JP2002345279A - Motor position controller provided with deviation ripple monitoring function - Google Patents

Motor position controller provided with deviation ripple monitoring function

Info

Publication number
JP2002345279A
JP2002345279A JP2001148675A JP2001148675A JP2002345279A JP 2002345279 A JP2002345279 A JP 2002345279A JP 2001148675 A JP2001148675 A JP 2001148675A JP 2001148675 A JP2001148675 A JP 2001148675A JP 2002345279 A JP2002345279 A JP 2002345279A
Authority
JP
Japan
Prior art keywords
deviation
ripple
signal
output
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001148675A
Other languages
Japanese (ja)
Inventor
Yasuhiko Kako
靖彦 加来
Hitoshi Okubo
整 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001148675A priority Critical patent/JP2002345279A/en
Publication of JP2002345279A publication Critical patent/JP2002345279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome a drawback in prior arts that there are cases where location deviation signals cannot be observed. SOLUTION: A position controller for controlling the position of a motor is provided with a subtracting means 13 which subtracts a detected position signal from a position command and outputs the deviation 1d; an integrating means 22 which outputs a model position signal; a subtracting means 23 which subtracts the model position signal from the position command and outputs the deviation 2d; a proportional gain means 20 which is fed with the deviation 2d as input; a speed control system model 21 which is fed with the output of the proportional gain means 20 as the input; and a subtracting means 33 which determines the difference between the deviation 1a and the deviation 2d. The output of the speed control system model 21 is inputted to the integrating means 22, and the proportional gain of the proportional gain means 20 is equalized to the position loop gain 10 of the position controller. The output of the subtracting means 33 is used as a monitor signal for the deviation ripple of the motor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、位置制御系におけ
る位置偏差のリップル信号とリップル量を演算し出力す
る偏差リップルモニタ機能を備えた電動機位置制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor position control device having a deviation ripple monitor function for calculating and outputting a ripple signal and a ripple amount of a position deviation in a position control system.

【0002】[0002]

【従来の技術】電動機の位置制御系の性能評価指標の一
つとして、回転あるいは移動(リニア型の電動機)のな
めらかさがある。電動機の位置制御系2軸でXYテーブ
ルを駆動し、XY平面の軌跡を制御する用途では、形状
の滑らかさが要求され、位置偏差にリップルがあれば、
そのまま形状誤差となる。また、一定速度で回転または
移動する用途では、速度リップルが小さい必要があり、
検出速度のリップル成分を評価する。この場合、位置偏
差にもリップルが出ており、位置偏差に位置ループゲイ
ンをかけたものが速度指令であるので(後述の図1参
照)、結局、電動機のリップルを位置偏差のリップルで
評価することができる。通常、位置偏差信号を位置制御
装置のモニタから観測できるが、リップル分が小さい場
合、位置偏差信号の量子化誤差以下となり、観測できな
い問題があった。例えば、電動機でボールネジで構成し
た1軸スライダー機構を駆動する場合、電動機の位置検
出器の精度を16ビット/1回転、ボールネジのりード
を10mm、とすると位置の分解能は、10mm/16
ビット=0.15μmとなる。送り速度10m/分とす
ると、指令パルス速度は10000/0.00015/
60=1111Kppsとなる。位置ループゲインを4
0[1/s]とすると、位置偏差は、1111000/
40=2775パルスとなるので、偏差の1ビットを正
確に観測するには、正負の符号を考えて16ビット以上
のDA変換器(ディジタルアナログ変換器)が必要とな
る。位置制御装置では、コストダウンのため、8ビット
程度のDA変換器でモニタを構成する要求が強い。8ビ
ット程度のDA変換器では、2775/128=21パ
ルス(3μm)以下の微小なリップルは量子化誤差以下
となり観測できないことがわかる。このような場合で
も、微小なリップルを観測するには、位置偏差信号を高
域通過フィルタを用いて偏差リップルのみ抽出しゲイン
をかけて拡大すれば、8ビットのDA変換器でも観測が
できると考えられる。しかし、加減速時のように速度が
変化しているところでは、高域通過フィルタから偏差が
そのままでてくるので、リップルは表示範囲外となり観
測できない問題がある。例えば、1000回転/分時
に、電動機の1回転に1周期のリップルは1000/6
0=16Hzとなるので、これを正確に観測するには、
前記高域通過フィルタの遮断周波数は1Hz程度にとる
必要がある。加速時間を0.2秒位とすると変化は5H
z程度であるので、1Hzの高域通過フィルタは通過し
てしまい、リップル分のみ検出することができない。
2. Description of the Related Art One of the performance evaluation indexes of a position control system of a motor is smoothness of rotation or movement (linear motor). In applications where the XY table is driven by two axes of the position control system of the motor to control the trajectory on the XY plane, smoothness of the shape is required, and if there is a ripple in the position deviation,
It becomes a shape error as it is. For applications that rotate or move at a constant speed, the speed ripple must be small,
Evaluate the ripple component of the detection speed. In this case, a ripple also appears in the position deviation, and the speed command is obtained by multiplying the position deviation by the position loop gain (see FIG. 1 described later). Therefore, the ripple of the motor is evaluated by the ripple of the position deviation. be able to. Normally, the position deviation signal can be observed from the monitor of the position control device. However, when the ripple is small, the quantization error of the position deviation signal is less than or equal to that, and there is a problem that the position deviation signal cannot be observed. For example, when driving a one-axis slider mechanism composed of a ball screw with an electric motor, if the accuracy of the position detector of the electric motor is 16 bits / 1 rotation and the ball screw lead is 10 mm, the position resolution is 10 mm / 16.
Bit = 0.15 μm. Assuming a feed speed of 10 m / min, the command pulse speed is 10,000 / 0.00015 /
60 = 1111 Kpps. Position loop gain of 4
If 0 [1 / s], the position deviation is 1111000 /
Since 40 = 2775 pulses, a 16-bit or more DA converter (digital-to-analog converter) is required in order to accurately observe one bit of the deviation in consideration of the sign. In the position control device, there is a strong demand to configure a monitor with a DA converter of about 8 bits for cost reduction. It can be seen that in a DA converter of about 8 bits, a minute ripple of 2775/128 = 21 pulses (3 μm) or less becomes a quantization error or less and cannot be observed. Even in such a case, in order to observe a minute ripple, if only the deviation ripple is extracted from the position deviation signal using a high-pass filter and the gain is enlarged by applying a gain, it can be observed even with an 8-bit DA converter. Conceivable. However, where the speed is changing, such as at the time of acceleration / deceleration, there is a problem that the ripple is outside the display range and cannot be observed because the deviation from the high-pass filter remains as it is. For example, at 1000 revolutions / minute, one cycle of the motor has one cycle of a ripple of 1000/6.
Since 0 = 16 Hz, to observe this accurately,
The cutoff frequency of the high-pass filter needs to be about 1 Hz. If the acceleration time is about 0.2 seconds, the change is 5H
Since it is about z, the signal passes through a high-pass filter of 1 Hz, and it is impossible to detect only the ripple.

【0003】[0003]

【発明が解決しようとする課題】以上のように、従来技
術には以下の問題点があった。 (1)位置偏差信号のリップル分が小さい場合、位置偏
差信号の量子化偏差以下となり、位置偏差信号を観測で
きない。 (2)加減速時のように速度が変化しているところで
は、高域通過フィルタから位置偏差信号がそのままでて
くるので、リップルは表示範囲外となり観測できない。 本発明は上記問題点を解決するために、微小な偏差リッ
プルを検出する電動機位置制御装置を提供することを目
的とする。
As described above, the prior art has the following problems. (1) When the ripple of the position deviation signal is small, it becomes smaller than the quantization deviation of the position deviation signal, and the position deviation signal cannot be observed. (2) Where the speed is changing, such as during acceleration / deceleration, the position deviation signal is left as it is from the high-pass filter, so that the ripple is outside the display range and cannot be observed. SUMMARY OF THE INVENTION An object of the present invention is to provide a motor position control device for detecting a minute deviation ripple in order to solve the above-mentioned problems.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1に関わ
る偏差リップルモニタ機能を備えた電動機位置制御装置
は、位置指令から検出位置信号を減算し偏差1dを出力
する減算手段13と、モデル位置信号を出力する積分手
段と、前記位置指令から前記モデル位置信号を減算し偏
差2dを出力する減算手段23と、前記偏差2dを入力
する比例ゲイン手段と、前記比例ゲイン手段の出力を入
力する速度制御系モデルと、前記偏差1dと偏差2dの
差をとる減算手段33とを備え、前記速度制御系モデル
の出力を前記積分手段に入力し、前記比例ゲイン手段の
比例ゲインを前記位置制御装置の位置ループゲインと等
しくし、前記減算手段33の出力を前記電動機の偏差リ
ップルのモニタ信号とするものである。また、本発明の
請求項2の偏差リップルモニタ機能を備えた電動機位置
制御装置は、減算手段33の偏差リップル信号を入力
し、偏差リップル量を出力するリップル量演算手段を備
え、前記リップル量演算手段の出力をリップル量モニタ
信号とすることを特徴とするものである。
According to the present invention, there is provided an electric motor position control apparatus having a deviation ripple monitor function, comprising: a subtraction means for subtracting a detected position signal from a position command to output a deviation 1d; Integrating means for outputting a position signal, subtracting means 23 for subtracting the model position signal from the position command to output a deviation 2d, proportional gain means for inputting the deviation 2d, and inputting the output of the proportional gain means A speed control system model; and a subtraction unit 33 for calculating a difference between the deviation 1d and the deviation 2d. An output of the speed control system model is input to the integration unit, and a proportional gain of the proportional gain unit is set to the position control device. And the output of the subtraction means 33 is used as a monitor signal of the deviation ripple of the electric motor. The motor position control device having the deviation ripple monitor function according to the second aspect of the present invention further includes a ripple amount calculation unit that inputs a deviation ripple signal of the subtraction unit 33 and outputs a deviation ripple amount, The output of the means is a ripple amount monitor signal.

【0005】[0005]

【発明の実施の形態】図1に本発明の第1の実施例を示
す。速度制御手段11は、電動機1を駆動する電力変換
器(図示せず)を備えている。位置検出手段2が検出し
た電動機1の位置信号を速度演算手段12に入力する。
速度演算手段12が出力する電動機速度信号を前記速度
制御手段11に帰還する。位置指令と前記位置信号の偏
差1dに位置ループゲイン10をかけ、速度指令として
速度制御手段11に入力している。位置指令と積分手段
22の偏差2dにモデルの位置ループゲイン20をか
け、速度制御系モデル21に入力し、前記モデル21の
出力を前記積分手段22に入力する。減算手段33で、
偏差1dと偏差2dの差を演算して偏差リップルモニタ
信号とする。前記の速度制御系モデル21は、速度制御
手段11の制御系の構成に応じて、構成すればよい。例
えば、速度ループの応答が位置ループよりも十分速いと
仮定し、図2(a)に示すゲイン1の制御ブロック41
で近似する。加減速度が大きい場合等では、図2(a)
の近似ではモデルの誤差が大きくなるので、速度制御手
段11の制御系構成に応じて、図2(b)の比例制御系
あるいは(c)の比例積分制御系あるいは(d)の積分
比例制御で近似すればよい。図2において、Kvは速度
ループモデルのゲイン、Tiは積分定数、1/sは積分
手段である。図1において、モデルの位置ループゲイン
20を位置ループゲイン10と同じにとり、速度制御系
の各種ゲイン(Kv、Ti)をモデルに応じて速度制御
手段11の該当するゲインと同等にとると、位置制御系
の偏差1dとモデルの位置制御系の偏差2dの波形が、
偏差1dのリップルを除いて等しくなるので、偏差1d
と偏差2dの差が偏差リップルモニタ信号となる。偏差
リップルモニタ信号の定量的な指標が必要な場合は、前
記減算手段33の出力をリップル量演算手段30に入力
し、偏差リップル量モニタ信号を演算する。偏差リップ
ル量として、平均値が必要な場合は、図3(a)のよう
に、前記リップル量演算手段30を構成する。図3
(a)において、偏差リップルモニタ信号の絶対値全体
値演算手段51で演算し、例えば移動平均処理あるいは
低域通過フィルタを用いて平均値の演算を平均値演算手
段52で行う。リップルのrms値(実効値)が必要な
場合、図3(b)に示すように、リップル信号の2乗を
2乗演算手段54で計算して、移動平均あるいは低域通
過フィルタにて平均化処理した値のルート(平方根)を
平均値演算手段53でとればよい。
FIG. 1 shows a first embodiment of the present invention. The speed control means 11 includes a power converter (not shown) for driving the electric motor 1. The position signal of the electric motor 1 detected by the position detecting means 2 is input to the speed calculating means 12.
The motor speed signal output from the speed calculation means 12 is fed back to the speed control means 11. A deviation 1d between the position command and the position signal is multiplied by a position loop gain 10 and input to the speed control means 11 as a speed command. The position command and the deviation 2d of the integration means 22 are multiplied by the position loop gain 20 of the model, and the result is input to the speed control system model 21, and the output of the model 21 is input to the integration means 22. In the subtraction means 33,
The difference between the deviation 1d and the deviation 2d is calculated and used as a deviation ripple monitor signal. The speed control system model 21 may be configured according to the configuration of the control system of the speed control unit 11. For example, assuming that the response of the speed loop is sufficiently faster than that of the position loop, the control block 41 having a gain of 1 shown in FIG.
Approximation. When the acceleration / deceleration is large, FIG.
In the approximation, the error of the model becomes large. Therefore, depending on the control system configuration of the speed control means 11, the proportional control system of FIG. 2B, the proportional integral control system of FIG. 2C, or the integral proportional control of FIG. What is necessary is just to approximate. In FIG. 2, Kv is the gain of the velocity loop model, Ti is the integration constant, and 1 / s is the integration means. In FIG. 1, when the position loop gain 20 of the model is set to be the same as the position loop gain 10 and the various gains (Kv, Ti) of the speed control system are set equal to the corresponding gains of the speed control means 11 according to the model, the position The waveform of the deviation 1d of the control system and the deviation 2d of the position control system of the model are
Since it becomes equal except for the ripple of the deviation 1d, the deviation 1d
And the difference 2d becomes the difference ripple monitor signal. If a quantitative index of the deviation ripple monitor signal is required, the output of the subtraction means 33 is input to the ripple amount calculation means 30 to calculate the deviation ripple monitor signal. When an average value is required as the deviation ripple amount, the ripple amount calculation means 30 is configured as shown in FIG. FIG.
In (a), the average value of the deviation ripple monitor signal is calculated by the whole value calculating means 51, and the average value is calculated by the mean value calculating means 52 using, for example, moving average processing or a low-pass filter. When the rms value (effective value) of the ripple is required, as shown in FIG. 3B, the square of the ripple signal is calculated by the square calculating means 54 and averaged by a moving average or a low-pass filter. The route (square root) of the processed value may be taken by the average value calculating means 53.

【0006】[0006]

【発明の効果】以上説明したように、本発明によると、
リップルの乗った偏差1dの信号からリップルのない偏
差2dの信号を減算するので、位置偏差が大きい場合で
も微小なリップル分のみ検出でき、モデルの位置ループ
ゲインおよび速度制御系のモデルを構成しているため、
偏差1dと偏差2dの信号が相似となり、加減速時にお
いても、微小な偏差リップル信号が検出できる効果があ
る。
As described above, according to the present invention,
Since the signal of the deviation 2d without the ripple is subtracted from the signal of the deviation 1d with the ripple, only a minute ripple can be detected even if the positional deviation is large, and the position loop gain of the model and the model of the speed control system are constructed. Because
The signals of the deviation 1d and the deviation 2d are similar, and there is an effect that a minute deviation ripple signal can be detected even during acceleration / deceleration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例FIG. 1 shows an embodiment of the present invention.

【図2】速度制御系モデルの実施例FIG. 2 is an embodiment of a speed control system model.

【図3】リップル量演算手段の実施例FIG. 3 shows an embodiment of a ripple amount calculating means.

【符号の説明】[Explanation of symbols]

1 電動機 2 位置検出手段 10 位置ループゲイン 11 速度制御手段 12 速度演算手段 13 減算手段 20 モデルの位置ループゲイン(比例ゲイン手段) 21 速度制御系のモデル 22 積分手段 23 減算手段 30 リップル量演算手段 33 減算手段 41 ゲイン1の比例要素 42、43、44 ゲインKvの比例演算手段 45、46、47 積分手段 48 ゲインがKv/Tiの積分手段 49 時定数がTiの積分手段 51 絶対値演算手段 52、53 平均値演算手段 54 2乗演算手段 1d、2d 偏差 DESCRIPTION OF SYMBOLS 1 Motor 2 Position detection means 10 Position loop gain 11 Speed control means 12 Speed calculation means 13 Subtraction means 20 Model position loop gain (proportional gain means) 21 Speed control system model 22 Integration means 23 Subtraction means 30 Ripple amount calculation means 33 Subtracting means 41 proportional element of gain 1 42, 43, 44 proportional calculating means of gain Kv 45, 46, 47 integrating means 48 integrating means of gain Kv / Ti 49 integrating means of time constant Ti 51 absolute value calculating means 52, 53 Mean calculation means 54 Square calculation means 1d, 2d Deviation

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H303 AA01 BB02 BB07 CC02 DD01 DD25 EE03 EE07 KK02 KK03 KK04 KK05 KK06 KK18 LL03 5H550 AA18 BB10 DD01 FF02 FF03 FF04 FF08 GG01 GG03 HB02 JJ04 JJ16 JJ22 JJ24 JJ26 LL02 LL36 PP02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電動機の位置を制御する位置制御装置に
おいて、位置指令から検出位置信号を減算し偏差1dを
出力する減算手段13と、モデル位置信号を出力する積
分手段と、前記位置指令から前記モデル位置信号を減算
し偏差2dを出力する減算手段23と、前記偏差2dを
入力する比例ゲイン手段と、前記比例ゲイン手段の出力
を入力する速度制御系モデルと、前記偏差1dと偏差2
dの差をとる減算手段33とを備え、前記速度制御系モ
デルの出力を前記積分手段に入力し、前記比例ゲイン手
段の比例ゲインを前記位置制御装置の位置ループゲイン
と等しくし、前記減算手段33の出力を前記電動機の偏
差リップルのモニタ信号とすることを特徴とする偏差リ
ップルモニタ機能を備えた電動機位置制御装置。
1. A position control device for controlling a position of an electric motor, wherein a subtraction means 13 for subtracting a detected position signal from a position command and outputting a deviation 1d; an integrating means for outputting a model position signal; Subtraction means 23 for subtracting the model position signal and outputting a deviation 2d; proportional gain means for inputting the deviation 2d; a speed control system model for inputting the output of the proportional gain means;
a subtraction means 33 for taking the difference of d, inputting the output of the speed control system model to the integration means, making the proportional gain of the proportional gain means equal to the position loop gain of the position control device, 33. A motor position control device having a deviation ripple monitoring function, wherein an output of the motor 33 is used as a monitor signal of a deviation ripple of the electric motor.
【請求項2】 減算手段33の偏差リップル信号を入力
し、偏差リップル量を出力するリップル量演算手段を備
え、前記リップル量演算手段の出力をリッップル量モニ
タ信号とすることを特徴とする請求項1記載の偏差リッ
プルモニタ機能を備えた電動機位置制御装置。
2. The apparatus according to claim 1, further comprising a ripple calculating means for inputting a deviation ripple signal of the subtracting means and outputting a deviation ripple, wherein an output of the ripple calculating means is a ripple monitoring signal. 2. A motor position control device having the deviation ripple monitor function according to 1.
JP2001148675A 2001-05-18 2001-05-18 Motor position controller provided with deviation ripple monitoring function Pending JP2002345279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148675A JP2002345279A (en) 2001-05-18 2001-05-18 Motor position controller provided with deviation ripple monitoring function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148675A JP2002345279A (en) 2001-05-18 2001-05-18 Motor position controller provided with deviation ripple monitoring function

Publications (1)

Publication Number Publication Date
JP2002345279A true JP2002345279A (en) 2002-11-29

Family

ID=18993944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148675A Pending JP2002345279A (en) 2001-05-18 2001-05-18 Motor position controller provided with deviation ripple monitoring function

Country Status (1)

Country Link
JP (1) JP2002345279A (en)

Similar Documents

Publication Publication Date Title
KR20010075266A (en) Position controller
KR20080041693A (en) System identification device
JP2002345279A (en) Motor position controller provided with deviation ripple monitoring function
JPWO2008093486A1 (en) Moment of inertia identification device, identification method thereof, and motor control device including the identification device
JP3063562B2 (en) Moving body speed control method and its control device
JPH0933369A (en) Detecting method for external force and external torque of electric motor system, and device therefor
JPH03231317A (en) Motor controller
JP2008543250A (en) Position control method and / or speed control method of linear drive device
JP3174967B2 (en) Motor control device
EP4270769A1 (en) Characteristic calculation device, characteristic calculation method, and program
JP2006018431A (en) Servo control device
JP2002078369A (en) Adjusting method and apparatus for servo motor controller
JPWO2020012656A1 (en) Motor drive controller
JPH0740268A (en) Robot arm controlling device
JP3310555B2 (en) Positioning control device
JP2021151078A (en) Angle controller
JPH04302303A (en) Automatic controller
KR20090043460A (en) System and method for stabilization contol using an inertial sensor
JPS6038658A (en) Speed detecting apparatus
JPS6324402A (en) Locus control device for robot
KR101562059B1 (en) Method and apparatus for analyzing feature of servo system
JPH05272965A (en) Method and apparatus for displaying moving body posture angle
JP3551950B2 (en) Imaging device with turntable
JP2001290540A (en) Spatial stabilization device
JPH03190584A (en) Servo unit for dc motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081017