JPH10268217A - Optical scanning device of multicolor image forming device - Google Patents

Optical scanning device of multicolor image forming device

Info

Publication number
JPH10268217A
JPH10268217A JP9071775A JP7177597A JPH10268217A JP H10268217 A JPH10268217 A JP H10268217A JP 9071775 A JP9071775 A JP 9071775A JP 7177597 A JP7177597 A JP 7177597A JP H10268217 A JPH10268217 A JP H10268217A
Authority
JP
Japan
Prior art keywords
lens
plastic lens
bending
adjusting means
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9071775A
Other languages
Japanese (ja)
Other versions
JP3569412B2 (en
Inventor
Tomohiro Nakajima
智宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP07177597A priority Critical patent/JP3569412B2/en
Publication of JPH10268217A publication Critical patent/JPH10268217A/en
Application granted granted Critical
Publication of JP3569412B2 publication Critical patent/JP3569412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily compensate the curvature of a scanning line corresponding to each beam in an optical scanning device using a plastic lens for a lens for forming the image of each beam transmitted from plural laser beam sources on a photosensitive body. SOLUTION: A deflection adjusting means 1 for bending a toroidal lens 18 in the sub-scanning direction is integrally provided on the upper surface of the toroidal lens 18 as a plastic lens. The deflection adjusting means 1 is composed of holding protrusions 2, 2 integrally formed with the rib 18b of the toroidal lens 18, a supporting plate 3 engaged between the holding protrusions 2, 2 and an adjusting screw 8 hinged on the supporting plate 3, by revolving the adjusting screw 8 for correcting the curvature of a scanning line, the toroidal lens 1 is bent and the focal line 18d is also bent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、デジタル複写機や
レーザプリンタ等の画像形成装置の光書き込み系に用い
られる光走査装置に係り、特に、複数のビームにより感
光体ドラム上に各々静電潜像を形成し、その像の重ね合
わせにより多色画像を得る多色画像形成装置の光走査装
置に関し、更に詳しくはプラスチックレンズを用いた多
色画像形成装置の光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device used in an optical writing system of an image forming apparatus such as a digital copying machine or a laser printer, and more particularly, to an electrostatic scanning device on a photosensitive drum by a plurality of beams. The present invention relates to an optical scanning device of a multicolor image forming apparatus that forms an image and obtains a multicolor image by superimposing the images, and more particularly to an optical scanning device of a multicolor image forming apparatus using a plastic lens.

【0002】[0002]

【従来の技術】近年、感光体ドラム上の少なくとも異な
る2箇所を光ビームで同時に露光し、その各々の露光領
域を異なる色の現像器で現像して重ね合わせ、出力紙へ
の1回の転写で2色画像を形成したり、あるいは4つの
感光体ドラムを出力紙の搬送方向へ並置し、各感光体ド
ラムに対応した光ビームで同時に露光し、各々異なる色
(イエロー、マゼンタ、シアン、ブラック)の現像器で
現像した画像を順次転写し、重ね合わせてフルカラー画
像を形成するデジタル複写機やレーザプリンタが実用化
されている。
2. Description of the Related Art In recent years, at least two different locations on a photosensitive drum are simultaneously exposed with a light beam, and the respective exposed areas are developed and superimposed by different color developing units, and are transferred once to output paper. To form a two-color image, or to arrange four photosensitive drums side by side in the transport direction of the output paper, and simultaneously expose the photosensitive drums with light beams corresponding to the respective photosensitive drums, thereby different colors (yellow, magenta, cyan, black) 2. Description of the Related Art Digital copiers and laser printers, which sequentially transfer images developed by a developing device and superimpose to form a full-color image, have been put to practical use.

【0003】このような多色画像形成装置では、複数の
レーザ光源から射出されたビームを各々個別のレンズ群
を用いて走査し、画像を形成してそれらを重ね合わせて
多色画像を形成するのであるが、この場合、各ビームの
走査線をいかに正確に重ね合わせるかが画像品質を向上
させるポイントとなる。
In such a multicolor image forming apparatus, beams emitted from a plurality of laser light sources are scanned using respective lens groups, images are formed, and the images are superimposed to form a multicolor image. However, in this case, how to accurately overlap the scanning lines of the respective beams is a point for improving the image quality.

【0004】各走査線の重ね誤差の形態としては、副走
査位置のズレ、傾きのズレ、曲がりがある。一般的に、
副走査位置のズレについては書込開始のタイミングの制
御によって、傾きのズレについては光路中の折り返しミ
ラーの調節によってそれぞれ画像品質を向上させるため
の補正がなされているが、曲がりについては容易に調節
できる手段がなく、曲がりの発生要因であるレンズ群の
相対配置精度を高め、走査線曲がりの絶対量をゼロに近
づけることにより画像品質の低下を回避している現状に
ある。例えば特開平4−127115号公報には、複数
の走査手段を単一の光学ハウジング内の所定位置に収め
ることで相対的な配置精度を維持し得る光走査装置の例
が開示されている。
[0004] The form of the overlapping error of each scanning line includes a deviation of the sub-scanning position, a deviation of the inclination, and a bending. Typically,
The deviation of the sub-scanning position is corrected by controlling the writing start timing, and the deviation of the inclination is adjusted by adjusting the folding mirror in the optical path to improve the image quality, but the bending is easily adjusted. At present, there is no means capable of improving the relative arrangement accuracy of the lens groups, which is a cause of the bending, and the deterioration of image quality is avoided by making the absolute amount of the scanning line bending close to zero. For example, Japanese Patent Laying-Open No. 4-127115 discloses an example of an optical scanning device capable of maintaining relative positioning accuracy by storing a plurality of scanning means at predetermined positions in a single optical housing.

【0005】ところで、近年、低コスト、取扱の容易性
等の観点からプラスチックレンズが用いられるようにな
ってきているが、プラスチックレンズはこれを支持する
光学ハウジングに比べて熱膨張係数が高いため、プラス
チックレンズに対する光学ハウジングの拘束力が大きい
と、環境変化、すなわち温度変動によりプラスチックレ
ンズ自身が歪んで走査線曲がり等を来すという問題を有
していた。このような問題に対処すべく、例えば特開昭
63−15212号公報には、レーザ光を通過させるス
リットが形成された反り防止体を光学ハウジングに固定
してこの中にプララスチックレンズを収容し、プラスチ
ックレンズの長手方向は拘束しないように構成した技術
が開示されている。反り防止体による拘束によってプラ
スチックレンズの経時的な反り変形が防止されるととも
に、温度変動による長手方向の伸縮変位が許容されるも
のである。
In recent years, plastic lenses have been used from the viewpoints of low cost, easy handling, and the like. However, plastic lenses have a higher coefficient of thermal expansion than an optical housing that supports them. If the binding force of the optical housing to the plastic lens is large, there is a problem that the plastic lens itself is distorted due to an environmental change, that is, a temperature fluctuation, and the scanning line is bent. In order to cope with such a problem, for example, Japanese Patent Application Laid-Open No. 63-15212 discloses that an anti-warp body having a slit for allowing a laser beam to pass therethrough is fixed to an optical housing and a plastic lens is housed therein. There is disclosed a technique in which the longitudinal direction of a plastic lens is not restricted. The restraint by the warpage preventing body prevents the plastic lens from being warped and deformed over time, and allows a longitudinal expansion and contraction displacement due to a temperature change.

【0006】[0006]

【発明が解決しようとする課題】各ビームに対応した走
査線曲がりを各レンズ群の配置精度を高めて個別に補正
する方式では、補正作業が面倒で熟練を要する問題があ
る。また、プラスチックレンズでは、樹脂特性による成
型時の歪みによってレンズの焦線が曲がり易く、この場
合には走査線曲がりの原因となるが、上記特開昭63−
15212号公報に開示された技術はレンズ群を配置し
た後の経時的な反り防止技術にすぎないので、成型時の
歪みを伴うプラスチックレンズを使用するときは、その
歪みによる誤差を低減すべく、レンズ群の配置調整をし
なければならないことになる。すなわち、従来技術にお
いては、結局、各レンズ群の配置精度を高めて個別に補
正する面倒な方式に頼らざるを得ない。また、プラスチ
ックレンズにおける成型時の歪みは、走査線曲がりの原
因としては、レンズ群の配置誤差とは全く異なるもので
あるので、その程度如何によってはレンズ群の配置調整
(広義には光学系要素の配置調整)では対応できない恐
れもある。
In the method of individually correcting the scanning line bending corresponding to each beam by increasing the arrangement accuracy of each lens group, there is a problem that the correction operation is troublesome and requires skill. In the case of a plastic lens, the focal line of the lens is likely to bend due to distortion during molding due to resin characteristics. In this case, the scanning line may be bent.
Since the technology disclosed in Japanese Patent No. 15212 is merely a technology for preventing warpage over time after the lens group is arranged, when using a plastic lens with distortion during molding, in order to reduce errors due to the distortion, The arrangement of the lens groups must be adjusted. That is, in the related art, after all, it is necessary to rely on a troublesome method in which the arrangement accuracy of each lens group is increased and individually corrected. Also, the distortion of the plastic lens during molding is completely different from the lens group arrangement error as the cause of the scanning line bending. Therefore, depending on the degree, the lens group arrangement adjustment (in a broad sense, the optical system element) May not be possible.

【0007】本発明は、プラスチックレンズを使用した
場合における走査線曲がりを、曲がりの原因の種類に関
係なく容易に補正でき、画像品質の向上を図ることがで
きる多色画像形成装置の光走査装置の提供を、その目的
とする(請求項1)。請求項2記載の発明では、更に、
温度変動によるプラスチックレンズの歪み問題をも同時
に解消できる多色画像形成装置の光走査装置の提供を、
その目的とする。請求項3記載の発明では、更に、補正
作業の容易化を一層促進できる画像形成装置の光走査装
置の提供を、その目的とする。
The present invention provides an optical scanning apparatus for a multi-color image forming apparatus capable of easily correcting a scanning line curve when a plastic lens is used, regardless of the kind of the cause of the curve, and improving the image quality. (Claim 1). According to the second aspect of the present invention, further,
The provision of an optical scanning device of a multicolor image forming apparatus capable of simultaneously solving a plastic lens distortion problem due to temperature fluctuation,
With that purpose. It is still another object of the present invention to provide an optical scanning device of an image forming apparatus capable of further facilitating a correction operation.

【0008】[0008]

【課題を解決するための手段】プラスチックレンズはガ
ラスレンズに比べて変形し易いが故に走査線曲がりを引
き起こし易いが、その変形し易い素材特性を逆に利用し
て、変形を意図的に操作できるようにすれば走査線曲が
りを容易に修正することが可能となる。曲がりの発生要
因自体を直接に操作するため、レンズ群の配置精度を高
める作業に比べてその修正作業は極めて容易となる。こ
れが本発明の趣旨である。具体的には、請求項1記載の
発明では、複数のレーザ光源から射出されたビームを各
々対応する感光体に結像させるレンズ群が各ビーム毎に
設けられた多色画像形成装置の光走査装置において、上
記レンズ群を構成するレンズの内いずれかにスリット状
のプラスチックレンズを使用するとともに、該プラスチ
ックレンズをその副走査方向に強制的にたわませる湾曲
調整手段を備えている、という構成を採っている。湾曲
調整手段によるプラスチックレンズの湾曲調整によっ
て、レンズ群の配置誤差又はプラスチックレンズの成型
時の歪みによる走査線曲がりを補正することが可能とな
る。
A plastic lens is easily deformed as compared with a glass lens, so that it is easy to cause a scan line to bend. However, the deformation can be intentionally operated by utilizing the material property which is easily deformed. By doing so, it is possible to easily correct the scanning line bending. Since the cause of the bending itself is directly operated, the correction operation is extremely easy as compared with the operation for improving the arrangement accuracy of the lens groups. This is the purpose of the present invention. More specifically, according to the first aspect of the present invention, there is provided a multi-color image forming apparatus in which a lens group for forming beams emitted from a plurality of laser light sources on corresponding photosensitive members is provided for each beam. In the apparatus, a slit-shaped plastic lens is used as one of the lenses constituting the lens group, and a curvature adjusting means for forcibly bending the plastic lens in the sub-scanning direction is provided. Has been adopted. By adjusting the curvature of the plastic lens by the curvature adjusting means, it becomes possible to correct the scanning line bending due to the lens group arrangement error or the distortion during molding of the plastic lens.

【0009】請求項2記載の発明では、請求項1記載の
構成において、上記湾曲調整手段が上記プラスチックレ
ンズに一体的に設けられている、という構成を採ってい
る。湾曲調整手段が光学ハウジングの拘束を受けない構
成となるので、湾曲調整手段の存在によるプラスチック
レンズの温度変動に伴う長手方向の変位の阻害を回避す
ることができる。
According to a second aspect of the present invention, in the configuration of the first aspect, the curvature adjusting means is provided integrally with the plastic lens. Since the bending adjusting means is not restricted by the optical housing, it is possible to avoid the displacement of the plastic lens in the longitudinal direction due to the temperature fluctuation of the plastic lens due to the presence of the bending adjusting means.

【0010】請求項3記載の発明では、請求項1記載の
構成において、各ビームに対応する各プラスチックレン
ズを各々に対応する湾曲調整手段で同一の方向へたわま
せて走査線の曲がりを補正する、という構成を採ってい
る。湾曲調整手段による補正作業の手順が画一的となる
ので、走査線曲がりの補正作業が一層容易となる。
According to a third aspect of the present invention, in the configuration of the first aspect, the bending of the scanning line is corrected by bending each plastic lens corresponding to each beam in the same direction by the corresponding bending adjusting means. To do. Since the procedure of the correction operation by the curvature adjusting means becomes uniform, the operation of correcting the scanning line bending is further facilitated.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1乃至図6に基
づいて詳細に説明する。図5及び図6に本発明を適用し
た光走査装置の全体構成を示す。図示しない半導体レー
ザ、コリメートレンズを含む光源ユニット11,12及
び13,14は、それぞれ回転多面鏡としてのポリゴン
ミラー15に対向して配置されており、光学ハウジング
10に形成された取付面に支持されている。本実施例に
おける光源ユニット11,14のポリゴンミラー15へ
の平均入射角θは60°、光源ユニット12,13では
75°に設定されている。図5中、符号35、36はミ
ラー、32、33、34はビーム検知センサを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to FIGS. 5 and 6 show the overall configuration of an optical scanning device to which the present invention is applied. Light source units 11, 12 and 13, 14 each including a semiconductor laser and a collimator lens (not shown) are arranged to face a polygon mirror 15 as a rotating polygon mirror, and are supported by a mounting surface formed on the optical housing 10. ing. In the present embodiment, the average incident angle θ of the light source units 11 and 14 to the polygon mirror 15 is set to 60 °, and the light source units 12 and 13 are set to 75 °. In FIG. 5, reference numerals 35 and 36 indicate mirrors, and reference numerals 32, 33 and 34 indicate beam detection sensors.

【0012】光源ユニット11,12及び13,14か
ら出射されたレーザビームは、ポリゴンミラー15で偏
向され、共軸非球面からなってfθ特性を有する凹曲面
鏡であるfθミラー16,17により、面倒れ補正系を
なすプラスチック製のトロイダルレンズ18,19,2
0,21を介して感光体28,29,30,31の面上
にスポット状に結像され、潜像を記録する。これらの潜
像は順次ブラック、イエロー、マゼンタ、シアンのトナ
ーにより顕像化され、出力紙に転写されてカラー画像を
形成する。
The laser beams emitted from the light source units 11, 12, and 13 and 14 are deflected by a polygon mirror 15 and are deflected by fθ mirrors 16 and 17 which are concave curved mirrors each having a coaxial aspherical surface and having fθ characteristics. Plastic toroidal lenses 18, 19, 2 forming a surface tilt correction system
Spots are formed on the surfaces of the photoconductors 28, 29, 30, and 31 through 0 and 21 to record a latent image. These latent images are visualized sequentially with black, yellow, magenta, and cyan toners and are transferred to output paper to form a color image.

【0013】ポリゴンミラー15は、厚さ3mmのもの
をモータ基準面上に位相を合わせて2段に積み重ねて構
成され、fθミラー16,17も中心間を3mmとして
2段に樹脂で一体成形されており、各々の法線方向を入
射光線に対し副走査方向に相反してαだけ傾けている。
従って、図に則して説明すれば、光源ユニット11から
出射されたビーム1は下段のポリゴンミラー15により
偏向され、fθミラー16の下段で反射され、ミラー2
2を介してトロイダルレンズ18を透過し、ミラー24
を介して感光体28に結像する。一方、光源ユニット1
2から出射されたビーム2は、上段のポリゴンミラー1
5により偏向され、fθミラー61の上段で反射され、
ミラー26を介してトロイダルレンズ19を透過し、感
光体29に結像する。対向して走査される光源ユニット
13,14のビーム3,4の流れも同様であるが、ポリ
ゴンミラー15の回転方向は特定であるため、走査方向
は反対となる。すなわち、光源ユニット11,12が文
頭から文末に走査するとすれば、光源ユニット13,1
4では文末から文頭に走査される。
The polygon mirror 15 has a thickness of 3 mm and is stacked in two stages on the motor reference plane in phase with each other. The fθ mirrors 16 and 17 are also integrally formed of resin in two stages with a center distance of 3 mm. Each normal line direction is inclined by α opposite to the sub-scanning direction with respect to the incident light beam.
Therefore, according to the drawing, the beam 1 emitted from the light source unit 11 is deflected by the lower polygon mirror 15, reflected by the lower stage of the fθ mirror 16, and reflected by the mirror 2.
2 through the toroidal lens 18 and the mirror 24
The image is formed on the photoreceptor 28 through the. On the other hand, the light source unit 1
2 emitted from the upper polygon mirror 1
5, is reflected by the upper stage of the fθ mirror 61,
The light passes through the toroidal lens 19 via the mirror 26 and forms an image on the photoconductor 29. The flow of the beams 3 and 4 of the light source units 13 and 14 scanned oppositely is the same, but since the rotation direction of the polygon mirror 15 is specific, the scanning direction is opposite. That is, if the light source units 11 and 12 scan from the beginning to the end of the sentence, the light source units 13 and 1
In 4, the scanning is performed from the end of the sentence to the beginning of the sentence.

【0014】本実施例では、レンズ群の中のトロイダル
レンズ18,19,20,21について発明の趣旨が具
体化されている。これらのプラスチックレンズとしての
トロイダルレンズ18,19,20,21のうち、光源
ユニット11のビーム1に対応するトロイダルレンズ1
8を図1及び図2に基づいて説明する。トロイダルレン
ズ18は、図2に示すように、レンズ部18aと、この
レンズ部18aを囲むように設けられたリブ18bとか
ら、主走査方向に延びるスリット状に構成されている。
従来と同様に光学ハウジング10の位置決め基準面に当
接して支持されるが、具体的には、光学ハウジング10
に固定された傾斜支持片6,6にリブ18bの底面を載
せるとともに、リブ18bの両端に形成された凸部18
cを光学ハウジング10に固定された支柱7,7の傾斜
面7aに当てがい、支柱7,7にねじ止めされる板バネ
4,5で凸部18cの前面及びリブ18bの上面を押圧
保持することによってなされる。傾斜支持されるトロイ
ダルレンズ20においても同様である。
In the present embodiment, the gist of the invention is embodied for the toroidal lenses 18, 19, 20, 21 in the lens group. Among these toroidal lenses 18, 19, 20, and 21 as plastic lenses, the toroidal lens 1 corresponding to the beam 1 of the light source unit 11
8 will be described with reference to FIGS. As shown in FIG. 2, the toroidal lens 18 has a slit shape extending in the main scanning direction from a lens portion 18a and a rib 18b provided so as to surround the lens portion 18a.
As in the prior art, the optical housing 10 is supported in contact with the positioning reference surface.
The bottom surfaces of the ribs 18b are placed on the inclined support pieces 6, 6 fixed to the projections 18 and the projections 18 formed on both ends of the ribs 18b.
c is applied to the inclined surfaces 7a of the columns 7, 7 fixed to the optical housing 10, and the front surfaces of the projections 18c and the upper surfaces of the ribs 18b are pressed and held by leaf springs 4, 5 screwed to the columns 7, 7. It is done by things. The same applies to the toroidal lens 20 that is supported in an inclined manner.

【0015】トロイダルレンズ18の上面には、該レン
ズを副走査方向に強制的にたわませることができる湾曲
調整手段1が一体的に設けられている(請求項1,
2)。湾曲調整手段1は、トロイダルレンズ18のリブ
18bの副走査側面上に一体に形成された逆L字状の2
個の保持突起2,2と、この保持突起2,2間に上方向
に抜け止め状態に係合される長手方向に剛性のある板金
製の支持板3と、支持板3の中央部に形成されたネジ穴
2aに螺合される調整ネジ8とから構成されている。保
持突起2は全長2lのリブ18bの中心Oから互いに略
等距離の位置に設けられている。
On the upper surface of the toroidal lens 18, there is integrally provided a curvature adjusting means 1 for forcibly bending the lens in the sub-scanning direction.
2). The curvature adjusting means 1 includes an inverted L-shaped 2 integrally formed on the sub-scanning side surface of the rib 18 b of the toroidal lens 18.
The holding projections 2, 2, a support plate 3 made of sheet metal, which is rigid in the longitudinal direction and is engaged between the holding projections 2 and 2 in the upward direction so as not to come off, and is formed at the center of the support plate 3. And an adjusting screw 8 screwed into the screw hole 2a. The holding projections 2 are provided at positions substantially equidistant from each other from the center O of the rib 18b having a total length of 2l.

【0016】図1に示すように、調整ネジ8を螺合が進
む方向に回すと、調整ネジ8の先端がリブ18bの側面
に当接しているので支持板3は上昇するが、支持板3の
移動が保持突起2,2によって阻止されると、次第に調
整ネジ8の先端はトロイダルレンズ18を加圧し、これ
によってトロイダルレンズ18は湾曲し、その焦線18
dも湾曲する。本実施例における調整ネジ8のピッチは
約500μmであり、従って調整ネジ8の1回転で50
0μmトロイダルレンズ18を変形させることができ
る。図示しないが、その他のトロイダルレンズ19,2
0,21においてもトロイダルレンズ18と同様な調整
構造となっている。
As shown in FIG. 1, when the adjusting screw 8 is turned in the direction in which the screwing proceeds, the support plate 3 rises because the tip of the adjusting screw 8 is in contact with the side surface of the rib 18b. Is stopped by the holding projections 2, 2, the tip of the adjusting screw 8 gradually presses the toroidal lens 18, whereby the toroidal lens 18 bends and its focal line 18
d also curves. The pitch of the adjusting screw 8 in the present embodiment is about 500 μm, so that one rotation of the adjusting screw 8 is 50 μm.
The 0 μm toroidal lens 18 can be deformed. Although not shown, other toroidal lenses 19 and 2
At 0 and 21, the adjustment structure is the same as that of the toroidal lens 18.

【0017】次に、走査線曲がりの具体的な補正動作を
説明する。本実施例においては各トロイダルレンズ1
8,19,20,21における湾曲調整手段1は一方向
への加圧調整しかできない片側設置構造、すなわち、調
整前に既に加圧方向と同じ方向に凸の走査線曲がりがあ
る場合にはこれを真っ直ぐ(ゼロ)にできない設置構造
であるので、全てのトロイダルレンズ18,19,2
0,21において同一の方向にたわませる補正がなされ
る(請求項3)。例えばブラックBk,イエローY、マ
ゼンタM、シアンCに対応する走査線曲がりが図3
(a)に示すような状態で存在していた場合、従来のよ
うにこれらの走査線曲がりを各々ゼロに近づけるのでは
なく、例えばブラックBkに対応する走査線曲がりを基
準として、図3(b)に示すように、他の走査線曲がり
をこれに近づける補正をする。
Next, a specific operation of correcting the scan line bending will be described. In this embodiment, each toroidal lens 1
The bending adjustment means 1 in 8, 19, 20, and 21 is a one-sided installation structure that can only perform pressure adjustment in one direction, that is, if there is a convex scanning line bend in the same direction as the pressure direction before adjustment. Since all the toroidal lenses 18, 19, and 2 have
At 0 and 21, a correction is made to deflect in the same direction (claim 3). For example, the scanning line curves corresponding to black Bk, yellow Y, magenta M, and cyan C are shown in FIG.
In the case where the scan lines are present in a state as shown in FIG. 3A, these scan line bends are not made close to zero as in the related art, but, for example, based on the scan line bend corresponding to black Bk as shown in FIG. As shown in ()), a correction is made so that another scanning line curve approaches this.

【0018】走査線曲がりの補正では必ずしもゼロに近
づける必要はなく、走査線曲がりの大きさを画像に影響
しない0.2mm以下に抑え、且つ、各走査線曲がり間
の偏差を小さく抑えることが重要である。図3の例で
は、ブラックBkに対応する走査線曲がりは基準となる
ので湾曲調整手段1による補正をする必要はなく、他の
3つ(イエローY、マゼンタM、シアンC)に対応する
走査線曲がりについてのみ補正をすることになる。この
場合、各走査線曲がりの補正においては、補正前に生じ
ていた曲がりを更に大きくする結果、すなわち画像に影
響しない0.2mm以下の範囲で強制的に走査線曲がり
を生じさせる結果となる。シアンCに対応する走査線曲
がりについては−範囲から+範囲への大幅な調整量とな
る。図3からも明らかなように、各走査線曲がりの調整
量の大きさは、Y<M<Cの順となる。
It is not always necessary to approach zero in the correction of the scanning line bending, and it is important to suppress the size of the scanning line bending to 0.2 mm or less, which does not affect the image, and to reduce the deviation between the scanning line bendings. It is. In the example of FIG. 3, since the scanning line curve corresponding to black Bk is a reference, there is no need to perform correction by the curvature adjusting unit 1, and the scanning lines corresponding to the other three (yellow Y, magenta M, and cyan C). Correction is made only for bending. In this case, in the correction of each scanning line bend, a result of further increasing the bend generated before the correction, that is, forcibly causing the scan line bend in a range of 0.2 mm or less that does not affect the image. With respect to the scan line curve corresponding to cyan C, a large adjustment amount from the − range to the + range is obtained. As is clear from FIG. 3, the magnitude of the adjustment amount of each scanning line bending is in the order of Y <M <C.

【0019】図4は、上記の走査線曲がりの補正思想に
基づいて湾曲調整手段1で実際に補正した実験グラフで
ある。図4から明らかなように、全体的な走査線曲がり
の絶対量は125μm(200μm以下)と大きいが、
各走査線曲がり間の偏差は±25μmの範囲内に収まっ
ている。従って、色ズレを抑制することができる。
FIG. 4 is an experimental graph actually corrected by the curvature adjusting means 1 based on the above-described concept of correcting the scanning line bending. As is apparent from FIG. 4, the absolute amount of the overall scanning line bending is as large as 125 μm (200 μm or less).
The deviation between each scanning line bend is within the range of ± 25 μm. Therefore, color shift can be suppressed.

【0020】上述のように、走査線曲がりの発生要因で
あるレンズ(ここではトロイダルレンズ18,19,2
0,21)自体を直接に且つ強制的に変形させることに
より、レンズ群の配置誤差やレンズの焦線曲がり等の原
因の種類に拘わらず走査線曲がりを容易に無効化、すな
わち画像に影響しないようにすることができる。また、
上記実施例では湾曲調整手段1を各トロイダルレンズ1
8,19,20,21に一体的に設けているので、湾曲
調整手段1と光学ハウジング10との間に拘束関係はな
く、湾曲調整手段1によるトロイダルレンズ18,1
9,20,21の温度変動に伴う歪みは生じない。
As described above, the lens (here, the toroidal lenses 18, 19, and 2) that causes the scanning line to be bent is used.
0,21) by directly and forcibly deforming itself, the scan line bend can be easily nullified regardless of the type of cause such as lens group arrangement error and lens focal line bend, that is, does not affect the image. You can do so. Also,
In the above embodiment, the curvature adjusting means 1 is replaced with each toroidal lens 1.
8, 19, 20, and 21, there is no constraint between the bending adjustment means 1 and the optical housing 10, and the toroidal lenses 18 and 1 by the bending adjustment means 1 are provided.
No distortion occurs due to temperature fluctuations of 9, 20, 21.

【0021】なお、湾曲調整手段1をトロイダルレンズ
18,19,20,21の両側に設けて各走査線曲がり
を真っ直ぐ(ゼロ)に近づける調整構造としても、従来
に比べて補正作業は格段に容易となるが、上述のように
片側のみに設けて調整方向を同一とした場合には、走査
線曲がりの補正作業が単純・画一的となり、一層容易と
なる。
Note that, even if the curvature adjusting means 1 is provided on both sides of the toroidal lenses 18, 19, 20, and 21 to adjust the curvature of each scanning line to be straight (zero), the correction work is much easier than in the past. However, in the case where the adjustment direction is the same by providing only one side as described above, the operation of correcting the scanning line bending becomes simpler and uniform, which is further facilitated.

【0022】上記実施例では、調整ネジ8による加圧で
各トロイダルレンズ18,19,20,21をたわませ
る構成としたが、これに限定される趣旨ではない。例え
ば図7に示すように、外部から圧力を加えてトロイダル
レンズ18を補正すべき量に湾曲させた状態で、支持板
3との間の隙間に充填した、固化動作を外部から操作可
能な接着剤、例えば紫外線硬化型接着剤9を固着させ、
その湾曲形状を固定する、等の構成としても良い。ま
た、上記実施例では湾曲調整手段1をレンズに一体的に
設ける構成としたが、図8に示すように、光学ハウジン
グ10に設けられた湾曲調整手段100でトロイダルレ
ンズ18の中央部を加圧して湾曲させる構成とすること
もでき、さらにまた、図9に示すように、中央部を支持
部材40で支持されたトロイダルレンズ18の両端部
を、光学ハウジング10に設けられた湾曲調整手段10
1,101で加圧して湾曲させる構成とすることもでき
る。
In the above embodiment, each of the toroidal lenses 18, 19, 20, and 21 is flexed by pressing with the adjusting screw 8, but the invention is not limited to this. For example, as shown in FIG. 7, an adhesive is applied to the gap between the support plate 3 and the solidifying operation from the outside in a state where the toroidal lens 18 is curved to an amount to be corrected by applying an external pressure. An adhesive, for example, an ultraviolet-curing adhesive 9,
The curved shape may be fixed. In the above embodiment, the curvature adjusting means 1 is provided integrally with the lens. However, as shown in FIG. 8, the curvature adjusting means 100 provided on the optical housing 10 presses the central portion of the toroidal lens 18. Further, as shown in FIG. 9, both ends of the toroidal lens 18 whose center is supported by the support member 40 may be bent by the bending adjusting means 10 provided on the optical housing 10.
It is also possible to adopt a configuration in which a pressure is applied at 1, 101 to bend.

【0023】[0023]

【発明の効果】請求項1記載の発明によれば、プラスチ
ックレンズを強制的にたわませる湾曲調整手段を設ける
構成としたので、デリケートで面倒なレンズ群の配置調
整をすることなく走査線曲がりを容易に補正でき、よっ
て色ズレのない高品位な多色画像を得ることができると
ともに、低コストで取扱性が良いというプラスチックレ
ンズの利点を十分に活かすことができる。
According to the first aspect of the present invention, since the curvature adjusting means for forcibly bending the plastic lens is provided, the scanning line is bent without adjusting the arrangement of the delicate and troublesome lens group. Can be easily corrected, a high-quality multicolor image without color shift can be obtained, and the advantages of the plastic lens, which is low in cost and easy to handle, can be fully utilized.

【0024】請求項2記載の発明によれば、湾曲調整手
段をプラスチックレンズに一体的に設ける構成としたの
で、光学ハウジングへの取付けについては従来通り、温
度変動があってもプラスチックレンズ自身に強制力が働
かないように、すなわち、プラスチックレンズがその長
手方向に自由に伸縮できるように構成できるので、請求
項1の効果に加え、温度変動によるプラスチックレンズ
の歪みによる画像歪み等の発生を防止できる。
According to the second aspect of the present invention, since the curvature adjusting means is provided integrally with the plastic lens, the plastic lens itself is forcibly attached to the optical housing even if there is a temperature fluctuation, as in the related art. Since the plastic lens can be configured so that no force is exerted, that is, the plastic lens can freely expand and contract in its longitudinal direction, in addition to the effect of claim 1, it is possible to prevent image distortion and the like due to distortion of the plastic lens due to temperature fluctuation. .

【0025】請求項3記載の発明によれば、各ビームに
対応するレンズを同一方向へたわませる構成としたの
で、湾曲調整手段による調整が画一的となり、請求項1
の効果に加え、走査線曲がりの補正作業を一層容易化す
ることができる。
According to the third aspect of the present invention, since the lens corresponding to each beam is bent in the same direction, the adjustment by the curvature adjusting means becomes uniform, and the first aspect of the present invention provides a method for adjusting the curvature of the lens.
In addition to the effects described above, it is possible to further facilitate the operation of correcting the scanning line bending.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における光走査装置のプラス
チックレンズと湾曲調整手段との関係を示す断面図であ
る。
FIG. 1 is a cross-sectional view illustrating a relationship between a plastic lens and a curvature adjusting unit of an optical scanning device according to an embodiment of the present invention.

【図2】プラスチックレンズと湾曲調整手段との関係を
示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a relationship between a plastic lens and a curvature adjusting unit.

【図3】各プラスチックレンズにおける走査線曲がりの
本発明に係る補正手法を示す模式図で、(a)は補正前
の状態を示す図、(b)は特定の走査線曲がりを基準に
して他を合わせて偏差を低減した状態を示す図である。
FIGS. 3A and 3B are schematic diagrams showing a correction method according to the present invention for scanning line bending in each plastic lens, where FIG. 3A shows a state before correction, and FIG. 3B shows another example based on a specific scanning line bending. It is a figure which shows the state which reduced the deviation by combining.

【図4】図3で示した補正手法によって実際に走査線曲
がりを補正したデータを示すグラフである。
FIG. 4 is a graph showing data obtained by actually correcting scan line bending by the correction method shown in FIG. 3;

【図5】本発明に係る光走査装置の全体構成を示す概要
平面図である。
FIG. 5 is a schematic plan view showing the overall configuration of the optical scanning device according to the present invention.

【図6】本発明に係る光走査装置の全体構成を示す概要
断面図である。
FIG. 6 is a schematic sectional view showing the overall configuration of the optical scanning device according to the present invention.

【図7】他の実施例におけるプラスチックレンズと湾曲
調整手段との関係を示す断面図である。
FIG. 7 is a cross-sectional view illustrating a relationship between a plastic lens and a curvature adjusting unit according to another embodiment.

【図8】湾曲調整手段が光学ハウジングに取り付けられ
ている場合のプラスチックレンズと湾曲調整手段との関
係を示す概要図である。
FIG. 8 is a schematic diagram showing the relationship between the plastic lens and the curvature adjusting means when the curvature adjusting means is attached to the optical housing.

【図9】湾曲調整手段が光学ハウジングに取り付けられ
ている場合の別の例のプラスチックレンズと湾曲調整手
段との関係を示す概要図である。
FIG. 9 is a schematic diagram showing the relationship between another example of a plastic lens and the curvature adjusting means when the curvature adjusting means is attached to the optical housing.

【符号の説明】[Explanation of symbols]

1 湾曲調整手段 11,12,13,14 レーザ光源としての光源ユニ
ット 18,19,20,21 プラスチックレンズとしての
トロイダルレンズ 28,29,30,31 感光体
DESCRIPTION OF SYMBOLS 1 Curve adjustment means 11, 12, 13, 14 Light source unit as a laser light source 18, 19, 20, 21 Toroidal lens as a plastic lens 28, 29, 30, 31 Photoconductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数のレーザ光源から射出されたビームを
各々対応する感光体に結像させるレンズ群が各ビーム毎
に設けられた多色画像形成装置の光走査装置において、 上記レンズ群を構成するレンズの内いずれかにスリット
状のプラスチックレンズを使用するとともに、該プラス
チックレンズをその副走査方向に強制的にたわませる湾
曲調整手段を備えたことを特徴とする多色画像形成装置
の光走査装置。
1. An optical scanning device of a multicolor image forming apparatus, wherein a lens group for forming a beam emitted from a plurality of laser light sources on a corresponding photosensitive member is provided for each beam. A slit-shaped plastic lens is used as one of the lenses to be bent, and a curvature adjusting means for forcibly bending the plastic lens in the sub-scanning direction is provided. Scanning device.
【請求項2】上記湾曲調整手段が上記プラスチックレン
ズに一体的に設けられていることを特徴とする請求項1
記載の多色画像形成装置の光走査装置。
2. The plastic lens according to claim 1, wherein said curvature adjusting means is provided integrally with said plastic lens.
An optical scanning device for the multicolor image forming apparatus according to the above.
【請求項3】各ビームに対応する各プラスチックレンズ
を各々に対応する湾曲調整手段で同一の方向へたわませ
て走査線の曲がりを補正することを特徴とする請求項1
記載の多色画像形成装置の光走査装置。
3. The bending of a scanning line is corrected by bending each plastic lens corresponding to each beam in the same direction by a corresponding curve adjusting means.
An optical scanning device for the multicolor image forming apparatus according to the above.
JP07177597A 1997-03-25 1997-03-25 Optical scanning device for multicolor image forming apparatus Expired - Lifetime JP3569412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07177597A JP3569412B2 (en) 1997-03-25 1997-03-25 Optical scanning device for multicolor image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07177597A JP3569412B2 (en) 1997-03-25 1997-03-25 Optical scanning device for multicolor image forming apparatus

Publications (2)

Publication Number Publication Date
JPH10268217A true JPH10268217A (en) 1998-10-09
JP3569412B2 JP3569412B2 (en) 2004-09-22

Family

ID=13470283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07177597A Expired - Lifetime JP3569412B2 (en) 1997-03-25 1997-03-25 Optical scanning device for multicolor image forming apparatus

Country Status (1)

Country Link
JP (1) JP3569412B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111821A (en) * 1998-10-02 2000-04-21 Konica Corp Scanning optical device and image forming device
JP2000180750A (en) * 1998-12-18 2000-06-30 Fuji Xerox Co Ltd Optical scanner
US6839157B2 (en) 2001-12-14 2005-01-04 Ricoh Company, Ltd. Method and apparatus for multi-beam optical scanning capable of effectively adjusting a scanning line pitch
US6885485B2 (en) 2003-03-25 2005-04-26 Pentax Corporation Multibeam scanning device
JP2006030705A (en) * 2004-07-16 2006-02-02 Ricoh Co Ltd Color image forming apparatus
US7050082B2 (en) 2002-01-23 2006-05-23 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device
JP2006259408A (en) * 2005-03-17 2006-09-28 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2006323356A (en) * 2005-04-20 2006-11-30 Ricoh Co Ltd Scanning optical system, optical scanning device, and image forming apparatus
JP2007065003A (en) * 2005-08-29 2007-03-15 Ricoh Co Ltd Structure for supporting optical scanner, and image forming apparatus
US7199913B2 (en) 2004-06-04 2007-04-03 Canon Kabushiki Kaisha Curved support for mirror in optical scanning device
CN1312492C (en) * 2002-11-06 2007-04-25 宇东科技股份有限公司 Lens system with tunable curvatures and method for adjusting curvatures
JP2007164205A (en) * 2007-01-09 2007-06-28 Ricoh Co Ltd Optical scanner and image forming device with the optical scanner mounted thereon
JP2007199242A (en) * 2006-01-25 2007-08-09 Ricoh Co Ltd Scanning line adjusting device, optical scanner, and image forming apparatus
JP2008058414A (en) * 2006-08-29 2008-03-13 Fuji Xerox Co Ltd Optical component bending device, optical equipment, and image forming device
US7525561B2 (en) 2002-07-02 2009-04-28 Ricoh Company, Ltd. Optical scanner and image forming apparatus
JP2011118161A (en) * 2009-12-03 2011-06-16 Ricoh Co Ltd Image forming apparatus
US20110279624A1 (en) * 2010-05-14 2011-11-17 Atsushi Ueda Optical scanner and image forming apparatus
CN103048902A (en) * 2011-10-12 2013-04-17 柯尼卡美能达商用科技株式会社 Image forming apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684100B2 (en) 2004-11-26 2010-03-23 Ricoh Company, Ltd. Optical-element holding device, method of adjusting shape of optical element, optical-element shape adjusting device, method of correcting scanning line variation, optical scanning device, and image forming apparatus
JP2009053401A (en) 2007-08-27 2009-03-12 Ricoh Co Ltd Holding structure for long optical element, optical scanner and image forming apparatus

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111821A (en) * 1998-10-02 2000-04-21 Konica Corp Scanning optical device and image forming device
JP2000180750A (en) * 1998-12-18 2000-06-30 Fuji Xerox Co Ltd Optical scanner
US6839157B2 (en) 2001-12-14 2005-01-04 Ricoh Company, Ltd. Method and apparatus for multi-beam optical scanning capable of effectively adjusting a scanning line pitch
US7050082B2 (en) 2002-01-23 2006-05-23 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device
USRE42865E1 (en) 2002-01-23 2011-10-25 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device
US7777774B2 (en) 2002-01-23 2010-08-17 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device
US7525561B2 (en) 2002-07-02 2009-04-28 Ricoh Company, Ltd. Optical scanner and image forming apparatus
US7532227B2 (en) 2002-07-02 2009-05-12 Ricoh Company, Ltd. Optical scanner and image forming apparatus
CN1312492C (en) * 2002-11-06 2007-04-25 宇东科技股份有限公司 Lens system with tunable curvatures and method for adjusting curvatures
US6885485B2 (en) 2003-03-25 2005-04-26 Pentax Corporation Multibeam scanning device
US7199913B2 (en) 2004-06-04 2007-04-03 Canon Kabushiki Kaisha Curved support for mirror in optical scanning device
JP4515842B2 (en) * 2004-07-16 2010-08-04 株式会社リコー Color image forming apparatus
JP2006030705A (en) * 2004-07-16 2006-02-02 Ricoh Co Ltd Color image forming apparatus
JP4646299B2 (en) * 2005-03-17 2011-03-09 株式会社リコー Optical scanning apparatus and image forming apparatus
JP2006259408A (en) * 2005-03-17 2006-09-28 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2006323356A (en) * 2005-04-20 2006-11-30 Ricoh Co Ltd Scanning optical system, optical scanning device, and image forming apparatus
JP4675247B2 (en) * 2005-04-20 2011-04-20 株式会社リコー Scanning optical system, optical scanning device, and image forming apparatus
JP2007065003A (en) * 2005-08-29 2007-03-15 Ricoh Co Ltd Structure for supporting optical scanner, and image forming apparatus
JP2007199242A (en) * 2006-01-25 2007-08-09 Ricoh Co Ltd Scanning line adjusting device, optical scanner, and image forming apparatus
JP2008058414A (en) * 2006-08-29 2008-03-13 Fuji Xerox Co Ltd Optical component bending device, optical equipment, and image forming device
US7791623B2 (en) 2006-08-29 2010-09-07 Fuji Xerox Co., Ltd. Optical component bowing device, optical device, optical scanning device, and image forming apparatus
KR100904053B1 (en) 2006-08-29 2009-06-23 후지제롯쿠스 가부시끼가이샤 Optical component bowing device, optical device, optical scanning device, and image forming apparatus
US8345078B2 (en) 2006-08-29 2013-01-01 Fuji Xerox Co., Ltd. Optical component bowing device, optical device, optical scanning device, and image forming apparatus
US8432426B2 (en) 2006-08-29 2013-04-30 Fuji Xerox Co., Ltd. Optical component bowing device, optical device, optical scanning device, and image forming apparatus
JP4571157B2 (en) * 2007-01-09 2010-10-27 株式会社リコー Optical scanning apparatus and image forming apparatus equipped with the same
JP2007164205A (en) * 2007-01-09 2007-06-28 Ricoh Co Ltd Optical scanner and image forming device with the optical scanner mounted thereon
JP2011118161A (en) * 2009-12-03 2011-06-16 Ricoh Co Ltd Image forming apparatus
US20110279624A1 (en) * 2010-05-14 2011-11-17 Atsushi Ueda Optical scanner and image forming apparatus
US8553062B2 (en) * 2010-05-14 2013-10-08 Sharp Kabushiki Kaisha Optical scanner and image forming apparatus
CN103048902A (en) * 2011-10-12 2013-04-17 柯尼卡美能达商用科技株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP3569412B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3569412B2 (en) Optical scanning device for multicolor image forming apparatus
JP3209656B2 (en) Optical scanning device
US8031362B2 (en) Optical scanning device, image forming apparatus, and liquid crystal element
JP4634881B2 (en) Optical scanning device and image forming device
EP0944243B1 (en) Color image forming apparatus and scanning optical apparatus
JP3111515B2 (en) Scanning optical device
JP2004333994A (en) Optical scanner and image forming apparatus
JP2002365575A (en) Optical scanner and imaging device using the same
JP2007171626A (en) Optical scanner and image forming apparatus
US6992807B2 (en) Optical scanning apparatus and image forming apparatus using the same
JP4851389B2 (en) Optical scanning device and image forming apparatus
US6963433B2 (en) Multibeam scanning optical device and image forming apparatus using the same
JP2004287380A (en) Light scanning device, scanning line adjusting method, scanning line adjusting control method, image forming apparatus and image forming method
US6980343B2 (en) Optical scanning apparatus and image forming apparatus using the same
JP2009265403A (en) Optical scanning apparatus and image forming apparatus using the same
JP2004286989A (en) Optical scanner and image forming apparatus
US8508808B2 (en) Optical scanning and image forming apparatus with a free-sliding unit for thermal expansion
JP2006350094A (en) Optical scanner and image forming apparatus
JP2002277792A (en) Scanning optical device
JP2001194613A (en) Optical scanner
JP2008257194A (en) Optical scanner and image forming apparatus provided with optical scanner
JP2004109761A (en) Optical scanning device and image forming apparatus
JP2006154097A (en) Optical scanner and image forming apparatus
JP4340558B2 (en) Optical scanning apparatus and image forming apparatus
JP4546118B2 (en) Optical scanning device and color image forming apparatus using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term