基づいてNOxパージ
制御の終了時期を判定することを特徴とする請求項1に
記載の内燃機関の排気浄化装置。
2. The NOx purge control means includes:
The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the end timing of the NOx purge control is determined based on an output of a sensor downstream of the x catalyst.
【請求項3】 前記NOxパージ制御手段は、前記NO
x触媒の下流側のセンサの出力がストイキ近傍からリッ
チ側に変化したときにNOxパージ制御を終了すること
を特徴とする請求項1又は2に記載の内燃機関の排気浄
化装置。
3. The NOx purge control means includes:
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the NOx purge control is terminated when the output of the sensor downstream of the x catalyst changes from near stoichiometric to rich.
【請求項4】 前記NOxパージ制御手段は、NOxパ
ージ制御中に前記三元触媒の下流側のセンサの出力がス
トイキ近傍からリッチ側に変化したときに目標空燃比を
前記第1のリッチレベルから前記第2のリッチレベルに
切り換えることを特徴とする請求項3に記載の内燃機関
の排気浄化装置。
4. The NOx purge control means changes the target air-fuel ratio from the first rich level when the output of a sensor downstream of the three-way catalyst changes from near stoichiometric to rich during NOx purge control. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein the switching is performed to the second rich level.
JP2001150073A 2001-05-18 2001-05-18 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4389141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150073A JP4389141B2 (en) 2001-05-18 2001-05-18 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150073A JP4389141B2 (en) 2001-05-18 2001-05-18 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002349316A true JP2002349316A (en) 2002-12-04
JP4389141B2 JP4389141B2 (en) 2009-12-24

Family

ID=18995154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150073A Expired - Fee Related JP4389141B2 (en) 2001-05-18 2001-05-18 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4389141B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128216A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2008525694A (en) * 2004-12-24 2008-07-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Regeneration method of nitrogen oxide storage catalyst
JP2014125975A (en) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd Exhaust post-treatment device of diesel engine
JP2015086836A (en) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 Control device for internal combustion engine
JP2015086844A (en) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 Control device for internal combustion engine
KR101551017B1 (en) 2013-12-18 2015-09-07 현대자동차주식회사 Exhaust gas purifying system for vehicle
CN112739892A (en) * 2018-09-25 2021-04-30 株式会社电装 Control device for exhaust gas purification system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525694A (en) * 2004-12-24 2008-07-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Regeneration method of nitrogen oxide storage catalyst
JP4792042B2 (en) * 2004-12-24 2011-10-12 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Regeneration method of nitrogen oxide storage catalyst
JP2008128216A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2014125975A (en) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd Exhaust post-treatment device of diesel engine
JP2015086836A (en) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 Control device for internal combustion engine
JP2015086844A (en) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 Control device for internal combustion engine
KR101551017B1 (en) 2013-12-18 2015-09-07 현대자동차주식회사 Exhaust gas purifying system for vehicle
CN112739892A (en) * 2018-09-25 2021-04-30 株式会社电装 Control device for exhaust gas purification system
US11242786B2 (en) 2018-09-25 2022-02-08 Denso Corporation Control device for exhaust purging system
CN112739892B (en) * 2018-09-25 2022-08-23 株式会社电装 Control device for exhaust gas purification system

Also Published As

Publication number Publication date
JP4389141B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US6751950B2 (en) Emission control apparatus for engine
JP3663896B2 (en) Engine exhaust purification system
JP3902399B2 (en) Air-fuel ratio control device for internal combustion engine
JP3759567B2 (en) Catalyst degradation state detection device
US7168240B2 (en) Control apparatus for an internal combustion engine
JP3222685B2 (en) Air-fuel ratio control device for internal combustion engine
JP2001193521A (en) Exhaust emission control device for internal combustion engine
JP2005180201A (en) Catalyst degradation diagnosis device for internal combustion engine
US7036304B2 (en) Exhaust gas purifying apparatus and method for internal combustion engine
JP4389141B2 (en) Exhaust gas purification device for internal combustion engine
JP3870749B2 (en) Exhaust gas purification device for internal combustion engine
JP3052642B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11101154A (en) Emission control device for internal combustion engine
JP2004108183A (en) Air-fuel ratio control device for internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JP4177007B2 (en) Exhaust gas purification apparatus and purification method for internal combustion engine
JP2003206784A (en) Air-fuel ratio control device of engine
JP4389139B2 (en) Exhaust gas purification control device for internal combustion engine
JPH1162562A (en) Catalyst deterioration diagnosis device for engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JPH1162666A (en) Exhaust emission control device for internal combustion engine
JP3520731B2 (en) Engine exhaust purification device
JP3890775B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000002133A (en) Exhaust emission control device for internal combustion engine
JP4524929B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090923

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees