JP2002340526A - Film thickness measuring method and measuring instrument using the same - Google Patents

Film thickness measuring method and measuring instrument using the same

Info

Publication number
JP2002340526A
JP2002340526A JP2001151529A JP2001151529A JP2002340526A JP 2002340526 A JP2002340526 A JP 2002340526A JP 2001151529 A JP2001151529 A JP 2001151529A JP 2001151529 A JP2001151529 A JP 2001151529A JP 2002340526 A JP2002340526 A JP 2002340526A
Authority
JP
Japan
Prior art keywords
measured
sample
film thickness
light
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001151529A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nishiguchi
敏行 西口
Toshifumi Tajima
利文 田島
Satoru Kondo
悟 近藤
Nobuo Saito
信雄 斎藤
Masaki Esashi
正喜 江刺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2001151529A priority Critical patent/JP2002340526A/en
Publication of JP2002340526A publication Critical patent/JP2002340526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film thickness measuring method, capable of performing measurement of interference spectrum and measurement of a refractive index, at the same place of a sample to be measured and is capable of calculating accurate film thickness. SOLUTION: The sample 8 to be measured is irradiated with light, using the objective lens 5 arranged opposed the sample 8 to be measured, and the reflected light thereof is received by the objective lens 5 for measuring the interference spectrum. The sample 8 to be measured is irradiated with light at a predetermined incident angle from an objective lens 6 on the side of a light source, the reflected light is detected by an objective lens 7 on a light detection side to measure the refractive index of the sample 8 to be measured, and the film thickness of the sample 8 to be measured is calculated, using the refractive index of the sample 8 to be measured and the measured value of the interference spectrum. Using this constitution, the film thickness of the sample 8 to be measured can be calculated with high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は膜厚測定方法及びそ
の装置に関し、特に、半導体技術やマイクロマシーニン
グ技術を用いて作製する薄膜の膜厚測定方法及びその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a film thickness, and more particularly to a method and an apparatus for measuring a film thickness of a thin film manufactured by using a semiconductor technique or a micromachining technique.

【0002】[0002]

【従来の技術】近年、半導体技術やマイクロマシーニン
グ技術を用いた薄膜作製技術の進歩により、微細構造を
持つ薄膜のμmオーダーでの評価が求められている。一
例として、マイクロマシーニング技術を用いて作製する
コンデンサ型ICマイクロホンの断面構造を図5に示
す。これは、J.Bergqvist,F.Rudol
f:“A silicon condenser mi
crophone using bond and e
tch−back technology”,Sens
ors and Actuators A45(199
4)115.(文献1)に記載のものである。図5にお
いて、1は振動膜、2は背電極、3は接続配線、4はケ
ースである。このマイクロホンで音を検知する部分は、
シリコン製の振動膜1と背電極2で構成されるコンデン
サであり、G.M.Sessler:“NEW ACO
USTIC SENSORS”,Proc.15th
International Congress on
Acoustics(1995)253.(文献2)
に記載されているように、振動膜1の厚さはμmオーダ
ーで、面積は数mm程度である場合が多い。振動膜1
の厚さはマイクロホンの特性に大きな影響を与えるの
で、マイクロホン特性を管理するために測定スポット径
は少なくともmmオーダー以下として、μmオーダーの
振動膜1の厚さを非破壊及び非接触で正確に測定する必
要がある。
2. Description of the Related Art In recent years, with the advancement of thin film fabrication technology using semiconductor technology and micromachining technology, evaluation of a thin film having a fine structure on the order of μm has been required. As an example, FIG. 5 shows a cross-sectional structure of a capacitor type IC microphone manufactured using a micromachining technique. This is described in J.A. Bergqvist, F.C. Rudol
f: “A silicon condenser mi
crophone using bond and e
tch-back technology ”, Sens
ors and Actuators A45 (199
4) 115. (Reference 1). In FIG. 5, 1 is a vibrating membrane, 2 is a back electrode, 3 is a connection wiring, and 4 is a case. The part that detects sound with this microphone is
A capacitor composed of a vibrating membrane 1 made of silicon and a back electrode 2; M. Sessler: “NEW ACO
USTIC SENSORS ", Proc. 15th
International Congress on
Acoustics (1995) 253. (Reference 2)
As described in the above, the thickness of the vibrating membrane 1 is on the order of μm, and the area is often about several mm 2 in many cases. Vibrating membrane 1
The thickness of the diaphragm greatly affects the characteristics of the microphone. Therefore, in order to control the characteristics of the microphone, the measurement spot diameter is set to at least the order of mm or less, and the thickness of the vibrating membrane 1 in the order of μm is accurately measured in a non-destructive and non-contact manner. There is a need to.

【0003】従来、上記のような薄膜の測定には、分光
光度計による干渉スペクトルの測定結果から膜厚を算出
する特開平7−4922号公報(文献3)に記載のよう
な干渉分光法がある。例えばシリコン薄膜の場合には、
シリコンが赤外領域の光を透過することを利用して、フ
ーリエ変換赤外分光光度計(FTIR)を用いて干渉ス
ペクトルを測定し、この干渉スペクトル測定値から膜厚
を求める赤外干渉分光法が用いられていた。赤外干渉分
光法は非破壊及び非接触の測定が可能で、その精度も高
く、測定スポット径も顕微鏡の光学系を用いれば容易に
mmオーダー以下にすることができる。
Conventionally, for the measurement of a thin film as described above, an interference spectroscopy method described in Japanese Patent Application Laid-Open No. 7-4922 (literature 3) for calculating a film thickness from a result of measurement of an interference spectrum by a spectrophotometer is used. is there. For example, in the case of a silicon thin film,
Infrared interference spectroscopy that uses a Fourier transform infrared spectrophotometer (FTIR) to measure the interference spectrum using the fact that silicon transmits light in the infrared region, and obtains the film thickness from the measured interference spectrum Was used. Infrared interference spectroscopy is capable of non-destructive and non-contact measurement, has high accuracy, and can easily reduce the measurement spot diameter to the order of mm or less by using a microscope optical system.

【0004】[0004]

【発明が解決しようとする課題】赤外干渉分光法による
膜厚測定は優れた方法であるが、振動膜1の屈折率が既
知であることが必要である。しかるに、図5に示すコン
デンサ型ICマイクロホンの振動膜1を作製する場合に
は、μmオーダーのシリコン薄膜である振動膜1をエッ
チングによって安定かつ容易に作製するため、TMAH
(tetramethyl ammonium hyd
roxide)溶液中のシリコンのエッチレートがシリ
コンのボロン濃度の関数として捉えられることを利用し
たボロンエッチストップ技術が用いられる。ボロンエッ
チストップ技術については、E.Steinslan
d,M.Nese,A.Hanneborg,R.W.
Bernstein,H.Sandmo,G.Kitt
ilsland:“Boronetch−stop i
n TMAH solutions”,Sensors
and Actuators A54(1996)7
28.(文献4)に記載されている。
The film thickness measurement by infrared interference spectroscopy is an excellent method, but it is necessary that the refractive index of the vibrating film 1 is known. However, when fabricating the vibrating membrane 1 of the condenser type IC microphone shown in FIG. 5, the TMAH is used to stably and easily produce the vibrating membrane 1 which is a silicon thin film of the order of μm by etching.
(Tetramethyl ammonium hydr
A boron etch stop technique that utilizes the fact that the etch rate of silicon in a solution is taken as a function of the boron concentration of silicon is used. For boron etch stop technology, see E.C. Steinslan
d, M.C. Nesse, A .; Hanneburg, R .; W.
Bernstein, H .; Sandmo, G .; Kitt
illsland: "Boronetch-stop i
n TMAH solutions ”, Sensors
and Actors A54 (1996) 7
28. (Reference 4).

【0005】このボロンエッチストップ技術を用いる
と、振動膜1部分にはボロンが高濃度で拡散されるた
め、ボロン拡散を行っていないシリコンとは屈折率が異
なる。被測定試料の屈折率が未知の場合、干渉スペクト
ルを測定できても正確な膜厚算出を行うことができない
という問題がある。
When the boron etch stop technique is used, boron is diffused at a high concentration in the vibrating film 1 portion, so that the refractive index is different from that of silicon which has not been subjected to boron diffusion. When the refractive index of the sample to be measured is unknown, there is a problem that even if an interference spectrum can be measured, accurate film thickness calculation cannot be performed.

【0006】そこで、被測定試料の屈折率をエリプソメ
トリ法によって測定し、この測定した屈折率と干渉スペ
クトル測定値から膜厚を算出することが考えられるが、
干渉スペクトル測定と屈折率測定のそれぞれで測定箇所
が同一となるよう被測定試料をセッティングするのが困
難である。また、干渉スペクトルを得るためには被測定
試料の表面と裏面とで充分な反射が不可欠であるのに対
し、エリプソメトリ法による屈折率測定では被測定試料
の表面と裏面とで充分な反射があり干渉が強くなると屈
折率が測定不能になり、互いに背反するという問題があ
った。
Therefore, it is conceivable to measure the refractive index of the sample to be measured by an ellipsometry method and calculate the film thickness from the measured refractive index and the measured interference spectrum.
It is difficult to set the sample to be measured so that the measurement location is the same in each of the interference spectrum measurement and the refractive index measurement. In order to obtain an interference spectrum, sufficient reflection is required on the front and back surfaces of the sample to be measured, whereas in the refractive index measurement by the ellipsometry method, sufficient reflection is obtained on the front and back surfaces of the sample to be measured. If the interference becomes strong, the refractive index cannot be measured, and there is a problem that they are contrary to each other.

【0007】本発明は、上記の点に鑑みなされたもの
で、被測定試料の同一箇所において干渉スペクトル測定
と屈折率測定とを行うことができ、正確な膜厚算出を行
うことができる膜厚測定方法及びその装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is possible to perform an interference spectrum measurement and a refractive index measurement at the same location on a sample to be measured, and to perform accurate film thickness calculation. An object of the present invention is to provide a measuring method and an apparatus therefor.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、被測定試料に対向して設置された対物レンズを用い
て前記被測定試料に光を照射し、その反射光を前記対物
レンズで受光して干渉スペクトルを測定し、光源側対物
レンズから所定の入射角で前記被測定試料に光を照射
し、その反射光を受光側対物レンズで受光して前記被測
定試料の屈折率を測定し、前記被測定試料の屈折率と前
記干渉スペクトルの測定値を用いて前記被測定試料の膜
厚を算出することにより、被測定試料の膜厚を高精度に
算出することができる。
According to a first aspect of the present invention, the object to be measured is irradiated with light by using an objective lens provided opposite to the object to be measured, and the reflected light is applied to the objective lens. And the interference spectrum is measured. The light source side objective lens irradiates the sample under test with light at a predetermined incident angle, and the reflected light is received by the light receiving side objective lens to determine the refractive index of the sample under test. The thickness of the sample to be measured can be calculated with high accuracy by measuring and calculating the thickness of the sample to be measured using the refractive index of the sample to be measured and the measured value of the interference spectrum.

【0009】請求項2に記載の発明は、被測定試料に対
向して設置された対物レンズを用いて前記被測定試料に
光を照射し、その反射光を前記対物レンズで受光して干
渉スペクトルを測定する干渉スペクトル測定手段と、光
源側対物レンズから所定の入射角で前記被測定試料に光
を照射し、その反射光を受光側対物レンズで受光して前
記被測定試料の屈折率を測定する屈折率測定手段と、前
記被測定試料の屈折率と前記干渉スペクトルの測定値を
用いて前記被測定試料の膜厚を算出する膜厚算出手段と
を有することにより、干渉スペクトル測定と屈折率測定
との被測定試料における測定箇所を同一箇所とすること
ができ、被測定試料の膜厚を高精度に算出することがで
きる。
According to a second aspect of the present invention, the sample to be measured is irradiated with light by using an objective lens provided opposite to the sample to be measured, and the reflected light is received by the objective lens to obtain an interference spectrum. Measuring the refractive index of the sample by irradiating the sample to be measured with light from the objective lens on the light source side at a predetermined incident angle and receiving the reflected light by the objective lens on the light receiving side. Refractive index measuring means, and a film thickness calculating means for calculating the film thickness of the sample to be measured using the measured value of the refractive index of the sample to be measured and the interference spectrum, the interference spectrum measurement and the refractive index The measurement location on the sample to be measured can be the same as the measurement location, and the thickness of the sample to be measured can be calculated with high accuracy.

【0010】更に、干渉スペクトルの測定値を用いた干
渉分光法で前記被測定試料の膜厚を算出し、エリプソメ
トリ法で前記被測定試料の屈折率を算出し、前記光源側
対物レンズから前記被測定試料への光の入射角を前記対
物レンズから前記被測定試料への光の入射角より大きく
設定し、光が入射する前記被測定試料の表面に対して裏
面の反射率を抑制することにより、被測定試料の同一箇
所において干渉スペクトル測定と屈折率測定とを行うこ
とが可能となる。
Further, the thickness of the sample to be measured is calculated by interference spectroscopy using the measured value of the interference spectrum, the refractive index of the sample to be measured is calculated by ellipsometry, and Setting the angle of incidence of light on the sample to be measured to be larger than the angle of incidence of light from the objective lens to the sample to be measured, and suppressing the reflectance of the back surface with respect to the surface of the sample to which light is incident. Accordingly, it is possible to perform the interference spectrum measurement and the refractive index measurement at the same location on the sample to be measured.

【0011】[0011]

【発明の実施の形態】図1は、本発明の膜厚測定装置の
一実施例の概略構造図を示す。同図中、被測定試料8
は、例えばコンデンサ型ICマイクロホンのシリコン振
動膜である。この被測定試料8の厚さ9を測定する場
合、被測定試料8の表面10aの法線方向に対向して設
置された対物レンズ5を用いて干渉スペクトルを測定す
る。対物レンズ5は被測定試料8に対し入射角φfで光
の照射及び受光を行う。なお、入射角φfは対物レンズ
5で光を収束するために生じる。
FIG. 1 is a schematic structural view of an embodiment of a film thickness measuring apparatus according to the present invention. In FIG.
Is a silicon diaphragm of a condenser type IC microphone, for example. When measuring the thickness 9 of the sample 8 to be measured, the interference spectrum is measured by using the objective lens 5 installed facing the normal direction of the surface 10a of the sample 8 to be measured. The objective lens 5 irradiates and receives light on the sample 8 to be measured at an incident angle φf. Note that the incident angle φf is generated because light is converged by the objective lens 5.

【0012】一方、図1において対物レンズ5の左右両
側には光源側対物レンズ6及び受光側対物レンズ7が設
置されており、光源側対物レンズ6から入射角φe(φ
e>φf)で被測定試料8に光を照射し、受光側対物レ
ンズ7で被測定試料8の表面10aでの反射光を受光し
て屈折率を求めるためのエリプソメトリを測定する。な
お、被測定試料8の表面10aでの対物レンズ5による
光照射位置と光源側対物レンズ6による光照射位置はほ
ぼ同一位置となるように設定されている。これによっ
て、被測定試料8の同一位置での干渉スペクトル測定と
屈折率測定を行うことが可能となる。
On the other hand, in FIG. 1, a light source side objective lens 6 and a light receiving side objective lens 7 are provided on both left and right sides of the objective lens 5, and an incident angle φe (φ
The sample 8 to be measured is irradiated with light at e> φf), the light reflected on the surface 10a of the sample 8 to be measured is received by the objective lens 7 on the light receiving side, and ellipsometry for obtaining a refractive index is measured. The light irradiation position by the objective lens 5 and the light irradiation position by the light source side objective lens 6 on the surface 10a of the sample 8 to be measured are set to be substantially the same. This makes it possible to perform the interference spectrum measurement and the refractive index measurement at the same position on the sample 8 to be measured.

【0013】ここで、光源側対物レンズ6から照射した
光に対する被測定試料8の裏面10b側での反射が強い
と、被測定試料8内部で起こった多重反射成分が受光側
対物レンズ7で検出されてしまい算出される屈折率の精
度が低下するので、被測定試料8の裏面10bには、予
めエッチングや研磨等により表面荒さを僅かに大きくす
る、或いは、艶消しテープを貼り付ける等の公知手段を
用いて、干渉スペクトルが測定可能な範囲でできる限り
反射率を抑制しておく。なお、エッチングについては、
R.Divan,N.Moldovan,H.Camo
n:“Roughning and smoothin
g dynamics duringKOH sili
con etching”,Sensors Actu
ators A74(1999)18.(文献5)に記
載されている。
If the light irradiated from the light source side objective lens 6 is strongly reflected on the back surface 10b side of the sample 8 to be measured, multiple reflection components occurring inside the sample 8 to be measured are detected by the light receiving side objective lens 7. Since the accuracy of the calculated refractive index is reduced, the surface roughness of the back surface 10b of the sample 8 to be measured is slightly increased in advance by etching or polishing, or a matte tape is attached. The reflectance is suppressed as much as possible within the range where the interference spectrum can be measured by using the means. In addition, about etching,
R. Divan, N .; Moldovan, H .; Camo
n: "Roughning and smoothin
g dynamics durKOH sili
con etching ”, Sensors Actu
ators A74 (1999) 18. (Reference 5).

【0014】この被測定試料8の裏面10bでの反射率
の抑制と、φe>φfの設定によって、エリプソメトリ
測定においては入射光が裏面10b側で散乱されること
になり、表面10aで正反射された光のみが受光側対物
レンズ7で検出されるので正確な屈折率を求めることが
できる。
Due to the suppression of the reflectance on the back surface 10b of the sample 8 to be measured and the setting of φe> φf, the incident light is scattered on the back surface 10b side in the ellipsometry measurement, and is specularly reflected on the front surface 10a. Since only the emitted light is detected by the light receiving side objective lens 7, an accurate refractive index can be obtained.

【0015】一方、干渉スペクトル測定では、対物レン
ズ5が被測定試料8の表面10aの法線方向に対向して
設置されているため、裏面10bでの散乱の影響を受け
にくく、表面反射と裏面反射の干渉スペクトルを容易に
測定できる。
On the other hand, in the interference spectrum measurement, since the objective lens 5 is installed so as to be opposed to the normal direction of the front surface 10a of the sample 8 to be measured, the objective lens 5 is hardly affected by the scattering on the back surface 10b. The interference spectrum of the reflection can be easily measured.

【0016】図2は、本発明の膜厚測定装置の一実施例
のブロック構成図を示す。同図中、干渉スペクトル測定
部11では、対物レンズ5から被測定試料8に光を照射
し、対物レンズ5で受光することにより干渉スペクトル
測定を行って、その測定データを膜厚算出部12に供給
する。
FIG. 2 is a block diagram showing an embodiment of the film thickness measuring apparatus according to the present invention. In the figure, an interference spectrum measuring unit 11 irradiates a sample 8 to be measured with light from an objective lens 5 and measures an interference spectrum by receiving light with the objective lens 5, and transmits the measured data to a film thickness calculating unit 12. Supply.

【0017】エリプソメトリ測定部13では、光源側対
物レンズ6から被測定試料8に光を照射し受光側対物レ
ンズ7で反射光を受光して、その測定データを屈折率算
出部14に供給する。屈折率算出部14では上記測定デ
ータから被測定試料8の屈折率を算出して膜厚算出部1
2に供給する。膜厚算出部12では、この屈折率と干渉
スペクトル測定部11からの測定データから被測定試料
8の膜厚9を算出して、膜厚測定結果を出力する。
The ellipsometry measuring section 13 irradiates the sample 8 to be measured with light from the light source side objective lens 6, receives the reflected light by the light receiving side objective lens 7, and supplies the measured data to the refractive index calculating section 14. . The refractive index calculator 14 calculates the refractive index of the sample 8 to be measured from the measurement data, and calculates the refractive index of the sample 8.
Feed to 2. The film thickness calculating section 12 calculates the film thickness 9 of the sample 8 to be measured from the refractive index and the measurement data from the interference spectrum measuring section 11, and outputs a film thickness measurement result.

【0018】図3に、被測定試料8としてのシリコン振
動膜の干渉スペクトル測定値を示す。シリコン振動膜は
ボロンの高濃度拡散を行っており、そのボロン濃度は
1.4×1020cm−3、面積は約2×2mmであ
る。図4に、このシリコン振動膜の屈折率測定値を実線
で示す。また、比較のために高濃度拡散前(ボロン濃
度:約1.5×1015cm−3)のシリコン振動膜の
屈折率測定値を破線で示す。更に、高濃度拡散を行って
いないシリコンの屈折率の文献値を図中、四角のポイン
トで示す。この文献値は、工藤:[基礎物性図表](共
立出版,1972)253に記載のものである。
FIG. 3 shows measured values of the interference spectrum of the silicon vibration film as the sample 8 to be measured. The silicon vibration film performs high-concentration diffusion of boron. The boron concentration is 1.4 × 10 20 cm −3 and the area is about 2 × 2 mm 2 . FIG. 4 shows a measured value of the refractive index of the silicon vibration film by a solid line. For comparison, the broken line shows the measured value of the refractive index of the silicon vibrating film before the high concentration diffusion (boron concentration: about 1.5 × 10 15 cm −3 ). Further, literature values of the refractive index of silicon not subjected to high-concentration diffusion are indicated by square points in the figure. This literature value is described in Kudo: [Characteristic Chart of Basic Properties] (Kyoritsu Shuppan, 1972) 253.

【0019】図4において、破線で示す拡散前のシリコ
ン振動膜の屈折率測定値は、文献値とよほぼ一致してい
るが、実線で示す高濃度拡散したシリコン振動膜の屈折
率測定値は拡散前のシリコン振動膜に比べ低下してい
る。この測定結果から、膜厚を算出する際のシリコン振
動膜の屈折率は、干渉スペクトル測定範囲の中央である
6250cm−1(1600nm)での値3.2を採用
する。この屈折率測定値を用いて求めた膜厚は2.9μ
mとなり、高濃度拡散前のシリコンの1600nmにお
ける屈折率測定値3.5を用いて求めた膜厚は2.7μ
mである。一方、試料を劈開して電子顕微鏡(SEM)
で測長した膜厚は2.96±0.10μmとなる。この
ことから、高濃度拡散後の屈折率を採用した膜厚が断面
SEM像の測長結果とよく一致していることが判る。
In FIG. 4, the measured value of the refractive index of the silicon vibration film before diffusion shown by the broken line is almost the same as the reference value, but the measured value of the refractive index of the silicon vibration film diffused at a high concentration shown by the solid line is It is lower than the silicon vibration film before diffusion. From this measurement result, a value of 3.2 at 6250 cm −1 (1600 nm) at the center of the interference spectrum measurement range is adopted as the refractive index of the silicon vibration film when calculating the film thickness. The film thickness obtained using the measured refractive index is 2.9 μm.
m, and the film thickness obtained by using the measured refractive index 3.5 at 1600 nm of silicon before high concentration diffusion is 2.7 μm.
m. On the other hand, the sample is cleaved and electron microscope (SEM)
Is 2.96 ± 0.10 μm. This indicates that the film thickness using the refractive index after the high concentration diffusion is in good agreement with the length measurement result of the cross-sectional SEM image.

【0020】なお、実施例では被測定試料8がシリコン
薄膜の場合を示したが、エリプソメトリ法による屈折率
測定と干渉分光法による干渉スペクトルの測定が可能で
あれば、シリコンに限らず他の材料であっても膜厚測定
が可能であり、上記実施例に限定されるものではない。
In the embodiment, the case where the sample 8 to be measured is a silicon thin film is shown. However, if the measurement of the refractive index by the ellipsometry method and the measurement of the interference spectrum by the interference spectroscopy method are possible, the present invention is not limited to silicon. Even if the material is used, the film thickness can be measured, and the present invention is not limited to the above embodiment.

【0021】なお、干渉スペクトル測定部11が請求項
記載の干渉スペクトル測定手段に対応し、エリプソメト
リ測定部13,屈折率算出部14が屈折率測定手段に対
応し、膜厚算出部12が膜厚算出手段に対応する。
The interference spectrum measuring section 11 corresponds to an interference spectrum measuring section, the ellipsometry measuring section 13 and the refractive index calculating section 14 correspond to the refractive index measuring section, and the film thickness calculating section 12 corresponds to the film thickness calculating section. Corresponds to thickness calculating means.

【0022】[0022]

【発明の効果】上述の如く、請求項1に記載の発明は、
被測定試料に対向して設置された対物レンズを用いて被
測定試料に光を照射し、その反射光を対物レンズで受光
して干渉スペクトルを測定し、光源側対物レンズから所
定の入射角で被測定試料に光を照射し、その反射光を受
光側対物レンズで受光して被測定試料の屈折率を測定
し、被測定試料の屈折率と干渉スペクトルの測定値を用
いて被測定試料の膜厚を算出することにより、被測定試
料の膜厚を高精度に算出することができる。
As described above, the first aspect of the present invention provides
The sample to be measured is irradiated with light using an objective lens placed opposite to the sample to be measured, the reflected light is received by the objective lens, the interference spectrum is measured, and at a predetermined incident angle from the light source side objective lens. The sample to be measured is irradiated with light, and the reflected light is received by a light receiving side objective lens to measure the refractive index of the sample to be measured. By calculating the film thickness, the film thickness of the sample to be measured can be calculated with high accuracy.

【0023】請求項2に記載の発明は、被測定試料に対
向して設置された対物レンズを用いて被測定試料に光を
照射し、その反射光を対物レンズで受光して干渉スペク
トルを測定する干渉スペクトル測定手段と、光源側対物
レンズから所定の入射角で被測定試料に光を照射し、そ
の反射光を受光側対物レンズで受光して被測定試料の屈
折率を測定する屈折率測定手段と、被測定試料の屈折率
と干渉スペクトルの測定値を用いて被測定試料の膜厚を
算出する膜厚算出手段とを有することにより、干渉スペ
クトル測定と屈折率測定との被測定試料における測定箇
所を同一箇所とすることができ、被測定試料の膜厚を高
精度に算出することができる。
According to a second aspect of the present invention, the object to be measured is irradiated with light by using the objective lens provided opposite to the sample to be measured, and the reflected light is received by the objective lens to measure the interference spectrum. Refractive index measurement for irradiating a sample to be measured with light from a light source side objective lens at a predetermined incident angle and receiving the reflected light with a light receiving side objective lens to measure the refractive index of the sample to be measured. Means, and having a film thickness calculating means for calculating the film thickness of the sample to be measured using the measured values of the refractive index and the interference spectrum of the sample to be measured, the interference spectrum measurement and the refractive index measurement in the sample to be measured The measurement location can be the same location, and the thickness of the sample to be measured can be calculated with high accuracy.

【0024】更に、干渉スペクトルの測定値を用いた干
渉分光法で被測定試料の膜厚を算出し、エリプソメトリ
法で被測定試料の屈折率を算出し、光源側対物レンズか
ら被測定試料への光の入射角を対物レンズから被測定試
料への光の入射角より大きく設定し、光が入射する被測
定試料の表面に対して裏面の反射率を抑制することによ
り、被測定試料の同一箇所において干渉スペクトル測定
と屈折率測定とを行うことが可能となる。
Further, the film thickness of the sample to be measured is calculated by interference spectroscopy using the measured value of the interference spectrum, the refractive index of the sample to be measured is calculated by ellipsometry, and the measurement is performed from the objective lens on the light source side to the sample to be measured. The angle of incidence of light from the objective lens is set to be larger than the angle of incidence of light from the objective lens to the sample to be measured. It is possible to perform the interference spectrum measurement and the refractive index measurement at the location.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜厚測定装置の一実施例の概略構造図
である。
FIG. 1 is a schematic structural view of one embodiment of a film thickness measuring apparatus of the present invention.

【図2】本発明の膜厚測定装置の一実施例のブロック構
成図である。
FIG. 2 is a block diagram showing an embodiment of a film thickness measuring apparatus according to the present invention.

【図3】シリコン振動膜の干渉スペクトル測定値を示す
図である。
FIG. 3 is a diagram showing measured interference spectra of a silicon vibration film.

【図4】シリコン振動膜の屈折率測定値及び文献値を示
す図である。
FIG. 4 is a diagram showing a measured value of refractive index of a silicon vibration film and a document value.

【図5】コンデンサ型ICマイクロホンの断面構造図で
ある。
FIG. 5 is a sectional structural view of a condenser type IC microphone.

【符号の説明】[Explanation of symbols]

1 振動膜 2 背電極 3 接続配線 4 ケース 5 対物レンズ 6 光源側対物レンズ 7 受光側対物レンズ 8 被測定試料 9 厚さ 10a 表面 10b 裏面 11 干渉スペクトル測定部 12 膜厚算出部 13 エリプソメトリ測定部 14 屈折率算出部 DESCRIPTION OF SYMBOLS 1 Vibration film 2 Back electrode 3 Connection wiring 4 Case 5 Objective lens 6 Light source side objective lens 7 Light receiving side objective lens 8 Sample to be measured 9 Thickness 10a Front surface 10b Back surface 11 Interference spectrum measurement unit 12 Film thickness calculation unit 13 Ellipsometry measurement unit 14 Refractive index calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 悟 東京都世田谷区砧一丁目10番11号 日本放 送協会 放送技術研究所内 (72)発明者 斎藤 信雄 東京都世田谷区砧一丁目10番11号 日本放 送協会 放送技術研究所内 (72)発明者 江刺 正喜 東京都世田谷区砧一丁目10番11号 日本放 送協会 放送技術研究所内 Fターム(参考) 2F065 AA00 AA30 CC31 FF51  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Satoru Kondo 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Research Institute (72) Inventor Nobuo Saito 1-10-11 Kinuta, Setagaya-ku, Tokyo No. Japan Broadcasting Corporation Broadcasting Research Institute (72) Inventor Masayoshi Esashi 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Broadcasting Research Institute F-term (reference) 2F065 AA00 AA30 CC31 FF51

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被測定試料に対向して設置された対物レ
ンズを用いて前記被測定試料に光を照射し、その反射光
を前記対物レンズで受光して干渉スペクトルを測定し、 光源側対物レンズから所定の入射角で前記被測定試料に
光を照射し、その反射光を受光側対物レンズで受光して
前記被測定試料の屈折率を測定し、 前記被測定試料の屈折率と前記干渉スペクトルの測定値
を用いて前記被測定試料の膜厚を算出することを特徴と
する膜厚測定方法。
1. An object lens to be measured is irradiated with light using an objective lens placed opposite to the sample to be measured, and the reflected light is received by the objective lens to measure an interference spectrum. The lens is irradiated with light at a predetermined incident angle from a lens, and the reflected light is received by a light receiving side objective lens to measure the refractive index of the sample to be measured. The refractive index of the sample to be measured and the interference A film thickness measuring method, wherein a film thickness of the sample to be measured is calculated using a measured value of a spectrum.
【請求項2】 被測定試料に対向して設置された対物レ
ンズを用いて前記被測定試料に光を照射し、その反射光
を前記対物レンズで受光して干渉スペクトルを測定する
干渉スペクトル測定手段と、 光源側対物レンズから所定の入射角で前記被測定試料に
光を照射し、その反射光を受光側対物レンズで受光して
前記被測定試料の屈折率を測定する屈折率測定手段と、 前記被測定試料の屈折率と前記干渉スペクトルの測定値
を用いて前記被測定試料の膜厚を算出する膜厚算出手段
とを有することを特徴とする膜厚測定装置。
2. An interference spectrum measuring means for irradiating the sample to be measured with light using an objective lens placed opposite to the sample to be measured and receiving the reflected light by the objective lens to measure an interference spectrum. Refractive index measuring means for irradiating the sample to be measured with light from the light source side objective lens at a predetermined incident angle, receiving the reflected light with the light receiving side objective lens and measuring the refractive index of the sample to be measured, A film thickness measuring device, comprising: a film thickness calculating means for calculating a film thickness of the sample to be measured using a refractive index of the sample to be measured and a measured value of the interference spectrum.
【請求項3】 請求項2記載の膜厚測定装置において、 前記膜厚算出手段は、前記干渉スペクトルの測定値を用
いた干渉分光法で前記被測定試料の膜厚を算出すること
を特徴とする膜厚測定装置。
3. The film thickness measuring device according to claim 2, wherein the film thickness calculating means calculates the film thickness of the sample to be measured by an interference spectroscopy using a measured value of the interference spectrum. Film thickness measuring device.
【請求項4】 請求項2または3記載の膜厚測定装置に
おいて、 前記屈折率測定手段は、エリプソメトリ法で前記被測定
試料の屈折率を算出することを特徴とする膜厚測定装
置。
4. A film thickness measuring apparatus according to claim 2, wherein said refractive index measuring means calculates a refractive index of said sample to be measured by an ellipsometry method.
【請求項5】 請求項4記載の膜厚測定装置において、 前記光源側対物レンズから前記被測定試料への光の入射
角を前記対物レンズから前記被測定試料への光の入射角
より大きく設定したことを特徴とする膜厚測定装置。
5. The film thickness measuring apparatus according to claim 4, wherein an incident angle of light from the light source side objective lens to the sample to be measured is set to be larger than an incident angle of light from the objective lens to the sample to be measured. A film thickness measuring device, characterized in that:
【請求項6】 請求項1記載の膜厚測定方法において、 光が入射する被測定試料の表面に対して裏面の反射率を
抑制したことを特徴とする膜厚測定方法。
6. The film thickness measuring method according to claim 1, wherein the reflectance of the back surface with respect to the front surface of the sample to which light enters is suppressed.
JP2001151529A 2001-05-21 2001-05-21 Film thickness measuring method and measuring instrument using the same Pending JP2002340526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151529A JP2002340526A (en) 2001-05-21 2001-05-21 Film thickness measuring method and measuring instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151529A JP2002340526A (en) 2001-05-21 2001-05-21 Film thickness measuring method and measuring instrument using the same

Publications (1)

Publication Number Publication Date
JP2002340526A true JP2002340526A (en) 2002-11-27

Family

ID=18996357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151529A Pending JP2002340526A (en) 2001-05-21 2001-05-21 Film thickness measuring method and measuring instrument using the same

Country Status (1)

Country Link
JP (1) JP2002340526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764407A (en) * 2015-02-11 2015-07-08 盐城工学院 Method for measuring thickness of cable protecting bush accurately

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764407A (en) * 2015-02-11 2015-07-08 盐城工学院 Method for measuring thickness of cable protecting bush accurately

Similar Documents

Publication Publication Date Title
US6528333B1 (en) Method of and device for detecting micro-scratches
US6753972B1 (en) Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
US5337150A (en) Apparatus and method for performing thin film layer thickness metrology using a correlation reflectometer
US8400630B2 (en) Method and device for the detection of defects in an object
US6052191A (en) Coating thickness measurement system and method of measuring a coating thickness
US9182354B2 (en) Electromagnetic wave measurement device, measurement method, and recording medium
US20090214053A1 (en) Position determination of sound sources
US7505148B2 (en) Matching optical metrology tools using spectra enhancement
Katz Method to resolve microphone and sample location errors in the two-microphone duct measurement method
JP2006058293A5 (en)
WO2006073063A1 (en) Method and apparatus for measuring thin film sample, and method and apparatus for manufacturing thin film sample
US20200386716A1 (en) Method and apparatus for evaluation of acoustic absorbers
US20080117437A1 (en) Drift compensation for an optical metrology tool
JP2003509667A (en) Method and apparatus for optical measurement of layer and surface properties
JP2023551818A (en) Surface topography measurement device and method
US7369235B1 (en) Method and system for measuring deep trenches in silicon
US7430912B2 (en) Random incident absorber approximation
JP2002340526A (en) Film thickness measuring method and measuring instrument using the same
US6457359B1 (en) Apparatus and methods for measuring stress in a specimen including a thin membrane
Hayber et al. The experimental validation of designed fiber optic pressure sensors with EPDM diaphragm
JP2005257339A (en) Semiconductor wafer inspection device
JPH07294220A (en) Method and apparatus for detecting film thickness of multilayered thin film
JP6784756B2 (en) Arrangement to determine the achievable bond strength before connecting the materials continuously to the surface of the mating partner
King et al. Characterization of a microelectromechanical systems (MEMS) microphone
JP2007333545A (en) Sound absorption characteristic measuring method and sound absorption characteristic measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527