JP2002340672A - Sum frequency generating spectroscopic device and method therefor - Google Patents

Sum frequency generating spectroscopic device and method therefor

Info

Publication number
JP2002340672A
JP2002340672A JP2001152230A JP2001152230A JP2002340672A JP 2002340672 A JP2002340672 A JP 2002340672A JP 2001152230 A JP2001152230 A JP 2001152230A JP 2001152230 A JP2001152230 A JP 2001152230A JP 2002340672 A JP2002340672 A JP 2002340672A
Authority
JP
Japan
Prior art keywords
light
visible light
narrow
sum frequency
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001152230A
Other languages
Japanese (ja)
Other versions
JP4955863B2 (en
Inventor
Hiroshi Onishi
洋 大西
Takaaki Ishibashi
孝章 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2001152230A priority Critical patent/JP4955863B2/en
Publication of JP2002340672A publication Critical patent/JP2002340672A/en
Application granted granted Critical
Publication of JP4955863B2 publication Critical patent/JP4955863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sum frequency generating spectroscopic device allowing the improvement of measurement sensitivity and measurement accuracy and more significant extension of fields of measurement by improving the S/N ratio by improving a generation method of narrow-band visible light while solving the problem that signal intensity in single channel SFG spectroscopic method is faint. SOLUTION: This sum frequency generating spectroscopic device is characterized by having a single laser beam source; a means for forming wide-band infrared light from the divided waves of the basic wave of the laser beam source; a means for forming narrow-band visible light by halving the remaining divided waves of the basic wave to generate doubled waves; a means for varying the wavelength by optically parametric oscillation of the visible light from the narrow-band visible light forming means; a means for generating wide-bang sum frequency light by condensing the infrared light from the wind-band infrared light forming means and the visible light from the narrow-band visible light wavelength varying means to the surface of a sample; a means for spectrally dividing the wind-band sum frequency light; a multiplex measuring means for simultaneously measuring the divided sum frequency lights in multi-channel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面や界面の振動
分光法の一種である、赤外−可視光表面和周波発生分光
法に好適な装置および方法に関する。
The present invention relates to an apparatus and a method suitable for infrared-visible light surface sum frequency generation spectroscopy, which is a kind of surface or interface vibration spectroscopy.

【0002】[0002]

【従来の技術】赤外光−可視光を混合して発生する和周
波光を利用して試料の表面や界面に存在する分子の振動
を計測する和周波発生(以下、「SFG」と略称するこ
ともある。)分光法は、Shenらによって1987年
に開発された。このSFG分光法は原理的に界面選択性
を有するうえに、時間分解測定への展開可能性において
他手法を凌駕するが、得られる信号強度が微弱であると
いう問題を抱えており、それに伴って感度が不十分にな
ることがある、測定可能な対象が限られるという問題も
生じている。Shenらによる開発当初の測定法は、単
色の可視光と赤外光とから発生する単色の和周波光を赤
外光波数を変化させながら一個の検出器で検出する方法
であった(シングルチャンネル和周波分光法)。
2. Description of the Related Art Sum frequency generation (hereinafter abbreviated as "SFG") for measuring vibrations of molecules existing on the surface or interface of a sample using sum frequency light generated by mixing infrared light and visible light. The spectroscopy was developed in 1987 by Shen et al. This SFG spectroscopy has interface selectivity in principle, and surpasses other methods in the possibility of development to time-resolved measurement. However, it has a problem that the obtained signal intensity is weak. There are also problems that the sensitivity may be insufficient and the measurable object is limited. The initial measurement method by Shen et al. Was to detect single-color sum frequency light generated from single-color visible light and infrared light with a single detector while changing the infrared light wave number (single channel). Sum frequency spectroscopy).

【0003】1990年代後半に入ってから、SFG分
光法における感度向上をめざした技術開発が行われた。
まず、van der Hamらは1996年に、自由
電子レーザーから射出される、より強い赤外光を入射光
に利用してSFG光感度を高めた。このときには、赤外
光は広帯域であり、波数幅80cm-1のスペクトルを位
相整合条件を利用して分光器を用いることなくマルチプ
レックス計測している。この方法では、確かにSFG強
度は増大し、かつ、遠赤外光を利用した低波数領域の分
光も可能になるが、その一方で、大規模な自由電子レー
ザー施設を使わねばならないこと、および、自由電子レ
ーザーによる赤外光と、別途準備する可視レーザー光と
を同期させなければならないため、装置全体が複雑化す
るという欠点をもっている。
[0003] In the late 1990's, technical development for improving sensitivity in SFG spectroscopy was carried out.
First, van der Ham et al. Increased the SFG photosensitivity in 1996 by using stronger infrared light emitted from a free electron laser as incident light. At this time, the infrared light has a wide band, and a multiplex measurement of a spectrum with a wave number width of 80 cm -1 is performed using a phase matching condition without using a spectroscope. This method certainly increases the SFG intensity and also allows low-frequency spectroscopy using far-infrared light, while requiring the use of a large-scale free electron laser facility, and In addition, the infrared light from the free electron laser must be synchronized with the visible laser light separately prepared, which has a drawback that the entire apparatus becomes complicated.

【0004】このような自由電子レーザー光を用いる方
法に対し、1998年にRichterらによって新し
い方法が提案された。この方法は、単一の卓上型レーザ
ー光源から得られるパルス光を分割して波数幅の広い広
帯域赤外光と波数幅の狭い狭帯域可視光とを作り出し、
それらから広帯域SFG光を発生させるマルチプレック
スSFG分光法である。本方法は、レーザーパルス強度
の変動(通常、±20%程度)が惹起するSFGスペク
トルの雑音(歪み)を除去する利点をもっている。つま
り、単一の卓上型レーザー光源からのレーザー光を分割
して広帯域赤外光と狭帯域可視光を作成しているので、
レーザーパルスごとの強度変動が全波数域の和周波光強
度に等しく影響することとなり、スペクトルのS/N比
の悪化を防止することができる。Richterらは、
フェムト秒レーザーの広帯域出力から広帯域赤外光を発
生させるとともに、同レーザーの可視光出力を分光器に
よって切り出し狭帯域化する方法で、波数幅380cm
-1にわたるSFGスペクトルを同時計測することに成功
した。これは、SFG分光法におけるマルチプレックス
計測法の優位性を実証した最初の例である。本発明者ら
は、このRichterらが開発した卓上型レーザーを
光源とするマルチプレックス法が、優れたS/N比にて
広範囲な対象に対して測定可能であることから、将来的
にSFG測定の標準的手法になるものと推測している。
A new method was proposed by Richter et al. In 1998 for such a method using a free electron laser beam. This method divides the pulse light obtained from a single desktop laser light source to create broadband infrared light with a wide wavenumber width and narrowband visible light with a narrow wavenumber width,
Multiplex SFG spectroscopy that generates broadband SFG light therefrom. The method has the advantage of removing noise (distortion) in the SFG spectrum caused by fluctuations in the laser pulse intensity (typically about ± 20%). In other words, since the laser light from a single desktop laser light source is split to create broadband infrared light and narrowband visible light,
The intensity fluctuation for each laser pulse equally affects the sum frequency light intensity in the entire wavenumber range, and the deterioration of the S / N ratio of the spectrum can be prevented. Richter et al.
A method of generating broadband infrared light from the broadband output of a femtosecond laser, and cutting out the visible light output of the laser with a spectroscope to narrow the band.
We succeeded in measuring SFG spectra over -1 at the same time. This is the first example that demonstrates the superiority of multiplex metrology in SFG spectroscopy. The present inventors have proposed that the multiplex method developed by Richter et al. Using a table-top laser as a light source can measure a wide range of objects with an excellent S / N ratio, so that SFG measurement will be performed in the future. I guess it will be a standard method.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明者らは、
未だ出願未公開の段階にあるが、先に特願2000−2
82209号により、このRichterらが開発した
卓上型レーザーを光源とするマルチプレックス法をさら
に高機能化した装置および方法を提案した。すなわち、
単一のレーザー光源と、該レーザー光源の基本波の分割
波から所定の波数幅、所定のパルス時間幅をもつ広帯域
赤外光を作成する手段と、基本波の残りの分割波を二分
し逆方向にチャープさせた後合成して倍波を発生させ狭
帯域可視光を作成する手段と、広帯域赤外光作成手段か
らの広帯域赤外光と狭帯域可視光作成手段からの狭帯域
可視光を試料の表面または界面に集光させて広帯域和周
波光を発生させる和周波光発生手段と、発生した広帯域
和周波光を分光する分光手段と、分光された和周波光を
マルチチャンネルで実質的に同時に計測するマルチプレ
ックス計測手段と、を有する和周波発生分光装置および
方法である。
SUMMARY OF THE INVENTION Accordingly, the present inventors
Although the application has not yet been published,
No. 82209 proposed an apparatus and method which further enhanced the multiplex method using a tabletop laser developed by Richter et al. As a light source. That is,
A single laser light source, means for creating a broadband infrared light having a predetermined wave number width and a predetermined pulse time width from a divided wave of the fundamental wave of the laser light source, and bisecting the remaining divided wave of the fundamental wave and inverting the same A means for generating narrow harmonic visible light by generating harmonics by chirping in the direction, and a method for combining broadband infrared light from the broadband infrared light creating means and narrowband visible light from the narrowband visible light creating means. Sum frequency light generating means for converging on the surface or interface of the sample to generate broadband sum frequency light, spectroscopy means for dispersing the generated broadband sum frequency light, and substantially dividing the split sum frequency light into multiple channels. And a multiplex measuring means for measuring at the same time.

【0006】この先の提案による装置および方法では、
和周波励起用の狭帯域可視光が高効率で倍波光として作
成されるので、従来のシングルチャンネルSFG分光法
における弱点であった信号強度が弱いことが改善され、
和周波分光における感度が大幅に向上される。そして、
単一のレーザー光源からのレーザー基本波を分割して和
周波発生用の広帯域赤外光と狭帯域可視光を作り出すよ
うにしているので、本質的に両光を同期させる必要がな
く、基本波のパルス強度変動は和周波光発生用の可視光
および赤外光の全波数成分に等しく影響するから、和周
波スペクトルのS/N比はパルス強度変動が存在しても
本質的に悪化しない。したがって、感度の大幅な向上と
ともに、S/N比の向上が可能となる。
[0006] In the device and method according to the preceding proposal,
Since the narrow-band visible light for sum frequency excitation is created as harmonic light with high efficiency, the weak signal strength, which was a weak point in the conventional single channel SFG spectroscopy, is improved,
Sensitivity in sum frequency spectroscopy is greatly improved. And
Since the laser fundamental wave from a single laser light source is divided to create broadband infrared light and narrowband visible light for sum frequency generation, there is essentially no need to synchronize both lights. Since the pulse intensity fluctuations described above equally affect the total wave number components of visible light and infrared light for sum frequency light generation, the S / N ratio of the sum frequency spectrum does not substantially deteriorate even if the pulse intensity fluctuations exist. Therefore, the S / N ratio can be improved as well as the sensitivity is significantly improved.

【0007】本発明では、上記先の提案による装置およ
び方法の優れた利点に着目しつつ、可視光の共鳴現象を
利用することにより、一層の感度向上が可能になること
に着目し、さらなる改良を試みた。すなわち、試料分子
の電子状態遷移に入射可視光のエネルギーがたまたま共
鳴すると、SFG光強度が増大することは、SFG法の
創始者であるShenらによって既に観測された事実で
ある。しかし、電子状態遷移のエネルギーは試料ごとに
異なるので、可視光共鳴現象をSFGスペクトルの増強
手段として利用するためには、可視光の波長を広い範囲
で連続的に可変化できる測定装置が必要である。ところ
が、レーザー技術上の制約のために、波長を連続可変化
した可視光を使ったSFGスペクトル測定は、今日に至
るまでなされていない。van der Hamらおよ
びRichterらによるマルチプレックスSFG測定
でも、可視光波長を固定した計測のみを想定した装置構
成にとどまっている。
The present invention focuses on the excellent advantages of the above-proposed apparatus and method, and further focuses on the fact that the sensitivity can be further improved by utilizing the resonance phenomenon of visible light. Tried. That is, if the incident visible light energy happens to resonate with the electronic state transition of the sample molecule, the SFG light intensity increases, which is a fact already observed by Shen et al., The founder of the SFG method. However, since the energy of the electronic state transition varies from sample to sample, in order to use the visible light resonance phenomenon as a means for enhancing the SFG spectrum, a measuring device capable of continuously varying the wavelength of visible light over a wide range is required. is there. However, due to laser technology limitations, SFG spectrum measurement using visible light with continuously variable wavelength has not been performed to date. In the multiplex SFG measurement by van der Ham et al. and Richter et al., the apparatus configuration assumes only measurement with a fixed visible light wavelength.

【0008】そこで本発明の課題は、前述のRicht
erらによって開発されたマルチプレックス法の利点に
着目し、シングルチャンネルSFG分光法における信号
強度が微弱であるという問題を解消しつつ、狭帯域可視
光の発生方法を改良することによりS/N比をさらに向
上し、それによって測定感度、測定精度を向上するとと
もに、さらに、種々の測定対象に対して可視光共鳴現象
を利用可能とし、それによって一層大幅に感度を向上
し、かつ、測定分野の一層大幅な拡大を可能にする、和
周波発生分光装置および方法を提供することにある。
Therefore, an object of the present invention is to address the aforementioned Richt
Focusing on the advantage of the multiplex method developed by E. et al., the S / N ratio was improved by improving the method of generating narrow-band visible light while eliminating the problem of weak signal intensity in single-channel SFG spectroscopy. And thereby improve the measurement sensitivity and accuracy, and furthermore, make the visible light resonance phenomenon available for various measurement objects, thereby greatly improving the sensitivity, and in the measurement field. It is an object of the present invention to provide a sum-frequency generation spectroscopy apparatus and method capable of further increasing the magnification.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、単一のレーザー光源(卓上型レ
ーザー光源)からの基本波を分割して、所定の広帯域赤
外光と狭帯域可視光とを作り出し、それによって和周波
光発生、計測におけるS/N比の悪化防止を担保すると
ともに、とくにその狭帯域可視光の作成に際し、Rao
ultらによって確立された倍波発生法を適用すること
により倍波光として狭帯域可視光を作り出すことによ
り、和周波光の信号強度を高めて感度を向上するととも
に、その狭帯域可視光の波長を実質的に連続的に可変で
きるようにして、種々の測定対象に対して(つまり、測
定試料が異なっても)、意図的に可視光共鳴現象を生じ
させることができるようにすることにより、和周波光の
信号強度をさらに高めて大幅な感度向上を達成できるよ
うにしたものである。なお、上記Raoultらによる
倍波発生法は、フェムト秒レーザー光からピコ秒幅の狭
帯域化倍波光を高効率で発生させることのできる波長変
換技術として知られており、既にレーザー光学機器とし
て実用化されているものである。
In order to solve the above-mentioned problems, in the present invention, a fundamental wave from a single laser light source (desktop laser light source) is divided into a predetermined broadband infrared light and a narrow band. In addition to producing visible light with a band, it ensures generation of sum-frequency light and prevention of deterioration of the S / N ratio in measurement.
By applying the harmonic generation method established by Ult et al. to generate narrow-band visible light as harmonic light, the signal intensity of sum-frequency light is increased to improve sensitivity, and the wavelength of the narrow-band visible light is increased. By making it possible to vary substantially continuously so that a visible light resonance phenomenon can be intentionally caused for various measurement objects (that is, even when measurement samples are different), the sum can be increased. The signal intensity of the high frequency light is further increased to achieve a significant improvement in sensitivity. The harmonic generation method by Raoult et al. Is known as a wavelength conversion technology capable of generating a picosecond-width narrow-band harmonic light from a femtosecond laser light with high efficiency, and has already been used as a laser optical device. It is something that has been.

【0010】すなわち、本発明に係る和周波発生分光装
置は、単一のレーザー光源と、該レーザー光源の基本波
の分割波から所定の波数幅、所定のパルス時間幅をもつ
広帯域赤外光を作成する手段と、前記基本波の残りの分
割波を二分し逆方向にチャープさせた後合成して倍波を
発生させ狭帯域可視光を作成する手段と、該狭帯域可視
光作成手段からの狭帯域可視光を光パラメトリック発振
させて狭帯域可視光の波長を可変する手段と、前記広帯
域赤外光作成手段からの広帯域赤外光と狭帯域可視光波
長可変手段からの狭帯域可視光を試料の表面または界面
に集光させて広帯域和周波光を発生させる和周波光発生
手段と、発生した広帯域和周波光を分光する分光手段
と、分光された和周波光をマルチチャンネルで実質的に
同時に計測するマルチプレックス計測手段と、を有する
ことを特徴とするものからなる。
That is, the sum-frequency generation spectrometer according to the present invention converts a single laser light source and a broadband infrared light having a predetermined pulse width and a predetermined pulse time width from a divided wave of a fundamental wave of the laser light source. Means for creating, dividing the remaining divided waves of the fundamental wave into two, chirping them in the opposite direction, and combining them to generate harmonics to create narrow-band visible light, and the narrow-band visible light creating means. Means for causing the narrow-band visible light to oscillate optically in a parametric manner to vary the wavelength of the narrow-band visible light; and converting the narrow-band visible light from the narrow-band visible light wavelength varying means and the narrow-band visible light from the broad-band infrared light creating means. Sum frequency light generating means for generating broadband sum frequency light by condensing on the surface or interface of the sample, spectroscopy means for dispersing the generated broadband sum frequency light, and multi-channel substantially dividing the split sum frequency light. Mul to measure simultaneously And plexes measuring means, consisting of those characterized by having a.

【0011】上記レーザー光源としては、フェムト秒レ
ーザー光源、たとえばチタン・サファイアレーザー光源
を用いることができ、それによってフェムト秒レベルの
レーザー基本波を得ることができる。
As the laser light source, a femtosecond laser light source, for example, a titanium-sapphire laser light source can be used, whereby a femtosecond-level laser fundamental wave can be obtained.

【0012】上記広帯域赤外光作成手段では、100c
-1以上の波数幅をもつ広帯域赤外光を作成するように
し、狭帯域可視光作成手段では、15cm-1以下の(た
とえば、10cm-1程度の)波数幅をもつ狭帯域可視光
を作成するようにすることが好ましい。
In the above-mentioned broadband infrared light generating means, 100c
Broadband infrared light having a wave number width of m -1 or more is generated, and the narrow band visible light generating means converts narrow band visible light having a wave number width of 15 cm -1 or less (for example, about 10 cm -1 ). It is preferable to make it.

【0013】また、上記狭帯域可視光波長可変手段は、
狭帯域可視光作成手段からの狭帯域可視光の波長を実質
的に連続的に変化させることが可能な手段からなること
が好ましい。可視光波長の可変範囲としては、たとえ
ば、400nm〜800nm程度の範囲を挙げることが
でき、後述の実施例に示すように、現実に400nmか
ら633nmまでの狭帯域可視光を作成することに成功
しているが、光パラメトリック発振器の仕様としては現
状800nm程度まで発振可能である。
[0013] Further, the narrow-band visible light wavelength varying means includes:
It is preferable to include a unit capable of changing the wavelength of the narrow band visible light from the narrow band visible light generating unit substantially continuously. As the variable range of the visible light wavelength, for example, a range of about 400 nm to 800 nm can be cited, and as shown in an example described later, a narrow band visible light from 400 nm to 633 nm has actually been successfully produced. However, the optical parametric oscillator can oscillate up to about 800 nm at present.

【0014】本発明に係る和周波発生分光法は、単一の
レーザー光源からの基本波を、二つの分割波に分割し、
一方の分割波から所定の波数幅と所定のパルス時間幅を
もつ和周波光発生用の広帯域赤外光を作成するととも
に、残りの分割波を二分し逆方向にチャープさせた後合
成して倍波の和周波光発生用の狭帯域可視光を作成し、
さらにその狭帯域可視光を光パラメトリック発振させて
狭帯域可視光の波長を可変し、作成した広帯域赤外光と
波長可変狭帯域可視光を試料の表面または界面に集光し
て広帯域和周波光を発生させ、発生した広帯域和周波光
を分光手段で分散させ、分散された光をマルチチャンネ
ルで実質的に同時に計測することを特徴とする方法から
なる。
The sum frequency generation spectroscopy according to the present invention divides a fundamental wave from a single laser light source into two divided waves,
A broadband infrared light for sum frequency light generation having a predetermined wave number width and a predetermined pulse time width is created from one of the divided waves, and the remaining divided waves are bisected, chirped in the opposite direction, and then combined and doubled. Create narrowband visible light for sum frequency light generation of waves,
Further, the narrow-band visible light is subjected to optical parametric oscillation to vary the wavelength of the narrow-band visible light. Is generated, the generated broadband sum-frequency light is dispersed by the spectroscopic means, and the dispersed light is measured substantially simultaneously in multiple channels.

【0015】上記のような本発明に係る和周波発生分光
装置および方法においては、和周波励起用の狭帯域可視
光が高効率で倍波光として作成されるので、従来のシン
グルチャンネルSFG分光法における弱点であった信号
強度が弱いことが改善され、和周波分光における感度が
大幅に向上される。
In the above-described sum-frequency generation spectroscopy apparatus and method according to the present invention, the narrow-band visible light for sum-frequency excitation is produced as harmonic light with high efficiency. The weakness of the signal strength, which was the weak point, is improved, and the sensitivity in sum frequency spectroscopy is greatly improved.

【0016】また、本装置および方法は、基本的に単一
のレーザー光源(卓上型レーザー光源)からのレーザー
光を分割して和周波発生用の広帯域赤外光と狭帯域可視
光を作り出すようにしているので、本質的に両光を同期
させる必要がない。しかも、レーザー基本波のパルス強
度変動は和周波光発生用の可視光および赤外光の全波数
成分に等しく影響するから、和周波スペクトルのS/N
比はパルス強度変動が存在しても本質的に悪化しない。
したがって、優れたS/N比が確保される。
Further, the present apparatus and method basically divide laser light from a single laser light source (table-top type laser light source) to produce broadband infrared light and narrowband visible light for sum frequency generation. Therefore, there is essentially no need to synchronize the two lights. Moreover, since the pulse intensity fluctuation of the laser fundamental wave equally affects all wave number components of visible light and infrared light for generating sum frequency light, the S / N of the sum frequency spectrum
The ratio does not deteriorate essentially in the presence of pulse intensity fluctuations.
Therefore, an excellent S / N ratio is secured.

【0017】さらに、狭帯域可視光作成手段からの倍波
光として作成された狭帯域可視光を光パラメトリック発
振させて波長を広い範囲で連続的に可変できるようにし
たので、種々の測定対象試料の表面や界面における分子
の電子状態遷移に対し、たまたま発生するのではなく意
図的に入射可視光を共鳴させることが可能になる。した
がって、この可視光共鳴現象を利用して、SFG分光法
における測定感度を一層大幅に向上することが可能にな
る。
Further, the narrow-band visible light generated as harmonic light from the narrow-band visible light generating means is subjected to optical parametric oscillation so that the wavelength can be continuously varied over a wide range. It is possible to intentionally resonate incident visible light, rather than happening, by accident with respect to the electronic state transition of molecules at the surface or interface. Therefore, the measurement sensitivity in SFG spectroscopy can be further greatly improved by utilizing this visible light resonance phenomenon.

【0018】可視光の倍波化と共鳴現象の利用による感
度の大幅な向上と、単一のレーザー光源からのレーザー
光を分割による優れたS/N比の確保により、試料の表
面や界面からの和周波の分光計測の感度、精度がともに
大幅に向上され、それによって測定対象の範囲も大幅に
拡大される。
The sensitivity is greatly improved by using the harmonic wave of the visible light and the resonance phenomenon, and the excellent S / N ratio is ensured by dividing the laser light from a single laser light source. The sensitivity and accuracy of the sum frequency spectrometry are greatly improved, and the range of the object to be measured is greatly expanded.

【0019】[0019]

【発明の実施の形態】以下に、本発明に係る和周波発生
分光装置および方法の実施の形態について、詳細に説明
する。図1は、本発明の一実施態様に係る和周波発生分
光装置および方法の構成を示している。図1において、
1は和周波発生分光装置全体を示している。2は、フェ
ムト秒レベルのレーザー光を発生可能なフェムト秒レー
ザー光源としての、卓上型のチタン・サファイアレーザ
ー光源を示しており、本実施態様では、増幅機能まで有
するチタン・サファイアレーザー発振器兼再生増幅器と
して構成されている。このチタン・サファイアレーザー
光源2は、たとえば次のようなレーザー光を発振する。 発振波長 :800nm程度 パルス時間幅 :100fs(フェムト秒)程度 パルスエネルギー:3mJ程度 繰り返し周波数 :1kHz程度
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the sum frequency generation spectroscopy apparatus and method according to the present invention will be described in detail. FIG. 1 shows a configuration of a sum frequency generation spectroscopy apparatus and method according to an embodiment of the present invention. In FIG.
Reference numeral 1 denotes the entire sum frequency generation spectrometer. Reference numeral 2 denotes a desktop titanium-sapphire laser light source as a femtosecond laser light source capable of generating a femtosecond-level laser light. In this embodiment, a titanium-sapphire laser oscillator and a regenerative amplifier having an amplification function Is configured as The titanium-sapphire laser light source 2 oscillates, for example, the following laser light. Oscillation wavelength: about 800 nm Pulse time width: about 100 fs (femtosecond) Pulse energy: about 3 mJ Repetition frequency: about 1 kHz

【0020】このレーザー光源2からのレーザー光の基
本波3が、広帯域赤外光と、狭帯域可視光を作成するた
めの分割波4、5に分割される。たとえば、パルスエネ
ルギーが3mJの基本波3が、1mJの広帯域赤外光作
成用の分割波4と、残りの2mJの狭帯域可視光作成用
の分割波5とに分割される。
The fundamental wave 3 of the laser light from the laser light source 2 is divided into broadband infrared light and split waves 4 and 5 for producing narrowband visible light. For example, a fundamental wave 3 having a pulse energy of 3 mJ is divided into a 1 mJ divided wave 4 for producing broadband infrared light and a remaining 2 mJ divided wave 5 for producing narrow band visible light.

【0021】1mJの分割波4は、それから所定の波数
幅、所定のパルス時間幅の広帯域赤外光を作成する広帯
域赤外光作成手段6に送られる。広帯域赤外光作成手段
6は、たとえば、光パラメトリック発生増幅器(OPG
/OPA)と差周波発生器(DFG)とを備えたものか
らなり、光パラメトリック発生増幅器で、周波数の和が
元の波の周波数に等しい二つの低周波数の波に変換さ
れ、つづいて差周波発生器で差周波が発生されて、和周
波発生用の所定の広帯域赤外光パルス7が得られる。こ
の広帯域赤外光パルス7は、たとえば、中心波数:40
00〜1000cm-1、波数半値全幅:250cm-1
パルス時間幅:150fs、パルスエネルギー:3μJ
の赤外光とされる。
The 1 mJ split wave 4 is then sent to broadband infrared light creating means 6 for creating broadband infrared light having a predetermined wave number width and a predetermined pulse time width. The broadband infrared light generating means 6 is, for example, an optical parametric generation amplifier (OPG).
/ OPA) and a difference frequency generator (DFG), and the optical parametric generation amplifier converts the sum of the frequencies into two low-frequency waves equal to the frequency of the original wave, followed by the difference frequency A difference frequency is generated by the generator, and a predetermined broadband infrared light pulse 7 for sum frequency generation is obtained. The broadband infrared light pulse 7 has, for example, a center wave number of 40.
00~1000cm -1, wave number of the full width at half maximum: 250cm -1,
Pulse time width: 150 fs, pulse energy: 3 μJ
Infrared light.

【0022】残りの2mJの分割波5は、それから所定
の波数幅と所定のパルス時間幅の狭帯域可視光を作成す
る手段としての狭帯域倍波発生器8に送られる。狭帯域
倍波発生器8では、2mJの分割波5が二分され、逆方
向にチャープされた後、それらが合成されて二倍波(倍
波)に形成され、時間幅が拡げられ、波数幅が圧縮され
た、和周波発生用の単色可視光パルス9が発生される。
この単色可視光パルス9は、たとえば、波長:400n
m、波数半値全幅:10cm-1、パルス時間幅:5p
s、パルスエネルギー:500μJの可視光とされる。
このような手法で、倍波化された可視光が高効率で得ら
れる。すなわち、Raoultらによる狭帯域倍波発生
技術を利用することで、25%程度という高い変換効率
で2倍波を作ることができる。
The remaining 2 mJ split wave 5 is then sent to a narrow-band harmonic generator 8 as a means for producing narrow-band visible light having a predetermined wave number width and a predetermined pulse time width. In the narrow-band harmonic generator 8, the 2 mJ split wave 5 is bisected and chirped in the reverse direction, then synthesized and formed into a second harmonic (harmonic), the time width is expanded, and the wave number width is increased. Are generated, and a monochromatic visible light pulse 9 for sum frequency generation is generated.
This monochromatic visible light pulse 9 has, for example, a wavelength of 400 n.
m, full width at half maximum of wave number: 10 cm -1 , pulse time width: 5 p
s, pulse energy: 500 μJ of visible light.
With such a method, the harmonic-visible light can be obtained with high efficiency. In other words, by using the narrow-band harmonic generation technology by Raoult et al., A second harmonic can be produced with a high conversion efficiency of about 25%.

【0023】この2倍波の出力は、単に可視光を分光器
で波長選別するRichterらの測定手法に比べ格段
に大きいため、光パラメトリック発振器10による波長
制御を行うことにより、実質的に連続的に波長を可変化
することができる。波長可変化の範囲は、たとえば40
0nm〜800nm程度の範囲まで可能であり、図示例
では470〜630nm程度の範囲まで可変可能な光パ
ラメトリック発振器10が用いられており、パルス時間
幅:5ps、パルスエネルギー:10〜100μJ、波
数半値全幅:10cm-1(バンド幅)のものが使用され
ている。この光パラメトリック発振により、波長可変単
色可視光パルス11が得られる。
Since the output of the second harmonic is much larger than that of the measurement method of Richter et al., Which simply selects the wavelength of visible light by a spectroscope, by performing wavelength control by the optical parametric oscillator 10, substantially continuous output is obtained. The wavelength can be varied. The range of wavelength tunable is, for example, 40
The optical parametric oscillator 10 which can be changed to a range of about 0 nm to 800 nm and which can be changed to a range of about 470 to 630 nm is used in the illustrated example, a pulse time width: 5 ps, a pulse energy: 10 to 100 μJ, and a full wave number full width at half maximum. : 10 cm -1 (band width) is used. By this optical parametric oscillation, a wavelength-tunable monochromatic visible light pulse 11 is obtained.

【0024】上記広帯域赤外光7と狭帯域可視光11
(波長可変単色可視光パルス)が、試料12の表面ある
いは界面に集光するように照射され、それによって和周
波光が発生される。発生する和周波光は、広帯域和周波
光13となる。
The broadband infrared light 7 and the narrowband visible light 11
(Wavelength variable monochromatic visible light pulse) is irradiated so as to be focused on the surface or interface of the sample 12, thereby generating sum frequency light. The generated sum frequency light becomes broadband sum frequency light 13.

【0025】発生した広帯域和周波光13は、たとえば
分光手段としての分散型分光器14(焦点距離f:たと
えば55cm)に入光されて分散され、分散された光
が、マルチチャンネル検出器15(たとえば、マルチチ
ャンネルCCD検出器)で検出される。
The generated broadband sum frequency light 13 is incident on, for example, a dispersion type spectroscope 14 (focal length f: 55 cm, for example) as spectroscopic means and dispersed, and the dispersed light is transmitted to a multi-channel detector 15 ( For example, it is detected by a multi-channel CCD detector).

【0026】上記のような和周波発生分光装置1では、
単一の卓上型レーザー光源2から、和周波光励起用の広
帯域赤外光7と、狭帯域可視光11をともに作り出して
いるので、レーザー基本波のパルス強度変動は和周波光
発生用の可視光および赤外光の全波数成分に等しく影響
する。それゆえ和周波スペクトルのS/N比はパルス強
度変動が存在しても本質的に悪化しないため、発生され
る和周波光による測定の感度が従来のシングルチャンネ
ルSFG分光法に比べると大幅に向上される。
In the sum frequency generation spectrometer 1 as described above,
Since the single tabletop laser light source 2 produces both the broadband infrared light 7 for sum frequency light excitation and the narrow band visible light 11, the pulse intensity fluctuation of the laser fundamental wave is the visible light for sum frequency light generation. And all wavenumber components of infrared light. Therefore, the S / N ratio of the sum frequency spectrum is not substantially deteriorated even in the presence of pulse intensity fluctuation, so that the sensitivity of the measurement by the generated sum frequency light is greatly improved as compared with the conventional single channel SFG spectroscopy. Is done.

【0027】そして、狭帯域可視光9が倍波として作り
出され、さらにその狭帯域可視光9が光パラメトリック
発振により、波長可変単色可視光パルス11として出力
されるので、種々の試料12あるいは試料12の状態変
化に対して、その表面あるいは界面における可視光共鳴
現象の利用が可能になり、共鳴現象の利用により、発生
する和周波光の測定感度がさらに大幅に高められ、測定
精度のさらなる大幅な向上、測定対象の一層の大幅な拡
大が可能になる。
Then, the narrow-band visible light 9 is generated as a harmonic, and the narrow-band visible light 9 is output as a wavelength-variable single-color visible light pulse 11 by optical parametric oscillation. It is possible to use the visible light resonance phenomenon on the surface or interface for the state change of the state, and the use of the resonance phenomenon can further increase the measurement sensitivity of the generated sum frequency light, and further increase the measurement accuracy It is possible to increase the number of objects to be measured.

【0028】測定対象に関して言えば、SFG分光法の
対象はこれまで巨視的に平坦な表面や界面に限られてき
た。これは、和周波光は入射光二色と位相整合条件を満
たす方向にのみ選択的に放出される性質があるためであ
る。事実、電子デバイスなどを対象とした研究において
は、半導体ウエハーのような平坦表面のみを考慮すれば
こと足りる。しかし、細胞膜のような生体界面やエアロ
ゾルのような環境界面における物質移動や化学反応を解
析することに対する社会的要請が現在急速に高まってい
る。これらの界面は非平坦であるため、これまでSFG
分光の対象から外れていた。
With respect to the object to be measured, the object of SFG spectroscopy has been limited to macroscopically flat surfaces and interfaces. This is because the sum frequency light has a property of being selectively emitted only in a direction that satisfies the phase matching condition with the two colors of the incident light. In fact, in research on electronic devices and the like, it is sufficient to consider only a flat surface such as a semiconductor wafer. However, social demands for analyzing mass transfer and chemical reactions at a biological interface such as a cell membrane and an environmental interface such as an aerosol are rapidly increasing. Because these interfaces are non-planar,
It was out of spectroscopy.

【0029】本発明は、SFG測定法の単なる高感度化
にとどまらず、機能性分子の電子状態が可視光に共鳴す
る現象と分子振動が赤外光に共鳴する現象とを同時に利
用した二重共鳴現象の観測への道を拓くことをも可能に
するものである。本発明者らは、本発明が細胞膜のよう
な生体界面やエアロゾルのような環境界面における物質
移動や化学反応の解析に役立つものと考えている。現に
Eisenthal(USA)らはコロイド粒子表面か
らの二倍波発生(SHG)スペクトルを測定することに
1996年に成功した。和周波光はこの二倍波光よりは
微弱ではあるが、分子振動という化学的に意味の明確な
情報を担っている。可視光波長の連続可変化とマルチプ
レックス計測という本発明の二重の利点を活用して、生
体界面、環境界面、実用触媒などを対象とした高速振動
分光測定への道を拓くことができれば、環境エネルギー
問題の解決や生体技術の発展を望む社会的要請に応える
ことができる。
The present invention is not limited to the mere increase in sensitivity of the SFG measurement method, but is a dual method utilizing the phenomenon that the electronic state of a functional molecule resonates with visible light and the phenomenon that molecular vibration resonates with infrared light simultaneously. It also opens the way to the observation of resonance phenomena. The present inventors believe that the present invention is useful for analyzing mass transfer and chemical reactions at biological interfaces such as cell membranes and environmental interfaces such as aerosols. In fact, Eisenthal (USA) et al. Succeeded in measuring a second harmonic generation (SHG) spectrum from the surface of colloid particles in 1996. Although the sum frequency light is weaker than the second harmonic light, it carries the information of molecular vibration, which is chemically clear. If we could exploit the dual advantages of the present invention of continuous variable visible light wavelength and multiplex measurement to open the way to high-speed vibrational spectroscopy at biological interfaces, environmental interfaces, and practical catalysts, It can meet social demands for solving environmental energy problems and developing biotechnology.

【0030】[0030]

【実施例】図1に示した装置を用いて、可視光波長を4
00、477、535、633nmに設定して、金薄膜
上に作成したオクタデカンチオール単分子膜のSFG振
動スペクトルを計測した。計測したSFG振動スペクト
ルを図2に示す。なお、各スペクトルの積算に要した時
間は60秒である。図2に示すように、アルキル基を構
成するCH3 部分のC−H伸縮振動が明瞭に観察され
る。各スペクトルにおけるS/N比および信号強度は、
可視光波長を固定したSFG計測システムによる測定に
十分に比肩しうるものであり、本発明に係る分析装置と
しての実用性が実証された。つまり、波長可変可視光を
使用した和周波発生分光装置および方法により、優れた
S/N比および信号強度で計測することができ、可視光
の波長可変化により、前述の如く、可視光共鳴現象の利
用が可能になり、それによって発生する和周波光の測定
感度がさらに大幅に高められ、測定精度のさらなる大幅
な向上、測定対象の一層の大幅な拡大が可能になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Using the apparatus shown in FIG.
The SFG vibration spectrum of the octadecanethiol monomolecular film formed on the gold thin film was set at 00, 577, 535 and 633 nm. FIG. 2 shows the measured SFG vibration spectrum. The time required for integrating each spectrum is 60 seconds. As shown in FIG. 2, the C—H stretching vibration of the CH 3 portion constituting the alkyl group is clearly observed. The S / N ratio and signal strength in each spectrum are
This is sufficiently comparable to the measurement by the SFG measurement system in which the wavelength of visible light is fixed, and the utility as the analyzer according to the present invention has been demonstrated. In other words, the sum frequency generation spectroscopy apparatus and method using variable wavelength visible light can be measured at an excellent S / N ratio and signal strength, and as described above, the visible light resonance phenomenon The measurement sensitivity of the sum frequency light generated thereby can be further greatly increased, and the measurement accuracy can be further greatly improved, and the measurement object can be further greatly expanded.

【0031】[0031]

【発明の効果】以上説明したように、本発明に係る和周
波発生分光装置および方法によれば、和周波光を利用し
て試料の表面や界面の分子振動測定を行うに際し、とく
に分子固有の電子状態が可視光エネルギーに共鳴する現
象を積極的に利用することが可能になり、それによって
測定の感度を格段に向上でき、測定精度の大幅な向上、
測定対象の大幅な拡大をはかることができる。
As described above, according to the sum frequency generation spectroscopy apparatus and method according to the present invention, when measuring the molecular vibration of the surface or the interface of the sample using the sum frequency light, in particular, the molecule specific to the molecule is used. It is possible to positively utilize the phenomenon that the electronic state resonates with visible light energy, thereby significantly improving the sensitivity of measurement, greatly improving measurement accuracy,
The measurement target can be greatly expanded.

【0032】また、可視光波長可変化により、複数の分
子が混在する界面等の分析において、特定波長の可視光
に共鳴する分子の振動スペクトルだけを選択的に測定す
ることも可能になると考えられる。
Further, it is considered that the variable wavelength of visible light makes it possible to selectively measure only the vibration spectrum of a molecule that resonates with visible light of a specific wavelength in the analysis of an interface where a plurality of molecules coexist. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る和周波発生分光装置
の概略構成図である。
FIG. 1 is a schematic configuration diagram of a sum frequency generation spectroscopy apparatus according to an embodiment of the present invention.

【図2】図1の装置を用いて可視光波長可変化の効果を
確認した試験におけるマルチプレックスSFGスペクト
ル図である。
FIG. 2 is a multiplex SFG spectrum diagram in a test in which the effect of tunable visible light wavelength was confirmed using the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 和周波発生分光装置 2 レーザー光源 3 基本波 4、5 分割波 6 広帯域赤外光作成手段 7 広帯域赤外光 8 狭帯域可視光作成手段としての狭帯域倍波発生器 9 狭帯域可視光 10 光パラメトリック発振器 11 波長可変単色可視光パルス 12 試料 13 広帯域和周波光 14 分光手段としての分散型分光器 15 マルチチャンネル検出器 REFERENCE SIGNS LIST 1 sum frequency generation spectrometer 2 laser light source 3 fundamental wave 4, 5 split wave 6 broadband infrared light creating means 7 wideband infrared light 8 narrowband harmonic generator as narrowband visible light creating means 9 narrowband visible light 10 Optical parametric oscillator 11 Wavelength tunable monochromatic visible light pulse 12 Sample 13 Broadband sum frequency light 14 Dispersion type spectroscope as spectroscopic means 15 Multi-channel detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/37 G02F 1/37 1/39 1/39 Fターム(参考) 2G020 AA04 BA17 BA18 CB05 CB23 CB42 CB43 CC01 CC47 CC63 CD03 CD06 CD24 CD32 2G059 AA03 BB10 BB16 CC16 EE12 GG01 GG08 GG09 HH01 HH02 JJ01 JJ22 KK04 LL02 2K002 AA04 AB12 BA02 CA05 GA10 HA20 HA21 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/37 G02F 1/37 1/39 1/39 F term (Reference) 2G020 AA04 BA17 BA18 CB05 CB23 CB42 CB43 CC01 CC47 CC63 CD03 CD06 CD24 CD32 2G059 AA03 BB10 BB16 CC16 EE12 GG01 GG08 GG09 HH01 HH02 JJ01 JJ22 KK04 LL02 2K002 AA04 AB12 BA02 CA05 GA10 HA20 HA21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単一のレーザー光源と、該レーザー光源
の基本波の分割波から所定の波数幅、所定のパルス時間
幅をもつ広帯域赤外光を作成する手段と、前記基本波の
残りの分割波を二分し逆方向にチャープさせた後合成し
て倍波を発生させ狭帯域可視光を作成する手段と、該狭
帯域可視光作成手段からの狭帯域可視光を光パラメトリ
ック発振させて狭帯域可視光の波長を可変する手段と、
前記広帯域赤外光作成手段からの広帯域赤外光と狭帯域
可視光波長可変手段からの狭帯域可視光を試料の表面ま
たは界面に集光させて広帯域和周波光を発生させる和周
波光発生手段と、発生した広帯域和周波光を分光する分
光手段と、分光された和周波光をマルチチャンネルで実
質的に同時に計測するマルチプレックス計測手段と、を
有することを特徴とする和周波発生分光装置。
1. A single laser light source, means for producing broadband infrared light having a predetermined wavenumber width and a predetermined pulse time width from a divided wave of a fundamental wave of the laser light source, and a remaining part of the fundamental wave Means for generating a harmonic by generating the harmonics by dividing the split wave into two and chirping in the opposite direction, and narrow-band visible light from the narrow-band visible light generating means by optically parametric oscillation of the narrow-band visible light. Means for varying the wavelength of the band visible light,
Sum frequency light generating means for generating broadband sum frequency light by condensing broadband infrared light from the broadband infrared light creating means and narrowband visible light from the narrowband visible light wavelength varying means on the surface or interface of the sample. And a multiplex measuring means for measuring the split sum frequency light substantially simultaneously in multiple channels.
【請求項2】 前記レーザー光源がフェムト秒レーザー
光源からなる、請求項1の和周波発生分光装置。
2. The sum frequency generation spectroscopy device according to claim 1, wherein said laser light source comprises a femtosecond laser light source.
【請求項3】 前記広帯域赤外光作成手段が100cm
-1以上の波数幅をもつ広帯域赤外光を作成する手段から
なり、前記狭帯域可視光作成手段が15cm -1以下の波
数幅をもつ狭帯域可視光を作成する手段からなる、請求
項1または2の和周波発生分光装置。
3. The method according to claim 1, wherein the broadband infrared light creating means is 100 cm.
-1From means to create broadband infrared light with the above wavenumber width
The narrow-band visible light creating means is 15 cm -1The following waves
Claims comprising means for producing narrow-band visible light with several widths
Item 1. The sum frequency generation spectrometer according to item 1 or 2.
【請求項4】 前記狭帯域可視光波長可変手段が、前記
狭帯域可視光作成手段からの狭帯域可視光の波長を実質
的に連続的に変化させることが可能な手段からなる、請
求項1ないし3のいずれかに記載の和周波発生分光装
置。
4. The narrow-band visible light wavelength varying means comprises means capable of substantially continuously changing the wavelength of the narrow-band visible light from the narrow-band visible light creating means. 4. The sum-frequency generation spectroscopy device according to any one of claims 1 to 3.
【請求項5】 単一のレーザー光源からの基本波を、二
つの分割波に分割し、一方の分割波から所定の波数幅と
所定のパルス時間幅をもつ和周波光発生用の広帯域赤外
光を作成するとともに、残りの分割波を二分し逆方向に
チャープさせた後合成して倍波の和周波光発生用の狭帯
域可視光を作成し、さらにその狭帯域可視光を光パラメ
トリック発振させて狭帯域可視光の波長を可変し、作成
した広帯域赤外光と波長可変狭帯域可視光を試料の表面
または界面に集光して広帯域和周波光を発生させ、発生
した広帯域和周波光を分光手段で分散させ、分散された
光をマルチチャンネルで実質的に同時に計測することを
特徴とする和周波発生分光法。
5. A broadband infrared ray for generating a sum frequency light having a predetermined wave number width and a predetermined pulse time width from one of the divided waves, the fundamental wave from a single laser light source being divided into two divided waves. In addition to creating light, the remaining split waves are bisected, chirped in the opposite direction, and then combined to create narrow-band visible light for sum frequency light generation of harmonics, and the narrow-band visible light is subjected to optical parametric oscillation. The wavelength of the narrow-band visible light is tuned, and the broadband infrared light and the wavelength-tunable narrow-band visible light are focused on the surface or interface of the sample to generate broadband sum-frequency light. Sum frequency generation spectroscopy, wherein the light is dispersed by spectroscopic means, and the dispersed light is measured substantially simultaneously in multiple channels.
JP2001152230A 2001-05-22 2001-05-22 Sum frequency generation spectroscopic apparatus and method Expired - Fee Related JP4955863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152230A JP4955863B2 (en) 2001-05-22 2001-05-22 Sum frequency generation spectroscopic apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152230A JP4955863B2 (en) 2001-05-22 2001-05-22 Sum frequency generation spectroscopic apparatus and method

Publications (2)

Publication Number Publication Date
JP2002340672A true JP2002340672A (en) 2002-11-27
JP4955863B2 JP4955863B2 (en) 2012-06-20

Family

ID=18996942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152230A Expired - Fee Related JP4955863B2 (en) 2001-05-22 2001-05-22 Sum frequency generation spectroscopic apparatus and method

Country Status (1)

Country Link
JP (1) JP4955863B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005410A (en) * 2005-06-21 2007-01-11 Kawasaki Heavy Ind Ltd Intermediate infrared light/ultraviolet light emitting device
JP2007064809A (en) * 2005-08-31 2007-03-15 Hiroshima Univ Sum cycle generation spectroscope and sum cycle generation spectroscopy
JP2009229386A (en) * 2008-03-25 2009-10-08 National Institute Of Advanced Industrial & Technology Sum frequency generating spectroscopic device and its spectroscopic method
CN103575394A (en) * 2012-07-23 2014-02-12 张强 Spectral analysis method and device
KR20200128192A (en) * 2018-04-02 2020-11-11 어플라이드 머티어리얼스, 인코포레이티드 Inline chamber metrology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090293A (en) * 2000-09-18 2002-03-27 Kanagawa Acad Of Sci & Technol Sum frequency generating spectroscopic device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090293A (en) * 2000-09-18 2002-03-27 Kanagawa Acad Of Sci & Technol Sum frequency generating spectroscopic device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005410A (en) * 2005-06-21 2007-01-11 Kawasaki Heavy Ind Ltd Intermediate infrared light/ultraviolet light emitting device
JP2007064809A (en) * 2005-08-31 2007-03-15 Hiroshima Univ Sum cycle generation spectroscope and sum cycle generation spectroscopy
JP4719879B2 (en) * 2005-08-31 2011-07-06 国立大学法人広島大学 Sum frequency generation spectroscope and sum frequency generation spectroscopic method
JP2009229386A (en) * 2008-03-25 2009-10-08 National Institute Of Advanced Industrial & Technology Sum frequency generating spectroscopic device and its spectroscopic method
CN103575394A (en) * 2012-07-23 2014-02-12 张强 Spectral analysis method and device
KR20200128192A (en) * 2018-04-02 2020-11-11 어플라이드 머티어리얼스, 인코포레이티드 Inline chamber metrology
JP2021519522A (en) * 2018-04-02 2021-08-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated In-line chamber metellologie
JP7097458B2 (en) 2018-04-02 2022-07-07 アプライド マテリアルズ インコーポレイテッド Inline Chamber Meterology
KR102454199B1 (en) * 2018-04-02 2022-10-14 어플라이드 머티어리얼스, 인코포레이티드 Inline Chamber Metrology

Also Published As

Publication number Publication date
JP4955863B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US9746378B2 (en) Terahertz time domain and frequency domain spectroscopy
Stiopkin et al. Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation
JP4499091B2 (en) Single-pulse anti-Stokes Raman scattering microscopy and spectroscopy
Loparo et al. Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in two-dimensional IR line shapes
JP5711123B2 (en) Fourier transform spectrometer with frequency comb light source
EP2304412B1 (en) System for generating raman vibrational analysis signals
EP1754033B1 (en) Coherently controlled nonlinear raman spectroscopy
Knutsen et al. Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging
CN108872181A (en) A kind of stimlated Raman spectrum system of femtosecond time resolution
Whaley-Mayda et al. Fluorescence-encoded infrared spectroscopy: Ultrafast vibrational spectroscopy on small ensembles of molecules in solution
JP2009053096A (en) Measuring instrument
Pastorczak et al. Femtosecond infrared pump–stimulated Raman probe spectroscopy: the first application of the method to studies of vibrational relaxation pathways in the liquid HDO/D 2 O system
Carroll et al. Spectral phase effects on nonlinear resonant photochemistry of 1, 3-cyclohexadiene in solution
JP2002340672A (en) Sum frequency generating spectroscopic device and method therefor
Wang et al. Temporal and chirp effects of laser pulses on the spectral line shape in sum-frequency generation vibrational spectroscopy
JP4719879B2 (en) Sum frequency generation spectroscope and sum frequency generation spectroscopic method
Gündoğdu et al. Relaxation and anharmonic couplings of the O–H stretching vibration of asymmetric strongly hydrogen-bonded complexes
CN109974884A (en) A kind of temp measuring method based on carbon monoxide femtosecond laser induced fluorescence spectral technique
JP2002090293A (en) Sum frequency generating spectroscopic device and method
Zeng et al. Vibronic coupling of Rhodamine 6G molecules studied by doubly resonant sum frequency generation spectroscopy with narrowband infrared and broadband visible
Solowan et al. Direct comparison of molecular-beam vs liquid-phase pump–probe and two-dimensional spectroscopy on the example of azulene
CN212031303U (en) Enhanced variable frequency Raman spectrum analyzer
JP2004061411A (en) Method and apparatus for nonlinear raman spectroscopy
Albert et al. Rovibrational analysis of the ν4 and ν5+ ν9 bands of CHCl2F
JP5170748B2 (en) Discrete spectrum spectral phase measurement apparatus and discrete spectrum spectral phase measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4955863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees