JP2002346502A - Molten and solidified incinerator ash melting and solidifying method and apparatus and method for using molten and solidified ash - Google Patents

Molten and solidified incinerator ash melting and solidifying method and apparatus and method for using molten and solidified ash

Info

Publication number
JP2002346502A
JP2002346502A JP2001156526A JP2001156526A JP2002346502A JP 2002346502 A JP2002346502 A JP 2002346502A JP 2001156526 A JP2001156526 A JP 2001156526A JP 2001156526 A JP2001156526 A JP 2001156526A JP 2002346502 A JP2002346502 A JP 2002346502A
Authority
JP
Japan
Prior art keywords
melting
molten
ash
furnace
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001156526A
Other languages
Japanese (ja)
Other versions
JP4514363B2 (en
Inventor
Masatsuru Umemoto
真鶴 梅本
Mitsuru Fujita
満 藤田
Yoshisada Soga
義貞 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Pacific Metals Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Systems Co Ltd
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Systems Co Ltd, Pacific Metals Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001156526A priority Critical patent/JP4514363B2/en
Publication of JP2002346502A publication Critical patent/JP2002346502A/en
Application granted granted Critical
Publication of JP4514363B2 publication Critical patent/JP4514363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus to melt and solidify ashes capable of decreasing the volume of incinerator ashes by melting and solidification and detoxicating the ashes while saving auxiliary material cost and making the molten and solidified matter advantageously usable especially for an installation material in sea and to provide the molten and solidified matter and its utilization method. SOLUTION: Dried incinerator ashes are mixed with component adjustment materials of shellfish such as scallop, oyster and a reducing agent and melted in an electric furnace to discharge molten slag containing mainly SiO2 , Al2 O3 , CaO, MgO, and the like, and the discharged molten slag is cast in a casting die and gradually cooled and crystallized to make it a rock with a prescribed shape and size. Based on the necessity, the obtained rock may contain mill scale as an iron ion donor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、都市ごみ等の廃
棄物を焼却することにより発生する焼却灰の溶融固化物
と溶融固化処理方法及び装置並びに溶融固化物の利用方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for melting and solidifying incinerated ash generated by incinerating waste such as municipal solid waste and a method of using the molten and solidified material.

【0002】[0002]

【従来の技術】日本全国で、一般廃棄物(都市ごみ)
は、平成9年度のデータによれば、年間5,120万t発生し
ており、そのうち78%が焼却処理され、焼却残渣(焼却
灰)が約600万t/年発生している。焼却によりごみの体積
が約1/10に減容されるとはいえ、埋立地の不足や確
保の困難さ、埋め立てた灰からの有害物の溶出あるいは
未燃焼物による環境汚染の防止の観点から焼却灰の溶融
固化処理が望まれている。
[Prior Art] General waste (municipal waste) in Japan
According to the data for FY 1997, 51.2 million tons were generated annually, of which 78% was incinerated and incineration residues (incinerated ash) were generated at about 6 million tons / year. Although the volume of garbage is reduced to about 1/10 by incineration, from the viewpoint of shortage of landfills, difficulty in securing them, elution of harmful substances from landfill ash, or prevention of environmental pollution by unburned substances There is a demand for a solidification treatment of incinerated ash.

【0003】溶融方法として、バーナにより灰の表面を
加熱し溶融する方式や電気エネルギーを使う方法として
アークやプラズマの熱源を用いる方式や、3相交流、直
流電流を使う抵抗加熱方式等が商品化されている。ま
た、溶解炉内に導電性発熱体を配置し、この導電性発熱
体を誘導加熱することによって、該炉内に投入された焼
却灰を溶融する装置も提案されている。ゴミ焼却灰の溶
融方法に関する特許提案としては、プラズマ加熱方式
(特開平1−273908号公報)、アーク放電加熱方
式(特開平2−99184号公報)、電磁誘導加熱方式
(特開昭61−210998号公報、特開平3−267
186号公報、特開平3−267187号公報)、バー
ナ燃焼加熱(表面溶融)方式(特開平3−263513
号公報)等が知られている。
[0003] As a melting method, a method of heating and melting the ash surface by a burner, a method using an arc or plasma heat source as a method using electric energy, and a resistance heating method using a three-phase AC or DC current are commercially available. Have been. Further, an apparatus has been proposed in which a conductive heating element is disposed in a melting furnace, and the conductive heating element is induction-heated to melt the incineration ash charged into the furnace. Patent proposals for a method of melting refuse incineration ash include a plasma heating method (Japanese Patent Application Laid-Open No. 1-273908), an arc discharge heating method (Japanese Patent Application Laid-Open No. 2-99184), and an electromagnetic induction heating method (Japanese Patent Application Laid-Open No. 61-210998). No., JP-A-3-267
186, JP-A-3-267187), a burner combustion heating (surface melting) method (JP-A-3-263513).
Is known.

【0004】上記各種の溶融固化処理方法により、溶融
物はガラス質の固形物として減容回収することができる
が、投棄地の容量にも限界があり、より一層の減容化や
再資源化の努力が払われるようになってきている。最近
では、資源のリサイクル化の観点に立った研究が進み、
堆肥化や有価物の回収といったことも行われる。このよ
うな再資源化には無害化処理が重要であるが、ごみ焼却
灰の溶融スラグから建築資材等を再生する方法が、特に
注目を浴びるようになってきている(特開平7−155
728号公報、特開平9−301750号公報、特開平
11−21155号公報等参照)。
[0004] By the above-mentioned various methods of melting and solidification, the melt can be reduced in volume and recovered as a vitreous solid. However, the capacity of the dumped land is limited, so that the volume can be further reduced or recycled. Efforts are being taken. Recently, research has been advanced from the viewpoint of resource recycling,
Composting and recovery of valuable resources are also performed. Detoxification treatment is important for such recycling, but a method of regenerating building materials and the like from molten slag of incinerated ash has been receiving particular attention (Japanese Patent Laid-Open No. 7-155).
728, JP-A-9-301750, JP-A-11-21155, etc.).

【0005】前記特開平9−301750号公報の従来
の技術の項には、上記に関連して下記旨の記載がある。
即ち、「焼却灰を1500℃以上の温度で溶融すると、
焼却灰中の可燃物が燃焼しダイオキシンは完全に分解さ
れること、重金属類はガラス質のスラグ中に閉じ込めら
れること、焼却灰を1/3以下に減容できることなどの
利点が挙げられる。これは、焼却灰中の無機分も溶けて
融液となり、特開平3−275133号公報に記載され
ているように、それを冷却すると固化したスラグとする
ことができるからである。
[0005] In the section of the prior art of Japanese Patent Application Laid-Open No. 9-301750, the following is described in connection with the above.
That is, "When incinerated ash is melted at a temperature of 1500 ° C or more,
The combustibles in the incineration ash are burned to completely decompose dioxins, heavy metals are confined in glassy slag, and the incineration ash can be reduced in volume to 1/3 or less. This is because the inorganic component in the incinerated ash is also dissolved to form a melt, and as described in JP-A-3-275133, it can be turned into a solidified slag when cooled.

【0006】ところで、前記スラグは、路盤材や建築土
木用骨材として使用されたり、成形することによってタ
イルや装飾品に加工することができる。いずれにおいて
も、無害化や化学的安定性が要求されることは言うまで
もないが、そのような溶融スラグを生成させて人工骨材
を製造する方法や装置が種々提案されている。溶融スラ
グを生成する代表的なものとして、旋回溶融法,電気溶
融法,コークス燃焼還元溶融法といった方法が採用され
ている。
[0006] The slag can be used as a roadbed material or an aggregate for building civil engineering, or can be processed into tiles or decorative articles by molding. In any case, it is needless to say that detoxification and chemical stability are required, but various methods and apparatuses for producing such an artificial aggregate by generating such a molten slag have been proposed. As a typical method for producing molten slag, methods such as a swirling melting method, an electric melting method, and a coke combustion reduction melting method are employed.

【0007】旋回溶融法は、焼却灰をアノルサイトCa
O・2SiO2・Al23の結晶が析出しやすい組成に
成分調整し、旋回炉を用いて焼却灰を1400℃ないし
1450℃の雰囲気で溶融させ、それを急冷してガラス
とし、その非晶質なスラグを再加熱してアノルサイトを
均一に析出させ、石材化する方法である。これは、焼却
灰に含まれている鉄分と硫黄分から硫化鉄を生成させ、
それを結晶核形成物質として利用している。」また、前
記特開平7−155728号公報には、「廃棄物を焼却
して得た灰を電磁誘導加熱方式により連続的に溶融し、
排出した後ガラス化する焼却灰溶融処理方法において、
溶融処理装置への投入前に焼却灰成分組成に対してあら
かじめ溶融時の融点がCaO−SiO2−Al23三元
系液相線図において1400℃以下の範囲となりかつ溶
融物の粘度がCaO−SiO2−Al233元系140
0℃等粘度曲線図において40ポアズ以下の範囲となる
ようにCaO、SiO2、Al23の成分組成を調整す
ること」により、焼却灰溶融固化物の体積を低減し、無
害化する技術が開示されている。
In the swirling melting method, incinerated ash is converted to anorthite Ca.
O · 2SiO 2 · Al 2 O 3 crystals to component adjustment to easily composition deposited, to not 1400 ° C. The ash using a turning furnace is melted in an atmosphere of 1450 ° C., the glass by quenching it, the non In this method, the crystalline slag is reheated to uniformly precipitate anorthite and turn into stone. This generates iron sulfide from iron and sulfur contained in incineration ash,
It is used as a crystal nucleating substance. In addition, JP-A-7-155728 discloses that "ash obtained by incineration of waste is continuously melted by an electromagnetic induction heating method,
In the incineration ash melting treatment method of vitrifying after discharging,
The melting point of the incineration ash component composition before melting into the melting treatment apparatus is in the range of 1400 ° C. or less in the ternary liquidus diagram of CaO—SiO 2 —Al 2 O 3 in advance and the viscosity of the melt is CaO-SiO 2 -Al 2 O 3 3 -way system 140
By adjusting the component composition of CaO, SiO 2 , and Al 2 O 3 so as to be within the range of 40 poise or less in the 0 ° C. isoviscosity curve diagram, the technology for reducing the volume of the incinerated ash melt-solidified product and rendering it harmless. Is disclosed.

【0008】さらに、前記特開平9−301750号公
報には、「生活ごみ,下水汚泥,産業廃棄物等のごみを
焼却して生じた焼却灰の溶融スラグから人工骨材を合成
するために、還元容易なFe・Cr・P等の酸化物を溶
融還元して溶融銑鉄を生成すると共にガス含有率が低く
SiO2等を主成分した溶融スラグを生成し、該溶融ス
ラグを徐冷した状態で凝固させ、凝固した鋳造スラグを
破砕し、破砕された鋳造スラグ中に残留する非晶質部分
を熱処理すると共に残留内部歪を除去して、ガス含有率
の極めて低い組織の緻密な結晶化が図られたスラグを生
成させるコンクリート用人工骨材の製造方法において、
MgO含有量が5%ないし20%までの範囲における目
標%もしくはそれに極めて近似した含有%となるような
低融点であって共晶凝固する組成を有した溶融スラグを
生成させ、床敷き用砂上へ前記溶融スラグを供給し、そ
の後に被覆用砂で該溶融スラグを覆い、該被覆用砂およ
び前記溶融スラグの上面に多数の凹み溝を与えると共
に、型押しすることにより前記溶融スラグの厚みが25
mm以下となるように調整し、その後に保温用砂を被
せ、前記溶融スラグを共晶凝固現象に基づき一次再結晶
させるようにしたことを特徴とする焼却灰溶融スラグか
らの人工砂利製造法」が開示され、「上記により、焼却
灰の還元溶融によりFe系酸化物ならびにその他の重金
属類や還元可能な酸化物類を含まず、また、CaO−S
iO2−Al23三元系の限られた共晶点の範囲を、5
%ないし20%までの範囲における目標%もしくはそれ
に極めて近似した含有%となるMgOを添加した四元系
に改質することにより拡大することができ、床敷き用砂
上に供給された溶融スラグは被覆用砂および保温用砂に
よって覆われるので、急冷を抑制することによって四元
系相平衡状態での共晶凝固現象に基づく一次再結晶が実
現できる」旨、記載されている。
[0008] Further, Japanese Patent Application Laid-Open No. 9-301750 discloses "In order to synthesize artificial aggregate from molten slag of incinerated ash generated by incinerating garbage such as household waste, sewage sludge, and industrial waste, It melts and reduces oxides such as Fe, Cr, and P, which are easy to reduce, to produce molten pig iron, and at the same time, to produce a molten slag having a low gas content and a main component of SiO 2 and the like. Solidification, crushing of the solidified casting slag, heat treatment of the amorphous portion remaining in the crushed casting slag and removal of residual internal strain, dense crystallization of the structure with extremely low gas content is achieved. In the method for producing an artificial aggregate for concrete to produce a slag,
A molten slag having a low melting point and a eutectic solidification composition is produced such that the MgO content is the target% in the range of 5% to 20% or a content percentage very close thereto, and is poured onto sand for flooring. The molten slag is supplied, and thereafter, the molten slag is covered with the coating sand, and a large number of concave grooves are provided on the upper surface of the coating sand and the molten slag, and the thickness of the molten slag is reduced to 25 by embossing.
mm or less, and then covered with sand for heat retention, wherein the molten slag is subjected to primary recrystallization based on a eutectic solidification phenomenon, and a method for producing artificial gravel from incinerated ash molten slag. "From the above, Fe-based oxides and other heavy metals and reducible oxides are not contained by reducing and melting incinerated ash, and CaO-S
The limited range of the eutectic point of the ternary system iO 2 -Al 2 O 3
% To 20%, which can be expanded by reforming into a quaternary system to which MgO is added, which has a target percentage or a content percentage very close to the target percentage, and the molten slag supplied on the flooring sand is coated. The primary recrystallization based on the eutectic solidification phenomenon in the quaternary phase equilibrium state can be realized by suppressing the quenching because it is covered with the sand for use and the heat-retaining sand. "

【0009】さらにまた、前記特開平11−21155
号公報には、「焼却灰の飛散を防止するよう加湿した焼
却灰を乾燥させる乾燥工程と、該乾燥工程終了後、乾燥
させた焼却灰を溶融に適した形態に固める固化工程と、
該固化工程終了後、固めた焼却灰に、廃棄プラスチッ
ク、コークスおよび石灰石のうち少なくともコークスお
よび石灰石などの副資材を添加して混合し、焼却灰を成
分調整する混合調整工程と、該混合調整工程終了後、成
分調整した焼却灰を溶融炉で溶融して溶融スラグを得る
溶融工程と、該溶融工程終了後、溶融スラグを徐冷して
石化させた後、所望の粒度の人工骨材に粉砕する骨材化
工程とを備えることを特徴とする人工骨材の製造方法」
が開示されている。
[0009] Further, Japanese Patent Application Laid-Open No. H11-21155 is disclosed.
In the official gazette, `` a drying step of drying the humidified incinerated ash to prevent scattering of the incinerated ash, and after the drying step, a solidifying step of solidifying the dried incinerated ash into a form suitable for melting,
After the solidification step, the solidified incinerated ash is mixed with at least auxiliary materials such as waste plastic, coke and limestone, such as coke and limestone, to adjust the components of the incinerated ash. After the completion, the incinerated ash whose components have been adjusted is melted in a melting furnace to obtain a molten slag, and after the completion of the melting step, the molten slag is gradually cooled and turned into petroleum, and then crushed into artificial aggregate having a desired particle size. And a method for producing an artificial aggregate, comprising:
Is disclosed.

【0010】[0010]

【発明が解決しようとする課題】ところで、前述の特開
平7−155728号公報に記載された焼却灰溶融固化
処理方法は、あらかじめ乾燥焼却灰の組成分析を行っ
て、CaO、SiO2、Al23を必要量供給すること
により、焼却灰の組成調整を行なう方法であり、手順が
複雑となる問題がある。
By the way, in the incineration ash melting and solidifying method described in Japanese Patent Application Laid-Open No. Hei 7-155728, the composition of dried incinerated ash is analyzed in advance to obtain CaO, SiO 2 , Al 2. This is a method of adjusting the composition of incinerated ash by supplying a required amount of O 3 , and there is a problem that the procedure becomes complicated.

【0011】また、特開平9−301750号公報また
は特開平11−21155号公報等に記載された焼却灰
溶融固化処理方法は、成分調整材としてMgOまたは石
灰石等の副資材を添加する方法であって、成分調整材と
しての副資材コストが問題点となる。前記特開平7−1
55728号公報に記載された方法においてもこの問題
は同様である。
The incineration ash melting and solidifying method described in JP-A-9-301750 or JP-A-11-21155 is a method in which a secondary material such as MgO or limestone is added as a component adjusting material. Thus, there is a problem with the cost of the secondary material as a component adjusting material. JP-A-7-1
This problem is the same in the method described in Japanese Patent No. 55728.

【0012】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、焼却灰の減
容化および無害化に当り、成分調整材としての副資材コ
ストを低減し、さらに溶融固化物の特に海中設置資材と
しての有効利用を図ることが可能な、焼却灰溶融固化処
理方法及び装置並びに溶融固化物とその利用方法を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to reduce the volume and detoxification of incinerated ash, thereby reducing the cost of auxiliary materials as a component adjusting material. It is an object of the present invention to provide an incineration ash fusion-solidification method and apparatus, a fusion-solidified material, and a method of using the same, which can reduce the amount of the molten solidified material, and can further effectively use the molten solidified material, particularly as an undersea installation material.

【0013】[0013]

【課題を解決するための手段】前述の課題を解決するた
め、この発明の焼却灰の溶融固化物は、乾燥焼却灰にホ
タテ,カキ等の貝殻からなる成分調整材および還元剤を
混合して電気炉で溶融処理し、SiO2,Al23,C
aO,MgO等を主成分とする溶融スラグを出滓させ、
この出滓した溶融スラグを鋳型に鋳込んで徐冷し結晶化
することにより、所定の形状・寸法に岩石化してなるも
のとする(請求項1の発明)。
In order to solve the above-mentioned problems, a molten and solidified incinerated ash of the present invention is obtained by mixing a dry incinerated ash with a component adjusting material consisting of scallops, oysters and other shells and a reducing agent. Melting treatment in an electric furnace, SiO 2 , Al 2 O 3 , C
The molten slag mainly composed of aO, MgO, etc. is discharged,
The molten slag discharged from the slag is cast into a mold, gradually cooled, and crystallized, thereby forming a rock into a predetermined shape and dimensions (the invention of claim 1).

【0014】上記発明によれば、焼却灰の成分調整材と
して、現状では廃棄処理に困っているホタテ,カキ等の
貝殻を使用するものとしたので、安価な溶融固化物を得
ることができる。ホタテ,カキなどの貝殻は、年間約3
0〜50万t発生していると推定され、特にホタテ,カ
キの産地である青森県、北海道、宮城県、広島県などでの
発生が多い。これらの貝殻は主成分がCaCO3であり、
カルシウムの供給源として様々な用途開発の研究がすす
められているが、技術的、経済的理由により有効利用され
る方策がなく困っているのが現状である。特に青森県で
は長期間野積み状態にさらされており、一部では異臭の
発生や景観を損ねる問題もでてきている。このような状
況下において、焼却灰の成分調整材としてホタテ、カキ
などの貝殻を活用できることは、環境問題も含めて経済
的効果が大きい。
According to the above invention, since the shell of scallop, oyster, etc., which is currently difficult to dispose of, is used as the component adjusting material of the incinerated ash, an inexpensive molten solid can be obtained. Scallops, oysters and other shells are about 3 per year
It is estimated that 0,000 to 500,000 tons are generated, and especially in Aomori, Hokkaido, Miyagi, and Hiroshima prefectures, where scallops and oysters are produced. These shells are mainly composed of CaCO 3 ,
Research on the development of various uses as a supply source of calcium has been promoted, but at present it is difficult to find a way to effectively use it for technical and economic reasons. In particular, Aomori Prefecture has been exposed to long-term storage, and in some cases, there is a problem of generation of unpleasant odors and damage to the landscape. Under these circumstances, the ability to utilize shells such as scallops and oysters as a component adjusting material for incinerated ash has great economic effects including environmental issues.

【0015】前記溶融固化物は、その溶融試験を行なっ
た結果、後述するように無害であり、さらに結晶形態が
ゲーレナイト(2CaO−SiO2−Al23)であっ
て岩石としての強度がコンクリートブロックの約2〜4
倍となるので、特に海中設置資材として好適に利用でき
る。
As a result of conducting a melting test, the melt-solidified material is harmless as will be described later, and has a crystalline form of gehlenite (2CaO—SiO 2 —Al 2 O 3 ) and a strength of rock of concrete. About 2-4 of blocks
Since it is doubled, it can be suitably used particularly as a material to be installed in the sea.

【0016】さらに、前記海中設置資材としての有効活
用の観点から、下記請求項2の発明が好適である。即
ち、請求項1に記載の溶融固化物は、鉄イオン供与体を
含んでなるものとする(請求項2の発明)。この作用効
果については、関連する下記請求項8の発明の説明にお
いて述べる。
Further, from the viewpoint of effective utilization as the undersea installation material, the invention of the following claim 2 is preferable. That is, the molten and solidified product according to claim 1 includes an iron ion donor (the invention according to claim 2). This operation and effect will be described in the related description of the eighth aspect of the present invention.

【0017】請求項8の発明は、焼却灰溶融固化物の利
用方法であって、前記請求項1または2に記載の焼却灰
溶融固化物を、海中でコンブ,ワカメ等の海藻類の生育
のための藻床部材、もしくは魚介類繁殖のための魚床部
材として利用することを特徴とする。後述するように、
前記焼却灰溶融固化物を海中に設置したところ、これを
藻床として、ワカメ、コンブ類をはじめとしてかなりの
種類と数の海藻類がよく生育することが確認された。コ
ンクリートブロックに比較すると、その生育は、顕著に
速く、また、前記請求項2の発明のように、鉄イオン供
与体を含んでなる焼却灰溶融固化物の方が、ミネラルの
生育効果によって効果が高い。コンクリートブロックの
場合には、アルカリ成分としてCa(OH)2を含んで
おり、これが海中に溶出して、海藻類の生育を妨げると
いわれている。
[0018] The invention of claim 8 is a method of utilizing the incinerated ash melt-solidified product, wherein the incinerated ash melt-solidified product according to claim 1 or 2 is used for growing seaweeds such as kelp and wakame in the sea. It is used as an algae bed member for fish or a fish bed member for fish and shellfish breeding. As described below,
When the incinerated ash melt-solidified material was placed in the sea, it was confirmed that a considerable number and variety of seaweeds such as seaweed and kelp grow well using this as an algae bed. Compared to concrete blocks, their growth is remarkably faster, and as in the invention of claim 2, the incinerated ash melt-solidified material containing an iron ion donor is more effective due to the growth effect of minerals. high. Concrete blocks contain Ca (OH) 2 as an alkaline component, which elutes into the sea and is said to hinder the growth of seaweeds.

【0018】さらに、前記焼却灰溶融固化物は、前述の
ように結晶形態がゲーレナイトであって岩石としての強
度が大きいので、海中の砂や水の動きによって摩耗され
難く、海中設置資材として、この観点からもコンクリー
トブロックよりも好適である。また、藻床として好適な
焼却灰溶融固化物は、海洋生物学的に魚床としても好適
であり、焼却灰溶融固化物の形状寸法は、藻や魚の種類
に応じて適宜、好ましいものとすることができる。
Further, since the incinerated ash melt-solidified product has a crystalline form of gehlenite and a high strength as a rock as described above, it is hard to be worn by the movement of sand and water in the sea, and as a material to be installed in the sea, From a viewpoint, it is more preferable than a concrete block. Further, the incinerated ash melt-solidified material suitable as an algae bed is also suitable as a fish bed in terms of marine biology, and the shape and dimensions of the incinerated ash melt-solidified material are preferably as appropriate according to the type of algae or fish. be able to.

【0019】また、上記請求項1または2に記載の焼却
灰溶融固化物を得るための焼却灰溶融固化処理方法とし
ては、下記請求項3ないし7の発明が好ましい。即ち、
請求項3の発明によれば、乾燥焼却灰に成分調整材およ
び還元剤を混合して電気炉で溶融処理する工程と、Si
2,Al23,CaO,MgO等を主成分とする溶融
スラグを出滓させる工程と、この出滓した溶融スラグを
鋳型に鋳込んで徐冷し結晶化する工程とを含む焼却灰溶
融固化処理方法において、前記成分調整材として、ホタ
テ,カキ等の貝殻を用いることとする。前記請求項3の
発明の方法によれば、前記焼却灰溶融固化物が得られる
効果の他に、焼却灰溶融温度が低下し、また溶融スラグ
の流動性が向上するので、溶融スラグの取出しならびに
鋳型操作が容易となる公知の効果もある。
As the incineration ash melt-solidification method for obtaining the incineration ash melt-solidified product according to claim 1 or 2, the following inventions 3 to 7 are preferred. That is,
According to the invention of claim 3, a step of mixing a component adjusting material and a reducing agent with the dry incinerated ash and performing a melting treatment in an electric furnace;
Incineration ash including a process of removing molten slag containing O 2 , Al 2 O 3 , CaO, MgO, etc. as a main component, and a process of casting the molten slag that has been removed into a mold, gradually cooling, and crystallizing. In the melt-solidification method, shells such as scallops and oysters are used as the component adjusting material. According to the method of the third aspect of the present invention, in addition to the effect of obtaining the incinerated ash melt-solidified product, the incinerated ash melting temperature is lowered, and the fluidity of the molten slag is improved. There is also a known effect that facilitates the template operation.

【0020】さらに前記請求項3の発明の実施態様とし
て、下記請求項4の発明が好適である。即ち、請求項3
に記載の処理方法において、前記貝殻はフレーク状に砕
いたものとし、前記乾燥焼却灰に対する混合割合を、5
〜20重量%とする。5%より少ない場合には、前記溶
融温度が低下と流動性向上効果が低い。また、20%よ
り多い場合には結晶化しにくい。
Further, as an embodiment of the third aspect of the invention, the following fourth aspect of the invention is preferable. That is, claim 3
In the treatment method described in 1, the shell is crushed into flakes, and the mixing ratio with respect to the dry incineration ash is 5%.
To 20% by weight. If it is less than 5%, the melting temperature is lowered and the fluidity improving effect is low. If it is more than 20%, it is difficult to crystallize.

【0021】また、請求項2の発明に関わり、前記請求
項3または4に記載の処理方法において、前記溶融スラ
グに鉄イオン供与体を添加した後、鋳込を行なうことと
する(請求項5の発明)。
According to a second aspect of the present invention, in the processing method according to the third or fourth aspect, after the iron ion donor is added to the molten slag, casting is performed. Invention).

【0022】さらに、請求項5に記載の処理方法におい
て、前記鉄イオン供与体は、鉄材の圧延時に発生する鉄
酸化物(ミルスケール)とする(請求項6の発明)。ミ
ルスケールは、鉄酸化物として、FeO,Fe23,F
34などを含むが、FeOが約7〜9割であり、これ
が海藻類の生育に効果があると考えられる。その好適な
添加量として、請求項7の発明が好ましい。即ち、前記
請求項6に記載の処理方法において、前記ミルスケール
の添加量は、前記乾燥焼却灰と貝殻との合計重量部を1
00とした場合に、2〜7重量部とする。
Further, in the processing method according to the fifth aspect, the iron ion donor is an iron oxide (mill scale) generated during rolling of an iron material (the invention of the sixth aspect). The mill scale uses FeO, Fe 2 O 3 , F
Although etc. e 3 O 4, FeO is about 7-9 percent, which is considered to be effective for the growth of algae. As a preferable addition amount, the invention of claim 7 is preferable. That is, in the processing method according to claim 6, the addition amount of the mill scale is 1 part by weight of the total weight of the dried incinerated ash and the shell.
When it is 00, it is 2 to 7 parts by weight.

【0023】次に、前記請求項3または4に記載の焼却
灰溶融固化処理方法を実施するための装置としては、請
求項9ないし11の発明が好ましい。即ち、請求項3ま
たは4に記載の焼却灰溶融固化処理方法を実施するため
の装置であって、乾燥焼却灰,貝殻からなる成分調整材
および還元剤を配合した混合物の供給手段と、直流電気
抵抗式還元溶融炉と、この溶融炉に設けてなり炉内で溶
融処理した溶融スラグ,溶融金属および溶融飛灰を個別
に取り出すための手段と、取り出した前記溶融スラグを
導入し所定の形状・寸法に鋳込む鋳型手段とを備えるも
のとする(請求項9の発明)。また、前記請求項9に記
載の処理装置において、前記直流電気抵抗式還元溶融炉
は、炉の上部に前記混合物の導入口と主電極を設け、か
つ炉底に炉底電極を設けてなるものとする(請求項10
の発明)。
Next, as an apparatus for performing the incineration ash melting and solidifying method according to the third or fourth aspect, the inventions of the ninth to eleventh aspects are preferable. That is, an apparatus for carrying out the incineration ash melting and solidifying method according to claim 3 or 4, wherein a supply means of a mixture in which a component adjusting material composed of dry incineration ash and shells and a reducing agent are blended, A resistance reduction melting furnace, means for individually removing the molten slag, molten metal and molten fly ash which are provided in the melting furnace and which have been melted in the furnace; And a mold means for casting into dimensions (the invention of claim 9). 10. The processing apparatus according to claim 9, wherein the direct current resistance type reduction melting furnace is provided with an inlet for the mixture and a main electrode at an upper part of the furnace, and a furnace bottom electrode at a furnace bottom. (Claim 10
Invention).

【0024】上記処理装置によれば、炉内で溶融物が動
きにくく、重金属が炉の底部に静かな重力沈降によって
分離できるので、溶融スラグへの重金属の混入が抑制さ
れ、海中設置資材として好適な溶融固形物を得ることが
できる。
According to the above processing apparatus, the molten material is hard to move in the furnace, and the heavy metal can be separated from the bottom of the furnace by gentle gravity sedimentation. A molten solid can be obtained.

【0025】また、前記請求項9または10に記載の処
理装置において、前記溶融スラグに鉄イオン供与体を添
加する手段を備えるものとする(請求項11の発明)。
Further, in the processing apparatus according to the ninth or tenth aspect, a means for adding an iron ion donor to the molten slag is provided (the invention of the eleventh aspect).

【0026】[0026]

【発明の実施の形態】図面に基づき、本発明の実施例に
ついて以下に述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】(処理フローおよび処理装置について)図
1および図2は、本発明に関わる焼却灰溶融固化処理フ
ローおよび処理装置の概略構成の一例を示す。図1およ
び図2に基づき、この発明の実施例の処理方法について
以下に述べる。
(Regarding Processing Flow and Processing Apparatus) FIGS. 1 and 2 show an example of an incineration ash fusion solidification processing flow and a schematic configuration of a processing apparatus according to the present invention. A processing method according to an embodiment of the present invention will be described below with reference to FIGS.

【0028】図1に示すように、まず、焼却灰から粗大
物・鉄クズなどを篩い分け、磁選後乾燥する。この乾燥
灰に、野積み状態のホタテなどの貝殻を成分調整材とし
て、また粉コークスを還元剤として混ぜて電気炉へ投入
する。電気炉内では、鉄、銅などの金属類は還元されてメ
タルとなり、スラグとの比重差(鉄7.9、スラグ2.
8程度)により炉底部に溜まる。
As shown in FIG. 1, first, coarse materials, iron scraps, and the like are sieved from the incinerated ash, and after magnetic separation, dried. The dried ash is mixed with shells such as scallops in a piled state as a component adjusting material and coke breeze as a reducing agent, and then charged into an electric furnace. In the electric furnace, metals such as iron and copper are reduced to metal, and the specific gravity difference with slag (iron 7.9, slag 2.
8) and accumulates at the bottom of the furnace.

【0029】焼却灰中の主成分SiO2,Al23,C
aO,MgO等とホタテ等の貝殻の主成分炭酸カルシウ
ムCaCO3(炭酸カルシウムは、炉内温度によりCa
CO3→CaO+CO2となる。)は、炉の中段よりスラ
グとして炉から出滓され、図2には図示しない型に鋳込
まれ結晶化・岩石化される。この時、ホタテ等の貝殻の混
入割合によりスラグ中の塩基度[(CaO+MgO)/
SiO2]が決定される。この塩基度と鋳型中のスラグの
冷却速度により、結晶化・岩石化の難易が決まってく
る。また、ホタテ等の貝殻の混入割合はスラグの流動性に
も影響を与え、CaO分が、多すぎても少なすぎても流
動性が落ちる傾向にある。前述のように、貝殻はフレー
ク状に砕いたものとし、乾燥焼却灰に対する混合割合
を、5〜20重量%とするのが好ましい。また、前述の
ように、スラグ中には、ミルスケールを添加し、その添
加量は、前記乾燥焼却灰と貝殻との合計重量部を100
とした場合に、2〜7重量部とするのが好ましい。
Main components SiO 2 , Al 2 O 3 , C in incinerated ash
aO, MgO, etc. and calcium carbonate CaCO 3 (the main component of the shell such as scallops)
CO 3 → CaO + CO 2 . ) Is discharged from the furnace as slag from the middle stage of the furnace, cast into a mold not shown in FIG. 2, and crystallized and petrified. At this time, the basicity in the slag [(CaO + MgO) /
SiO 2 ] is determined. The difficulty of crystallization and petrification is determined by the basicity and the cooling rate of the slag in the mold. Further, the mixing ratio of shells such as scallops also affects the fluidity of the slag, and the fluidity tends to decrease if the CaO content is too large or too small. As described above, the shell is preferably crushed into flakes, and the mixing ratio with respect to the dry incineration ash is preferably 5 to 20% by weight. Further, as described above, mill scale is added to the slag, and the amount of addition is 100 parts by weight of the total weight of the dry incinerated ash and the shell.
In this case, the content is preferably 2 to 7 parts by weight.

【0030】一方、低沸点化合物は気化し、排ガスと共に
炉外に排出される。図1に示すように、炉排ガスは、ダ
イオキシン類の分解と一酸化炭素低減化のための二次燃
焼塔から減温塔経由で、バグフィルター、活性炭吸着塔を
経由して大気放出される。また、乾燥系排ガスもバグフ
ィルター、活性炭吸着塔を経て大気放出される。
On the other hand, the low boiling compounds are vaporized and discharged out of the furnace together with the exhaust gas. As shown in FIG. 1, the furnace exhaust gas is discharged from the secondary combustion tower for decomposing dioxins and reducing carbon monoxide, via a cooling tower, a bag filter, and an activated carbon adsorption tower to the atmosphere. Further, the drying system exhaust gas is also released to the atmosphere via a bag filter and an activated carbon adsorption tower.

【0031】次に、この発明に係る焼却灰溶融固化処理
装置について、図2に基づき以下に述べる。
Next, an incineration ash melting and solidifying apparatus according to the present invention will be described below with reference to FIG.

【0032】乾燥灰、ホタテ貝殻、コークスはそれぞれ
の貯留槽から定量切り出されて、炉上リフトコンベアに
て混合され、炉投入原料として2つある炉上ビン1に蓄
えられる。原料は、炉側面よりプッシャー2により炉内
に装入される。炉内に投入された焼却灰は電気抵抗が大
きく電流は流れにくい。しかし、一旦灰が溶け始める
と、次第に電気抵抗が小さくなり、大電流を通電するこ
とが可能となる。主電極3と炉底電極4との間に電流を
流すと、炉底全体が広い範囲にわたり円盤状の電極(陽
極)となり、ここから電流は放射線上に上部主電極とし
ての一本電極(陰極)に集中し、溶融スラグ内でジュー
ル熱を発生し、スラグ全体が発熱体となり、この上に投
入された灰(成分調整材と還元剤が配合されたもの)
は、順次スラグ中で発生した熱により溶融する。
Dry ash, scallop shells and coke are cut out from the respective storage tanks, mixed in a furnace lift conveyor, and stored in two furnace bins 1 as furnace input materials. The raw material is charged into the furnace from the furnace side by the pusher 2. The incinerated ash introduced into the furnace has a large electric resistance and current does not easily flow. However, once the ash begins to melt, the electrical resistance gradually decreases and a large current can be passed. When a current is applied between the main electrode 3 and the furnace bottom electrode 4, the entire furnace bottom becomes a disk-shaped electrode (anode) over a wide range, and the current is applied to the radiation to form a single electrode (cathode) as an upper main electrode. ), And generates Joule heat in the molten slag, the entire slag becomes a heating element, and ash (a mixture of component adjusting material and reducing agent) put on this
Are sequentially melted by the heat generated in the slag.

【0033】溶融スラグ5の炉内表層部において、還元
剤と金属化合物の反応により泡立ちスラグ(Foaming Sl
ag)が形成される。焼却灰中の金属類は、酸化物、塩化
物、硫化物等の形で混入しているが、溶融スラグ表層に
存在するフォーミングスラグ中で、強い還元作用を受け
て還元され、溶融スラグ層中を沈下し、炉底部に溶融メ
タル6を形成する。一方、溶融飛灰中のNa、K、Pb、Z
n、Cd等の低沸点化合物は温度上昇とともに気化し、排
ガス7とともに炉外に排出され集塵機により回収され
る。
At the surface of the molten slag 5 in the furnace, foaming slag (Foaming Slug) is formed by the reaction between the reducing agent and the metal compound.
ag) is formed. The metals in the incineration ash are mixed in the form of oxides, chlorides, sulfides, etc., but are reduced by the strong reducing action in the forming slag existing on the surface layer of the molten slag, Is settled to form a molten metal 6 at the furnace bottom. On the other hand, Na, K, Pb, Z in molten fly ash
Low-boiling compounds such as n and Cd are vaporized as the temperature rises, discharged out of the furnace together with the exhaust gas 7, and collected by a dust collector.

【0034】このようにして生成された溶融スラグ5は
重金属元素類等の含有量が極めて少ない純粋なスラグと
なる。この溶融スラグ5は前炉8から出滓され、所定量
のミルスケールを添加した上で、図示しない鋳型に導入
し、冷却固化して所定の形状・寸法の溶融固化物を形成
する。海中設置資材としては、取り扱い易さと流れ防止
を考慮し、例えば一辺が45〜70cmの立方体で、重
さは約250kg〜1tが望ましい。なお、前炉8は、
必要に応じて加熱電極を備え、スラグをスムーズに出滓
できるようにする。
The molten slag 5 thus produced is a pure slag having a very low content of heavy metal elements and the like. The molten slag 5 is discharged from the forehearth 8, added with a predetermined amount of mill scale, introduced into a mold (not shown), and solidified by cooling to form a molten solid having a predetermined shape and dimensions. Considering ease of handling and prevention of flow, the undersea installation material is preferably a cube having a side of 45 to 70 cm and weighing about 250 kg to 1 t. The forehearth 8 is
A heating electrode is provided as necessary so that the slag can be discharged smoothly.

【0035】前記電気炉の特長をまとめると以下のとお
りである。即ち、重金属・有害不純物を除去して、ク
リーンスラグの生成ができる、他の電気方式に比較し
て高い電気加熱効率が得られる、一本電極の採用によ
り構造がシンプルで電極原単位も低い、還元溶融によ
り耐火物の長寿命化が図れる等である。
The features of the electric furnace are summarized as follows. In other words, heavy metals and harmful impurities can be removed, clean slag can be generated, higher electric heating efficiency can be obtained compared to other electric systems, the structure is simple and the electrode unit consumption is low by adopting a single electrode, The life of the refractory can be extended by the reduction melting.

【0036】次に、使用した溶融原料としての焼却灰、
ホタテ貝殻、コークス、ミルスケール等の成分分析結果
および溶融固化処理に関わる各種実験結果ならびに溶融
固化物の利用実験結果などの一例について、以下に述べ
る。
Next, incinerated ash as a used molten raw material,
Examples of the results of component analysis of scallop shells, coke, mill scale, etc., the results of various experiments related to the melt-solidification treatment, and the results of experiments using the melt-solidified product are described below.

【0037】(溶融原料の成分分析結果の一例につい
て)図3は、焼却灰、ホタテ貝殻、コークス、ミルスケ
ール等の成分分析結果を示す。分析項目としては、環境
庁告示第14号による溶出試験に関する元素13種、含
有率が高いと考えられる元素11種と含水率を測定し
た。各分析項目に対する分析方法については、図3の右
欄に示す。
FIG. 3 shows the results of component analysis of incinerated ash, scallop shells, coke, mill scale, and the like. As the analysis items, 13 kinds of elements related to the dissolution test according to the Environment Agency Notification No. 14, 11 kinds of elements considered to have a high content, and water content were measured. The analysis method for each analysis item is shown in the right column of FIG.

【0038】焼却灰は、含水率が約21%で、Si
2,T−Fe,Al23,CaO,MgO,Na2O等
を主成分とする。上記T−Feとはトータル鉄を示し、
ミルスケールのT−Feに関しては、T−Fe中のFe
Oのみの値をその下段に示した。ミルスケールにおいて
は、T−Fe中、約90%がFeOであることが分か
る。
The incinerated ash has a water content of about 21%,
O 2 , T-Fe, Al 2 O 3 , CaO, MgO, Na 2 O, etc. are the main components. The T-Fe indicates total iron,
As for the mill scale T-Fe, Fe in the T-Fe
The value of only O is shown in the lower row. On the mill scale, it can be seen that about 90% of T-Fe is FeO.

【0039】ホタテ貝殻におけるCaOは、CaCO3
として測定した場合には、92.98%と換算される。
また、ホタテ貝殻におけるCの値は、CaCO3におけ
るCの値を示している。還元剤としてのコークスはCが
主成分であり、還元剤としては、周知のように、コーク
スの代わりに黒鉛など他の炭素系還元剤を用いることが
できる。
CaO in the scallop shell is CaCO 3
Is measured, it is converted to 92.98%.
The value of C in the scallop shell indicates the value of C in CaCO 3 . C is a main component of the coke as a reducing agent, and as a well-known reducing agent, other carbon-based reducing agents such as graphite can be used in place of coke.

【0040】(溶融固化処理実験結果について)ホタテ
貝殻を約10重量%混入した都市ごみ乾燥焼却灰を電気
炉で溶融し、鋳型して、幅45cm,長さ45cm,高
さ40cmの海中設置資材用ブロックを製作した。ブロ
ックの重さは約230kgであった。このサイズは、比
較的海流の影響が小さい静かな海域の水中に設置する最
小ブロックサイズである。海流の影響が大きい外洋に設
置する場合には、1t級の大型サイズが必要であり、さ
らに海流に流されないように堰を設けることが望まし
い。
(Experimental results of melting and solidification treatment) Municipal solid waste incineration ash containing about 10% by weight of scallop shells was melted in an electric furnace, cast, and cast into a 45 cm wide, 45 cm long, 40 cm high undersea installation material. Block was made. The block weighed about 230 kg. This size is the minimum block size to be installed underwater in quiet waters where the influence of currents is relatively small. When installed in the open sea where the influence of the ocean current is large, a large size of 1t class is required, and it is desirable to provide a weir to prevent the ocean current from flowing.

【0041】また、Feイオン供給体として、圧延工程
で発生する鉄酸化物の粉であるミルスケールを使用し、
その添加率は、(都市ごみ焼却灰+ホタテ貝殻)100
部とした場合の重量部数において、0部,2部,5部,
7部のものをそれぞれ30,7,7,7個製作して、海
中利用実験を含む各種の実験を行なった。
Further, a mill scale, which is a powder of iron oxide generated in a rolling process, is used as an Fe ion supplier,
The addition rate is (municipal waste incineration ash + scallop shell) 100
Parts, 0 parts, 2 parts, 5 parts,
Seven, seven, seven and seven parts were manufactured, and various experiments including underwater utilization experiments were performed.

【0042】さらに、上記実験前の予備的実験として、
ホタテ貝殻の混合割合を8〜15重量%に変化させて、
溶融実験を行なった。その結果によれば、以下のことが
判明した。ホタテ貝殻の混合割合は、8〜15重量%
の間では、溶融する上で特に大きな問題はなく、5〜2
0%程度が好適範囲であると考えられる。ホタテ貝殻
の混合割合が大きくても小さくても、スラグの流動性が
悪くなることが考えられるが、8〜15重量%の間では
問題はない。ただし15%混入時の方が流動性は低く、
20%程度が限度と考えられる。耐火材を施行した直
径20cm程度の鋳型にスラグを鋳込み、冷却速度を変
えて結晶化の進み具合を観察したところ、900℃以上
の温度に保持されている時間が2時間以上あれば、結晶
化は充分に進むことが判明した。
Further, as a preliminary experiment before the above experiment,
By changing the mixing ratio of the scallop shell to 8 to 15% by weight,
A melting experiment was performed. According to the results, the following was found. Mixing ratio of scallop shell is 8-15% by weight
There is no particular problem in melting between 5 and 2,
It is considered that about 0% is a preferable range. It is conceivable that the fluidity of the slag is deteriorated when the mixing ratio of the scallop shell is large or small, but there is no problem between 8 and 15% by weight. However, the fluidity is lower when 15% is mixed,
The limit is considered to be about 20%. The slag was cast into a mold with a diameter of about 20 cm in which a refractory material was applied, and the progress of crystallization was observed while changing the cooling rate. If the time maintained at a temperature of 900 ° C. or more was 2 hours or more, crystallization was performed. Turned out to be good enough.

【0043】(溶融固化処理後のスラグとメタルの成分
分析結果について)図4に、スラグ(鉄イオン供与体と
してのミルスケール含有量0部,2部,5部,7部含
有)と、メタルの成分分析結果を示す。スラグは、Si
2,Al2 3,CaO,MgOとFeの5つの成分
で、全体の約90〜95%を占めている。鉄はミルスケ
ールとして添加したもので、添加量が多いほど含有量も
多くなっている。また、メタルの主成分は鉄Feであ
り、ほかに銅Cu、リンPを微量含んでいる。
(Slag and metal components after melt-solidification treatment)
Fig. 4 shows slag (with iron ion donor)
0, 2, 5, and 7 parts of mill scale
Yes) and the results of metal component analysis. Slag is Si
OTwo, AlTwoO Three, CaO, MgO and Fe
Occupy about 90-95% of the whole. Iron is a mill scale
The higher the amount, the higher the content
More. The main component of the metal is iron Fe.
In addition, it contains trace amounts of copper Cu and phosphorus P.

【0044】(溶融固化物の溶出試験結果について)図
5は、ミルスケール添加量(0,5,7部)の異なる人
工石について実施した溶出試験の結果を示す。溶出試験
の内容は環境庁告示第14号による(海洋汚染および海
上災害の防止に関する法律施行令第5条第1項に規定す
る埋め立て場所などに排出しようとする廃棄物に含まれ
る金属等の検出方法)。
FIG. 5 shows the results of a dissolution test performed on artificial stones having different mill scale addition amounts (0.5, 7 parts). The content of the dissolution test shall be in accordance with the Notification of the Environment Agency No. 14 (Detection of metals and the like contained in waste to be discharged to landfills specified in Article 5, Paragraph 1 of the Law for the Prevention of Marine Pollution and Maritime Disasters) Method).

【0045】図5において、「規制値」は、前記環境庁
告示第14号による。また、「不検出」は、定量下限以
下であることを示す。3つの試料の溶出試験について、
いずれも告示を十分満足する結果を示した。
In FIG. 5, the "regulated value" is based on the Environment Agency Notification No. 14. Further, “not detected” indicates that the value is below the lower limit of quantification. About the dissolution test of three samples,
All showed satisfactory results.

【0046】(溶融固化物の強度試験・結晶組織調査結
果について)製作した海洋資材用ブロックからサンプル
を切出して、圧縮強度試験を実施した。一般にコンクリ
ートや石材の場合、曲げ強度は圧縮強度の1/5〜1/
7、引っ張り強度は1/10〜1/13であり、圧縮強
度の値から推算が可能であるため、圧縮強度試験のみ行
った。
(Results of Strength Test and Crystal Structure Investigation of Fused Solidified Material) A sample was cut out from the manufactured marine material block and subjected to a compressive strength test. In general, in the case of concrete and stone, the bending strength is 1/5 to 1/1 of the compressive strength.
7. Since the tensile strength is 1/10 to 1/13 and can be estimated from the value of the compressive strength, only the compressive strength test was performed.

【0047】結果を図6に示す。通常、魚床(または漁
礁)として利用されているコンクリートブロック、例え
ばテトラポッド(株式会社テトラの商品名)等の圧縮強
度は20N/mm2程度である。また、我が国で最も利用
されている安山岩の圧縮強度は50〜230N/mm2
ある。今回製作した人工岩石の強度は80N/mm2以上
であり、コンクリートブロックに比較して約2〜4倍、
天然石に比較して1/3〜1.5倍の強度であった。こ
のことから、天然の石材に比べるとやや低い強度である
が、コンクリートに比べると高く、建設資材としての利
用は可能であると判断される。
FIG. 6 shows the results. Usually, the compressive strength of a concrete block used as a fish bed (or fishing reef), for example, a tetrapod (trade name of Tetra Inc.) is about 20 N / mm 2 . The compressive strength of andesite, which is most widely used in Japan, is 50 to 230 N / mm 2 . The strength of the artificial rock manufactured this time is 80 N / mm 2 or more, about 2 to 4 times as compared with concrete block,
The strength was 1/3 to 1.5 times that of natural stone. From this, it is considered that the strength is slightly lower than that of natural stone, but higher than that of concrete, and that it can be used as construction material.

【0048】また、結晶の組織検査の結果、ミルスケー
ルの多少にかかわらず、結晶の主要な形態はゲーレナイ
トとなっていることが判明した。
As a result of examination of the structure of the crystal, it was found that the main form of the crystal was gohrenite regardless of the degree of the mill scale.

【0049】(溶融固化物の海洋設置試験結果につい
て)海中への設置場所は、青森県東津軽郡今別町と八戸
市蕪島付近の2ヶ所とし、その前に、予備試験を階上町
追腰漁港で行なった。今別町は黒潮(暖流)系の対馬海
流が流れる海域であり、また蕪島付近は親潮(寒流)系
の千島海流が流れている地域にあたる。親潮は、その名
が示すとおり栄養分に富み、魚類をはじめとする生物資
源を養い育てる潮であると言われている。
(Regarding the results of the marine installation test of the molten and solidified product) There were two installation locations in the sea, near Imabetsu-cho, Higashi-Tsugaru-gun, Aomori Prefecture and near Kabushima, Hachinohe-shi. Conducted at a fishing port. Imabetsu is an area where the Kuroshio (warm current) Tsushima Current flows, and the area near Kabushima is where the Oyashio (cold current) Kuril Current flows. Oyashio is, as the name implies, rich in nutrients and is said to be a tide that nurtures and nurtures biological resources such as fish.

【0050】海洋試験の評価方法は、比較対象のために
同じ大きさのコンクリートブロックを製作し、人工岩石
と同じ海域に設置して海藻類の繁茂状況を比較・検討す
ることで行った。海藻類の繁茂状況調査は、1〜2ヵ月
に一度程度ダイバーが海中に潜り、目視判断および写
真、ビデオ等による単位面積あたりの海藻類の量(数)
の測定と種類の調査により行った。結果は以下のとおり
である。
The marine test was evaluated by producing concrete blocks of the same size for comparison and installing them in the same sea area as artificial rocks to compare and examine the growth of seaweeds. In the survey of seaweed overgrowth, divers dive into the sea about once every 1 to 2 months, and the amount (number) of seaweeds per unit area by visual judgment, photos, videos, etc.
The survey was conducted by measuring and measuring the type. The results are as follows.

【0051】階上町追腰漁港地区(予備試験):予備
溶融試験時に製作したホタテ8%(ミルスケール0%)
の小型ブロックを設置した。設置後約2ヶ月経過した結
果、目視にてアオサ系の海藻が繁茂していることが確認
された。今回製作した人工岩石には、比較的短い期間で
あっても海藻類が着床する可能性が高いことが判った。
さらに、設置後約5ヶ月経過した後、再度状況確認を行
った。その結果、コンブ、ワカメ類をはじめとして、い
ろいろな海藻類が生育している状況が認められた。
Hoshikami Ookishi fishing port area (preliminary test): 8% scallops produced at the time of preliminary melting test (0% mill scale)
Small blocks were installed. As a result of approximately two months after the installation, it was confirmed visually that seaweeds of the Ulva system were prosperous. It was found that the artificial rock produced this time has a high possibility that seaweeds will settle even in a relatively short period of time.
Furthermore, after about 5 months had passed since the installation, the situation was checked again. As a result, it was observed that various seaweeds including kelp and seaweed were growing.

【0052】八戸漁港鮫地区(蕪島付近):鮫地区に
は、ミルスケール配合量0,2,5,7部のブロック各
2ヶずつと、比較検討用のコンクリートブロック1ヶ、
計9ヶを設置した。設置場所の水深は3m程度であり、
岸壁から約5m離れた地点とした。約1ヶ月経過後状況
確認を行ったところ、アオサ系の海藻類が、ブロック上
面では3〜5cm程度、側面では2〜3cm生育してい
た。また、側面には茶色のコケ状の付着物も認められ
た。さらに1ヶ所ではあるが、アカバギンナンソウと思
われる海藻(5〜6cm)も生育していた。ミルスケー
ルの含有量による海藻類の生育状況には明らかな差は認
められなかったが、コンクリートブロックヘの海藻類の
着床はほとんど認められなかった。これにより、初期的
には人工岩石はコンクリートブロックよりも海藻類が生
育しやすいことが判明した。
Hachinohe fishing port shark area (near Kabushima): In the shark area, there are two blocks each of 0, 2, 5, and 7 parts of mill scale, and one concrete block for comparative study.
A total of nine were installed. The water depth of the installation location is about 3m,
The point was about 5m away from the quay. After confirming the situation after about one month, the seaweed of Aosa type grew about 3-5 cm on the upper surface of the block and 2-3 cm on the side surface. Brown moss-like deposits were also found on the sides. In addition, seaweeds (5 to 6 cm), which are considered to be red alga, were also growing in one place. Although there was no apparent difference in the growth status of seaweeds depending on the content of the mill scale, implantation of seaweeds on the concrete block was hardly observed. Thus, it was initially found that seaweeds grow more easily on artificial rocks than on concrete blocks.

【0053】今別漁港今別地区(東防波堤付近):今
別地区には、ミルスケール配合量0,2,5,7部のブ
ロック各1ヶずつと、比較検討用のコンクリートブロッ
ク1ヶ、計5ヶを設置した。設置場所の水深は3m程度
であり、岸壁から約2m離れた地点とした。約2週間経
過後に状況確認を行ったが、設置後時間が短いため、ま
だ海藻類が生育している状況は認められなかった。約1
ヶ月経過後状況確認を行ったところ、前記と同様に海
藻類の生育が確認された。
Imabetsu fishing port Imabetsu area (near the east breakwater): In the Imabetsu area, one block of each of the 0, 2, 5, and 7 parts of mill scale content, one concrete block for comparison and A total of five were installed. The water depth of the installation site was about 3 m, and it was a point about 2 m away from the quay. The situation was checked after about 2 weeks, but no situation was observed in which seaweeds were still growing due to the short time after installation. About 1
When the situation was checked after a lapse of months, the growth of seaweed was confirmed in the same manner as described above.

【0054】上記のように、前記焼却灰溶融固化物は、
前述のように結晶形態がゲーレナイトであって岩石とし
ての強度が大きいので、海中の砂や水の動きによって摩
耗され難く、かつ前記藻類の生育状況からみて、藻床ま
たは魚床のような海中設置資材としてコンクリートブロ
ックよりも優れていることが判明した。
As described above, the incinerated ash melt-solidified product is:
As described above, since the crystal form is gohrenite and the strength as a rock is large, it is hard to be worn by the movement of sand and water in the sea, and in view of the growth state of the algae, it is installed in the sea such as an algae bed or a fish bed. It turned out to be superior to concrete blocks as a material.

【0055】[0055]

【発明の効果】上記のとおり、この発明の焼却灰の溶融
固化物は、乾燥焼却灰にホタテ,カキ等の貝殻からなる
成分調整材および還元剤を混合して電気炉で溶融処理
し、SiO2,Al23,CaO,MgO等を主成分と
する溶融スラグを出滓させ、この出滓した溶融スラグを
鋳型に鋳込んで徐冷し結晶化することにより、所定の形
状・寸法に岩石化してなるものとし、さらに必要に応じ
て、鉄イオン供与体を含んでなるものとしたので、焼却
灰の減容化および無害化に当り、成分調整材としての副
資材コストを低減し、さらに溶融固化物の特に海中設置
資材としての有効利用を図ることができる。
As described above, the melted solidified incinerated ash of the present invention is obtained by mixing a dry incinerated ash with a component adjusting material composed of shells such as scallops and oysters and a reducing agent, melting the mixture in an electric furnace, and subjecting the incinerated ash to melting treatment. 2 , a molten slag mainly composed of Al 2 O 3 , CaO, MgO, etc. is discharged, and the discharged molten slag is cast into a mold, gradually cooled, and crystallized to obtain a predetermined shape and dimensions. Since it was made into a rock, and further, if necessary, it was made to contain an iron ion donor, so as to reduce the volume and detoxify the incinerated ash, reduce the secondary material cost as a component adjusting material, Further, it is possible to effectively utilize the molten and solidified product, particularly as an undersea installation material.

【0056】また、前記焼却灰溶融固化物を製造する装
置としては、乾燥焼却灰,貝殻からなる成分調整材およ
び還元剤を配合した混合物の供給手段と、直流電気抵抗
式還元溶融炉と、この溶融炉に設けてなり炉内で溶融処
理した溶融スラグ,溶融金属および溶融飛灰を個別に取
り出すための手段と、取り出した前記溶融スラグを導入
し所定の形状・寸法に鋳込む鋳型手段とを備えるものと
したので、溶融スラグへの重金属の混入が抑制され、海
中設置資材として好適な溶融固形物を得ることができ
る。
The apparatus for producing the molten and solidified incinerated ash includes a means for supplying a mixture of a dry incinerated ash, a component adjusting material composed of shells and a reducing agent, a DC electric resistance type reduction melting furnace, A means provided in the melting furnace for separately taking out the molten slag, the molten metal and the molten fly ash melt-processed in the furnace; and a mold means for introducing the taken-out molten slag and casting it into a predetermined shape and size. Since it is provided, the incorporation of heavy metals into the molten slag is suppressed, and a molten solid material suitable as an undersea installation material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に関わる焼却灰溶融固化処理
のフローを示す図
FIG. 1 is a diagram showing a flow of an incineration ash melting and solidifying process according to an embodiment of the present invention.

【図2】この発明の実施例に関わる焼却灰溶融固化処理
装置の概略構成図
FIG. 2 is a schematic configuration diagram of an incineration ash melting and solidifying apparatus according to an embodiment of the present invention.

【図3】この発明に関わる溶融原料の成分分析結果の一
例を示す図
FIG. 3 is a diagram showing an example of a component analysis result of a molten raw material according to the present invention.

【図4】この発明の溶融固化処理後のスラグとメタルの
成分分析結果を示す図
FIG. 4 is a diagram showing the results of component analysis of slag and metal after the melt-solidification treatment of the present invention.

【図5】この発明の溶融固化物の溶出試験結果を示す図FIG. 5 is a view showing the results of a dissolution test of a molten and solidified product of the present invention.

【図6】この発明の溶融固化物の強度試験結果を示す図FIG. 6 is a view showing a strength test result of a molten and solidified product of the present invention.

【符号の説明】[Explanation of symbols]

1:炉上ビン、2:プッシャー、3:主電極、4:炉底
電極、5:溶融スラグ、6:メタル、7:排ガス、8:
前炉。
1: furnace top bin, 2: pusher, 3: main electrode, 4: bottom electrode, 5: molten slag, 6: metal, 7: exhaust gas, 8:
Forehearth.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅本 真鶴 東京都港区港南四丁目1番8号 富士電エ ンジ株式会社内 (72)発明者 藤田 満 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 曽我 義貞 青森県八戸市大字河原木字遠山新田5−2 大平洋金属株式会社内 Fターム(参考) 3K061 NB01 NB05 NB06 NB11 4D004 AA36 AA50 AB03 BA02 BA10 CA04 CA09 CA14 CA29 CA42 CA45 CB13 CB32 DA03 DA10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Manazuru Umemoto 4-18 Konan, Minato-ku, Tokyo Within Fuji Electric Engine Co., Ltd. No. 1 Inside Fuji Electric Co., Ltd. (72) Inventor Yoshisada Soga 5-2, Toyama Shinden, Okawa, Kawaragi, Aomori, Aomori Prefecture F term (reference) 3K061 NB01 NB05 NB06 NB11 4D004 AA36 AA50 AB03 BA02 BA10 CA04 CA09 CA14 CA29 CA42 CA45 CB13 CB32 DA03 DA10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 乾燥焼却灰にホタテ,カキ等の貝殻から
なる成分調整材および還元剤を混合して電気炉で溶融処
理し、SiO2,Al23,CaO,MgO等を主成分
とする溶融スラグを出滓させ、この出滓した溶融スラグ
を鋳型に鋳込んで徐冷し結晶化することにより、所定の
形状・寸法に岩石化してなることを特徴とする焼却灰溶
融固化物。
A dry incinerated ash is mixed with a component adjusting material composed of shells such as scallops and oysters and a reducing agent, melted in an electric furnace, and mainly composed of SiO 2 , Al 2 O 3 , CaO, MgO or the like. A molten solidified incineration ash characterized in that the molten slag is cast into a mold, gradually cooled, and crystallized to form a rock into a predetermined shape and dimensions.
【請求項2】 請求項1に記載の溶融固化物は、鉄イオ
ン供与体を含んでなることを特徴とする焼却灰溶融固化
物。
2. The incinerated ash melt-solidified material according to claim 1, wherein the molten solidified material comprises an iron ion donor.
【請求項3】 乾燥焼却灰に成分調整材および還元剤を
混合して電気炉で溶融処理する工程と、SiO2,Al2
3,CaO,MgO等を主成分とする溶融スラグを出
滓させる工程と、この出滓した溶融スラグを鋳型に鋳込
んで徐冷し結晶化する工程とを含む焼却灰溶融固化処理
方法において、 前記成分調整材として、ホタテ,カキ等の貝殻を用いる
ことを特徴とする焼却灰溶融固化処理方法。
3. A step of melting processes in an electric furnace by mixing the components adjusting material and a reducing agent to a dry ash, SiO 2, Al 2
A method for melting and solidifying incineration ash comprising a step of removing molten slag mainly composed of O 3 , CaO, MgO or the like, and a step of casting the molten slag discharged into a mold, gradually cooling and crystallizing. A method of melting and solidifying incineration ash, wherein shells such as scallops and oysters are used as the component adjusting material.
【請求項4】 請求項3に記載の処理方法において、前
記貝殻はフレーク状に砕いたものとし、前記乾燥焼却灰
に対する混合割合を、5〜20重量%とすることを特徴
とする焼却灰溶融固化処理方法。
4. The incineration ash melting method according to claim 3, wherein said shells are crushed into flakes, and a mixing ratio with respect to said dry incineration ash is 5 to 20% by weight. Solidification treatment method.
【請求項5】 請求項3または4に記載の処理方法にお
いて、前記溶融スラグに鉄イオン供与体を添加した後、
鋳込を行なうことを特徴とする焼却灰溶融固化処理方
法。
5. The processing method according to claim 3 or 4, wherein after adding an iron ion donor to the molten slag,
A method for melting and solidifying incineration ash, which comprises casting.
【請求項6】 請求項5に記載の処理方法において、前
記鉄イオン供与体は、鉄材の圧延時に発生する鉄酸化物
(ミルスケール)とすることを特徴とする焼却灰溶融固
化処理方法。
6. The incineration ash melting and solidifying method according to claim 5, wherein the iron ion donor is iron oxide (mill scale) generated during rolling of an iron material.
【請求項7】 請求項6に記載の処理方法において、前
記ミルスケールの添加量は、前記乾燥焼却灰と貝殻との
合計重量部を100とした場合に、2〜7重量部とする
ことを特徴とする焼却灰溶融固化処理方法。
7. The processing method according to claim 6, wherein the addition amount of the mill scale is 2 to 7 parts by weight when the total weight of the dry incinerated ash and the shell is 100. Characteristic incineration ash melting and solidification treatment method.
【請求項8】 請求項1または2に記載の焼却灰溶融固
化物を、海中でコンブ,ワカメ等の海藻類の生育のため
の藻床部材、もしくは魚介類繁殖のための魚床部材とし
て利用することを特徴とする焼却灰溶融固化物の利用方
法。
8. The molten and incinerated ash according to claim 1 or 2 is used as an algae bed member for growing seaweeds such as kelp and seaweed or a fish bed member for breeding seafood in the sea. A method of using a solidified incinerated ash, characterized in that:
【請求項9】 請求項3または4に記載の焼却灰溶融固
化処理方法を実施するための装置であって、乾燥焼却
灰,貝殻からなる成分調整材および還元剤を配合した混
合物の供給手段と、直流電気抵抗式還元溶融炉と、この
溶融炉に設けてなり炉内で溶融処理した溶融スラグ,溶
融金属および溶融飛灰を個別に取り出すための手段と、
取り出した前記溶融スラグを導入し所定の形状・寸法に
鋳込む鋳型手段とを備えることを特徴とする焼却灰溶融
固化処理装置。
9. An apparatus for carrying out the incineration ash melting and solidifying method according to claim 3 or 4, wherein a means for supplying a mixture containing a component adjusting material composed of dry incineration ash, shells and a reducing agent is provided. A DC electric resistance type reduction melting furnace, and means for individually removing molten slag, molten metal and molten fly ash which are provided in the melting furnace and which have been melt-processed in the furnace;
And a mold means for introducing the molten slag that has been taken out and casting it into a predetermined shape and size.
【請求項10】 請求項9に記載の処理装置において、
前記直流電気抵抗式還元溶融炉は、炉の上部に前記混合
物の導入口と主電極を設け、かつ炉底に炉底電極を設け
てなることを特徴とする焼却灰溶融固化処理装置。
10. The processing apparatus according to claim 9, wherein
The incineration ash melting and solidifying apparatus is characterized in that the direct current resistance type reduction melting furnace is provided with an inlet for the mixture and a main electrode at an upper part of the furnace, and a furnace bottom electrode at a furnace bottom.
【請求項11】 請求項9または10に記載の処理装置
において、前記溶融スラグに鉄イオン供与体を添加する
手段を備えることを特徴とする焼却灰溶融固化処理装
置。
11. The incineration ash melting and solidifying apparatus according to claim 9, further comprising means for adding an iron ion donor to the molten slag.
JP2001156526A 2001-05-25 2001-05-25 Molten solidified product of incinerated ash, method and apparatus for melting and solidifying, and method of using molten solidified product Expired - Fee Related JP4514363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156526A JP4514363B2 (en) 2001-05-25 2001-05-25 Molten solidified product of incinerated ash, method and apparatus for melting and solidifying, and method of using molten solidified product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156526A JP4514363B2 (en) 2001-05-25 2001-05-25 Molten solidified product of incinerated ash, method and apparatus for melting and solidifying, and method of using molten solidified product

Publications (2)

Publication Number Publication Date
JP2002346502A true JP2002346502A (en) 2002-12-03
JP4514363B2 JP4514363B2 (en) 2010-07-28

Family

ID=19000523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156526A Expired - Fee Related JP4514363B2 (en) 2001-05-25 2001-05-25 Molten solidified product of incinerated ash, method and apparatus for melting and solidifying, and method of using molten solidified product

Country Status (1)

Country Link
JP (1) JP4514363B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138509A (en) * 2004-11-10 2006-06-01 Taiheiyo Kinzoku Kk Melting device of incinerated ash
JP2012153557A (en) * 2011-01-25 2012-08-16 Dowa Eco-System Co Ltd Artificial aggregate and method of manufacturing the same
CN113000555A (en) * 2021-02-23 2021-06-22 中节能(汕头)再生资源技术有限公司 Fire treatment method for hazardous waste incineration ash

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261588A (en) * 1989-03-31 1990-10-24 Katsumi Takao Method for utilizing waste
JPH03275568A (en) * 1990-03-27 1991-12-06 Osaka City Production of solidified block of molten ash
JPH04326975A (en) * 1991-04-26 1992-11-16 Kawasaki Heavy Ind Ltd Production of slag due to melting of waste
JPH0571723A (en) * 1991-09-13 1993-03-23 Daido Steel Co Ltd Melting treatment of disposal of city refuse incineration ash
JPH10167783A (en) * 1996-12-11 1998-06-23 Rasa Shoji Kk Production of artificial aggregate for concrete from incinerated ash and apparatus for production
JPH1121155A (en) * 1997-06-30 1999-01-26 Shin Meiwa Ind Co Ltd Production of artificial aggregate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261588A (en) * 1989-03-31 1990-10-24 Katsumi Takao Method for utilizing waste
JPH03275568A (en) * 1990-03-27 1991-12-06 Osaka City Production of solidified block of molten ash
JPH04326975A (en) * 1991-04-26 1992-11-16 Kawasaki Heavy Ind Ltd Production of slag due to melting of waste
JPH0571723A (en) * 1991-09-13 1993-03-23 Daido Steel Co Ltd Melting treatment of disposal of city refuse incineration ash
JPH10167783A (en) * 1996-12-11 1998-06-23 Rasa Shoji Kk Production of artificial aggregate for concrete from incinerated ash and apparatus for production
JPH1121155A (en) * 1997-06-30 1999-01-26 Shin Meiwa Ind Co Ltd Production of artificial aggregate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138509A (en) * 2004-11-10 2006-06-01 Taiheiyo Kinzoku Kk Melting device of incinerated ash
JP2012153557A (en) * 2011-01-25 2012-08-16 Dowa Eco-System Co Ltd Artificial aggregate and method of manufacturing the same
CN113000555A (en) * 2021-02-23 2021-06-22 中节能(汕头)再生资源技术有限公司 Fire treatment method for hazardous waste incineration ash

Also Published As

Publication number Publication date
JP4514363B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
Fisher et al. The recycling and reuse of steelmaking slags—A review
Wong et al. Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018
Iyer et al. Power station fly ash—a review of value-added utilization outside of the construction industry
US6843843B2 (en) Underwater immersion block and method to produce the same
WO2009089907A1 (en) Process for preparing a foaming slag former, product and use thereof.
Mao et al. Recycling sewage sludge into ceramic materials: A review
JP5232327B2 (en) Method for packaging radioactive waste in synthetic rock form
Liu et al. The pretreatment of non-ferrous metallurgical waste slag and its research progress in the preparation of glass-ceramics
Zhan et al. Migration, solidification/stabilization mechanism of heavy metal in lightweight ceramisite from co-sintering fly ash and electrolytic manganese residue
Wu et al. Comprehensive Utilization of Magnesium Slag by Pidgeon Process
Pappu et al. Waste to wealth-cross sector waste recycling opportunity and challenges
Xiao et al. Double high-value utilization of valuable resources in the process of co-sintering detoxification of high chlorine incineration fly ash and blast furnace dust
JP4514363B2 (en) Molten solidified product of incinerated ash, method and apparatus for melting and solidifying, and method of using molten solidified product
JP3135046B2 (en) Method and apparatus for producing artificial gravel from incinerated ash molten slag
Wu et al. Overview of magnesium metallurgy
JP2001252694A (en) Underwater structure and bottom material/water quality cleaning method
EP1018298B1 (en) Stone material for submerging into water, method of production thereof, and method of forming submarine forest
CN114472475A (en) Method for preparing molten glass body by utilizing complementarity of two fly ash components
Paleologos et al. Paradigm shifts in incinerator ash, sediment material recovery and landfill monitoring
MARCEL et al. Bauxite mining and refinery: investigating prospective red mud management strategies
Han et al. Resource utilization of electrolytic manganese residues
Li et al. Effects of chemical composition on lightweight aggregates produced from contaminated soil: Phase regulation, immobilization mechanism and leaching prediction
JP3525081B2 (en) Method for producing alumina cement
Zhang et al. Isothermal foaming-nucleation-crystallization of glass ceramic foams with hierarchical pore structure: A sustainable approach for disposal of secondary aluminum ash
JP6672052B2 (en) Manufacturing method of molten product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4514363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees