JP2002341274A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JP2002341274A
JP2002341274A JP2001144995A JP2001144995A JP2002341274A JP 2002341274 A JP2002341274 A JP 2002341274A JP 2001144995 A JP2001144995 A JP 2001144995A JP 2001144995 A JP2001144995 A JP 2001144995A JP 2002341274 A JP2002341274 A JP 2002341274A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
scanning
light
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001144995A
Other languages
Japanese (ja)
Inventor
Michiyo Fukutomi
みち代 福冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001144995A priority Critical patent/JP2002341274A/en
Publication of JP2002341274A publication Critical patent/JP2002341274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction optical device adjusting mechanism whose cost is reduced without deteriorating optical performance and by which the bending of a scanning line is easily adjusted. SOLUTION: A bending adjusting member is made to abut on the surface of a diffraction optical device in parallel to an optical scanning plane, and force is applied in a direction in parallel with a lens surface, so that the diffraction optical device is turned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各色間の走査線ずれ
を抑えてカラー画像情報を記録するようにした、例えば
カラー電子写真プロセスを有するレーサービームプリン
ターやカラーデジタル複写機等の装置に好適なカラー画
像形成装置で使用する走査光学装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for an apparatus such as a laser beam printer or a color digital copying machine having a color electrophotographic process, which records color image information while suppressing a scanning line shift between colors. The present invention relates to a scanning optical device used in a color image forming apparatus.

【0002】[0002]

【従来の技術】従来よりレーザビームプリンタ(LB
P)やデジタル複写機等に用いられる走査光学装置にお
いては画像信号に応して光源手段から光変調され出射し
た光束を、例えば回転多面鏡(ポリゴンミラー)より光
偏向器により周期的に偏向させ、fθ特性を有する走査
光学素子(結像素子)によって感光性の記録媒体(感光
ドラム)面上にスポット状に集束させ、その面上を光走
査して画像記録を行っている。
2. Description of the Related Art Conventionally, a laser beam printer (LB) has been used.
P) and a scanning optical device used in a digital copying machine or the like, a light beam which is light-modulated and emitted from a light source means in response to an image signal is periodically deflected by, for example, a rotating polygon mirror (polygon mirror) by an optical deflector. The light is focused into a spot on a photosensitive recording medium (photosensitive drum) surface by a scanning optical element (imaging element) having fθ characteristics, and the surface is optically scanned to record an image.

【0003】図3はこの種の従来の走査光学装置の要部
概略図である。便宜上、画像形成の主走査方向をy方
向、副走査方向をx方向、x−y平面に垂直な方向をz
方向とする。
FIG. 3 is a schematic view of a main part of a conventional scanning optical device of this kind. For convenience, the main scanning direction of image formation is the y direction, the sub scanning direction is the x direction, and the direction perpendicular to the xy plane is z.
Direction.

【0004】同図において光源手段91から放射した発
散光束はコリメーターレンズ92により略平行光束とさ
れ、絞り93によって該光束(光量)を制限して副走査
方向にのみ所定の屈折力を有するシリンドリカルレンズ
94に入射している。シリンドリカルレンズ94に入射
した略平行光束のうち主走査断面内においてはそのまま
略平行光束の状態で射出する。また副走査断面内におい
ては集束して回転多面鏡(ポリゴンミラー)から成る光
偏向器95の偏向面(反射面)95aにほぼ線像として
結像している。
In FIG. 1, a divergent light beam emitted from a light source means 91 is converted into a substantially parallel light beam by a collimator lens 92, and the light beam (light amount) is restricted by a stop 93, and a cylindrical light beam having a predetermined refractive power only in the sub-scanning direction. The light is incident on the lens 94. Of the substantially parallel light beams incident on the cylindrical lens 94, they are emitted as they are in the state of substantially parallel light beams in the main scanning section. In the sub-scanning section, the light is converged and formed as a substantially linear image on the deflection surface (reflection surface) 95a of the optical deflector 95 formed of a rotating polygon mirror (polygon mirror).

【0005】そして光偏向器95の偏向面95aで偏向
反射された光束はfθ特性を有する走査光学素子(fθ
レンズ)96を介して被走査面としての感光ドラム面9
8上に導光し、該光偏向器95を矢印A方向に回転させ
ることによって、該感光ドラム面98上を矢印B方向に
光走査している。これにより、記録媒体である感光ドラ
ム面98上に画像記録を行っている。
The light beam deflected and reflected by the deflecting surface 95a of the optical deflector 95 is a scanning optical element (fθ
A photosensitive drum surface 9 as a surface to be scanned through a lens 96
8, light is scanned in the direction of arrow B on the photosensitive drum surface 98 by rotating the light deflector 95 in the direction of arrow A. Thus, an image is recorded on the photosensitive drum surface 98 as a recording medium.

【0006】図4は前述した走査光学装置を複数個同時
に使用し、それぞれ異なる感光ドラム面上に各色毎の画
像情報を記録し、カラー画像を形成するカラー画像形成
装置の要部概略図である。
FIG. 4 is a schematic diagram of a main part of a color image forming apparatus which simultaneously uses a plurality of the above-described scanning optical devices, records image information for each color on different photosensitive drum surfaces, and forms a color image. .

【0007】同図において111、112、113、1
14は各々走査光学装置、131、132、133、1
34は各々像担持体としての感光ドラム、121、12
2、123、124は各々現像器、141は搬送ベルト
である。同図におけるカラー画像形成装置は上記の走査
光学装置(111、112、113、114)を4個並
べ、各々がC(シアン)、M(マゼンタ)、Y(イエロ
ー)、B(ブラック)の各色に対応し、各々並行して感
光ドラム131、132、133、134面上に画像信
号を記録し、カラー画像を高速に印字するものである。
In FIG. 1, 111, 112, 113, 1
14 is a scanning optical device, 131, 132, 133, 1
Numeral 34 denotes photosensitive drums as image carriers, 121 and 12 respectively.
Reference numerals 2, 123, and 124 denote developing units, respectively, and 141 denotes a transport belt. In the color image forming apparatus shown in the figure, four scanning optical devices (111, 112, 113, 114) are arranged, and each color is C (cyan), M (magenta), Y (yellow), and B (black). The image signals are recorded on the surfaces of the photosensitive drums 131, 132, 133 and 134 in parallel, and a color image is printed at a high speed.

【0008】このようなカラー画像形成装置では複数の
走査線を重ね合わせ画像形成を行うため、特に各色間の
走査線ずれ(以下「レジストレーションずれ」とも称
す。)を少なくすることが重要である。
In such a color image forming apparatus, since a plurality of scanning lines are superposed to form an image, it is particularly important to reduce a scanning line shift between the respective colors (hereinafter also referred to as "registration shift"). .

【0009】この走査線ずれを調整(補正)する方法と
しては、例えば転写ベルト上を精度良く搬送している転
写材に各レジスト検出画像(シアン、マゼンタ、イエロ
ー、ブラック)を形成し、各レジスト検出画像の位置を
検出手段で検出し、該検出された信号に基づいて電気的
に調整する方法がある。
As a method of adjusting (correcting) this scanning line deviation, for example, each resist detection image (cyan, magenta, yellow, black) is formed on a transfer material conveyed accurately on a transfer belt, and each resist is detected. There is a method in which the position of a detected image is detected by a detecting means and electrically adjusted based on the detected signal.

【0010】しかしながらこの走査線ずれを電気的に調
整することは非常に離しく、かつコストの点からもコス
ト高になるという問題点があった。
However, there is a problem that it is very difficult to electrically adjust the scanning line deviation, and the cost is high in terms of cost.

【0011】そこで従来では複数の走査光学装置を有す
るカラー画像形成装置において、各々の走査光学装置に
おける走査線の曲がりの調整を各々の走査光学装置の回
折部の回折光学素子の位置を変位させて行なうことによ
り、簡易な構成で各色間のレジストレーションずれを抑
えることができ、しかも高精細な印字に適したコンパク
トなカラー画像形成装置に好適な回折光学素子の位置変
位機構を設けている。
Conventionally, in a color image forming apparatus having a plurality of scanning optical devices, the bending of the scanning line in each scanning optical device is adjusted by displacing the position of the diffractive optical element of the diffractive portion of each scanning optical device. By doing so, a registration shift between respective colors can be suppressed with a simple configuration, and a position displacement mechanism of a diffractive optical element suitable for a compact color image forming apparatus suitable for high-definition printing is provided.

【0012】走査線曲がりの調整(補正)について図5
を用いて説明する。同図において前記図3に示した要素
と同一要素には同符番を付している。レンズや光源など
の光学部品の取り付け誤差や、レンズの成形時に発生す
る走査線くせを調整(補正)する。
FIG. 5 shows the adjustment (correction) of the scanning line bending.
This will be described with reference to FIG. In the figure, the same elements as those shown in FIG. 3 are denoted by the same reference numerals. It adjusts (corrects) errors in mounting optical components such as lenses and light sources, and scan line distortions that occur during lens molding.

【0013】同図においては前述の如く感光ドラム98
面上を走査する光束Lが光源手段、コリメーターレン
ズ、開口絞りを含んで構成されるレーザユニット91よ
り出射して副走査方向に所定の屈折力を有するシリンド
リカルレンズ94を通過し、光偏向器95により偏向反
射されてトーリックレンズ61と回折光学素子10cを
通過した後、感光ドラム98面上を照射する。
In FIG. 1, a photosensitive drum 98 is provided as described above.
A light beam L that scans the surface is emitted from a laser unit 91 including a light source unit, a collimator lens, and an aperture stop, passes through a cylindrical lens 94 having a predetermined refractive power in the sub-scanning direction, and After being deflected and reflected by 95 and passing through the toric lens 61 and the diffractive optical element 10c, it irradiates the surface of the photosensitive drum 98.

【0014】本従来例の走査光学装置においては回折光
学素子10cを該回折光学素子の長手方向の中心軸であ
るy軸まわりに図中C方向に回動(回転移動)すること
により、感光ドラム面98上に走査される光束Lは同図
の点線Dで示すように湾曲して走査する。
In the conventional scanning optical device, the photosensitive drum is rotated by rotating the diffractive optical element 10c in the direction C in the figure around the y-axis which is the central axis in the longitudinal direction of the diffractive optical element. The light beam L scanned on the surface 98 scans in a curved manner as shown by a dotted line D in FIG.

【0015】図5の(b)は、回折光学素子を矢印C2
の方向に1度だけ傾けた時の感光ドラム上の走査線曲が
りを計測したものである。回折光学素子の回動量(傾斜
角度)と走査線の湾曲量(曲がり)とはほぼ比例した関
係にあるため、予め調べておいたデータに基づいて走査
線の曲がりを補正する必要量分だけ回折光学素子を回動
させることにより、走査線の曲がりを調整することがで
きる。
FIG. 5B shows the diffractive optical element indicated by an arrow C2.
Of the scanning line on the photosensitive drum when it is tilted only once in the direction of. Since the amount of rotation (inclination angle) of the diffractive optical element and the amount of curvature (bending) of the scanning line are substantially proportional to each other, diffraction is performed by an amount necessary to correct the bending of the scanning line based on data checked in advance. By rotating the optical element, the bending of the scanning line can be adjusted.

【0016】すなわち、走査面に対する回折光学素子の
傾斜角度と光軸まわりの回転角度を調節することで、各
走査光学装置の走査線ずれによる色ずれを解消すること
ができる。
That is, by adjusting the angle of inclination of the diffractive optical element with respect to the scanning surface and the angle of rotation about the optical axis, it is possible to eliminate a color shift due to a scan line shift of each scanning optical device.

【0017】次に回折光学素子を回動(回転移動)させ
る構成について説明する。図6は湾曲ずれを補正する調
整機構であり、回折光学素子10はバネ材11によって
保持部材14に保持されており、さらに回折光学素子1
0の回転軸8は光学箱15に対して回動可能であるよう
に回転支持部140で保持されている。さらにこの保持
部材14には調整ネジ12を保持する調整ネジ固定部材
13も固定されている。同図において調整ネジ12は回
折光学素子10のレンズ面と垂直の方向(x軸方向)に
力を作用させている。
Next, the structure for rotating (rotating) the diffractive optical element will be described. FIG. 6 shows an adjustment mechanism for correcting a deviation in curvature. The diffractive optical element 10 is held by a holding member 14 by a spring material 11.
The rotation shaft 8 of 0 is held by a rotation support section 140 so as to be rotatable with respect to the optical box 15. Further, an adjustment screw fixing member 13 for holding the adjustment screw 12 is also fixed to the holding member 14. In the figure, an adjusting screw 12 applies a force in a direction perpendicular to the lens surface of the diffractive optical element 10 (x-axis direction).

【0018】回折光学素子10は調整ネジ12とバネ材
11に設けられている押圧部110によって回転方向B
の位置が決められているので、調整ネジを動かす事によ
って回折光学素子10を回転移動する事ができる。
The diffractive optical element 10 is rotated in the rotational direction B by an adjusting screw 12 and a pressing portion 110 provided on the spring material 11.
Is determined, the diffraction optical element 10 can be rotationally moved by moving the adjusting screw.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、上記方
法においては、保持部材14を要し、保持部材の部品コ
ストと保持部材に回折光学素子を組み付ける組立コスト
が必要である。
However, in the above method, the holding member 14 is required, and the cost of parts of the holding member and the cost of assembling the diffractive optical element to the holding member are required.

【0020】コスト高を回避するために、保持部材を廃
止し、直接回折光学素子を調整ネジで作用する方法があ
る。作用する方向はx軸上でレンズ面(y−z面)に垂
直な方向であり、長尺なので特に剛性が低いため、図7
に示すようにx軸方向に素子自身のたわみ、曲がりが生
じる。中央部でのたわみ量Δdは最大となり、このレン
ズの変形はレンズの光学性能を悪化させてしまう。
In order to avoid the high cost, there is a method in which the holding member is abolished and the diffractive optical element is directly operated by the adjusting screw. The acting direction is a direction perpendicular to the lens surface (yz surface) on the x-axis.
As shown in (1), the element itself bends and bends in the x-axis direction. The amount of deflection Δd at the center becomes maximum, and the deformation of the lens deteriorates the optical performance of the lens.

【0021】また、回折光学素子自体の剛性を高める方
法がある。回折光学素子が樹脂で成形されている場合、
通常図8のように、レンズ20の外形にはレンズ有効面
21を保護するためのリブ22がついている。このリブ
22は、レンズの剛性を高める作用もある。しかし、先
述のような成形方法ではリブの長さや厚みを増やすこと
は成形時間を多く要したり、レンズ面の精度を損なう恐
れがあるため成形上難しい。
There is also a method for increasing the rigidity of the diffractive optical element itself. When the diffractive optical element is molded of resin,
Usually, as shown in FIG. 8, the outer shape of the lens 20 is provided with a rib 22 for protecting the lens effective surface 21. The rib 22 also has the function of increasing the rigidity of the lens. However, in the molding method as described above, it is difficult to increase the length and thickness of the rib because a long molding time is required and the accuracy of the lens surface may be impaired.

【0022】本発明の目的は上記課題を解決し、光学性
能を悪化させることなく低コストであり、かつ簡単に調
整が行えるような回折光学素子調整機構を提供すること
を目的とする。
An object of the present invention is to solve the above-mentioned problems, and to provide a diffractive optical element adjustment mechanism which can be easily adjusted at low cost without deteriorating optical performance.

【0023】[0023]

【課題を解決するための手段】すなわち、本発明の画像
形成装置は、光源手段から射出された光束を光偏向器に
導光し、該光偏向器で偏向された光束を少なくとも1枚
の回折光学素子を有する走査レンズ系を有しており、該
回折光学素子の位置を変位させる調整部材を有してお
り、前記回折光学素子はその位置を変位させて該被走査
面上への光束の曲がりを調整し走査する走査光学装置に
おいて、前記調整部材の前記回折光学素子当接部は前記
回折光学素子の表面のうち、前記光線が該回折光学素子
を通過し走査する走査平面に対して平行な面に設けてい
ることを特徴とする。
That is, in the image forming apparatus of the present invention, a light beam emitted from a light source is guided to an optical deflector, and the light beam deflected by the light deflector is diffracted by at least one sheet. It has a scanning lens system having an optical element, and has an adjusting member for displacing the position of the diffractive optical element, and the diffractive optical element displaces the position of the diffractive optical element so that the light beam is projected onto the surface to be scanned. In a scanning optical device that adjusts a curvature and performs scanning, the diffractive optical element abutting portion of the adjusting member is parallel to a scanning plane on the surface of the diffractive optical element where the light beam passes through the diffractive optical element and scans. It is characterized by being provided on a suitable surface.

【0024】作用としては、回折光学素子の調整時に発
生する回折光学素子のソリやたわみなどの変形が少ない
曲がり調整機構であり、また万一変形が生じたとして
も、画像は「曲がり」として発生するので、本構成の曲
がり調整機構を使用すると補正出来る。画像形成装置上
での4色の色ずれや傾きずれをより高精度に調整するこ
とができ、高精細なカラー画像を形成することが出来
る。
The operation is a bending adjustment mechanism that causes little deformation such as warping or bending of the diffractive optical element that occurs during the adjustment of the diffractive optical element. Even if deformation occurs, an image is generated as a "bend" Therefore, the correction can be made by using the bending adjustment mechanism of this configuration. The color shift and the tilt shift of the four colors on the image forming apparatus can be adjusted with higher precision, and a high-definition color image can be formed.

【0025】[0025]

【発明の実施の形態】(第1の実施例)本発明の実施例
について図2を用いて説明する。同図においては感光ド
ラム98面上を走査する光束Lが光源手段、コリメータ
ーレンズ、開口絞りを含んで構成されるレーザユニット
1より出射して副走査方向に所定の屈折力を有するシリ
ンドリカルレンズ4を通過し、光偏向器5により偏向反
射されてトーリックレンズ65と回折光学素子30cを
通過した後、感光ドラム98面上を照射する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) An embodiment of the present invention will be described with reference to FIG. In the figure, a light beam L for scanning on the surface of a photosensitive drum 98 is emitted from a laser unit 1 including a light source means, a collimator lens, and an aperture stop, and has a cylindrical lens 4 having a predetermined refractive power in a sub-scanning direction. After being deflected and reflected by the optical deflector 5 and passing through the toric lens 65 and the diffractive optical element 30c, the light is irradiated onto the surface of the photosensitive drum 98.

【0026】本従来例の走査光学装置においては回折光
学素子30cを該回折光学素子の長手方向の中心軸であ
るy軸まわりに図中E方向に回動(回転移動)すること
により、感光ドラム面98上に走査される光束Lは同図
の点線Fで示すように湾曲して走査する。
In the conventional scanning optical device, the photosensitive drum is rotated (rotated) in the direction E in the drawing around the y-axis which is the longitudinal central axis of the diffractive optical element 30c. The light beam L scanned on the surface 98 scans in a curved manner as shown by a dotted line F in FIG.

【0027】次に回折光学素子を回動(回転移動)させ
る構成について図1を用いて説明する。回折光学素子3
0の長手方向(y方向)の両端部には、y軸上に回転軸
部材28が設けられている。この回転軸部材28は回折
光学素子30と一体成形、または回折光学素子30と別
部品の場合は、しっかりと回折光学素子30に固定され
ている。回転軸部材28は回動可能であるように光学箱
24の回転軸保持部29で保持されている。
Next, a structure for rotating (rotating) the diffractive optical element will be described with reference to FIG. Diffractive optical element 3
Rotation shaft members 28 are provided on the y-axis at both ends in the longitudinal direction (y-direction) of 0. The rotating shaft member 28 is integrally formed with the diffractive optical element 30 or, when the diffractive optical element 30 is a separate part, firmly fixed to the diffractive optical element 30. The rotation shaft member 28 is held by a rotation shaft holding portion 29 of the optical box 24 so as to be rotatable.

【0028】回折光学素子30を通る光が走査する走査
平面に対して平行な面(x−y面)には調整ネジ22を
保持する調整ネジ固定部材23も固定されている。調整
ネジで作用する部分と回折光学素子30を挟んで対向し
ている部分にはバネ11が設けられていて回折光学素子
30の位置が決められており、回転軸部材28で回転中
心が決められているので、調整ネジ22を動かす事によ
って回折光学素子30を回転移動する事ができる。
An adjusting screw fixing member 23 for holding the adjusting screw 22 is also fixed on a plane (xy plane) parallel to a scanning plane on which light passing through the diffractive optical element 30 scans. A spring 11 is provided at a portion opposing the portion acting with the adjusting screw with the diffractive optical element 30 interposed therebetween, and the position of the diffractive optical element 30 is determined. Therefore, the diffractive optical element 30 can be rotationally moved by moving the adjusting screw 22.

【0029】x−y平面の一部を曲がり調整の際に押圧
するが、生じる回折光学素子30の変形量は極微小であ
る。レンズ(回折光学素子)の変形が少なく、画像に悪
影響を及ぼすことなく走査線を補正できる。「万一、レ
ンズ(回折光学素子)の変形が生じたとしても、本構成
においては走査線は感光体上で曲がりとなって現れるの
で、本実施例の曲がり調整を実行すれば補正が出来るの
で問題は生じない。」 (第2の実施例)実施例2の回折光学素子を回動(回転移
動)させる構成を図9において説明する。回折光学素子
40の長手方向(y方向)の両端部には、実施例1と同
様、y軸上に回転軸部材38が設けられており、回転軸
部材38は回動可能であるように光学箱の回転軸保持部
39で保持されている。回折光学素子40において、回
折光学素子40を通る光が走査する走査平面に対して平
行な面(x−y面)には調整当接部35が設けられてい
る。また、光学箱34には調整ネジ32を保持する調整
ネジ固定部材33も固定されている。この調整ネジ32
は光が走査する走査平面に対して平行な面(x−y面)
に作動し、調整当接部35の、調整ネジ32が対向して
いる部分にはバネ21が設けられていて回折光学素子4
0の位置が決められているので、調整ネジ32を動かす
事によって回折光学素子40を回転移動する事ができ
る。本実施例においては、回折光学素子40の曲がり補
正量が厳しい場合、回転移動量の効き量(敏感度)を鈍
感にする事を目的とし、走査光学装置毎で調整当接部の
形状や長さを変更し決定すれば良い。実施例1同様、本
構成においてもレンズ(回折光学素子)の変形を抑えら
れ、変形しても、曲がり調整で補正出来る。
Although a part of the xy plane is pressed during the bending adjustment, the amount of deformation of the diffractive optical element 30 that occurs is extremely small. The lens (diffractive optical element) is less deformed, and the scanning line can be corrected without adversely affecting the image. “Even if the lens (diffractive optical element) is deformed, the scanning line appears as a bend on the photoreceptor in the present configuration, so that the correction can be performed by performing the bend adjustment of the present embodiment. No problem occurs. "(Second Embodiment) A configuration for rotating (rotating) the diffractive optical element of the second embodiment will be described with reference to FIG. At both ends in the longitudinal direction (y direction) of the diffractive optical element 40, similarly to the first embodiment, a rotating shaft member 38 is provided on the y axis, and the rotating shaft member 38 is optically rotated. It is held by the rotating shaft holder 39 of the box. In the diffractive optical element 40, an adjustment contact portion 35 is provided on a plane (xy plane) parallel to a scanning plane on which light passing through the diffractive optical element 40 scans. An adjustment screw fixing member 33 that holds the adjustment screw 32 is also fixed to the optical box 34. This adjustment screw 32
Is a plane (xy plane) parallel to the scanning plane where light scans
The spring 21 is provided in a portion of the adjustment contact portion 35 where the adjustment screw 32 faces, and the diffraction optical element 4
Since the position of 0 is determined, the diffractive optical element 40 can be rotationally moved by moving the adjusting screw 32. In the present embodiment, when the amount of bending correction of the diffractive optical element 40 is severe, the shape and length of the adjustment contact portion for each scanning optical device are intended to make the effective amount (sensitivity) of the rotational movement amount insensitive. You just have to change it and decide. As in the first embodiment, also in this configuration, deformation of the lens (diffractive optical element) can be suppressed, and even if deformed, it can be corrected by bending adjustment.

【0030】[0030]

【発明の効果】走査線の傾きずれや走査線の曲がりの調
整を各々の走査光学装置の回折光学素子の位置を変位さ
せて行なうカラー画像形成装置において、湾曲ずれを回
折光学素子の光が走査する走査面と平行な面を押圧する
ことで、調整する際に回折光学素子に与える力を極力少
なくすることができる。また、回折光学素子の剛性を上
げるための部品が必要なく、低コストで構成することが
出来る。
As described above, in a color image forming apparatus in which the inclination of the scanning line and the bending of the scanning line are adjusted by displacing the position of the diffractive optical element of each scanning optical apparatus, the light of the diffractive optical element scans the curvature deviation. By pressing a surface parallel to the scanning surface to be adjusted, the force applied to the diffractive optical element during adjustment can be reduced as much as possible. In addition, components for increasing the rigidity of the diffractive optical element are not required, and the configuration can be made at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の詳細図FIG. 1 is a detailed view of a first embodiment.

【図2】 実施例1の詳細図FIG. 2 is a detailed view of the first embodiment.

【図3】 従来例FIG. 3 Conventional example

【図4】 従来例(カラー画像形成装置の要部外略図)FIG. 4 is a conventional example (schematic view of a main part of a color image forming apparatus).

【図5】 従来例FIG. 5 Conventional example

【図6】 従来例FIG. 6: Conventional example

【図7】 従来例FIG. 7: Conventional example

【図8】 従来例FIG. 8: Conventional example

【図9】 実施例2の詳細図FIG. 9 is a detailed view of the second embodiment.

【符号の説明】[Explanation of symbols]

10、20、30、40 回折光学素子 22、32 調整ネジ 10, 20, 30, 40 Diffractive optical element 22, 32 Adjustment screw

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源手段から射出された光束を光偏向器
に導光し、該光偏向器で偏向された光束を少なくとも1
枚の回折光学素子を有する走査レンズ系を有しており、
該回折光学素子の位置を変位させる調整部材を有してお
り、前記回折光学素子はその位置を変位させて該被走査
面上への光束の曲がりを調整し走査する走査光学装置に
おいて、前記調整部材の前記回折光学素子当接部は前記
回折光学素子の表面のうち、前記光線が該回折光学素子
を通過し走査する走査平面に対して平行な面に設けてい
ることを特徴とする走査光学装置。
1. A light beam emitted from a light source means is guided to a light deflector, and the light beam deflected by the light deflector is converted into at least one light beam.
A scanning lens system having a number of diffractive optical elements,
A scanning optical device for adjusting the position of the diffractive optical element and displacing the diffractive optical element to adjust the bending of the light beam onto the surface to be scanned and scan the light; The scanning optics, wherein the diffractive optical element abutting portion of the member is provided on a surface of the diffractive optical element parallel to a scanning plane through which the light beam passes and scans the diffractive optical element. apparatus.
【請求項2】 前記回折光学素子のレンズ有効部外に前
記回折光学素子当接部を設けている事を特徴とする請求
項1に記載の走査光学装置。
2. The scanning optical apparatus according to claim 1, wherein the diffractive optical element contact portion is provided outside a lens effective portion of the diffractive optical element.
JP2001144995A 2001-05-15 2001-05-15 Scanning optical device Pending JP2002341274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144995A JP2002341274A (en) 2001-05-15 2001-05-15 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144995A JP2002341274A (en) 2001-05-15 2001-05-15 Scanning optical device

Publications (1)

Publication Number Publication Date
JP2002341274A true JP2002341274A (en) 2002-11-27

Family

ID=18990869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144995A Pending JP2002341274A (en) 2001-05-15 2001-05-15 Scanning optical device

Country Status (1)

Country Link
JP (1) JP2002341274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020828A (en) * 2017-05-23 2017-08-08 多摩电子(苏州)有限公司 A kind of laser printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020828A (en) * 2017-05-23 2017-08-08 多摩电子(苏州)有限公司 A kind of laser printer

Similar Documents

Publication Publication Date Title
US20030179428A1 (en) Optical scanner and imaging apparatus using the same
JP3111515B2 (en) Scanning optical device
JPH10268217A (en) Optical scanning device of multicolor image forming device
JP4015249B2 (en) Multi-beam exposure system
US7119824B2 (en) Multi-beam optical scanning apparatus, and image forming apparatus using the same
JP4662446B2 (en) Optical scanning apparatus and image forming apparatus
JP2010134434A (en) Scanning optical apparatus and image forming apparatus using the same
JP2007171626A (en) Optical scanner and image forming apparatus
US8314824B2 (en) Optical scanning apparatus and image forming apparatus using the same
EP1336889A2 (en) Scanning optical apparatus and image forming apparatus using the same
JP2005134624A (en) Optical scanner and image forming apparatus using same
JP2005134623A (en) Optical scanner and image forming apparatus
JP2007047749A (en) Optical scanning device, image forming apparatus and lens
JP2002341274A (en) Scanning optical device
JP2000180778A (en) Light beam scanner
JPH04242215A (en) Optical scanner
JP2008257194A (en) Optical scanner and image forming apparatus provided with optical scanner
JP4340558B2 (en) Optical scanning apparatus and image forming apparatus
JP4546118B2 (en) Optical scanning device and color image forming apparatus using the same
JPH1010448A (en) Optical scanner
JP5240036B2 (en) Optical scanning apparatus and image forming apparatus
JP2000147405A (en) Canning optical device and color image forming device
JP2008003373A (en) Scanning optical apparatus and image forming apparatus using the same
JP2001071552A (en) Imaging apparatus
JP4332001B2 (en) Optical scanning apparatus and image forming apparatus