JP2002338784A - Expandable phenolic resol resin composition - Google Patents

Expandable phenolic resol resin composition

Info

Publication number
JP2002338784A
JP2002338784A JP2001149895A JP2001149895A JP2002338784A JP 2002338784 A JP2002338784 A JP 2002338784A JP 2001149895 A JP2001149895 A JP 2001149895A JP 2001149895 A JP2001149895 A JP 2001149895A JP 2002338784 A JP2002338784 A JP 2002338784A
Authority
JP
Japan
Prior art keywords
resin composition
mass
resole resin
component
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001149895A
Other languages
Japanese (ja)
Other versions
JP4601855B2 (en
Inventor
Yasuhiro Ueda
康弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEDERATION OF CONSTRUCTION MATERIAL INDUSTRIES JAPAN
Nitto Boseki Co Ltd
Asahi Yukizai Corp
Original Assignee
FEDERATION OF CONSTRUCTION MATERIAL INDUSTRIES JAPAN
Asahi Organic Chemicals Industry Co Ltd
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEDERATION OF CONSTRUCTION MATERIAL INDUSTRIES JAPAN, Asahi Organic Chemicals Industry Co Ltd, Nitto Boseki Co Ltd filed Critical FEDERATION OF CONSTRUCTION MATERIAL INDUSTRIES JAPAN
Priority to JP2001149895A priority Critical patent/JP4601855B2/en
Publication of JP2002338784A publication Critical patent/JP2002338784A/en
Application granted granted Critical
Publication of JP4601855B2 publication Critical patent/JP4601855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expandable phenolic resol resin composition which solves the problem concerning the separation of sheet-form facing materials established on surfaces and yields an environmentally compatible phenolic foam showing an improved resistance to water absorption or a resistance to heat insulation deterioration. SOLUTION: The expandable phenolic resol resin composition contains (A) a phenolic resol resin, (B) an acidic hardener, (C) a foaming agent essentially comprising cyclopentane, (D) a partial hydrolytic condensate of a hydrolyzable group-containing organosilicon compound and (E) a foam stabilizer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として表面に設
けたシート状面材の剥離を防止し、又は改善された耐吸
水性若しくは断熱性の熱劣化に対して耐性を有する環境
対応型のフェノール系レゾール樹脂フォームを提供しう
る発泡性フェノール系レゾール樹脂組成物に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an environmentally friendly phenol which mainly prevents peeling of a sheet-like face material provided on the surface, or has improved water absorption resistance or heat insulation and has resistance to thermal deterioration. The present invention relates to a foamable phenolic resole resin composition capable of providing a resinous resole resin foam.

【0002】[0002]

【従来の技術】従来、フェノール系レゾール樹脂フォー
ム(以下、フェノール系フォームと称する)は、難燃
性、耐熱性、低発煙性などの特徴を有するため、例えば
建築用、保温用の断熱材料をはじめとする種々の用途に
使用されている。しかしながら、断熱性に代表されるフ
ォーム特性は、水分の影響を受けやすいため、従前より
材料の構造面又は施工面で対応することを余儀なくされ
てきた。
2. Description of the Related Art Conventionally, phenolic resole resin foams (hereinafter referred to as phenolic foams) have characteristics such as flame retardancy, heat resistance, and low smoke emission. It is used for various applications including the first. However, foam characteristics represented by heat insulation are susceptible to moisture, so that it has conventionally been necessary to deal with the structure or construction of the material.

【0003】本発明者は、このような現状に鑑み、先に
耐吸水性の改善を主とした目的の1つとして、フェノー
ル系レゾール樹脂、酸硬化剤、発泡剤、整泡剤及びケイ
素原子に結合した加水分解性基を有する有機ケイ素化合
物及びその部分加水分解縮合物を含む発泡性フェノール
系レゾール樹脂組成物を提案した(特願2000−22
4341号)。
In view of such a situation, the present inventor has sought to improve the water absorption resistance as one of the main objects. First, a phenolic resole resin, an acid curing agent, a foaming agent, a foam stabilizer, and a silicon atom Proposed a foamable phenolic resole resin composition containing an organosilicon compound having a hydrolyzable group bonded to a polymer and a partially hydrolyzed condensate thereof (Japanese Patent Application No. 2000-22).
No. 4341).

【0004】しかしながら、この発泡性フェノール系レ
ゾール樹脂組成物は、吸水性の点では改善されたが、環
境対応型のある種の代替フロン系発泡剤を用いて作製さ
れた表面に、クラフト紙、不織布などのシート状面材を
有する構造に形成したときに、長期に保管したときに当
該面材が剥離しやすく、また高温に曝されたときに断熱
性が熱劣化しやすいなどの欠点を有し、改善の余地が残
されている上に、耐吸水性についても、より一層の改善
が求められている。
However, although the foamable phenolic resole resin composition has been improved in terms of water absorption, kraft paper and kraft paper have been added to the surface produced using a certain environmentally friendly alternative fluorocarbon foaming agent. When formed into a structure having a sheet-like surface material such as a nonwoven fabric, there are disadvantages such as that the surface material is easily peeled off when stored for a long period of time, and the heat insulating property is easily thermally degraded when exposed to high temperatures. There is still room for improvement, and further improvement in water absorption resistance is also required.

【0005】[0005]

【発明が解決しようとする課題】本発明は、表面に設け
たシート状面材の剥離問題を解消し、又は改善された耐
吸水性若しくは断熱性の熱劣化に対して耐性を有する環
境対応型のフェノール系フォームを与える発泡性フェノ
ール系レゾール樹脂組成物を提供することを目的として
なされたものである。なお、ここでいう環境対応型と
は、オゾン層破壊や地球温暖化問題を生ずる危険性の低
いことを意味する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of peeling of a sheet-like face material provided on the surface, or to provide an environment-friendly type having improved water absorption resistance or heat insulation resistance to thermal deterioration. The purpose of the present invention is to provide a foamable phenolic resole resin composition which gives the phenolic foam of the present invention. The term “environmentally friendly” as used herein means that there is a low risk of causing ozone layer depletion and global warming.

【0006】[0006]

【課題を解決するための手段】本発明者は、前記の特性
を有する発泡性フェノール系レゾール樹脂組成物を開発
するために鋭意研究を重ねた結果、特定の有機ケイ素化
合物の部分加水分解縮合物と特定の炭化水素を主成分と
する発泡剤とを併用することにより、上記した課題、例
えば断熱性の熱劣化に耐えるフェノール系フォームを与
える発泡性フェノール系レゾール樹脂が得られることを
見出し、この知見に基づき本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to develop a foamable phenolic resole resin composition having the above-mentioned properties, and as a result, a partial hydrolysis condensate of a specific organosilicon compound has been obtained. By using in combination with a blowing agent having a specific hydrocarbon as a main component, it has been found that a foamable phenolic resole resin that gives a phenolic foam that resists the above-mentioned problems, for example, heat insulation, can be obtained. The present invention has been completed based on the findings.

【0007】すなわち、本発明は、(A)フェノール系
レゾール樹脂、(B)酸性硬化剤、(C)シクロペンタ
ンを主成分とする発泡剤、(D)加水分解性基を有する
有機ケイ素化合物の部分加水分解縮合物及び(E)整泡
剤を含有することを特徴とする発泡性フェノール系レゾ
ール樹脂組成物を提供するものである。
That is, the present invention relates to (A) a phenolic resole resin, (B) an acidic curing agent, (C) a blowing agent containing cyclopentane as a main component, and (D) an organosilicon compound having a hydrolyzable group. An object of the present invention is to provide a foamable phenolic resole resin composition containing a partially hydrolyzed condensate and (E) a foam stabilizer.

【0008】[0008]

【発明の実施の形態】本発明においては、(C)成分の
発泡剤としてシクロペンタンを主成分とする炭化水素系
発泡剤、特にシクロペンタンのみ及び(B)成分の酸性
硬化剤としてアリールスルホン酸を主成分とし、かつ含
水率が10質量%未満のグリコール系溶液を用いるのが
好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a hydrocarbon-based blowing agent containing cyclopentane as a main component as a foaming agent of component (C), particularly cyclopentane alone, and an arylsulfonic acid as an acidic curing agent of component (B) It is preferable to use a glycol-based solution containing water as a main component and having a water content of less than 10% by mass.

【0009】本発明の発泡性フェノール系レゾール樹脂
組成物において、(A)成分として用いられるフェノー
ル系レゾール樹脂は、例えばフェノール類とアルデヒド
類とを反応触媒、例えば塩基、酸、二価金属塩及びこれ
らの組合せの存在下に、40℃から還流温度までの温度
で0.5〜24時間反応させたのち、必要に応じて中和
し、濃縮することにより製造される酸硬化性のレゾール
樹脂又は該レゾール樹脂の製造時ないし製造後に任意の
変性剤と混合或いは反応させて得られる変性されたレゾ
ール樹脂若しくはこれらの混合物である。これらの樹脂
は、一般に適正な水分量に調整した粘度5.0〜50P
a・s/25℃(JIS K−7233)程度の液状と
して使用するのが好ましいが、もちろん固形状で用いる
こともできる。
In the foamable phenolic resole resin composition of the present invention, the phenolic resole resin used as the component (A) is, for example, a reaction catalyst such as a phenol and an aldehyde, such as a base, an acid, a divalent metal salt and In the presence of these combinations, after reacting at a temperature of from 40 ° C. to the reflux temperature for 0.5 to 24 hours, if necessary, neutralize and concentrate to produce an acid-curable resol resin or A modified resol resin obtained by mixing or reacting with an optional modifier during or after the production of the resol resin, or a mixture thereof. These resins generally have a viscosity of 5.0 to 50 P adjusted to an appropriate water content.
It is preferably used as a liquid at about a · s / 25 ° C. (JIS K-7233), but may be used in a solid state.

【0010】前記レゾール樹脂としては、例えば、塩基
触媒反応を行って得られるレゾール樹脂、酸触媒反応若
しくは該反応後に塩基触媒反応を行って得られるノボラ
ック型レゾール樹脂、二価金属塩触媒反応を行って得ら
れるベンジルエーテル型レゾール樹脂及びこれらの混合
物などが挙げられる。なかでも、酸硬化性に優れたレゾ
ール樹脂及びノボラック型レゾール樹脂が好ましく、特
にノボラック型レゾール樹脂がレゾール樹脂より耐吸水
性に優れているため有利である。
Examples of the resole resin include a resole resin obtained by performing a base catalyzed reaction, a novolak type resole resin obtained by performing a base catalyzed reaction after the acid catalyzed reaction, and a divalent metal salt catalyzed reaction. And a mixture thereof. Above all, resole resins and novolak type resole resins excellent in acid curability are preferable, and in particular, novolak type resole resins are advantageous because they have better water absorption resistance than resole resins.

【0011】前記フェノール系レゾール樹脂の原料とし
て用いられるフェノール類としては、フェノールのほ
か、例えばクレゾール、キシレノール、p‐tert‐
ブチルフェノールなどのアルキルフェノール、レゾルシ
ノール、カテコール、ビスフェノールF、ビスフェノー
ルAなどの多価フェノール及びこれらの混合物などが挙
げられる。
The phenols used as a raw material of the phenolic resole resin include, in addition to phenol, cresol, xylenol, p-tert-
Examples include alkylphenols such as butylphenol, resorcinol, catechol, polyphenols such as bisphenol F and bisphenol A, and mixtures thereof.

【0012】一方、アルデヒド類としては、例えば、ホ
ルマリン、パラホルムアルデヒド、トリオキサン、ポリ
オキシメチレン、グリオキザール、フルフラール及びこ
れらの混合物などがある。このようなフェノール類とア
ルデヒド類との配合割合としては、特に制限はないが、
一般的にはフェノール類1モルに対してアルデヒド類は
0.8〜3.0モルの割合で配合される。また、変性剤
としては、例えばキシレン樹脂、尿素樹脂、エポキシ化
合物、ポリビニルアルコール、尿素、アミド類、デンプ
ン類、単糖類及びこれらの混合物などが用いられる。
On the other hand, examples of aldehydes include formalin, paraformaldehyde, trioxane, polyoxymethylene, glyoxal, furfural, and mixtures thereof. The mixing ratio of such phenols and aldehydes is not particularly limited,
Generally, aldehydes are blended in a ratio of 0.8 to 3.0 moles per mole of phenols. As the modifier, for example, xylene resin, urea resin, epoxy compound, polyvinyl alcohol, urea, amides, starches, monosaccharides, and mixtures thereof are used.

【0013】前記フェノール類とアルデヒド類との反応
触媒として用いられる塩基触媒としては、例えば水酸化
ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カ
リウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸
化バリウム、水酸化カルシウム、酸化マグネシウム、ア
ンモニアなどがある。酸触媒としては、例えば塩酸、硫
酸、シュウ酸、p‐トルエンスルホン酸などがある。二
価金属塩触媒としては、例えば酢酸亜鉛、酢酸鉛、ホウ
酸亜鉛などがある。
Examples of the base catalyst used as a catalyst for the reaction between the phenols and aldehydes include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, barium hydroxide, and hydroxide. There are calcium, magnesium oxide, and ammonia. Examples of the acid catalyst include hydrochloric acid, sulfuric acid, oxalic acid, p-toluenesulfonic acid and the like. Examples of the divalent metal salt catalyst include zinc acetate, lead acetate, and zinc borate.

【0014】本発明において(B)成分として用いられ
る酸性硬化剤は、(A)成分のフェノール系レゾール樹
脂の硬化促進作用や(D)加水分解性基を有する有機ケ
イ素化合物の部分加水分解縮合物の加水分解や縮合の促
進作用を有する酸性化合物であり、このような酸性化合
物のなかでも好ましいものとして、例えば有機スルホン
酸、無機酸及びこれらの混合物などが挙げられるが、こ
れらに限定されるものではない。このものは、(A)成
分のフェノール系レゾール樹脂100質量部に対して、
通常1〜50質量部の割合で配合される。このものは、
通常、水や有機溶剤に溶解して溶液として使用される。
In the present invention, the acidic curing agent used as the component (B) is a component which promotes the curing of the phenolic resole resin of the component (A) or (D) a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group. Acidic compounds having an action of accelerating the hydrolysis and condensation of the compound. Preferred examples of such acidic compounds include, for example, organic sulfonic acids, inorganic acids, and mixtures thereof, but are not limited thereto. is not. This is based on 100 parts by weight of the phenolic resole resin (A).
Usually, it is blended in a ratio of 1 to 50 parts by mass. This one is
Usually, it is used as a solution by dissolving in water or an organic solvent.

【0015】このような酸性硬化剤の有機スルホン酸と
しては、例えばフェノールスルホン酸、ベンゼンスルホ
ン酸、エチルベンゼンスルホン酸、p‐トルエンスルホ
ン酸、キシレンスルホン酸、クメンスルホン酸、スチレ
ンスルホン酸、ナフタレンスルホン酸、ナフトールスル
ホン酸、アントラセンスルホン酸、アントラノールスル
ホン酸、スルホン化フェノール樹脂、芳香族スルホン酸
とホルムアルデヒドとの縮合生成物などのアリールスル
ホン酸、メタンスルホン酸などのアルキルスルホン酸、
スルホン化クレオソート油、スルホン化クレオソート油
とホルムアルデヒドとの縮合生成物などが用いられる。
また、無機酸としては、例えばリン酸、ポリリン酸、硫
酸などがある。
Examples of the organic sulfonic acid of such an acidic curing agent include phenolsulfonic acid, benzenesulfonic acid, ethylbenzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, cumenesulfonic acid, styrenesulfonic acid, and naphthalenesulfonic acid. , Naphtholsulfonic acid, anthracenesulfonic acid, anthranolsulfonic acid, sulfonated phenolic resin, arylsulfonic acid such as condensation product of aromatic sulfonic acid and formaldehyde, alkylsulfonic acid such as methanesulfonic acid,
Sulfonated creosote oil, condensation products of sulfonated creosote oil and formaldehyde, and the like are used.
Examples of the inorganic acid include phosphoric acid, polyphosphoric acid, and sulfuric acid.

【0016】上記した酸性硬化剤の中でも、断熱性の熱
劣化に対する耐性がよいという点で、アリールスルホン
酸、特にエチルベンゼンスルホン酸、p‐トルエンスル
ホン酸及びキシレンスルホン酸が好ましい。この中で特
に断熱性の点で好ましいのは、p‐トルエンスルホン酸
を主成分とし、かつ含水率10質量%未満のグリコール
系溶液、特にジエチレングリコール溶液である。
Among the above-mentioned acidic curing agents, arylsulfonic acids, particularly ethylbenzenesulfonic acid, p-toluenesulfonic acid, and xylenesulfonic acid are preferable in that they have good heat insulating resistance to thermal deterioration. Among these, a glycol-based solution containing p-toluenesulfonic acid as a main component and having a water content of less than 10% by mass, particularly a diethylene glycol solution, is particularly preferable in terms of heat insulation.

【0017】本発明において(C)成分として用いられ
る発泡剤は、(B)酸性硬化剤の作用により硬化反応を
発現する(A)フェノール系レゾール樹脂の膨張泡化作
用、すなわち発泡現象を有するガスを物理的又は化学的
に生じさせる化合物であるが、面材の剥離防止、断熱性
能及び安全性の観点から、シクロペンタンを主成分とす
る発泡剤、特にシクロペンタンを主成分とする炭化水素
系発泡剤が好ましい。このような発泡剤中のシクロペン
タンの含有量としては、50質量%以上、好ましくは7
0質量%以上、より好ましくは80質量%以上である。
さらに断熱性の熱劣化に対する耐性の点で、シクロペン
タン単独が特に好ましい。このような(C)成分の配合
量としては、(A)成分のフェノール系レゾール樹脂1
00質量部に対して通常0.5〜30質量部である。
In the present invention, the foaming agent used as the component (C) is a gas having a foaming effect, that is, a foaming effect of (A) a phenolic resole resin which exhibits a curing reaction by the action of an acidic curing agent. Is a compound that generates physically or chemically, but from the viewpoint of preventing peeling of face materials, heat insulation performance and safety, a foaming agent containing cyclopentane as a main component, particularly a hydrocarbon compound containing cyclopentane as a main component Foaming agents are preferred. The content of cyclopentane in such a blowing agent is 50% by mass or more, preferably 7% by mass.
0 mass% or more, more preferably 80 mass% or more.
Further, cyclopentane alone is particularly preferred from the viewpoint of thermal insulation resistance to thermal degradation. The amount of the component (C) is such that the phenolic resole resin 1 (A)
It is usually 0.5 to 30 parts by mass with respect to 00 parts by mass.

【0018】本発明において、シクロペンタンと併用す
る発泡剤としては、炭化水素系発泡剤が好ましいが、こ
れに限定されるものではなく、必要に応じてジエチルエ
ーテル、ジイソプロピルエーテルなどの脂肪族エーテ
ル、酸、水、熱の作用により二酸化炭素、窒素などを発
生する化学的発泡剤、例えば炭酸水素ナトリウム、炭酸
カルシウム、過酸化水素、アゾジカルボンアミドのほ
か、二酸化炭素、窒素ガスなどが用いられる。
In the present invention, the blowing agent used in combination with cyclopentane is preferably a hydrocarbon-based blowing agent, but is not limited thereto. If necessary, aliphatic blowing agents such as diethyl ether and diisopropyl ether; Chemical blowing agents that generate carbon dioxide, nitrogen, and the like by the action of an acid, water, and heat, such as sodium hydrogen carbonate, calcium carbonate, hydrogen peroxide, and azodicarbonamide, as well as carbon dioxide and nitrogen gas, are used.

【0019】前記炭化水素系発泡剤としては、例えば、
ブタン、ペンタン、ヘキサンなどの脂肪族炭化水素、シ
クロヘキサン、シクロヘキセン、シクロペンテンのよう
な脂環式炭化水素、ジクロロモノフルオロエタン(HC
FC−141b)、ジクロロトリフルオロエタン(HC
FC−123)、テトラフルオロエタン(HFC−13
4a)、テトラフルオロプロパン(HFC−245f
a)、ペンタフルオロブタン(HFC−365mf
c)、フルオロヘキサン、フルオロペンタン、塩化メチ
レン、塩化プロピルのようなハロゲン化炭化水素などが
挙げられる。なかでも、断熱性の熱劣化に対する耐性の
点で、ペンタン、シクロヘキサン、ジクロロモノフルオ
ロエタン、テトラフルオロエタン、テトラフルオロプロ
パン及びペンタフルオロブタン、特にペンタン及びペン
タフルオロブタンが好ましい。
Examples of the hydrocarbon blowing agent include:
Aliphatic hydrocarbons such as butane, pentane and hexane; alicyclic hydrocarbons such as cyclohexane, cyclohexene and cyclopentene; dichloromonofluoroethane (HC
FC-141b), dichlorotrifluoroethane (HC
FC-123), tetrafluoroethane (HFC-13
4a), tetrafluoropropane (HFC-245f)
a), pentafluorobutane (HFC-365mf
c), halogenated hydrocarbons such as fluorohexane, fluoropentane, methylene chloride, and propyl chloride. Above all, pentane, cyclohexane, dichloromonofluoroethane, tetrafluoroethane, tetrafluoropropane and pentafluorobutane, particularly pentane and pentafluorobutane, are preferred from the viewpoint of heat resistance against thermal degradation.

【0020】本発明において、(D)成分として用いら
れる加水分解性基を有する有機ケイ素化合物の部分加水
分解縮合物(以下、有機ケイ素化合物の部分加水分解縮
合物と称する)は、加水分解性基と水との反応を利用す
ることにより、発泡性フェノール系レゾール樹脂組成物
中の水分を消費して硬化の促進を果たす一方、元来有す
る撥水機能又は加水分解により生成したシラノールの縮
合による撥水機能発現に伴う耐吸水性の改善に寄与する
ものである。このような有機ケイ素化合物の部分加水分
解縮合物の中でも、これらの諸機能を一層効果的に発現
し、しかも取り扱いの容易さから、特に液状の有機ケイ
素化合物の部分加水分解縮合物、例えばKC89(信越
化学工業社製、商品名、オルガノメトキシシランモノマ
ーを含むオルガノメトキシシランの部分加水分解縮合
物)、AFP−1(信越化学工業社製、商品名、KC8
9を脱モノマー処理して得られたオルガノメトキシシラ
ンの部分加水分解縮合物)など、特にAFP−1が好ま
しい。
In the present invention, the partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group used as the component (D) (hereinafter, referred to as a partially hydrolyzed condensate of an organosilicon compound) is By utilizing the reaction between phenolic resole resin composition and water, the water in the foamable phenolic resole resin composition is consumed to promote curing, while the water repellent function inherently present or the repellency due to the condensation of silanol generated by hydrolysis. It contributes to the improvement of water absorption resistance due to the development of the water function. Among such partially hydrolyzed condensates of organosilicon compounds, these functions are more effectively expressed and, furthermore, from the viewpoint of ease of handling, in particular, partially hydrolyzed condensates of liquid organosilicon compounds such as KC89 ( Shin-Etsu Chemical Co., Ltd., trade name, partially hydrolyzed condensate of organomethoxysilane containing organomethoxysilane monomer, AFP-1 (Shin-Etsu Chemical Co., trade name, KC8
AFP-1 is particularly preferable, for example, a partially hydrolyzed condensate of organomethoxysilane obtained by subjecting 9 to demonomerization treatment.

【0021】前記加水分解性基としては、水との反応性
がよいという点でアルコキシ基、フェノキシ基及びメル
カプトメチル基が好ましいが、アルコキシ基、特にコス
トの点でメトキシ基が好ましい。また加水分解性基は、
分子中に1種のみ存在してもよく、2種以上混在しても
よい。
As the hydrolyzable group, an alkoxy group, a phenoxy group and a mercaptomethyl group are preferred in terms of good reactivity with water, but an alkoxy group, particularly a methoxy group, is preferred in terms of cost. The hydrolyzable group is
Only one kind may be present in the molecule, or two or more kinds may be mixed.

【0022】(D)成分の配合量としては、(A)成分
のフェノール系レゾール樹脂100質量部に対し、通常
0.1質量部以上、好ましくは0.3〜10質量部、よ
り好ましくは0.5〜2質量部の範囲内で選ばれる。配
合量が0.1質量部未満では硬化性及び耐吸水性の改善
効果が認められない。なお、(D)成分は、上述したよ
うに水との反応性が極めて大きいため、一般的には
(C)成分の発泡剤にあらかじめ混合して使用される。
The amount of the component (D) is usually 0.1 part by mass or more, preferably 0.3 to 10 parts by mass, more preferably 0 part by mass, per 100 parts by mass of the phenolic resole resin of the component (A). It is selected within the range of 0.5 to 2 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving curability and water absorption resistance is not recognized. Since the component (D) has extremely high reactivity with water as described above, it is generally used by being previously mixed with the foaming agent of the component (C).

【0023】本発明において、(E)成分として用いら
れる整泡剤は、主として(B)酸性硬化剤の存在下で
(C)発泡剤の膨張作用により形成される(A)フェノ
ール系レゾール樹脂の気泡の均一化及び安定化などに作
用する化合物であり、このような性質を有する好ましい
整泡剤としては、非イオン系界面活性剤が挙げられる
が、これに限定されるものではなく、必要に応じて従来
公知のアニオン系又はカチオン系界面活性剤を単独で又
は非イオン系界面活性剤と併用することもできる。
In the present invention, the foam stabilizer used as the component (E) is mainly composed of the phenolic resole resin (A) formed by the expansion action of the foaming agent (C) in the presence of the acidic curing agent (B). Non-ionic surfactants, which are compounds acting on uniformity and stabilization of air bubbles and having such properties, include, but are not limited to, non-ionic surfactants. Accordingly, a conventionally known anionic or cationic surfactant can be used alone or in combination with a nonionic surfactant.

【0024】前記非イオン系界面活性剤としては、例え
ばヒマシ油エチレンオキシド付加物、ポリシロキサン・
オキシアルキレン共重合体、アルキルフェニル縮合物エ
ーテル、ポリアルキレングリコールアルキルエーテル、
グリセリン脂肪酸エステル、ポリオキシエチレンソルビ
タン脂肪酸エステル、ラウリン酸エステル、ポリプロピ
レンアルキルアミド及びこれらの混合物などを例示する
ことができる。(E)成分の配合量としては、(A)成
分のフェノール系レゾール樹脂100質量部に対して通
常0.3〜10質量部の範囲内で選ばれる。
Examples of the nonionic surfactant include castor oil ethylene oxide adduct and polysiloxane.
Oxyalkylene copolymer, alkylphenyl condensate ether, polyalkylene glycol alkyl ether,
Examples include glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, lauric acid esters, polypropylene alkylamides, and mixtures thereof. The compounding amount of the component (E) is usually selected from the range of 0.3 to 10 parts by mass based on 100 parts by mass of the phenolic resole resin of the component (A).

【0025】次に、本発明の発泡性フェノール系レゾー
ル樹脂組成物は、(A)フェノール系レゾール樹脂と
(E)整泡剤との混合物と、あらかじめ作製した(C)
シクロペンタンを主成分とする発泡剤と(D)加水分解
性基を有する有機ケイ素化合物の部分加水分解縮合物と
の混合物とを高速撹拌混合して均一化した後、さらに
(B)酸性硬化剤を添加して再び均一に高速撹拌混合を
することにより、又はこれらの成分を同時的に高圧衝突
混合をすることにより製造することができる。
Next, the foamable phenolic resole resin composition of the present invention was prepared in advance with a mixture of (A) a phenolic resole resin and (E) a foam stabilizer, and (C).
A mixture of a foaming agent containing cyclopentane as a main component and (D) a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group is mixed with high-speed stirring to homogenize, and then (B) an acidic curing agent And uniformly high-speed stirring and mixing again, or by simultaneously performing high-pressure impingement mixing of these components.

【0026】このようにして得られた本発明組成物は、
種々の発泡方法、例えば連続発泡法、注入発泡法、現場
発泡法などにより発泡硬化させることにより、長期保管
でも面材の剥離がなく又は優れた耐吸水性若しくは断熱
性の熱劣化に対して耐性を有する環境対応型のフェノー
ル系フォームを提供することができる。
The composition of the present invention thus obtained is
By foaming and hardening by various foaming methods such as continuous foaming method, injection foaming method, in-situ foaming method, there is no exfoliation of the surface material even during long-term storage, or excellent water absorption resistance or resistance to thermal deterioration due to heat insulation It is possible to provide an environmentally friendly phenolic foam having:

【0027】本発明組成物には、必要に応じて種々の助
剤、例えばレゾルシン、アルキルレゾルシンなどの硬化
促進剤、例えば尿素、メラミンなどのホルムアルデヒド
捕捉剤、例えば尿素樹脂、メラミン樹脂、含リン系・含
ハロゲン系化合物、水酸化アルミニウムなどの難燃剤、
例えばセラミック繊維、ガラス繊維、炭素繊維、フェノ
ール繊維、アラミド繊維などの繊維補強剤、例えばシラ
スバルーン、ガラスバルーン、多孔質骨剤、木粉などの
充填剤のほか、減粘剤、可塑剤、着色剤、消臭剤、抗菌
剤などを加えることができる。
The composition of the present invention may contain, if necessary, various auxiliaries, for example, curing accelerators such as resorcin and alkylresorcin, for example, formaldehyde scavengers such as urea and melamine, for example, urea resins, melamine resins, phosphorus-containing systems.・ Halogen-containing compounds, flame retardants such as aluminum hydroxide,
For example, fiber reinforcing agents such as ceramic fibers, glass fibers, carbon fibers, phenol fibers, and aramid fibers, for example, fillers such as shirasu balloons, glass balloons, porous skeletons, and wood flour, as well as viscosity reducing agents, plasticizers, and colorings Agents, deodorants, antibacterial agents and the like can be added.

【0028】[0028]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0029】なお、実施例及び比較例により得られたフ
ェノール系フォームについては下記の試験法により諸特
性を調べた。 (1)密度及び吸水量:JIS A−1412に準拠し
て測定した。 (2)面材剥離の有無:25℃で180日間放置した後
に観察した。 (3)断熱性(熱伝導率の熱劣化に対する耐性):フェ
ノール系フォーム製造後、25℃の温度雰囲気で1日放
置した後、所定の温度に調整した防爆仕様温風循環式恒
温器中で、さらに14日間熱処理し、さらに25℃の温
度雰囲気で12時間放置してから熱伝導率測定装置(ア
ムコ社製、商品名「アナコンTCAポイント2」)によ
り、その熱伝導率を測定した。 (4)断熱性(熱伝導率):フェノール系フォーム製造
後、25℃の温度雰囲気で1日放置した後、前記熱伝導
率測定装置により、その熱伝導率を測定した。
The properties of the phenolic foams obtained in Examples and Comparative Examples were examined by the following test methods. (1) Density and water absorption: Measured according to JIS A-1412. (2) Presence or absence of face material peeling: Observed after standing at 25 ° C. for 180 days. (3) Thermal insulation (resistance to thermal degradation of thermal conductivity): After manufacturing a phenolic foam, leave it in a 25 ° C. temperature atmosphere for one day, and then adjust it to a predetermined temperature in an explosion-proof hot air circulation type incubator. After further heat treatment for 14 days, and further left for 12 hours in a temperature atmosphere of 25 ° C., the thermal conductivity was measured by a thermal conductivity measuring device (trade name “Anacon TCA Point 2” manufactured by Amco). (4) Thermal insulation (thermal conductivity): After producing the phenolic foam, it was allowed to stand in a 25 ° C. temperature atmosphere for one day, and then its thermal conductivity was measured by the thermal conductivity measuring device.

【0030】参考例1(ノボラック型レゾール樹脂組成
物の製造) 還流器、温度計、撹拌機を備えた三つ口反応フラスコ内
にフェノール1600g、47質量%ホルマリン869
g及びシュウ酸1.6gを仕込み、還流温度で60分間
ノボラック化反応を行った。40℃に冷却後、47質量
%ホルマリン1412g及び50質量%水酸化ナトリウ
ム水溶液41.6gを仕込み、80℃で80分間レゾー
ル化反応を行った後、40℃に冷却した。次に、50質
量%p‐トルエンスルホン酸水溶液で中和した後、尿素
153.6gを加えて減圧・加熱下に、含水率8.0質
量%(カールフィッシャー法)まで脱水濃縮して液状の
(A)ノボラック型レゾール樹脂2880gを得た。次
に(A)ノボラック型レゾール樹脂100質量部に対し
て(E)整泡剤としてヒマシ油系エチレンオキシド付加
物3質量部を加えて粘度13.5Pa・s/25℃のノ
ボラック型レゾール樹脂組成物を得た。
Reference Example 1 (Production of novolak type resole resin composition) In a three-necked reaction flask equipped with a reflux condenser, a thermometer, and a stirrer, 1600 g of phenol and 47 mass% of formalin 869 were prepared.
g and 1.6 g of oxalic acid, and a novolak-forming reaction was carried out at reflux temperature for 60 minutes. After cooling to 40 ° C., 1412 g of 47% by mass formalin and 41.6 g of a 50% by mass aqueous sodium hydroxide solution were charged, a resolving reaction was carried out at 80 ° C. for 80 minutes, and then cooled to 40 ° C. Next, after neutralizing with a 50% by mass aqueous solution of p-toluenesulfonic acid, 153.6 g of urea was added, and the mixture was dehydrated and concentrated to a water content of 8.0% by mass (Karl Fischer method) under reduced pressure and heating to form a liquid. (A) 2,880 g of a novolak type resole resin was obtained. Next, a novolak type resol resin composition having a viscosity of 13.5 Pa · s / 25 ° C. was added to (E) 3 parts by weight of a castor oil-based ethylene oxide adduct as a foam stabilizer with respect to 100 parts by weight of the (A) novolak type resole resin. I got

【0031】参考例2(レゾール樹脂組成物の製造) 還流器、温度計、撹拌機を備えた三つ口反応フラスコ内
にフェノール1600g、47質量%ホルマリン228
2g及び50質量%水酸化ナトリウム水溶液41.6g
を仕込み、80℃で80分間レゾール化反応を行った。
40℃に冷却後、50質量%p‐トルエンスルホン酸水
溶液で中和し、尿素153.6gを加えて減圧・加熱下
に、含水率8.0質量%まで脱水濃縮して液状の(A)
レゾール樹脂2830gを得た。次に(A)レゾール樹
脂100質量部に対して(E)整泡剤としてヒマシ油系
エチレンオキシド付加物3.0質量部を加えて粘度2
5.2Pa・s/25℃のレゾール樹脂組成物を得た。
Reference Example 2 (Production of resol resin composition) In a three-necked reaction flask equipped with a reflux condenser, a thermometer, and a stirrer, 1600 g of phenol and 47% by mass of formalin 228 were prepared.
2 g and 41.6 g of a 50% by mass aqueous sodium hydroxide solution
And a resolving reaction was carried out at 80 ° C. for 80 minutes.
After cooling to 40 ° C., the mixture was neutralized with a 50% by mass aqueous solution of p-toluenesulfonic acid, 153.6 g of urea was added, and the mixture was dehydrated and concentrated to a water content of 8.0% by mass under reduced pressure and heating to obtain a liquid (A).
2830 g of a resole resin was obtained. Next, (E) 3.0 parts by mass of a castor oil-based ethylene oxide adduct as a foam stabilizer was added to 100 parts by mass of the resole resin (A) to give a viscosity of 2
A resole resin composition at 5.2 Pa · s / 25 ° C. was obtained.

【0032】実施例1 500mlディスポカップ内で参考例1で作製したノボ
ラック型レゾール樹脂組成物100質量部と、(C)成
分のシクロペンタン5質量部と(D)成分のAFP−1
(信越化学工業社製、商品名、KC89を脱モノマー処
理して得られたオルガノメトキシシランの部分加水分解
縮合物)0.1質量部との混合物とを混合し、さらに温
度25℃に調整した。次いで、あらかじめ温度25℃に
調整した(B)成分の60質量%p‐トルエンスルホン
酸ジエチレングリコール溶液18質量部を添加し、直ち
に高速撹拌機(特殊機化工業社製、商品名「ホモディス
パー」)で10秒間撹拌混合して発泡性フェノール系レ
ゾール樹脂組成物を作製した。得られた組成物を、80
℃の金型内に敷設したクラフト紙上に素早く注入し、さ
らにクラフト紙を敷設し、金型を密閉し、これを80℃
の防爆仕様温風循環式恒温器内で5分間熱処理して発泡
硬化させることにより、密度40.1kg/cm3のフ
ェノール系フォームを作製した。得られたフェノール系
フォームは前記試験法により吸水量、熱伝導率及び熱伝
導率の熱劣化に対する耐性及び面材の剥離有無を調べ
た。それらの結果を表1に示す。
Example 1 In a 500 ml disposable cup, 100 parts by mass of the novolak type resole resin composition prepared in Reference Example 1, 5 parts by mass of cyclopentane as the component (C), and AFP-1 as the component (D)
(Partial hydrolysis condensate of organomethoxysilane obtained by demonomerizing KC89, manufactured by Shin-Etsu Chemical Co., Ltd.) and a mixture with 0.1 part by mass, and further adjusted to a temperature of 25 ° C. . Next, 18 parts by mass of a 60% by mass p-toluenesulfonic acid diethylene glycol solution of the component (B), which was previously adjusted to a temperature of 25 ° C., was added, and immediately a high-speed stirrer (trade name “Homodisper” manufactured by Tokushu Kika Kogyo Co., Ltd.) For 10 seconds to produce a foamable phenolic resole resin composition. The resulting composition was treated with 80
ク ラ フ ト 上 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く 素 早 く さ ら に さ ら に 80 、 、 、 80
A phenol foam having a density of 40.1 kg / cm 3 was produced by heat-treating in an explosion-proof specification hot air circulation type thermostat for 5 minutes to foam and harden. The obtained phenol-based foam was examined by the above-mentioned test method for water absorption, thermal conductivity, resistance to thermal deterioration of thermal conductivity, and the presence or absence of peeling of the face material. Table 1 shows the results.

【0033】実施例2〜4 実施例1において、(D)成分のAFP−1を表1に示
す配合量に代えた以外は、実施例1と同様にして3種類
のフェノール系フォームを作製し、さらに得られたフェ
ノール系フォームの密度、吸水量、熱伝導率及び熱伝導
率の熱劣化に対する耐性及び面材の剥離有無を調べた。
それらの結果を表1に示す。
Examples 2 to 4 Three kinds of phenolic foams were prepared in the same manner as in Example 1 except that the amount of component (D) AFP-1 was changed to the amount shown in Table 1. Further, the density, water absorption, thermal conductivity of the obtained phenolic foam, resistance to thermal degradation of thermal conductivity, and the presence or absence of peeling of the face material were examined.
Table 1 shows the results.

【0034】実施例5 実施例1において、(D)成分のAFP−1 0.1質
量部をKC89(信越化学工業社製、商品名、オルガノ
メトキシシランモノマーを含むオルガノメトキシシラン
の部分加水分解縮合物)0.5質量部に代えた以外は、
実施例1と同様にしてフェノール系フォームを作製し、
さらに得られたフェノール系フォームの密度、吸水量、
熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の
剥離有無を調べた。それらの結果を表1に示す。
Example 5 In Example 1, 0.1 part by mass of AFP-1 as the component (D) was partially hydrolyzed and condensed with KC89 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., an organomethoxysilane containing an organomethoxysilane monomer). Product) except that 0.5 parts by mass was used.
A phenolic foam was prepared in the same manner as in Example 1,
Furthermore, the density, water absorption,
The thermal conductivity, the resistance to thermal degradation of the thermal conductivity, and the presence or absence of peeling of the face material were examined. Table 1 shows the results.

【0035】実施例6 実施例1において、参考例1で作製したノボラック型レ
ゾール樹脂組成物を参考例2で作製したレゾール樹脂組
成物に代え、(D)成分のAFP−1の配合量を0.1
質量部から0.5質量部に代えた以外は、実施例1と同
様にしてフェノール系フォームを作製し、さらに得られ
たフェノール系フォームの密度、吸水量、熱伝導率及び
熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調
べた。それらの結果を表1に示す。
Example 6 In Example 1, the novolak type resole resin composition prepared in Reference Example 1 was replaced with the resole resin composition prepared in Reference Example 2, and the amount of component (D) AFP-1 was changed to 0. .1
A phenolic foam was prepared in the same manner as in Example 1 except that the mass was changed from 0.5 part by mass to 0.5 part by mass, and the density, water absorption, thermal conductivity and heat conductivity of the obtained phenolic foam were further measured. The resistance to deterioration and the presence / absence of peeling of the face material were examined. Table 1 shows the results.

【0036】実施例7、8 実施例1において、(C)成分のシクロペンタン5質量
部を、シクロペンタン70質量%とペンタン30質量%
との混合物5質量部、又はシクロペンタン70質量%と
ペンタフルオロブタン(HFC−365mfc)30質
量%との混合物5質量部にそれぞれ代え、(D)成分の
AFP−1の配合量を0.1質量部から0.5質量部に
代えた以外は、実施例1と同様にして2種類のフェノー
ル系フォームを作製し、さらに得られたフェノール系フ
ォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化
に対する耐性及び面材の剥離有無を調べた。それらの結
果を表1に示す。
Examples 7 and 8 In Example 1, 5 parts by mass of the component (C) cyclopentane was added to 70% by mass of cyclopentane and 30% by mass of pentane.
And 5 parts by mass of a mixture of 70% by mass of cyclopentane and 30% by mass of pentafluorobutane (HFC-365mfc), respectively, and the compounding amount of AFP-1 of the component (D) is 0.1%. Two types of phenolic foams were prepared in the same manner as in Example 1 except that the amount was changed from 0.5 parts by mass to 0.5 parts by mass, and the density, water absorption, thermal conductivity, and thermal conductivity of the obtained phenolic foam were further obtained. The resistance to thermal degradation of the rate and the presence or absence of peeling of the face material were examined. Table 1 shows the results.

【0037】比較例1 実施例1において、(C)成分のシクロペンタンをAK
−141b(旭硝子社製、商品名、HCFC−141b
相当品)に代え、(D)成分のAFP−1の配合量を
0.1質量部から0.5質量部に代えた以外は、実施例
1と同様にしてフェノール系フォームを作製し、さらに
得られたフェノール系フォームの密度、吸水量、熱伝導
率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有
無を調べた。それらの結果を表1に示す
COMPARATIVE EXAMPLE 1 In Example 1, the component (C) cyclopentane was replaced with AK
-141b (manufactured by Asahi Glass Co., trade name, HCFC-141b
Phenolic foam was prepared in the same manner as in Example 1 except that the blending amount of AFP-1 as the component (D) was changed from 0.1 part by mass to 0.5 part by mass. The density, water absorption, thermal conductivity, resistance to thermal degradation of thermal conductivity, and the presence or absence of peeling of the face material of the obtained phenol foam were examined. Table 1 shows the results.

【0038】比較例2 実施例1において、(D)成分のAFP−1 0.1質
量部をKBPH−13(信越化学工業社製、商品名、メ
チルトリフェノキシシラン)0.5質量部に代えた以外
は、実施例1と同様にしてフェノール系フォームを作製
し、さらに得られたフェノール系フォームの密度、吸水
量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面
材の剥離有無を調べた。それらの結果を表1に示す。
Comparative Example 2 In Example 1, 0.1 parts by mass of AFP-1 as the component (D) was replaced with 0.5 parts by mass of KBPH-13 (trade name, methyltriphenoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.). A phenolic foam was prepared in the same manner as in Example 1, and the density, water absorption, thermal conductivity and resistance to thermal degradation of the thermal conductivity and the presence or absence of peeling of the face material were determined in the same manner as in Example 1. Examined. Table 1 shows the results.

【0039】比較例3 実施例1において、(D)成分を配合せず、それ以外
は、実施例1と同様にしてフェノール系フォームを作製
し、さらに得られたフェノール系フォームの密度、吸水
量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面
材の剥離有無を調べた。それらの結果を表1に示す。
Comparative Example 3 A phenolic foam was prepared in the same manner as in Example 1 except that the component (D) was not added, and the density and water absorption of the obtained phenolic foam were also measured. The thermal conductivity, the resistance to thermal degradation of the thermal conductivity, and the presence or absence of peeling of the face material were examined. Table 1 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明によれば、(C)シクロペンタン
を主成分とする発泡剤と(D)加水分解性基を有する有
機ケイ素化合物の部分加水分解縮合物とを併用すること
により、(1)改善された耐吸水性、(2)長期保管し
ても面材の剥離がない、(3)改善された断熱性(熱伝
導率)の熱劣化に対する耐性、といった効果を、単独で
若しくは複合に有する、オゾン層破壊や地球温暖化問題
を生じる危険性の低い環境対応型のフェノール系レゾー
ル樹脂フォームを提供することができる。また、本発明
組成物により得られるフェノール系レゾール樹脂フォー
ムは良好な断熱性、換言すれば低熱伝導率を有するとい
う利点がある。
According to the present invention, (C) a blowing agent containing cyclopentane as a main component and (D) a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group are used in combination to obtain ( The effects of 1) improved water absorption resistance, (2) no peeling of face materials even after long-term storage, and (3) improved heat insulation (thermal conductivity) resistance to thermal degradation, alone or An environmentally friendly phenolic resole resin foam having a low risk of causing ozone layer destruction and global warming problems can be provided. Further, the phenolic resole resin foam obtained by the composition of the present invention has an advantage that it has good heat insulating properties, in other words, low thermal conductivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 康弘 愛知県丹羽郡扶桑町大字南山名字新津26番 地の4 旭有機材工業株式会社愛知工場内 Fターム(参考) 4J002 CC041 CH052 CP032 DG046 DH026 EA017 EA027 EB067 EB077 EH049 EV236 EX038 FD156 FD312 FD319 FD327 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasuhiro Ueda 26, Niitsu, Minamiyama, Fuso-cho, Fuwa-cho, Niwa-gun, Aichi Prefecture F-term in the Aichi Plant of Asahi Organic Materials Industry Co., Ltd. 4J002 CC041 CH052 CP032 DG046 DH026 EA017 EA027 EB067 EB077 EH049 EV236 EX038 FD156 FD312 FD319 FD327

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)フェノール系レゾール樹脂、
(B)酸性硬化剤、(C)シクロペンタンを主成分とす
る発泡剤、(D)加水分解性基を有する有機ケイ素化合
物の部分加水分解縮合物及び(E)整泡剤を含有するこ
とを特徴とする発泡性フェノール系レゾール樹脂組成
物。
(A) a phenolic resole resin,
(B) an acidic curing agent, (C) a foaming agent containing cyclopentane as a main component, (D) a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group, and (E) a foam stabilizer. Characteristic foamable phenolic resole resin composition.
【請求項2】 (C)成分がシクロペンタンを主成分と
する炭化水素系発泡剤である請求項1記載の発泡性フェ
ノール系レゾール樹脂組成物。
2. The foamable phenolic resole resin composition according to claim 1, wherein the component (C) is a hydrocarbon foaming agent containing cyclopentane as a main component.
【請求項3】 (C)成分がシクロペンタンである請求
項2記載の発泡性フェノール系レゾール樹脂組成物。
3. The foamable phenolic resole resin composition according to claim 2, wherein the component (C) is cyclopentane.
【請求項4】 (B)成分がアリールスルホン酸を主成
分とし、かつ含水率が10質量%未満のグリコール系溶
液である請求項1ないし3のいずれかに記載の発泡性フ
ェノール系レゾール樹脂組成物。
4. The foamable phenolic resol resin composition according to claim 1, wherein the component (B) is a glycol-based solution having an arylsulfonic acid as a main component and a water content of less than 10% by mass. object.
JP2001149895A 2001-05-18 2001-05-18 Foamable phenolic resole resin composition Expired - Lifetime JP4601855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149895A JP4601855B2 (en) 2001-05-18 2001-05-18 Foamable phenolic resole resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149895A JP4601855B2 (en) 2001-05-18 2001-05-18 Foamable phenolic resole resin composition

Publications (2)

Publication Number Publication Date
JP2002338784A true JP2002338784A (en) 2002-11-27
JP4601855B2 JP4601855B2 (en) 2010-12-22

Family

ID=18995010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149895A Expired - Lifetime JP4601855B2 (en) 2001-05-18 2001-05-18 Foamable phenolic resole resin composition

Country Status (1)

Country Link
JP (1) JP4601855B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092086A1 (en) 2012-12-11 2014-06-19 旭化成建材株式会社 Phenolic resin foam and method for producing same
JP2015500356A (en) * 2011-12-07 2015-01-05 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Environmentally low load phenol foam resin composition with improved heat insulation performance and phenol foam using the same
JP2015510461A (en) * 2012-02-24 2015-04-09 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Reinforced phenol foam board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151299B (en) * 2017-07-12 2019-07-30 河北科技大学 A kind of delicate fragrance type phenol-formaldehyde resin modified and preparation method thereof for sand casting

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251452A (en) * 1987-04-08 1988-10-18 Mitsui Toatsu Chem Inc Phenolic resin composition
JPH07196838A (en) * 1993-12-29 1995-08-01 Asahi Organic Chem Ind Co Ltd Expansion-curable phenolic resin composition
JPH11124501A (en) * 1997-10-21 1999-05-11 Nippon Paint Co Ltd Thermosetting resin composition
JPH11181334A (en) * 1997-12-24 1999-07-06 Nippon Paint Co Ltd Coating composition, film forming method and coated product
JPH11512131A (en) * 1995-08-28 1999-10-19 オウェンス コーニング Method for producing phenolic resin foam
WO2000001761A1 (en) * 1998-07-03 2000-01-13 Asahi Kasei Kogyo Kabushiki Kaisha Phenolic foam
JP2000044772A (en) * 1998-08-03 2000-02-15 Dainippon Ink & Chem Inc Phenol resin composition and composite
JP2002037910A (en) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd Expandable phenol-based resol resin composition and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251452A (en) * 1987-04-08 1988-10-18 Mitsui Toatsu Chem Inc Phenolic resin composition
JPH07196838A (en) * 1993-12-29 1995-08-01 Asahi Organic Chem Ind Co Ltd Expansion-curable phenolic resin composition
JPH11512131A (en) * 1995-08-28 1999-10-19 オウェンス コーニング Method for producing phenolic resin foam
JPH11124501A (en) * 1997-10-21 1999-05-11 Nippon Paint Co Ltd Thermosetting resin composition
JPH11181334A (en) * 1997-12-24 1999-07-06 Nippon Paint Co Ltd Coating composition, film forming method and coated product
WO2000001761A1 (en) * 1998-07-03 2000-01-13 Asahi Kasei Kogyo Kabushiki Kaisha Phenolic foam
JP2000044772A (en) * 1998-08-03 2000-02-15 Dainippon Ink & Chem Inc Phenol resin composition and composite
JP2002037910A (en) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd Expandable phenol-based resol resin composition and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500356A (en) * 2011-12-07 2015-01-05 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Environmentally low load phenol foam resin composition with improved heat insulation performance and phenol foam using the same
JP2015510461A (en) * 2012-02-24 2015-04-09 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Reinforced phenol foam board
WO2014092086A1 (en) 2012-12-11 2014-06-19 旭化成建材株式会社 Phenolic resin foam and method for producing same
US10253151B2 (en) 2012-12-11 2019-04-09 Asahi Kasei Construction Materials Corporation Phenolic resin foam and method for producing the same

Also Published As

Publication number Publication date
JP4601855B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US20080197524A1 (en) Thermoformable Melamine/Formaldehyde-Based Foams Exhibiting Low-Formeldehyde Emission
JPH0372536A (en) Semiflexible or flexible phenolic resin foam composition
EP1887032A1 (en) Expandable resol-type phenolic resin molding material and phenolic resin foam
JP5464863B2 (en) Foamable resol-type phenol resin molding material, method for producing the same, and phenol resin foam
JP4878672B2 (en) Foamable phenolic resole resin composition and method for producing the same
JP2007131859A (en) Acid-curable phenol resin foam and method for producing the same
KR101287392B1 (en) Low formaldehyde foams
WO1990015094A1 (en) Expandable phenolic resin composition and method of producing the same
JP2002338784A (en) Expandable phenolic resol resin composition
JP2009262475A (en) Manufacturing method for phenol resin foam laminated sheet
JP5400485B2 (en) Foamable resol-type phenolic resin molding material and phenolic resin foam using the same
JP2010540752A (en) Phenol novolac foams and compositions for their production
FI88404C (en) Process for the preparation of phenolic foam
JP2873167B2 (en) Method for producing phenolic resin foam
JP4170163B2 (en) Phenol foam raw material composition, phenol foam using the same, and method for producing the same
US4883824A (en) Modified phenolic foam catalysts and method
JP2551481B2 (en) Foaming phenolic resin composition
JP2541703B2 (en) Method for producing phenolic resin foam
JP3139159B2 (en) Method for producing phenolic resin foam
JP3521048B2 (en) Phenol foam for vacuum insulation core
JP2001181427A (en) Method for producing phenolic resin foam and formable phenolic resin composition for production of the foam
JP3313491B2 (en) Method for producing phenolic resin foam
JP5346619B2 (en) Foamable resol-type phenol resin molding material, method for producing the same, and phenol resin foam
JP2005120337A (en) Acid-curable phenolic resin foam and its manufacturing method
JP2006152094A (en) Phenol resin foam and its manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term