JP2002340370A - Exhaust heat cascade using system - Google Patents

Exhaust heat cascade using system

Info

Publication number
JP2002340370A
JP2002340370A JP2001149383A JP2001149383A JP2002340370A JP 2002340370 A JP2002340370 A JP 2002340370A JP 2001149383 A JP2001149383 A JP 2001149383A JP 2001149383 A JP2001149383 A JP 2001149383A JP 2002340370 A JP2002340370 A JP 2002340370A
Authority
JP
Japan
Prior art keywords
heat
gas
exhaust gas
dehumidifier
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001149383A
Other languages
Japanese (ja)
Inventor
Soichiro Tsujimoto
聡一郎 辻本
Hiroki Ikemoto
裕樹 池本
Toshikuni Ohashi
俊邦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001149383A priority Critical patent/JP2002340370A/en
Publication of JP2002340370A publication Critical patent/JP2002340370A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/1064Gas fired reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat cascade using system in which the heat of exhaust gas whose temperature is lowered by recovering heat in a heat recovery part can be further used and a thermal efficiency can be improved by effectively using the heat. SOLUTION: The exhaust heat cascade using system comprises a gas combustion device 1, the heat recovery part 2 for recovering the heat of the exhaust gas generated in the gas combustion device 1 and a desiccant dehumidifier 3 employing the exhaust gas whose heat is recovered by the heat recovery part 2 as regenerative gas of a dehumidifying agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン、ボ
イラー等のガス燃焼機器の排ガスの熱を利用する排熱カ
スケード利用システムの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a system for utilizing a waste heat cascade utilizing the heat of exhaust gas from gas combustion equipment such as gas turbines and boilers.

【0002】[0002]

【従来の技術】ガスタービン、ボイラーのガス燃焼機器
では、ガスを燃料として燃焼させるために高温の排ガス
が発生するが、従来、この排ガスの熱が十分に有効利用
されていなかった。従来、ガス燃焼機器から出る高温の
排ガスの熱を利用するものとしては、ガス燃焼機器で発
生した排ガスの流れる経路に熱回収部を配置し、排ガス
の熱を熱回収部に流れる温水や水蒸気に回収するように
したものがある。
2. Description of the Related Art In gas combustion equipment such as gas turbines and boilers, high-temperature exhaust gas is generated in order to burn gas as fuel. However, conventionally, the heat of this exhaust gas has not been sufficiently used effectively. Conventionally, as a device that uses the heat of high-temperature exhaust gas emitted from gas combustion equipment, a heat recovery unit is arranged in the path of exhaust gas generated by gas combustion equipment, and the heat of the exhaust gas is converted into hot water or steam flowing to the heat recovery unit. Some are to be collected.

【0003】[0003]

【発明が解決しようとする課題】ところが、排ガスの熱
を熱回収部で回収しても大気に放出される排ガスの温度
は100℃以上であることが多く、十分に熱を回収して
熱を有効利用したともいえるものでなかった。
However, even if the heat of the exhaust gas is recovered by the heat recovery unit, the temperature of the exhaust gas released to the atmosphere is often 100 ° C. or higher, and the heat is sufficiently recovered to recover the heat. It could not be said that it was used effectively.

【0004】本発明は上述の点に鑑みてなされたもので
あって、熱回収部で熱回収して温度が下がった排ガスの
熱をさらに利用でき、熱を有効利用して熱効率を向上で
きる排熱カスケード利用システムを提供することを課題
とする。
[0004] The present invention has been made in view of the above points, and it is possible to further utilize the heat of exhaust gas whose temperature has been reduced by heat recovery in a heat recovery section, and to improve the heat efficiency by effectively utilizing the heat. It is an object to provide a heat cascade utilization system.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明の排熱カスケード利用システムは、ガス燃焼機器
1と、前記ガス燃焼機器1で発生した排ガスの熱を回収
する熱回収部2と、前記熱回収部2で熱を回収した後の
排ガスを除湿剤の再生用ガスとして利用するデシカント
除湿機3とから成ることを特徴とする。
In order to solve the above-mentioned problems, a system for utilizing a waste heat cascade according to the present invention comprises a gas combustion device 1 and a heat recovery unit 2 for recovering heat of exhaust gas generated in the gas combustion device 1. And a desiccant dehumidifier 3 that uses the exhaust gas after heat recovery by the heat recovery unit 2 as a dehumidifier regeneration gas.

【0006】上記のように構成したことにより、ガス燃
焼機器1でガスを燃焼させることにより発生した排ガス
を排気するとき、高温の排ガスから熱回収部2にて熱が
回収され、熱回収部2にて熱が回収されて温度が下がっ
た排ガスがデシカント除湿機3の除湿剤の再生用ガスと
して供給されて除湿剤が再生され、除湿剤の再生により
温度の低下した排ガスが大気に排気される。このため熱
回収部2で熱回収した後の排ガスの熱をデシカント除湿
機3の除湿剤の再生用の熱として有効に利用でき、つま
り、熱回収部2では熱回収困難な低温の排ガスの熱もそ
れに応じて有効利用でき、熱を有効利用して熱効率を向
上できる。
[0006] With the above configuration, when exhaust gas generated by burning gas in the gas combustion equipment 1 is exhausted, heat is recovered from the high-temperature exhaust gas by the heat recovery unit 2. The exhaust gas whose heat has been recovered and the temperature of which has been lowered is supplied as a regeneration gas for the dehumidifier of the desiccant dehumidifier 3 to regenerate the dehumidifier, and the exhaust gas whose temperature has decreased due to the regeneration of the dehumidifier is exhausted to the atmosphere. . Therefore, the heat of the exhaust gas after heat recovery in the heat recovery unit 2 can be effectively used as heat for regeneration of the dehumidifier of the desiccant dehumidifier 3, that is, the heat of the low-temperature exhaust gas in which heat recovery is difficult in the heat recovery unit 2. Can also be used effectively accordingly, and the heat efficiency can be improved by effectively using the heat.

【0007】また前記ガス燃焼機器がガスタービンであ
ることを特徴とすることも好ましい。ガスタービンが一
般に空気比が大きく、従って燃焼により生成する水分に
基づく排ガス中の絶対湿度は他のガス燃焼機器に比べて
非常に小さくなる。これにより、デシカント除湿機3に
除湿剤の再生用に送られる排ガスの湿度が低くなり、除
湿剤の再生能力が大きくなり、デシカント除湿機3の除
湿能力が向上する。
[0007] It is also preferable that the gas combustion equipment is a gas turbine. Gas turbines generally have a high air ratio, and therefore the absolute humidity in the exhaust gas based on the moisture generated by combustion is much lower than in other gas-fired appliances. As a result, the humidity of the exhaust gas sent to the desiccant dehumidifier 3 for regenerating the dehumidifier decreases, the regeneration capability of the dehumidifier increases, and the dehumidification capability of the desiccant dehumidifier 3 improves.

【0008】また上記デシカント除湿機3の除湿剤の再
生用ガスとしての排ガスの温度が95℃〜160℃であ
って、絶対湿度が40g/kg乾燥排ガス以下に調整さ
れていることを特徴とすることも好ましい。この場合、
再生用ガスとして排ガスを用いるものでも除湿剤の再生
が効果的に行われてデシカント除湿機3の除湿能力を十
分に発揮できる。また除湿剤が必要以上の高温に晒され
ることがなくて除湿剤の長期耐熱性を維持できる。
The desiccant dehumidifier 3 is characterized in that the temperature of the exhaust gas as a regenerating gas for the dehumidifier is 95 ° C. to 160 ° C., and the absolute humidity is adjusted to 40 g / kg dry exhaust gas or less. It is also preferred. in this case,
Even when the exhaust gas is used as the regeneration gas, the regeneration of the dehumidifier is effectively performed, and the desiccant dehumidifier 3 can sufficiently exhibit the dehumidification ability. Further, the long-term heat resistance of the dehumidifier can be maintained without exposing the dehumidifier to an excessively high temperature.

【0009】また前記デシカント除湿機3の再生用ガス
として用いる排ガスの温度が95℃〜110℃の場合に
は再生用風量と除湿処理する処理風量の比が1:1〜
1:2であり、前記排ガスの温度が110℃〜160℃
の場合には前記比が1:2〜1:4であることを特徴と
することも好ましい。この場合、排ガスの温度に応じて
再生用風量と処理風量を最適にでき、デシカント除湿機
3で効率よく除湿できる。
When the temperature of the exhaust gas used as the regeneration gas of the desiccant dehumidifier 3 is 95.degree. C. to 110.degree. C., the ratio of the regeneration air volume to the dehumidification air volume is 1: 1 to 1: 1.
1: 2, and the temperature of the exhaust gas is 110 ° C. to 160 ° C.
In this case, the ratio is preferably 1: 2 to 1: 4. In this case, the air volume for regeneration and the air volume for treatment can be optimized according to the temperature of the exhaust gas, and the desiccant dehumidifier 3 can efficiently dehumidify.

【0010】また前記熱回収部2で熱回収する熱の需要
またはデシカント除湿機3の再生用の熱の需要に応じて
熱回収部2での回収量を可変し得る可変機構を設けたこ
とを特徴とすることも好ましい。この場合、熱の需要に
応じて排ガスの熱を分けて回収でき、状況に応じた使用
ができる。
Also, a variable mechanism capable of varying the amount of heat recovered by the heat recovery unit 2 according to the demand for heat to be recovered by the heat recovery unit 2 or the demand for heat for regeneration of the desiccant dehumidifier 3 is provided. It is also preferable to have a feature. In this case, the heat of the exhaust gas can be separated and collected according to the heat demand, and can be used according to the situation.

【0011】[0011]

【発明の実施の形態】先ず、本発明の実施の形態の一例
を図1により説明する。ガス燃焼機器1はガスを燃料と
して燃焼させることで作動させられるものであり、本例
の場合、ガスタービン1aである。ガスタービン1aは
ガスを強制燃焼させたときの燃焼ガスの圧力でタービン
を回転駆動するようになっている。本例の場合、タービ
ンで発電機を駆動して発電するようになっている。また
本例の場合、ガス燃焼機器1はガスタービン1aである
が、温水や蒸気を発生するボイラーであっても、吸収式
冷凍機の吸収液を加熱するものであっても、その他のも
のであってもよい。このガス燃焼機器1としてのガスタ
ービン1aで発生した排ガスは大気に放出されるのであ
るが、本発明ではこの排ガスの熱が熱回収部2及びデシ
カント除湿機3で回収されてから大気に放出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an embodiment of the present invention will be described with reference to FIG. The gas combustion device 1 is operated by burning gas as fuel, and in the case of this example, is the gas turbine 1a. The gas turbine 1a rotationally drives the turbine with the pressure of the combustion gas when the gas is forcibly burned. In the case of this example, a generator is driven by a turbine to generate power. In the case of this example, the gas combustion device 1 is the gas turbine 1a, but may be a boiler that generates hot water or steam, a device that heats the absorption liquid of the absorption refrigerator, or another device. There may be. The exhaust gas generated by the gas turbine 1a serving as the gas combustion device 1 is released to the atmosphere. In the present invention, the heat of the exhaust gas is recovered by the heat recovery unit 2 and the desiccant dehumidifier 3 and then released to the atmosphere. You.

【0012】本例の場合、ガス燃焼機器1としてガスタ
ービン1aを用いるが、ガスタービン1aを用いること
は次の理由で好ましい。ガスタービンは一般に空気比が
大きく、従って燃焼により生成する水分に基づく排ガス
中の絶対湿度は他のガス燃焼機器に比べて非常に小さく
なる。このためにデシカント除湿機3の除湿剤の再生用
に用いる排ガスの湿度を小さくできる。ちなみに他のガ
ス燃焼機器としての給水式冷温水機、ボイラーなどの燃
焼により発生する水分に基づく排気ガスの絶対湿度は1
00g/kg(1kgの乾燥排ガスに対して含まれる水
分の量)であるが、ガスタービンの絶対湿度は50g/
kg以下であり、特に100kW以下の発電に用いるマ
イクロガスタービンでは一般に絶対湿度が25g/kg
以下である。
In the case of the present embodiment, the gas turbine 1a is used as the gas combustion equipment 1, but the use of the gas turbine 1a is preferable for the following reasons. Gas turbines generally have a high air ratio, so the absolute humidity in the exhaust gas based on the moisture generated by combustion is much smaller than in other gas-fired appliances. For this reason, the humidity of the exhaust gas used for regenerating the dehumidifier of the desiccant dehumidifier 3 can be reduced. By the way, the absolute humidity of the exhaust gas based on the moisture generated by the combustion of a water-supply type chiller / heater, boiler, etc. as other gas combustion equipment is 1
00 g / kg (the amount of moisture contained in 1 kg of dry exhaust gas), but the absolute humidity of the gas turbine is 50 g / kg.
kg or less, and in particular, a micro gas turbine used for power generation of 100 kW or less generally has an absolute humidity of 25 g / kg.
It is as follows.

【0013】ガス燃焼機器1としてのガスタービン1a
で発生した排ガスを排気する排気経路5の上流側には排
ガスの熱を回収する熱回収部2を配置してある。図1の
例では熱回収部2は熱交換器2aであり、温水を循環さ
せる循環経路6と排気経路5との間に熱交換器2aを配
置してあり、排気経路5を通る排ガスと循環経路6を循
環する温水とを熱交換して循環経路6を循環する温水を
加熱するようになっている。本例の場合、循環経路6を
循環する温水を加熱するようになっているが、循環経路
6に水蒸気を循環させて水蒸気を加熱するようになって
いてもよい。
Gas turbine 1a as gas combustion equipment 1
A heat recovery unit 2 for recovering the heat of the exhaust gas is disposed upstream of the exhaust path 5 for exhausting the exhaust gas generated in the above. In the example of FIG. 1, the heat recovery unit 2 is a heat exchanger 2a, and the heat exchanger 2a is disposed between the circulation path 6 for circulating hot water and the exhaust path 5, and the heat recovery unit 2 circulates with the exhaust gas passing through the exhaust path 5. The hot water circulating in the circulation path 6 is heated by exchanging heat with the hot water circulating in the path 6. In the case of this example, the hot water circulating in the circulation path 6 is heated, but the steam may be circulated in the circulation path 6 to heat the water vapor.

【0014】また本例の場合、循環経路6を循環する温
水にて吸収式冷凍機4の吸収液を予熱するようになって
いる。この吸収式冷凍機4は本例の場合ガス焚吸収式冷
温水機4aであり、ガスを燃焼させることで吸収液が加
熱されるようになっている。本例の場合、ガス焚吸収式
冷温水機4aであるが、蒸気焚吸収式冷温水機であって
も、温水焚吸収式冷温水機であってもよい。
Further, in the case of this embodiment, the absorption liquid of the absorption refrigerator 4 is preheated by the hot water circulating in the circulation path 6. In this embodiment, the absorption refrigerator 4 is a gas-fired absorption chiller / heater 4a, and the absorption liquid is heated by burning gas. In the case of this example, the gas-fired absorption-type chiller / heater 4a is used, but a steam-fired absorption-type chiller-heater or a hot-water-absorption absorption-type chiller / heater may be used.

【0015】このガス焚吸収式冷温水機4aは周知であ
るので、詳しい説明は省略するが、大略図2に示すよう
に冷媒(水)液を蒸発させる蒸発器7と、その蒸発器7
にて発生した冷媒蒸気を吸収液(LiBr)に吸収させ
る吸収器8と、その吸収器8にて生成した希吸収液を加
熱して冷媒蒸気を発生させることにより吸収液を再生す
る再生器9と、その再生器9にて発生した冷媒蒸気を凝
縮させる凝縮器10とを備えており、空調用冷水を生成
する冷水生成運転と、空調用温水を生成する温水生成運
転とに切り換え可能なように構成してある。詳細な説明
は省略するが、冷水生成運転は、蒸発器7における冷媒
蒸発による蒸発潜熱奪取に基づいて冷水が得られるよう
に運転し、温水生成運転は、再生器7にて発生した冷媒
蒸気を蒸発器7に供給して、その冷媒蒸気を熱源として
温水を得たり、或いは吸収器8にて発生する吸収熱及び
凝縮器10にて発生する凝縮熱を熱源として温水を得る
ように運転する。
Since the gas-fired absorption-type chiller / heater 4a is well known, a detailed description thereof will be omitted, but as shown in FIG. 2, an evaporator 7 for evaporating a refrigerant (water) liquid, and the evaporator 7
Absorber 8 that absorbs the refrigerant vapor generated in the above into absorbent (LiBr), and regenerator 9 that regenerates the absorbent by heating the diluted absorbent generated by the absorber 8 to generate refrigerant vapor. And a condenser 10 for condensing the refrigerant vapor generated in the regenerator 9 so as to be able to switch between a cold water generating operation for generating cold air for air conditioning and a hot water generating operation for generating hot water for air conditioning. It is configured in. Although a detailed description is omitted, the cold water generation operation is performed so that cold water is obtained based on the removal of latent heat of vaporization by the evaporation of the refrigerant in the evaporator 7, and the hot water generation operation uses the refrigerant vapor generated in the regenerator 7. The refrigerant is supplied to the evaporator 7 to obtain hot water using the refrigerant vapor as a heat source, or to obtain hot water using the absorption heat generated in the absorber 8 and the condensation heat generated in the condenser 10 as heat sources.

【0016】上記例のガス焚吸収式冷温水機4aの場
合、二重効用サイクルであり、再生器9は高温再生器9
aと低温再生器9bとで構成されている。高温再生器9
aは都市ガスのような燃料ガスを供給することでガス燃
焼により加熱するようになっており、高温再生器9aで
発生した高温の冷媒蒸気が低温再生器9bを通ることで
低温再生器9bが加熱されるようにようになっており、
高温再生器9aから低温再生器9bを通った冷媒蒸気も
低温再生器9bで発生した冷媒蒸気も凝縮器10に送ら
れて凝縮されるようになっている。高温再生器9aで分
離された吸収液は低温再生器9bに送られ、低温再生器
9bから吸収器8に送られるようになっている。低温再
生器9bから吸収器8に送られる吸収液と吸収器8から
高温再生器9aに送られる希吸収液とは低温熱交換器1
1で熱交換して希吸収液が加熱されるようになってい
る。また高温再生器9aから低温再生器9bに送られる
吸収液と吸収器8から高温再生器9aに送られる希吸収
液とは高温熱交換器12で熱交換して希吸収液が加熱さ
れるようになっている。また吸収器8から高温再生器9
aに希吸収液を送る経路には低温熱交換器11と高温熱
交換器12との間で温水熱熱交換器13を配置してあ
り、上記排ガスの熱を回収して循環経路6を流れる温水
と熱交換して上記希吸収液を加熱するようになってい
る。このようにすることで高温再生器9aに送る希吸収
液を予熱でき、高温再生器9bで加熱に要する燃料を少
なくできる。
In the case of the gas-fired absorption chiller / heater 4a of the above example, the cycle is a double effect cycle, and the regenerator 9 is a high temperature regenerator 9
a and a low-temperature regenerator 9b. High temperature regenerator 9
a is designed to heat by gas combustion by supplying a fuel gas such as city gas, and the high-temperature refrigerant vapor generated in the high-temperature regenerator 9a passes through the low-temperature regenerator 9b, so that the low-temperature regenerator 9b is heated. It is designed to be heated,
Both the refrigerant vapor passed from the high-temperature regenerator 9a and the low-temperature regenerator 9b and the refrigerant vapor generated in the low-temperature regenerator 9b are sent to the condenser 10 to be condensed. The absorbent separated by the high-temperature regenerator 9a is sent to the low-temperature regenerator 9b, and is sent from the low-temperature regenerator 9b to the absorber 8. The absorption liquid sent from the low-temperature regenerator 9b to the absorber 8 and the diluted absorption liquid sent from the absorber 8 to the high-temperature regenerator 9a correspond to the low-temperature heat exchanger 1
The heat is exchanged at 1 to heat the diluted absorption liquid. The absorption liquid sent from the high-temperature regenerator 9a to the low-temperature regenerator 9b and the diluted absorption liquid sent from the absorber 8 to the high-temperature regenerator 9a exchange heat in the high-temperature heat exchanger 12 so that the diluted absorption liquid is heated. It has become. In addition, from the absorber 8 to the high-temperature regenerator 9
A hot water heat exchanger 13 is disposed between the low-temperature heat exchanger 11 and the high-temperature heat exchanger 12 in the path for sending the diluted absorption liquid to a, and recovers the heat of the exhaust gas and flows through the circulation path 6. The diluted absorption liquid is heated by exchanging heat with warm water. This makes it possible to preheat the rare absorbing liquid sent to the high-temperature regenerator 9a and reduce the amount of fuel required for heating in the high-temperature regenerator 9b.

【0017】上記例では排ガスの熱を回収して循環経路
6を流れる温水を加熱し、再生器9に送る吸収液を予熱
するようにしたが、再生器9の吸収液を排ガスの熱で直
接加熱するようにしてもよい。つまり、再生器9内に排
ガスの排気経路5を直接導入し、この部分を熱回収部2
とし、排ガスから回収する熱だけで再生器9を加熱する
構造としてもよい。
In the above example, the heat of the exhaust gas is recovered and the hot water flowing through the circulation path 6 is heated to preheat the absorbing solution sent to the regenerator 9, but the absorbing solution of the regenerator 9 is directly heated by the heat of the exhaust gas. You may make it heat. That is, the exhaust gas exhaust path 5 is directly introduced into the regenerator 9 and this portion is
The regenerator 9 may be heated only by the heat recovered from the exhaust gas.

【0018】また排ガスを直接再生器9に投入する場
合、1台の吸収式冷温水機で二重効用サイクルと単効用
サイクルとを並設し、排ガスの熱を、二重効用サイクル
→単効用サイクルの順番にてカスケード的に投入して排
熱を回収するものでもよい。この場合、熱効率を高くで
きる。
When the exhaust gas is directly fed into the regenerator 9, a double effect cycle and a single effect cycle are provided side by side with one absorption chiller / heater, and the heat of the exhaust gas is converted into a double effect cycle → single effect cycle. The exhaust heat may be recovered by cascade charging in the cycle order. In this case, the thermal efficiency can be increased.

【0019】また上記例では熱回収部2で回収した熱を
吸収式冷温水機に用いるものについて述べたが、この熱
を吸着式冷凍機に用いてもよい。吸着式冷凍機は特開平
2−230068号公報等で公知の冷凍機であり、説明
は省略する。この吸着式冷凍機の場合、吸着材熱交換器
を温水で加熱することにより再生するようになってお
り、本発明の場合、上記循環経路6を流れる温水にて加
熱するようになっている。
In the above example, the heat recovered by the heat recovery unit 2 is used for the absorption type chiller / heater. However, this heat may be used for the adsorption type refrigerator. The adsorption refrigerator is a refrigerator known in, for example, JP-A-2-230068, and a description thereof is omitted. In the case of this adsorption type refrigerator, regeneration is performed by heating the adsorbent heat exchanger with hot water, and in the case of the present invention, heating is performed with hot water flowing through the circulation path 6.

【0020】上記熱回収部2で熱が回収された排ガスは
次にデシカント除湿機3の除湿剤の再生用ガスに利用さ
れるが、このデシカント除湿機3は次のように構成され
ている。デシカント除湿機3は除湿ロータ14で主に除
湿するようになっている。この除湿ロータ14は等速で
ゆっくり回転駆動される円盤にシリカゲルのような除湿
剤を装着してあり、除湿ロータ14の一次側14aで除
湿剤に吸湿することで一次側14aを通る空気を除湿す
ると共に除湿ロータ14の二次側14bで温度の高い再
生用ガスを当てることで除湿剤から放湿して除湿剤を再
生するようになっている。本発明の場合、上記熱回収部
2で熱回収された後の排ガスが再生用ガスとして用いら
れるようになっている。
The exhaust gas from which heat has been recovered by the heat recovery unit 2 is then used as a regeneration gas for the dehumidifier in the desiccant dehumidifier 3, and the desiccant dehumidifier 3 is configured as follows. The desiccant dehumidifier 3 is mainly configured to dehumidify by a dehumidification rotor 14. The dehumidifying rotor 14 is provided with a dehumidifying agent such as silica gel on a disk that is slowly driven to rotate at a constant speed, and dehumidifies the dehumidifying agent on the primary side 14a of the dehumidifying rotor 14 to dehumidify the air passing through the primary side 14a. At the same time, a high-temperature regeneration gas is applied to the secondary side 14b of the dehumidification rotor 14 to release moisture from the dehumidifier and regenerate the dehumidifier. In the case of the present invention, the exhaust gas after heat recovery in the heat recovery unit 2 is used as a regeneration gas.

【0021】このデシカント除湿機3の場合、除湿ロー
タ14以外に顕熱交換をする顕熱ロータ15を設けてあ
る。この顕熱ロータ15も除湿ロータ14と同様に蓄熱
性のある円盤が等速でゆっくり回転することで一次側1
5aから二次側15bに熱が移動する構造となってい
る。デシカント除湿機3には室外の空気が除湿ロータ1
4の一次側14a及び顕熱ロータ15の一次側15aを
通って室内に給気されるように給気経路16を設けてあ
り、排ガスが再生用ガスとして除湿ロータ14の二次側
14bを通って室外に排気されるように再生用ガス経路
17を設けてあり、室外の空気が顕熱ロータ14の二次
側14bを通るように通気経路18を設けてある。上記
再生用ガス経路17は排ガスの排気経路5に連通させて
ある。
In the desiccant dehumidifier 3, a sensible heat rotor 15 for sensible heat exchange is provided in addition to the dehumidifier rotor 14. The sensible heat rotor 15 is also similar to the dehumidification rotor 14, and the heat storage disk is slowly rotated at a constant speed, so that the primary side 1
The structure is such that heat moves from 5a to the secondary side 15b. The outdoor air is supplied to the desiccant dehumidifier 3 by the dehumidification rotor 1.
An air supply path 16 is provided so that air is supplied into the room through the primary side 14a of the humidifying rotor 14 and the primary side 15a of the sensible heat rotor 15, and the exhaust gas passes through the secondary side 14b of the dehumidifying rotor 14 as a regeneration gas. A regeneration gas path 17 is provided so as to be exhausted outside the room, and a ventilation path 18 is provided so that outdoor air passes through the secondary side 14 b of the sensible heat rotor 14. The regeneration gas path 17 communicates with the exhaust gas exhaust path 5.

【0022】給気経路16から室外の空気を室内に給気
し、通気経路18に通気し、再生用ガス経路17に排ガ
スを流すと、室外から給気された空気が除湿ロータ14
の一次側14aを通過することで除湿剤で除湿され、一
方再生用ガス経路17を排ガスが除湿ロータ14の二次
側14bに当たることで除湿剤から放湿するように再生
され、除湿ロータ14の一次側14aを通って除湿され
た空気が顕熱ロータ15の一次側15aを通過すること
で通気経路18を通る空気と顕熱交換して冷却され、比
較的温度が低くて湿度の低い空気が室内に給気される。
When the outdoor air is supplied into the room from the air supply path 16, the air is supplied to the ventilation path 18, and the exhaust gas is supplied to the regeneration gas path 17, the air supplied from the outdoor is supplied to the dehumidifying rotor 14.
The dehumidifier is dehumidified by passing through the primary side 14 a, while the exhaust gas is regenerated in the regeneration gas path 17 so as to be released from the dehumidifier by hitting the secondary side 14 b of the dehumidifier rotor 14. The dehumidified air passing through the primary side 14a passes through the primary side 15a of the sensible heat rotor 15 and is cooled by sensible heat exchange with the air passing through the ventilation path 18, so that air having a relatively low temperature and low humidity is produced. Air is supplied indoors.

【0023】上記のようにデシカント除湿機3で除湿す
るが、再生用ガスとして排ガスの温度によって給気経路
16を通って除湿処理する処理風量と再生用ガス通路1
7を通る排ガスの再生用風量とを次の関係に設定するこ
とが望ましい。再生用ガスとして用いる排ガスの温度が
95℃から110℃の場合には再生用風量と処理風量の
比を1:1〜1:2とし、排ガスの温度が110℃から
160℃の場合には再生用風量と処理風量の比を1:2
から1:4とする。デシカント除湿機3の給気経路16
から室内に給気される空気の絶対湿度は、一般に再生用
風量と処理風量の比とデシカント除湿機3に投入する排
ガス温度を大きくすると低減できる。
As described above, the desiccant dehumidifier 3 performs dehumidification. The amount of processing air to be dehumidified through the air supply path 16 and the regeneration gas passage 1 according to the temperature of the exhaust gas as the regeneration gas.
It is desirable to set the following relationship between the flow rate of the exhaust gas passing through and the flow rate for regeneration. When the temperature of the exhaust gas used as the regeneration gas is 95 ° C to 110 ° C, the ratio between the regeneration air volume and the processing air volume is 1: 1 to 1: 2, and when the exhaust gas temperature is 110 ° C to 160 ° C, the regeneration is performed. 1: 2 for the ratio of the air volume for processing to the air volume for processing
From 1: 4. Air supply path 16 of desiccant dehumidifier 3
In general, the absolute humidity of the air supplied into the room can be reduced by increasing the ratio of the air volume for regeneration to the air volume for processing and the temperature of the exhaust gas supplied to the desiccant dehumidifier 3.

【0024】また上記のようにデシカント除湿機3では
排ガスで除湿剤を再生するが、排ガスの絶対湿度や温度
が高い場合、外気まはた室内リターン空気を混合して湿
度や温度を低下させる。このとき排ガスの絶対湿度が3
0g/kg以下であることがより好ましい。また除湿剤
の長期耐熱性等により再生する排ガスの温度は160℃
以下が望ましい。
As described above, the desiccant dehumidifier 3 regenerates the dehumidifier with the exhaust gas. If the exhaust gas has a high absolute humidity or temperature, the humidity or the temperature is reduced by mixing outside air or indoor return air. At this time, the absolute humidity of the exhaust gas is 3
More preferably, it is 0 g / kg or less. The temperature of the exhaust gas regenerated due to the long-term heat resistance of the dehumidifier is 160 ° C.
The following is desirable.

【0025】また給気経路16に室外から給気する部分
に全熱交換器を配置することも望ましい。この全熱交換
器は一次側を通る空気と二次側を通る空気との間で顕熱
及び潜熱の全熱を交換するものであり、室外から給気す
る空気を全熱交換器の一次側に通すと共に室内からの排
気を全熱交換器の二次側に通すことで全熱交換して給気
の湿度や温度を下げることができるようになっている。
It is also desirable to dispose a total heat exchanger in a portion where air is supplied from outside to the air supply path 16. This total heat exchanger exchanges total heat of sensible heat and latent heat between the air passing through the primary side and the air passing through the secondary side, and converts the air supplied from the outdoor to the primary side of the total heat exchanger. And the exhaust air from the room is passed through the secondary side of the total heat exchanger, so that the total heat exchange can be performed to lower the humidity and temperature of the supply air.

【0026】次に上記のように構成せるシステムの全体
的な動作を説明すると次の通りである。ガス燃焼機器1
としてのガスタービン1aを作動させると発電される
が、このとき、例えば約300℃程度の排ガスが排気経
路5を通って排気される。そして排気経路5を通る排ガ
スから熱回収部2にて熱回収され、この熱回収した熱が
吸収式冷温水機や吸着式冷凍機の熱として用いられ、室
内の空調や冷蔵機器の冷却が行われる。熱回収部2にて
熱回収されて温度が例えば約100℃程度になった排ガ
スは再生用ガス経路17に供給されて除湿ロータ14の
二次側14bが加熱されて除湿剤が再生され、低温にな
った排ガスが室外に排気される。一方室外から給気経路
16を通ることで給気された空気は除湿ロータ14の一
次側14aを通ることで除湿され、湿度の低い空気が室
内に供給される。これにより、排ガスから先ず熱回収部
2にて熱を回収して空調等に利用でき、熱回収部2で熱
回収した後の温度の低下した排ガスの熱をデシカント除
湿機3の除湿剤の再生用の熱として有効利用でき、熱を
有効利用して熱効率を向上できる。
Next, the overall operation of the system configured as described above will be described as follows. Gas combustion equipment 1
When the gas turbine 1a is operated, power is generated. At this time, for example, exhaust gas of about 300 ° C. is exhausted through the exhaust path 5. Then, heat is recovered from the exhaust gas passing through the exhaust path 5 in the heat recovery unit 2, and the recovered heat is used as heat of an absorption chiller / heater or an adsorption chiller to cool indoor air conditioning and refrigeration equipment. Will be Exhaust gas whose temperature has been reduced to, for example, about 100 ° C. by the heat recovery unit 2 is supplied to the regeneration gas path 17, and the secondary side 14 b of the dehumidification rotor 14 is heated to regenerate the dehumidifying agent. The exhaust gas that has become exhausted outside the room. On the other hand, the air supplied from outside through the air supply path 16 is dehumidified by passing through the primary side 14a of the dehumidification rotor 14, and low-humidity air is supplied to the room. As a result, heat can be first recovered from the exhaust gas in the heat recovery unit 2 and used for air conditioning and the like, and the heat of the temperature-reduced exhaust gas after heat recovery in the heat recovery unit 2 is regenerated by the desiccant dehumidifier 3 as a dehumidifier. Heat can be effectively used, and the heat efficiency can be improved by effectively using the heat.

【0027】次に図3に示す実施の形態の他の例につい
て説明する。本例も上記例と基本的に同じであり、異な
る点だけを主に述べる。排気経路5には熱回収部2を配
置してあるが、この熱回収部5を設けた部分と並列にな
るように排気経路5にバイパス経路19を設けてあり、
このバイパス経路19にダンパー20を設けてある。こ
の場合、ダンパー20を開閉することで熱回収部5を通
過する排ガス量を調整でき、熱回収部2で回収する熱の
需要に応じることができる。熱回収部5やバイパス経路
19の下流側で排気経路5には室外に直接排気するため
の分岐経路21を設けてあり、この分岐経路21にはダ
ンパー22を配置してある。この場合、ダンパー22を
開閉することにより、再生用ガス経路17に送る排ガス
量を調整でき、除湿剤再生用の熱の需要に応じることが
できる。
Next, another example of the embodiment shown in FIG. 3 will be described. This example is also basically the same as the above example, and only different points will be mainly described. The heat recovery section 2 is disposed in the exhaust path 5, but a bypass path 19 is provided in the exhaust path 5 so as to be parallel to the portion provided with the heat recovery section 5.
A damper 20 is provided in the bypass path 19. In this case, by opening and closing the damper 20, the amount of exhaust gas passing through the heat recovery unit 5 can be adjusted, and it is possible to meet the demand for heat recovered by the heat recovery unit 2. Downstream of the heat recovery section 5 and the bypass path 19, the exhaust path 5 is provided with a branch path 21 for directly exhausting air to the outside of the room, and a damper 22 is arranged in the branch path 21. In this case, by opening and closing the damper 22, the amount of exhaust gas sent to the regeneration gas path 17 can be adjusted, and it is possible to meet the demand for heat for dehumidifier regeneration.

【0028】[0028]

【実施例】以下、本発明を具体的な実施例によりさらに
詳細に説明する。 (実施例1)図1に示すシステムを下記のように運転し
た(図1に付記した数値は実施例1のものである)。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples. (Example 1) The system shown in FIG. 1 was operated as follows (the numerical values added to FIG. 1 are those of Example 1).

【0029】ガス燃焼機器として28kWの発電をする
ガスタービンを2台駆動して56kWの発電をした。こ
のとき、ガスタービンの駆動のための天然ガスの投入量
は224kWで、発電効率25%であった。ガスタービ
ンから排出される排ガスはタービン出口で温度290
℃、絶対湿度39g/kgDG(1kgDG=乾燥排ガ
ス)であり、排ガス量1530Nm3/hであった。
Two gas turbines, each generating 28 kW, were driven as gas-fired devices to generate 56 kW. At this time, the input amount of natural gas for driving the gas turbine was 224 kW, and the power generation efficiency was 25%. The exhaust gas discharged from the gas turbine has a temperature of 290 at the turbine outlet.
° C, absolute humidity 39 g / kg DG (1 kg DG = dry exhaust gas), and the exhaust gas amount was 1530 Nm 3 / h.

【0030】熱回収部としての排ガス熱交換器では排気
経路を流れる排ガスと循環経路を流れる温水とを熱交換
して循環経路の温水を83°から88℃に昇温した。こ
のときの回収熱量は102kWで出口排ガス温度は10
0℃であった。
In the exhaust gas heat exchanger as the heat recovery unit, the exhaust gas flowing in the exhaust path and the hot water flowing in the circulation path exchange heat to raise the temperature of the hot water in the circulation path from 83 ° to 88 ° C. At this time, the recovered heat amount is 102 kW and the outlet exhaust gas temperature is 10
It was 0 ° C.

【0031】上記熱回収した熱を用いる排熱投入型天然
ガス焚吸収冷式温水機は出力が350kWで、吸収液を
加熱するために用いる天然ガス投入量は273kWであ
り、温水による排熱投入量は102kW(温水温度88
℃→83℃)であった。このときの排熱投入による天然
ガスの投入量の削減割合は22%(排熱がない場合の天
然ガス投入量350kW)であり、冷凍出力の排熱寄与
分は77kWとなった。
The natural gas-fired absorption cooling water heater using the heat recovered from the heat recovery has an output of 350 kW, the natural gas input amount used to heat the absorbing liquid is 273 kW, and the exhaust heat input by the hot water is used. The amount is 102 kW (hot water temperature 88
° C → 83 ° C). At this time, the reduction ratio of the input amount of the natural gas due to the input of the exhaust heat was 22% (350 kW of the natural gas input when there was no exhaust heat), and the contribution of the refrigeration output to the exhaust heat was 77 kW.

【0032】デシカント除湿機としては除湿剤がシリカ
ゲルである除湿ロータと顕熱交換する顕熱ロータを内蔵
しており、前処理として全熱交換器のあるものを使用し
た。このときの室外の外気条件は温度29.3℃で、絶
対湿度が11.8g/kgDA(1kgDA=乾燥空気
1kg)であった。デシカント除湿機の給気経路から外
気を給気する風量は2000m3/hであり、デシカン
ト除湿機の再生ガス経路の排ガスの入口温度は100℃
で出口温度は77℃で排熱投入量は13kWであった。
除湿ロータの二次側を流れる再生用風量と除湿ロータの
一次側を流れる処理風量の比は1/1であった。顕熱ロ
ータの再生側である二次側は外気により冷却して排気し
た。処理側の出口で給気の温度は29.1℃で、絶対湿
度は6.4g/kgDAで、デシカント除湿機の出力は
9.5kW(=外気と給気のエンタルピー×風量)であ
った。
As the desiccant dehumidifier, a dehumidifier having a built-in sensible heat rotor for sensible heat exchange with a dehumidifier rotor made of silica gel and having a total heat exchanger as a pretreatment was used. The outdoor air condition at this time was a temperature of 29.3 ° C. and an absolute humidity of 11.8 g / kg DA (1 kg DA = 1 kg of dry air). The air flow for supplying outside air from the air supply path of the desiccant dehumidifier is 2000 m 3 / h, and the inlet temperature of the exhaust gas in the regeneration gas path of the desiccant dehumidifier is 100 ° C.
, The outlet temperature was 77 ° C., and the exhaust heat input was 13 kW.
The ratio of the amount of regeneration air flowing on the secondary side of the dehumidifying rotor to the amount of processing air flowing on the primary side of the dehumidifying rotor was 1/1. The secondary side, which is the regeneration side of the sensible heat rotor, was cooled by outside air and exhausted. The temperature of the supply air at the outlet on the processing side was 29.1 ° C., the absolute humidity was 6.4 g / kg DA, and the output of the desiccant dehumidifier was 9.5 kW (= enthalpy of outside air and supply air × air volume).

【0033】このように排ガスの熱を排熱投入型天然ガ
ス焚吸収式冷温水機とデシカント除湿機に用いることに
より総合効率は64%{=(発電56kW+吸収式冷温
水機77kW+デシカント除湿機9.5kW)/天然ガ
ス投入量224kW}と高くなった。 (比較例1)上記実施例1でデシカント除湿機に排ガス
を供給しないで、熱回収部としての排ガス熱交換器で熱
交換した後に排ガスを外気に排気した。
As described above, by using the heat of the exhaust gas for the exhaust heat input natural gas-fired absorption chiller / heater and desiccant dehumidifier, the overall efficiency is 64% {= (56 kW of power generation + 77 kW of absorption chiller / heater + desiccant dehumidifier 9). .5 kW) / natural gas input 224 kW}. (Comparative Example 1) Exhaust gas was exhausted to the outside air after exchanging heat with an exhaust gas heat exchanger as a heat recovery unit without supplying exhaust gas to the desiccant dehumidifier in Example 1 described above.

【0034】上記ように排ガスの熱を排熱投入型天然ガ
ス焚吸収冷式冷温水機しか用いないと総合効率が59%
={(発電56kW+吸収式冷温水機77kW)/天然
ガス投入量224kW}まで低下した。また対象とする
部屋の換気負荷2000m3/hの処理を行うのに新た
な熱源が必要であった。 (比較例2)ガス燃焼機器として温水ボイラーを用い、
都市ガス(熱量12.8kW/Nm 3)で燃焼する温水
ボイラー143kWから出る温度180℃、風量230
3/h{風量80℃換算、水分割合14.5体積%、
絶対湿度109g/kgDG(1kgDG=乾燥排ガ
ス)}の排ガスから熱交換器により70℃の温水を回収
した後、140℃まで低下した排ガスをデシカント除湿
機に投入した。本比較例のデシカント除湿機は顕熱ロー
タがない除湿ロータのみのものを用いた。このデシカン
ト除湿機で処理する処理空気(外気、温度30℃、絶対
湿度17g/kgDA)の量は690m3/hであり、
除湿ロータの再生ゾーンと処理ゾーンの面積割合は1:
3とした。また処理空気と再生空気の面速(80℃に換
算した風量をそれぞれのゾーンの断面積で割った値)は
共に2m/sとなるような大きさ(直径)の除湿ロータ
(厚みは200mm)を使用した。除湿ロータの除湿剤
はシリカゲルとした。このとき除湿剤の長期耐熱性によ
り160℃以下の再生温度を選んだ。
As described above, the heat of the exhaust gas is transferred to the exhaust heat input type natural gas.
Overall efficiency is 59% if only a steam absorption cooling water heater is used
= {(56 kW of power generation + 77 kW of absorption chiller / heater) / Natural
To 224 kW}. Also targeted
2000m ventilation load of roomThree/ H processing
Heat source was needed. (Comparative Example 2) A hot water boiler was used as a gas combustion device,
City gas (caloric value 12.8 kW / Nm ThreeHot water burning in)
180 ° C, air volume 230 from boiler 143kW
mThree/ H {air volume 80 ° C conversion, moisture ratio 14.5 vol%,
Absolute humidity 109g / kgDG (1kgDG = dry exhaust gas
S) Recover 70 ° C hot water from the exhaust gas of ① by heat exchanger
And then desiccant dehumidification of exhaust gas that has dropped to 140 ° C
I put it in the machine. The desiccant dehumidifier of this comparative example has a sensible heat
A rotor having only a dehumidifying rotor without a pad was used. This desiccan
Air treated with a dehumidifier (outside air, temperature 30 ° C, absolute
The amount of humidity 17g / kgDA) is 690mThree/ H
The area ratio between the regeneration zone and the processing zone of the dehumidifying rotor is 1:
It was set to 3. Also, the surface velocity of processing air and regeneration air (converted to 80 ° C)
Divided by the cross-sectional area of each zone)
Dehumidification rotor of the size (diameter) that both become 2 m / s
(The thickness was 200 mm). Dehumidifier for dehumidifying rotor
Is silica gel. At this time, due to the long-term heat resistance of the dehumidifier,
A regeneration temperature of less than 160 ° C. was selected.

【0035】結果、処理空気の出口から出る空気の絶対
湿度は13g/kgDA(これは26℃まで冷却して使
用したときの相対湿度にすると62%である)であっ
た。この処理空気は、一般に夏季の空調で設定される2
6℃、相対湿度50%に対応する絶対湿度10.5g/
kgDAより大幅に大きくなった。 (実施例2)比較例2で140℃まで低下した排ガスに
外気(30℃、絶対湿度17g/kgDA)を1388
3/h混合し、これを140℃まで再加熱して絶対湿
度30g/kgDG(乾燥排ガス)の再生用ガス(16
18m3/h)を作製して除湿ロータに投入した。処理
空気(外気、30℃、絶対湿度17g/kgDA)の量
は4850m3/hであった。除湿ロータの再生ゾーン
と処理ゾーンの面積割合は1:3とした。処理空気と再
生空気の面速(30℃に換算した風量をそれぞれのゾー
ンの断面積で割った値)は共に2m/sとなるような大
きさ(直径)の除湿ロータ(厚み200mm)を使用し
た。除湿ロータの除湿剤はシリカゲルとした。
As a result, the absolute humidity of the air exiting from the outlet of the treated air was 13 g / kg DA (this is 62% when the relative humidity when used after cooling to 26 ° C.). This process air is generally set by air conditioning in summer.
10.5 g / absolute humidity corresponding to 6 ° C. and 50% relative humidity
It became much larger than kgDA. (Example 2) 1388 of the exhaust gas cooled to 140 ° C in Comparative Example 2 was exposed to outside air (30 ° C, absolute humidity 17 g / kg DA).
m 3 / h, and the mixture was reheated to 140 ° C. to recover a regeneration gas (16 g / kg DG (dry exhaust gas) having an absolute humidity of 30 g / kg).
18 m3 / h) and put into a dehumidifying rotor. The amount of processing air (outside air, 30 ° C., absolute humidity 17 g / kg DA) was 4850 m 3 / h. The area ratio between the regeneration zone and the processing zone of the dehumidifying rotor was 1: 3. Use a dehumidifying rotor (200 mm thick) with a size (diameter) of 2 m / s for both the surface velocity of the treated air and the regeneration air (the value obtained by dividing the air volume converted to 30 ° C. by the cross-sectional area of each zone). did. The dehumidifying agent of the dehumidifying rotor was silica gel.

【0036】結果、処理空気の出口から出る空気の絶対
湿度は9.8g/kgDA(これは26℃まで冷却して
使用したときの相対湿度にすると47%である)であっ
た。本実施例ではデシカント除湿機に投入する排ガスの
絶対湿度を小さくできるため、比較例2と比較して絶対
湿度がより小さい乾燥空気を得ることができた。この乾
燥空気は、一般に夏季の空調で設定される26℃、相対
湿度50%に対応する絶対湿度10.5g/kgより低
くすることができた。 (比較例3)実施例2で再生用排ガス温度が70℃であ
る場合で、除湿ロータの再生ゾーンと処理ゾーンとの面
積割合が1:1になるようにし、再生ゾーンの割合を大
きくした。
As a result, the absolute humidity of the air discharged from the outlet of the treated air was 9.8 g / kg DA (this is 47% when the relative humidity when used after cooling to 26 ° C.). In the present embodiment, since the absolute humidity of the exhaust gas fed to the desiccant dehumidifier can be reduced, dry air having a lower absolute humidity than in Comparative Example 2 could be obtained. This dry air could be made lower than 10.5 g / kg of absolute humidity corresponding to 26 ° C. and 50% relative humidity, which are generally set by air conditioning in summer. (Comparative Example 3) In Example 2, when the temperature of the exhaust gas for regeneration was 70 ° C, the area ratio between the regeneration zone and the treatment zone of the dehumidifying rotor was set to 1: 1 to increase the ratio of the regeneration zone.

【0037】結果、再生ゾーンを大きくしたにも拘わら
ず、デシカント除湿機の処理空気の出口から出る空気の
絶対湿度は13.1g/kgDAであった。この乾燥空
気は一般に夏季の空調で設定される26℃、相対湿度5
0%に対応する絶対湿度10.5/kgDAより大幅に
大きくなった。 (実施例3)実施例1において、実施例1の排熱投入型
天然ガス焚吸収冷式温水機を、燃料ガスを使用せず、排
ガスを直接再生器に投入して吸収液を加熱するタイプの
吸収式冷温水機に置き換えた。このとき、排ガスのデシ
カント除湿機への投入温度は実施例1と同じく100℃
であり、デシカント除湿機としては同じ能力を示した。
本システムは排熱のみで駆動し、二重効用サイクルと単
効用サイクルを同時に形成できるものであった。また吸
収式冷温水機での排熱の冷熱への変換効率は、1.0で
あり、実施例1の変換効率0.75(=77kW/10
2kW)に対して大幅に高めることができた。 (実施例4)実施例1の条件で除湿ロータの再生用風量
と処理風量の比(以下風量比と略す)とデシカント除湿
機に投入する排ガス温度を変えて処理側出口(給気)の
絶対湿度の変化を調べた。その結果、次の通りであっ
た。 (1)排ガス温度が95℃以上では風量比を1/1より
大きくしても絶対湿度は殆ど変化なく、例えば100℃
では実施例1とほぼ同じであった。それ故、経済性を考
えると同比を1/1以下にすることが好ましいことがわ
かった。 (2)排ガス温度が110℃以下で風量比を1/2にす
ると絶対湿度は上昇し、例えば排ガス温度110℃で同
比を1/3にすると絶対湿度は8g/kgDA程度まで
上昇した。同比を1/2とすると絶対湿度は実施例1と
ほぼ同じにすることができた。 (3)排ガス温度が110℃以上では同比を1/2以上
にしても絶対湿度の低減は小さいことがわかった。それ
故、経済性を考えると同比を1/2以下にすることが好
ましいことがわかった。 (4)排ガス温度が160℃以下で風量比を1/4未満
にすると絶対湿度が上昇し、例えば排ガス温度160℃
で同比を1/5にすると絶対湿度は8g/kgDA程度
まで上昇した。排ガス温度16℃で同比を1/4とする
と絶対湿度は実施例1とほぼ同じにすることができた。
As a result, despite the enlarged regeneration zone, the absolute humidity of the air exiting from the processing air outlet of the desiccant dehumidifier was 13.1 g / kg DA. This dry air is generally set at 26 ° C. and a relative humidity of 5 in air conditioning in summer.
The absolute humidity was significantly higher than 10.5 / kg DA corresponding to 0%. (Embodiment 3) In Embodiment 1, the exhaust heat input type natural gas-fired absorption cooling water heater of Embodiment 1 is used in which the exhaust gas is directly injected into the regenerator without using a fuel gas to heat the absorbing liquid. Was replaced with an absorption type chiller / heater. At this time, the charging temperature of the exhaust gas to the desiccant dehumidifier was 100 ° C. as in the first embodiment.
And showed the same performance as a desiccant dehumidifier.
This system was driven only by waste heat and was able to form a double-effect cycle and a single-effect cycle at the same time. Further, the conversion efficiency of the exhaust heat into the cold heat in the absorption chiller / heater is 1.0, and the conversion efficiency of the first embodiment is 0.75 (= 77 kW / 10
2 kW). (Example 4) Under the same conditions as in Example 1, the ratio of the air flow for regeneration of the dehumidifying rotor to the processing air flow (hereinafter abbreviated as air flow ratio) and the temperature of the exhaust gas to be supplied to the desiccant dehumidifier are changed to change the absolute value of the processing side outlet (air supply). The change in humidity was examined. As a result, it was as follows. (1) When the exhaust gas temperature is 95 ° C. or more, the absolute humidity hardly changes even if the air volume ratio is made larger than 1/1, for example, 100 ° C.
Was almost the same as in Example 1. Therefore, it has been found that it is preferable to make the ratio equal to or less than 1/1 in consideration of economy. (2) When the exhaust gas temperature was 110 ° C. or less and the air volume ratio was reduced to 1 /, the absolute humidity increased. For example, when the exhaust gas temperature was 110 ° C. and the ratio was reduced to 3, the absolute humidity increased to about 8 g / kg DA. Assuming that the ratio was 1/2, the absolute humidity could be made almost the same as in Example 1. (3) It was found that even when the exhaust gas temperature was 110 ° C. or more, the reduction in absolute humidity was small even when the ratio was 1 / or more. Therefore, it was found that it is preferable to make the ratio equal to or less than 1/2 in consideration of economy. (4) When the exhaust gas temperature is 160 ° C. or less and the air volume ratio is less than 1/4, the absolute humidity increases, for example, the exhaust gas temperature is 160 ° C.
When the ratio was reduced to 1/5, the absolute humidity increased to about 8 g / kg DA. Assuming that the ratio was 1/4 at an exhaust gas temperature of 16 ° C., the absolute humidity could be made almost the same as in Example 1.

【0038】[0038]

【発明の効果】本発明の請求項1の発明は、ガス燃焼機
器と、前記ガス燃焼機器で発生した排ガスの熱を回収す
る熱回収部と、前記熱回収部で熱を回収した後の排ガス
を除湿剤の再生用ガスとして利用するデシカント除湿機
とを有するので、ガス燃焼機器でガスを燃焼させること
により発生した排ガスを排気するとき、高温の排ガスか
ら熱回収部にて熱が回収され、熱回収部にて熱が回収さ
れて温度が下がった排ガスがデシカント除湿機の除湿剤
の再生用ガスとして供給されて除湿剤が再生され、除湿
剤の再生により温度の低下した排ガスが大気に排気され
るものであって、このため熱回収部で熱回収した後の排
ガスの熱をデシカント除湿機の除湿剤の再生用の熱とし
て有効に利用でき、つまり、熱回収部では熱回収困難な
低温の排ガスの熱もそれに応じて有効利用でき、熱を有
効利用して熱効率を向上できるものである。
According to the first aspect of the present invention, there is provided a gas combustion apparatus, a heat recovery section for recovering heat of exhaust gas generated in the gas combustion apparatus, and an exhaust gas after recovering heat in the heat recovery section. Since it has a desiccant dehumidifier that uses as a regeneration gas for the dehumidifier, when exhaust gas generated by burning gas with gas combustion equipment, heat is recovered from the high-temperature exhaust gas in the heat recovery unit, Exhaust gas whose temperature has been reduced by heat recovery in the heat recovery section is supplied as a regeneration gas for the dehumidifier of the desiccant dehumidifier, and the dehumidifier is regenerated. Therefore, the heat of the exhaust gas after heat recovery in the heat recovery unit can be effectively used as heat for regenerating the dehumidifier of the desiccant dehumidifier. Exhaust gas heat It can be effectively utilized accordingly, in which by effectively utilizing the heat can improve the thermal efficiency.

【0039】また本発明の請求項2の発明は、請求項1
において、前記ガス燃焼機器がガスタービンであるの
で、デシカント除湿機に除湿剤の再生用に送られる排ガ
スの湿度が低くなり、除湿剤の再生能力が大きくなり、
デシカント除湿機の除湿能力が向上するものである。
The invention of claim 2 of the present invention is directed to claim 1
In, since the gas combustion device is a gas turbine, the humidity of the exhaust gas sent for the regeneration of the dehumidifier to the desiccant dehumidifier is reduced, the regeneration capacity of the dehumidifier is increased,
This improves the dehumidifying capacity of the desiccant dehumidifier.

【0040】また本発明の請求項3の発明は、請求項1
または請求項2において、上記デシカント除湿機の除湿
剤の再生用ガスとしての排ガスの温度が95℃〜160
℃であって、絶対湿度が40g/kg乾燥排ガス以下に
調整されているので、再生用ガスとして排ガスを用いる
ものでも除湿剤の再生が効果的に行われてデシカント除
湿機の除湿能力を十分に発揮できるものであり、また除
湿剤が必要以上の高温に晒されることがなくて除湿剤の
長期耐熱性を維持できるものである。
Further, the invention of claim 3 of the present invention is directed to claim 1
Alternatively, the temperature of the exhaust gas as a regenerating gas for the dehumidifier of the desiccant dehumidifier is 95 ° C to 160 ° C.
° C, and the absolute humidity is adjusted to 40 g / kg or less of dry exhaust gas. Therefore, even when exhaust gas is used as a regeneration gas, regeneration of the dehumidifier is effectively performed and the desiccant dehumidifier has a sufficient dehumidifying capacity. In addition, the dehumidifier can maintain its long-term heat resistance without being exposed to an excessively high temperature.

【0041】また本発明の請求項4の発明は、請求項1
乃至請求項3のいずれかにおいて、前記デシカント除湿
機の再生用ガスとして用いる排ガスの温度が95℃〜1
10℃の場合には再生用風量と除湿処理する処理風量の
比が1:1〜1:2であり、前記排ガスの温度が110
℃〜160℃の場合には前記比が1:2〜1:4である
ので、排ガスの温度に応じて再生用風量と処理風量を最
適にでき、デシカント除湿機で効率よく除湿できるもの
である。
Further, the invention of claim 4 of the present invention is directed to claim 1
The exhaust gas used as a regeneration gas of the desiccant dehumidifier according to any one of claims 3 to 5, wherein the temperature of the exhaust gas is 95 ° C to 1 ° C.
In the case of 10 ° C., the ratio of the air volume for regeneration to the air volume for the dehumidification process is 1: 1 to 1: 2, and the temperature of the exhaust gas is 110
In the case where the temperature is from 0 ° C to 160 ° C, the ratio is from 1: 2 to 1: 4, so that the air volume for regeneration and the air volume for treatment can be optimized according to the temperature of the exhaust gas, and the desiccant dehumidifier can efficiently dehumidify. .

【0042】また本発明の請求項5の発明は、請求項1
乃至請求項4のいずれかにおいて、前記熱回収部で熱回
収する熱の需要またはデシカント除湿機の再生用の熱の
需要に応じて熱回収部での回収量を可変し得る可変機構
を設けたので、熱の需要に応じて排ガスの熱を分けて回
収でき、状況に応じた使用ができるものである。
Further, the invention of claim 5 of the present invention is directed to claim 1
The variable mechanism according to any one of claims 4 to 4, further comprising a variable mechanism capable of changing a recovery amount in the heat recovery unit according to a demand for heat to be recovered in the heat recovery unit or a demand for regeneration heat of the desiccant dehumidifier. Therefore, the heat of the exhaust gas can be separated and collected according to the heat demand, and can be used according to the situation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシステムの一例を示す系統図である。FIG. 1 is a system diagram showing an example of the system of the present invention.

【図2】同上のガス焚吸収式冷温水機の構造を説明する
説明図である。
FIG. 2 is an explanatory view illustrating the structure of the gas-fired absorption-type chiller / heater according to the first embodiment.

【図3】同上のシステムの他例を示す系統図である。FIG. 3 is a system diagram showing another example of the above system.

【符号の説明】 1 ガス燃焼機器 2 熱回収部 3 デシカント除湿機[Explanation of Signs] 1 Gas combustion equipment 2 Heat recovery unit 3 Desiccant dehumidifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 俊邦 大阪市中央区平野町四丁目1番2号大阪瓦 斯株式会社内 Fターム(参考) 3K070 DA08 DA09 DA24 DA35 DA81 3L053 BC03 BC09  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshikuni Ohashi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi F-term in Osaka Gas Co., Ltd. (reference) 3K070 DA08 DA09 DA24 DA35 DA81 3L053 BC03 BC09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス燃焼機器と、前記ガス燃焼機器で発
生した排ガスの熱を回収する熱回収部と、前記熱回収部
で熱を回収した後の排ガスを除湿剤の再生用ガスとして
利用するデシカント除湿機とから成ることを特徴とする
排熱カスケード利用システム。
1. A gas combustion device, a heat recovery unit for recovering heat of exhaust gas generated in the gas combustion device, and the exhaust gas after recovering heat in the heat recovery unit is used as a regeneration gas for a dehumidifier. A waste heat cascade utilization system comprising a desiccant dehumidifier.
【請求項2】 前記ガス燃焼機器がガスタービンである
ことを特徴とする請求項1記載の排熱カスケード利用シ
ステム。
2. The system according to claim 1, wherein the gas combustion device is a gas turbine.
【請求項3】 上記デシカント除湿機の除湿剤の再生用
ガスとしての排ガスの温度が95℃〜160℃であっ
て、絶対湿度が40g/kg乾燥排ガス以下に調整され
ていることを特徴とする請求項1または請求項2記載の
排熱カスケード利用システム。
3. The desiccant dehumidifier according to claim 1, wherein the temperature of the exhaust gas as a regenerating gas for the dehumidifier is 95 ° C. to 160 ° C., and the absolute humidity is adjusted to 40 g / kg or less. The waste heat cascade utilization system according to claim 1 or 2.
【請求項4】 前記デシカント除湿機の再生用ガスとし
て用いる排ガスの温度が95℃〜110℃の場合には再
生用風量と除湿処理する処理風量の比が1:1〜1:2
であり、前記排ガスの温度が110℃〜160℃の場合
には前記比が1:2〜1:4であることを特徴とする請
求項1乃至請求項3のいずれかに記載の排熱カスケード
利用システム。
4. When the temperature of the exhaust gas used as the regeneration gas of the desiccant dehumidifier is 95 ° C. to 110 ° C., the ratio of the regeneration air volume to the dehumidification treatment air volume is 1: 1 to 1: 2.
The exhaust heat cascade according to any one of claims 1 to 3, wherein when the temperature of the exhaust gas is 110C to 160C, the ratio is 1: 2 to 1: 4. Usage system.
【請求項5】 前記熱回収部で熱回収する熱の需要また
はデシカント除湿機の再生用の熱の需要に応じて熱回収
部での回収量を可変し得る可変機構を設けたことを特徴
とする請求項1乃至請求項4のいずれかに記載の排熱カ
スケード利用システム。
5. A variable mechanism capable of varying a recovery amount in the heat recovery unit according to a demand for heat recovered by the heat recovery unit or a demand for regeneration heat of the desiccant dehumidifier. The exhaust heat cascade utilization system according to any one of claims 1 to 4.
JP2001149383A 2001-05-18 2001-05-18 Exhaust heat cascade using system Withdrawn JP2002340370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149383A JP2002340370A (en) 2001-05-18 2001-05-18 Exhaust heat cascade using system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149383A JP2002340370A (en) 2001-05-18 2001-05-18 Exhaust heat cascade using system

Publications (1)

Publication Number Publication Date
JP2002340370A true JP2002340370A (en) 2002-11-27

Family

ID=18994563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149383A Withdrawn JP2002340370A (en) 2001-05-18 2001-05-18 Exhaust heat cascade using system

Country Status (1)

Country Link
JP (1) JP2002340370A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253922A (en) * 2001-02-28 2002-09-10 Seibu Giken Co Ltd Dehumidifier and dehumidifying air-conditioner using the same
US7013655B2 (en) * 2004-06-17 2006-03-21 Entrodyne Corporation Method and systems to provide pre-engineered components and custom designed components to satisfy the requirements of an engineered air conditioning system
US7178355B2 (en) * 2004-05-27 2007-02-20 American Standard International Inc. HVAC desiccant wheel system and method
JP2007132254A (en) * 2005-11-10 2007-05-31 Mitsubishi Materials Techno Corp Waste gasification power generation system
JP2007322032A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Desiccant air conditioning system
JP2018179486A (en) * 2017-04-12 2018-11-15 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Adsorptive hybrid desiccant cooling system
JP2019051776A (en) * 2017-09-13 2019-04-04 カルソニックカンセイ株式会社 Vehicular air conditioner
CN114320602A (en) * 2021-12-21 2022-04-12 上海交通大学 Waste heat recovery system based on humidifying gas turbine generator set

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253922A (en) * 2001-02-28 2002-09-10 Seibu Giken Co Ltd Dehumidifier and dehumidifying air-conditioner using the same
JP4500461B2 (en) * 2001-02-28 2010-07-14 株式会社西部技研 Dehumidifying device and dehumidifying air conditioner using the same
US7178355B2 (en) * 2004-05-27 2007-02-20 American Standard International Inc. HVAC desiccant wheel system and method
US7013655B2 (en) * 2004-06-17 2006-03-21 Entrodyne Corporation Method and systems to provide pre-engineered components and custom designed components to satisfy the requirements of an engineered air conditioning system
JP2007132254A (en) * 2005-11-10 2007-05-31 Mitsubishi Materials Techno Corp Waste gasification power generation system
JP2007322032A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Desiccant air conditioning system
JP2018179486A (en) * 2017-04-12 2018-11-15 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Adsorptive hybrid desiccant cooling system
JP2019051776A (en) * 2017-09-13 2019-04-04 カルソニックカンセイ株式会社 Vehicular air conditioner
US10988001B2 (en) 2017-09-13 2021-04-27 Marelli Cabin Comfort Japan Corporation Air conditioning device for vehicle
CN114320602A (en) * 2021-12-21 2022-04-12 上海交通大学 Waste heat recovery system based on humidifying gas turbine generator set

Similar Documents

Publication Publication Date Title
US5943874A (en) Desiccant assisted air conditioning apparatus
EP1304529A2 (en) Air conditioner
JPH11132593A (en) Air conditioner
JP2002340370A (en) Exhaust heat cascade using system
JP2003279070A (en) Hybrid type desciccant air-conditioning system
JP2002054838A (en) Dehumidifying air conditioning apparatus
JP4255056B2 (en) Interconnection system of combined heat source system and air conditioning system
JP4414110B2 (en) Dehumidifying air conditioner
CN212204822U (en) Circulating runner dehydrating unit
JP3434109B2 (en) Desiccant air conditioner
JP2002263434A (en) Dehumidifier
Zaher et al. An improved desiccant evaporative cooling system, parametric analysis, and system comparison
JP3037648B2 (en) Dehumidification air conditioning system
JP2011094904A (en) Desiccant type ventilation fan
CN111365799A (en) Water evaporation refrigeration air conditioning system based on solar energy runner dehumidification
JP6591857B2 (en) Cold / Heat Supply Device, Heat Generation Method, and Cold Heat Generation Method
JP4436900B2 (en) Desiccant air conditioner
JP2002224529A (en) Dehumidification air conditioner
JP2972834B2 (en) Desiccant air conditioner
JP2002130738A (en) Air conditioner
CN202813614U (en) Novel rotary wheel absorption steam compression refrigeration coupling air conditioning device
JP3300780B1 (en) Internal combustion engine cogeneration system
JPH10122689A (en) Absorption heat pump and air conditioning system using the same
JP3480772B2 (en) Absorption heat pump
JP2002310452A (en) Heat and electric power parallel supply system having prime mover generator and desiccant air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805