JP2002336904A - Method for manufacturing composite work roll for cold rolling and work roll - Google Patents

Method for manufacturing composite work roll for cold rolling and work roll

Info

Publication number
JP2002336904A
JP2002336904A JP2001142592A JP2001142592A JP2002336904A JP 2002336904 A JP2002336904 A JP 2002336904A JP 2001142592 A JP2001142592 A JP 2001142592A JP 2001142592 A JP2001142592 A JP 2001142592A JP 2002336904 A JP2002336904 A JP 2002336904A
Authority
JP
Japan
Prior art keywords
work roll
outer layer
core material
quenching
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001142592A
Other languages
Japanese (ja)
Inventor
Mitsuo Hashimoto
光生 橋本
Hiroshi Tanaka
拓 田中
Takayuki Koie
隆之 小家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001142592A priority Critical patent/JP2002336904A/en
Publication of JP2002336904A publication Critical patent/JP2002336904A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a composite work roll for cold rolling and the roll for realizing the increase of the diameter in use, that is, the increase of an outer layer of the composite work roll having a limit to thickening of the outer layer for preventing the break of a core material at quenching, prolonging the life of the composite work roll for rolling and reducing the manufacturing cost of a steel product. SOLUTION: In the manufacturing method for the composite work roll for cold rolling, which is manufactured by performing low frequency gradual induction heating and water quenching after forming the outer layer consisting of high-speed steel base material around the core material consisting of cast steel or forged steel by continuous cladding by tinkering, this manufacturing method of the composite work roll for cold rolling and this work roll are characterized by that a depth range where the core material is heated to not lower than the deformation point A1 of the core material at the low frequency gradual induction heating is taken as the thickness of the outer layer to <=0.7 of the radius of the work roll and, after that, the water quenching is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼の冷間圧延に
用いられる複合ワークロールの製造方法および複合ワー
クロールに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a composite work roll used for cold rolling of steel and a composite work roll.

【0002】[0002]

【従来の技術】従来、鉄鋼の冷間圧延用ワークロールと
して複合ロールが知られており、そのロールは、過酷な
圧延条件に対する十分な耐摩耗性、耐疵入り性等を具備
させるため該ロールの外層材は、一般に低周波漸進誘導
加熱・水焼入れ方法により、ショア硬さ90以上の高硬
度が付与されている。しかし、このような複合ワークロ
ールにおいて、前記焼入れにより硬化、変態膨張する外
層に大きな圧縮残留応力が発生し、それとバランスする
ように内層材である芯材に大きな引張応力が発生する。
この芯材に発生する引張応力が過大になると焼入れ中に
芯材が破断することがある。これを解決する技術とし
て、例えば特開平5−169112号公報が開示されて
いる。この技術の概要は、複合ロールの内層材となる芯
材に、10%以上の伸びを有する材料を設けることによ
り前記焼入れ中に芯材が破断することを防止しようとす
るものである。
2. Description of the Related Art Conventionally, a composite roll has been known as a work roll for cold rolling of iron and steel, and the roll is provided with sufficient abrasion resistance and severe scratch resistance under severe rolling conditions. The outer layer material is generally given a high hardness of 90 or more in Shore hardness by a low frequency progressive induction heating / water quenching method. However, in such a composite work roll, a large compressive residual stress is generated in the outer layer that is hardened and transformed and expanded by the quenching, and a large tensile stress is generated in the core material as the inner layer material so as to balance the residual stress.
If the tensile stress generated in the core material is excessive, the core material may break during quenching. As a technique for solving this, for example, Japanese Patent Application Laid-Open No. 5-169112 is disclosed. The outline of this technique is to prevent the core material from breaking during the quenching by providing a material having an elongation of 10% or more to the core material serving as the inner layer material of the composite roll.

【0003】[0003]

【発明が解決しようとする課題】前記冷間圧延用複合ワ
ークロールの長寿命化は、該ロールで圧延される鉄鋼製
品の製造コストダウンに大きく寄与する。そのために
は、ロールそのものの耐摩耗性、耐疵入り性等の改善に
より寿命延長を図るだけでなく、ロールの使用径のアッ
プ、すなわち、複合ワークロールの製造時の外層厚を増
加させることも極めて有効な方策である。しかしなが
ら、前記焼入れ時の変態膨張に伴う、芯材に発生する引
張応力は、外層が厚くなるほど、より厳しくなり、前記
特開平5−169112号公報に開示されている芯材
に、10%以上の伸びを有する材料を設けただけでは、
その厚肉化には限界があった。その限界量としては、複
合ワークロールの半径に対し、比率0.20の厚さ、例
えば半径200mmのワークロールの場合、その外層厚
さは40mmが限界であった。
The prolongation of the life of the composite work roll for cold rolling greatly contributes to a reduction in the manufacturing cost of the steel product rolled by the roll. For this purpose, not only can the life of the roll be extended by improving the abrasion resistance and scratch resistance of the roll itself, but also the use diameter of the roll can be increased, that is, the outer layer thickness at the time of manufacturing the composite work roll can be increased. This is an extremely effective measure. However, the tensile stress generated in the core material due to the transformation expansion during the quenching becomes more severe as the outer layer becomes thicker, and the core material disclosed in JP-A-5-169112 has a tensile stress of 10% or more. Just by providing a material with elongation,
There was a limit to the thickening. As the limit amount, the outer layer thickness was limited to 40 mm in the case of a work roll having a ratio of 0.20 to the radius of the composite work roll, for example, a work roll having a radius of 200 mm.

【0004】以上の従来技術の課題に鑑み、本発明の目
的は、従来、前記の通り焼入れ時、芯材の破断を防止す
る上で外層の厚肉化に制約があった複合ワークロールの
使用径のアップ、すなわち、外層厚みの増加を実現し、
圧延用複合ワークロールの長寿命化および鉄鋼製品の製
造コストダウンを大幅に低減することのできる冷間圧延
用複合ワークロールの製造方法およびロールを提供する
ことにある。
[0004] In view of the above-mentioned problems of the prior art, an object of the present invention is to use a composite work roll in which the thickness of the outer layer is limited in order to prevent breakage of the core material during quenching as described above. Increased diameter, that is, increased outer layer thickness,
An object of the present invention is to provide a method and a roll for manufacturing a composite work roll for cold rolling, which can extend the life of the composite work roll for rolling and significantly reduce the cost of manufacturing steel products.

【0005】[0005]

【課題を解決するための手段】本発明は、上述した課題
を達成するためのものであり、その発明の要旨とすると
ころは、以下の通りである。 (1)鋳鋼または鍛鋼からなる芯材の周囲に、ハイス系
材料からなる外層を連続鋳掛け肉盛り法により形成後、
低周波漸進誘導加熱・水焼入れを施して製造される冷間
圧延用複合ワークロールの製造方法において、該低周波
漸進誘導加熱時、芯材のA1 変態点以上に加熱される深
度範囲を外層の厚み以上ワークロールの半径の0.7以
下とし、その後水焼入れを施すことを特徴とする冷間圧
延用複合ワークロールの製造方法。
SUMMARY OF THE INVENTION The present invention is to achieve the above-mentioned object, and the gist of the invention is as follows. (1) After forming an outer layer made of a high-speed material around a core material made of cast steel or forged steel by a continuous casting overlay method,
In the low-frequency progressive induction heating and cold method for producing a rolling composite work roll that is manufactured by performing water quenching, when the low-frequency progressive induction heating, the depth range, which is heated above the A 1 transformation point of the core material layer A thickness of not less than 0.7 and a radius of the work roll of 0.7 or less, followed by water quenching.

【0006】(2)芯材の周囲に、ハイス系材料からな
る外層を連続鋳掛け肉盛り法により形成後、低周波漸進
誘導加熱・水焼入れを施して製造された冷間圧延用複合
ワークロールにおいて、該低周波漸進誘導加熱時、芯材
のA1 変態点以上に加熱される深度範囲を外層の厚み以
上ワークロールの半径の0.7以下とし、その後水焼入
れを施してなる冷間圧延用複合ワークロールであって、
該外層の化学成分が質量%で、C:0.9〜1.5%、
Si:0.2〜2.5%、Mn:0.2〜2.5%、C
r:4.0〜10.0%、Mo:2.0〜8.0%、
V:0.5〜5.0%含有し、残部Feおよび不可避的
不純物からなることを特徴とする冷間圧延用複合ワーク
ロール。 (3)外層がさらに質量%で、Ni:0.2〜5%、
W:0.2〜5%、Co:0.2〜5.0%から選ばれ
る1種以上を含むことを特徴とする前記(2)記載の冷
間圧延用複合ワークロールにある。
(2) In a composite work roll for cold rolling manufactured by forming an outer layer made of a high-speed material around the core material by continuous casting and overlaying, and then performing low frequency progressive induction heating and water quenching. , low time-frequency progressive induction heating, the depth range, which is heated above the a 1 transformation point of the core material and less 0.7 of the radius of the work roll than the thickness of the outer layer, for cold rolling comprising subsequently subjected to water quenching A composite work role,
The chemical composition of the outer layer is represented by mass%, C: 0.9 to 1.5%,
Si: 0.2 to 2.5%, Mn: 0.2 to 2.5%, C
r: 4.0 to 10.0%, Mo: 2.0 to 8.0%,
V: A composite work roll for cold rolling, characterized in that it contains 0.5 to 5.0% and the balance is Fe and inevitable impurities. (3) The outer layer is further in mass%, Ni: 0.2 to 5%,
The composite work roll for cold rolling according to the above (2), characterized in that it contains at least one member selected from the group consisting of W: 0.2 to 5% and Co: 0.2 to 5.0%.

【0007】以下、本発明について詳細に説明する。本
発明者らは、前記外層の厚肉化に伴って増大する焼入れ
時の芯材における引張応力を抑制する手段として、芯材
の材料および外層の化学成分を種々設定し、以下に記載
する種々の実験を実施した。その結果、低周波漸進誘導
加熱の前の芯材として、伸びを15%以上を有する材料
の使用、または該芯材に15%以上の伸び付与させると
共に、芯材の中央部に、水焼入れ、冷却時の変態膨張を
起こさない、すなわち、低周波漸進誘導加熱時、A1
態点以上に加熱される深度範囲を外層の厚み以上ワーク
ロールの半径の0.7以下とすることにより、水焼入れ
時の芯材割損の危険性が極めて低く、ワークロールの半
径比0.2〜0.4の厚肉を有し、かつショア硬さ90
以上が可能となる冷間圧延用複合ワークロールの製造方
法および複合ワークロールを完成した。
Hereinafter, the present invention will be described in detail. The present inventors have variously set the material of the core material and the chemical composition of the outer layer as means for suppressing the tensile stress in the core material during quenching, which increases with the increase in the thickness of the outer layer. Was performed. As a result, as a core material before low-frequency progressive induction heating, use of a material having an elongation of 15% or more, or giving the core material an elongation of 15% or more, and water quenching the center of the core material, not cause transformation expansion during cooling, i.e., at a low-frequency progressive induction heating, the depth range, which is heated above the a 1 transformation point by more than 0.7 of the radius of the work roll than the thickness of the outer layer, water quenching The risk of core material breakage at the time is extremely low, the work roll has a thick wall having a radius ratio of 0.2 to 0.4, and has a Shore hardness of 90.
A method for manufacturing a composite work roll for cold rolling and a composite work roll that enable the above are completed.

【0008】[0008]

【発明の実施の形態】以下、本発明の芯材について説明
する。本発明に係る冷間圧延用複合ワークロールにおい
ては、後述する外層材として耐摩耗性に優れたハイス系
材料が使用されるが、該ハイス系材料は、難削性の材料
である。従って、低周波漸進誘導加熱・水焼入れの前に
は、軟化焼鈍を実施し、実ロール形状への機械加工を容
易にすることが必要である。この軟化焼鈍の実施により
芯材も軟化し、強度、伸びが損なわれる。前記の軟化焼
鈍を経た後でも芯材としてC量0.5%以下の鋼を選択
しておくことにより、伸び15%の確保が可能である。
具体的な芯材の適用例としては、機械構造用炭素鋼がそ
の一例として挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a core material of the present invention will be described. In the composite work roll for cold rolling according to the present invention, a high-speed material having excellent wear resistance is used as an outer layer material described later, and the high-speed material is a hard-to-cut material. Therefore, before low-frequency progressive induction heating and water quenching, it is necessary to perform softening annealing to facilitate machining to an actual roll shape. By performing this softening annealing, the core material is also softened, and the strength and elongation are impaired. Even after the above-mentioned soft annealing, it is possible to secure an elongation of 15% by selecting a steel having a C content of 0.5% or less as a core material.
As a specific example of the application of the core material, carbon steel for machine structure is mentioned as an example.

【0009】一方、前記の芯材では、ベンディング等圧
延応力が大きいミルに適用するには、強度が不足するこ
とがある。その場合、Cr,Mo,Niの少なくとも1
種以上が適量添加された低合金鋼を芯材として選択すれ
ば良い。その好適な範囲は、それぞれ、Cr:0.5〜
3.0%、Mo:0.1〜5.0%、Ni:0.1〜
5.0%である。いずれも、添加量が上記下限を下回れ
ば添加した効果が得られず、逆に、上限を超えて添加す
ると焼入れ性が良くなりすぎ、熱処理時に割れが発生す
る等の弊害が現れる。具体的な芯材の例としては、例え
ば特公平7−61489号公報に開示されている鋳鋼、
鍛鋼等の高強度鋼を使用すると良い。その実例としてS
CM材、SNCM材等が適している。
[0009] On the other hand, the above core material may have insufficient strength to be applied to a mill having a large rolling stress such as bending. In that case, at least one of Cr, Mo, and Ni
It is sufficient to select a low alloy steel containing an appropriate amount of the seed or more as a core material. The preferable ranges are respectively Cr: 0.5 to
3.0%, Mo: 0.1 to 5.0%, Ni: 0.1 to
5.0%. In any case, if the amount is less than the above lower limit, the effect of the addition cannot be obtained. Conversely, if the amount exceeds the upper limit, quenching properties become too good and cracks are generated during heat treatment. Specific examples of the core material include, for example, cast steel disclosed in Japanese Patent Publication No. 7-61489,
It is better to use high strength steel such as forged steel. S as an example
CM materials and SNCM materials are suitable.

【0010】しかしながら、前記高強度鋼を芯材として
選択した場合、前記の軟化焼鈍の実施ままの状態では、
15%以上の伸びは得られず、前記の理由により外層の
厚肉化は難しい。その場合、焼入れ前に、次に記載する
予備熱処理を施すことにより、15%以上の伸びを確保
すると良い。予備熱処理としては、900〜1200℃
の高温から、300〜400℃までを−5℃/min以
上の冷却速度で衝風冷却し、その後650〜750℃の
温度で1回もしくは数回焼き戻しを行うと良い。前記の
予備熱処理において、その加熱温度が、1200℃を超
えると組織が粗大化し脆くなる。
[0010] However, when the high-strength steel is selected as the core material, in the state where the softening annealing is performed,
An elongation of 15% or more cannot be obtained, and it is difficult to increase the thickness of the outer layer for the above-described reason. In this case, it is preferable to secure the elongation of 15% or more by performing the following preliminary heat treatment before quenching. 900-1200 ° C as the preliminary heat treatment
From the high temperature to 300 to 400 ° C. is subjected to blast cooling at a cooling rate of −5 ° C./min or more, and then tempering is performed once or several times at a temperature of 650 to 750 ° C. In the preliminary heat treatment, when the heating temperature exceeds 1200 ° C., the structure becomes coarse and brittle.

【0011】一方、900℃以下では拡散が不十分であ
り、熱処理効果が得られない。そこで、最適な加熱温度
としては、900〜1200℃とした。また、冷却速度
については、微細な組織を得るためには−5℃/min
以上の冷却速度が必要で、その方法としては衝風冷却が
適している。その後実施する前記数回の焼き戻しにおい
ては、加熱温度が、750℃を超えると強度が大きく低
下し、一方、650℃以下では焼き戻しの効果が得られ
ないため加熱に最適な温度としては、650〜750℃
が好ましい。
On the other hand, if the temperature is lower than 900 ° C., the diffusion is insufficient and the heat treatment effect cannot be obtained. Therefore, the optimal heating temperature was set to 900 to 1200 ° C. The cooling rate is -5 ° C / min to obtain a fine structure.
The above cooling rate is required, and blast cooling is suitable as the method. In the above-mentioned several times of tempering, when the heating temperature exceeds 750 ° C., the strength is greatly reduced. On the other hand, when the temperature is 650 ° C. or less, the effect of tempering cannot be obtained. 650-750 ° C
Is preferred.

【0012】次に、本発明の外層材について説明する。
本発明の外層材としては、冷間圧延用複合ワークロール
として必要な高硬度を有すること、および該高硬度を付
与させるための低周波誘導加熱・水焼入れに耐えられる
ということを主要な選択理由として、基本的に例えば特
開平5−271867号公報、特開平11−25400
7号公報に開示されているハイス系材料がよく、外層材
の成分系としては以下の範囲にあることが望ましい。
Next, the outer layer material of the present invention will be described.
The main reason for selection is that the outer layer material of the present invention has a high hardness required for a cold rolled composite work roll, and that it can withstand low frequency induction heating and water quenching for imparting the high hardness. Basically, for example, JP-A-5-271867, JP-A-11-25400
The high-speed material disclosed in Japanese Patent Publication No. 7 is preferable, and the component system of the outer layer material is preferably in the following range.

【0013】ここで化学成分を限定した理由を以下に述
べる。Cは、硬さを得るための重要な元素である。C量
が0.9%より少ないと基地に固溶するCが不足し、十
分なマトリックス硬さが得られなくなると同時に、高合
金化が難しくなる。しかし、1.5%を超えると炭化物
が粗大化し、強度が低下するので上限を1.5%とし
た。Siは、脱酸作用を目的として添加する。0.2%
未満であるとその効果が不十分であり、2.5%を超え
ると靱性を低下させるため、その範囲を0.2〜2.5
%とする。
The reasons for limiting the chemical components are described below. C is an important element for obtaining hardness. If the C content is less than 0.9%, the amount of C dissolved in the matrix becomes insufficient, so that sufficient matrix hardness cannot be obtained, and at the same time, high alloying becomes difficult. However, if the content exceeds 1.5%, carbides become coarse and the strength decreases, so the upper limit was made 1.5%. Si is added for the purpose of deoxidation. 0.2%
If it is less than 2.5%, the effect is insufficient, and if it exceeds 2.5%, the toughness is reduced.
%.

【0014】Mnは、脱酸、脱硫作用を目的として添加
する。0.2%未満であるとその効果が不十分であり、
2.5%を超えると靱性を低下させるため、その範囲を
0.2〜2.5%とする。Crは、Cと結合しやすくM
7 3 系炭化物を構成し、耐摩耗性を確保する上で必要
な元素であるが、少ないと十分な耐摩耗性が確保でき
ず、一方、多すぎると炭化物が粗大化しネット状に発達
する傾向があり靱性が低下する。その最適な範囲は、
4.0以上10.0%以下である。
Mn is added for the purpose of deoxidation and desulfurization. If it is less than 0.2%, the effect is insufficient,
If it exceeds 2.5%, the toughness is reduced, so the range is set to 0.2 to 2.5%. Cr is easily bonded to C and M
Constituting 7 C 3 -based carbides, it is an element necessary for securing wear resistance. However, if it is too small, sufficient wear resistance cannot be secured, while if it is too large, carbides become coarse and develop into a net shape. Tends to decrease toughness. The optimal range is
It is 4.0 or more and 10.0% or less.

【0015】Moは、硬質の炭化物が得られ、また高温
で焼き戻しを行う場合、その二次硬化に強く寄与する元
素である。2.0%未満の場合、炭化物としての析出が
不十分である。しかし、8.0%を超えるとネット状の
粗大な炭化物となるため、その最適な範囲を2.0%以
上8.0%以下とした。Vは、硬度の極めて高いMC系
炭化物を形成するため、最も強く耐摩耗性に寄与する元
素である。しかし0.5%未満であるとその効果は小さ
く、一方、5.0%を超えると研削性が阻害されるた
め、その範囲を0.5%超5.0%以下とした。
Mo is an element capable of obtaining a hard carbide and strongly contributing to the secondary hardening when tempering at a high temperature. If it is less than 2.0%, precipitation as carbides is insufficient. However, if the content exceeds 8.0%, a net-like coarse carbide is formed. Therefore, the optimum range is set to 2.0% or more and 8.0% or less. V is an element that most strongly contributes to wear resistance because it forms MC-based carbide with extremely high hardness. However, if the content is less than 0.5%, the effect is small. On the other hand, if the content is more than 5.0%, the grindability is impaired.

【0016】本発明材の基本成分は、上記の通りである
が、適用を対象とするロールのサイズ、要求されるロー
ルの使用特性等により、その他の化学成分として、上記
した本発明の化学成分に加えて、さらに以下の成分を適
宜選択添加すると良い。Niは、マトリックス中に固溶
され、基地のオーステナイトを安定化して焼入れ性を向
上する。そのため、0.2%以上の少量を含有させる
が、5.0%を超えて含有させた場合、オーステナイト
が安定化しすぎてオーステナイトの残留を来たし、硬度
の確保が困難になったり、圧延使用中の変形等を起こす
ことがある。なお、前記Ni添加の選択有無について
は、例えば、製造を対象とする圧延ロールのサイズ、硬
度等を考慮し、その添加の要否を適宜判断すると良い。
The basic components of the material of the present invention are as described above. However, depending on the size of the roll to which the material is to be applied, the required characteristics of the roll, etc., the above-mentioned chemical component of the present invention may be used as other chemical components. In addition to the above, the following components may be appropriately selected and added. Ni is dissolved in the matrix to stabilize the austenite of the matrix and improve the hardenability. For this reason, a small amount of 0.2% or more is contained, but if it is contained in excess of 5.0%, austenite is excessively stabilized and austenite remains, making it difficult to secure hardness or during rolling use. May be deformed. It should be noted that the presence or absence of the addition of Ni may be determined as appropriate in consideration of, for example, the size, hardness, and the like of a roll to be manufactured.

【0017】Wは、Moと同様、硬質の炭化物が得ら
れ、特に耐摩耗性が要求される場合に添加すると効果的
な元素である。0.2%未満ではその効果は不十分であ
り、5.0%を超えて添加すると炭化物が粗大化するた
め、その適正な範囲を0.2%以上5.0%以下とし
た。Coは、その殆どがマトリックス中に固溶され基地
の硬度及び強度を向上させる作用を有している。0.2
%未満ではその効果は不十分であり、5.0%を超えて
はその効果が飽和するため、経済性の観点からも5.0
%以下が望ましい。Co添加の選択有無については、例
えば、使用特性上の摩擦係数低減等を考慮し、その添加
の要否を適宜判断するとよい。
W is an element effective to obtain a hard carbide similarly to Mo and to be added particularly when wear resistance is required. If the content is less than 0.2%, the effect is insufficient, and if the content exceeds 5.0%, the carbide becomes coarse. Therefore, the appropriate range is set to 0.2% or more and 5.0% or less. Most of Co is dissolved in the matrix and has an effect of improving the hardness and strength of the matrix. 0.2
%, The effect is insufficient, and if it exceeds 5.0%, the effect is saturated.
% Is desirable. Regarding the presence or absence of the addition of Co, for example, the necessity of the addition may be appropriately determined in consideration of, for example, a reduction in the coefficient of friction in use characteristics.

【0018】Bは、0.001%以上で、焼入れ性が高
まり、また、靱性の低下を防ぐことができる。しかし、
過剰になると、靱性が低下するため、0.50%以下に
抑える必要がある。Al,Ti,Zrは、溶湯中で酸化
物を生成して、溶湯中の酸素含有量を低下させ、製品の
健全性を向上させると共に、生成した酸化物が結晶核と
して作用するために凝固組織の微細化に効果がある。
0.001%でその効果があるが、余り多く含有させる
と介在物となって製品中に残存することになるために、
その上限は、各々0.50%となるようにする。
When B is 0.001% or more, quenching properties are enhanced, and a decrease in toughness can be prevented. But,
If it is excessive, the toughness is reduced, so it is necessary to suppress the content to 0.50% or less. Al, Ti, and Zr generate oxides in the molten metal, reduce the oxygen content in the molten metal, improve the soundness of the product, and form a solidified structure because the generated oxide acts as a crystal nucleus. Is effective for miniaturization of
The effect is 0.001%, but if it is contained too much, it becomes an inclusion and remains in the product.
The upper limits are each set to 0.50%.

【0019】Cuは、基地組織を強化し高温硬度を向上
させる。0.001%以下では、その効果がなく、一
方、0.50%を超えると、耐摩耗性、耐クラック性が
低下すると共に、ロールの表面性状が劣化するため、そ
の上限を0.50%とすると良い。以下に、本発明にお
ける各種の基本的考え、解析計算および試験を実施し、
その成立性を確証したので、以下に詳述する。
Cu strengthens the base structure and improves the high-temperature hardness. When the content is less than 0.001%, the effect is not obtained. On the other hand, when the content exceeds 0.50%, the wear resistance and crack resistance are reduced, and the surface properties of the roll are deteriorated. It is good to In the following, various basic ideas in the present invention, analytical calculations and tests were performed,
Now that the feasibility has been confirmed, it will be described in detail below.

【0020】まず、本発明の冷間圧延用複合ワークロー
ルにおける低周波漸進誘導加熱・水焼入れ時の加熱深度
と得られるロール内部の組織および応力分布について、
その基本的な考えを図2および図3に従って説明する。
図3は、従来ロールの焼入れ時の加熱深度および焼入れ
後のロール内部の組織および応力分布を示す図である。
図3(a)に示すように、従来の低周波漸進誘導加熱の
方法では、ロールの中心部に至るまで全てA1 変態点以
上に加熱されている。この加熱状態から、水焼入れされ
ると複合ロールの外層部は急速に冷却され、マルテンサ
イト変態膨張する。また、芯材の中心部はパーライト変
態膨張を起こす。
First, in the composite work roll for cold rolling according to the present invention, the heating depth at the time of low frequency progressive induction heating and water quenching, and the resulting microstructure and stress distribution inside the roll will be described.
The basic idea will be described with reference to FIGS.
FIG. 3 is a diagram showing a heating depth at the time of quenching of a conventional roll and a structure and a stress distribution inside the roll after quenching.
As shown in FIG. 3 (a), in the conventional low-frequency progressive induction heating method, and all up to the center of the roll being heated to above the A 1 transformation point. From this heating state, when water quenching is performed, the outer layer portion of the composite roll is rapidly cooled and undergoes a martensitic transformation expansion. The central part of the core material undergoes pearlite transformation expansion.

【0021】ここで、芯材の外周部(ロールの境界部)
は中心部に比較して加熱温度が高く、冷却速度も大きい
ためベイナイト変態を起こすが変態の時期が外層のマル
テンサイト変態、芯材中心部のパーライト変態よりも遅
れるため、先に変態膨張を起こす外層および芯材中心部
に挟まれたベイナイト変態域には引張応力が発生する。
この引張応力は外層が厚くなるほど大きくなり、例え
ば、前記の通り図3(a)に示す従来の加熱状態におい
て水焼き入れを実施すると、外層厚さが対ワークロール
の半径比0.2を超えると、芯材のベイナイト変態域に
発生する引張応力、すなわち、図3(b)中のn1が過
大となり、芯材の破断につながる。そのため、従来外層
の厚さを対ワークロールの半径比0.2以上の厚さにす
ることが不可能であった。
Here, the outer peripheral portion of the core material (boundary portion of the roll)
The bainite transformation occurs because the heating temperature is higher and the cooling rate is higher than the central part, but the transformation time is later than the martensitic transformation of the outer layer and the pearlite transformation of the core material center, so the transformation expansion occurs first Tensile stress is generated in the bainite transformation region sandwiched between the outer layer and the center of the core material.
This tensile stress increases as the outer layer becomes thicker. For example, when water quenching is performed in the conventional heating state shown in FIG. 3A as described above, the outer layer thickness exceeds the radius ratio of the work roll to 0.2. And the tensile stress generated in the bainite transformation region of the core material, that is, n1 in FIG. 3 (b) becomes excessive, leading to breakage of the core material. For this reason, conventionally, it was impossible to make the thickness of the outer layer 0.2 or more in the radius ratio of the work roll to the work roll.

【0022】ここで、本発明者らは、焼入れ後の複合ロ
ール内部の組織および応力分布は、焼入れ前の加熱深度
によって変わることに着眼し、焼入れ時に、前記複合ロ
ールの芯材の中心部に変態膨張が生じないよう加熱深度
を制御することにより、焼入れ後の内層のベイナイト域
に発生する引張応力を低減させると共に、発生する引張
応力に耐えるために必要な芯材の伸びを確保させる。こ
れにより外層の厚肉化を実現化したものである。
Here, the present inventors have focused on the fact that the structure and stress distribution inside the composite roll after quenching change depending on the heating depth before quenching. By controlling the heating depth so that transformation expansion does not occur, the tensile stress generated in the bainite region of the inner layer after quenching is reduced, and the elongation of the core material necessary to withstand the generated tensile stress is ensured. Thus, the thickness of the outer layer is increased.

【0023】図2は、本発明に係るロールの焼入れ時の
加熱深度および焼入れ後のロール内部の組織および応力
分布を示す図である。例えば、この図2(a)に示すよ
うに、水焼き入れを実施する前の芯材中心部の加熱温度
がA1 変態点温度を超えないよう、すなわち、中心部位
が焼入れ時に変態膨張を起こさないような加熱深度を制
御することにより、図2(b)に示すように、芯材のベ
イナイト変態域に発生する引張応力n2を低減させるこ
とが可能となった。
FIG. 2 is a diagram showing the heating depth at the time of quenching of the roll according to the present invention and the structure and stress distribution inside the roll after quenching. For example, as shown in FIG. 2 (a), the so that the heating temperature of the core center before carrying out the water quenching does not exceed A 1 transformation temperature, i.e., the center site undergo transformation expansion at hardening By controlling such a heating depth, it was possible to reduce the tensile stress n2 generated in the bainite transformation region of the core material as shown in FIG. 2 (b).

【0024】なお、前記低周波漸進誘導加熱・水焼入れ
におけるロールの加熱深度の方法については、低周波漸
進誘導加熱・水焼入れ時に、ロールの移動(下降)速度
を変えることにより、該加熱深度の調整が可能である。
すなわち、前記ロールの移動(下降)速度が大きいほど
加熱深度を浅く、逆に移動速度が小さいと加熱深度を深
くすることができる。また、別の方法としては、例えば
公知の実公平3−39482号公報、実開昭62−11
8160号公報に開示されているような低周波漸進誘導
加熱・水焼入れ方法を使用すると良く、その場合、低周
波漸進誘導加熱・水焼入れ装置に設けられている上下の
加熱コイルの投入電力バランスを変えることによって、
ロールの加熱深度を制御することが可能である。
The method of setting the heating depth of the roll in the low-frequency progressive induction heating / water quenching is to change the roll moving (down) speed during the low-frequency progressive induction heating / water quenching. Adjustments are possible.
That is, the heating depth can be made shallower as the moving (falling) speed of the roll is higher, and the heating depth can be made deeper as the moving speed is lower. Another method is disclosed in, for example, Japanese Utility Model Publication No. 3-39482, Japanese Utility Model Application Laid-Open No. 62-11 / 1987.
No. 8160, a low-frequency progressive induction heating / water quenching method may be used. In this case, the input power balance between the upper and lower heating coils provided in the low-frequency progressive induction heating / water quenching apparatus may be adjusted. By changing
It is possible to control the heating depth of the roll.

【0025】前記の通り、本発明の複合ロールにおい
て、焼入れ時の芯材の破損に起因する主要なパラメータ
として、外層の厚み、加熱深度、焼入れ前の芯材
の必要伸びについて、その相関を明らかにした。さら
に、前記3つのパラメータは各々密接に関係するため各
々をパラメータとして、有限要素法を利用した解析を実
施して、本発明の理論の正当性を検証した。その解析・
検討結果を図1に示す。図1は、本発明の外層厚比、加
熱深度、必要伸びの相関を示す計算結果である。前記有
限要素法での解析方法の概要は、図1の横軸としている
加熱深度(対半径比)と直線AおよびBを示す外層厚み
(対半径比)を入力条件として、その時の解として図1
の縦軸である焼入れ後に破断を起こさない、すなわち焼
入れ前の芯材の必要伸びを計算結果の解として求め、そ
の結果を図1に示したものである。
As described above, in the composite roll of the present invention, the correlation between the thickness of the outer layer, the heating depth, and the required elongation of the core before quenching is clarified as the main parameters resulting from the breakage of the core during quenching. I made it. Furthermore, since the three parameters are closely related to each other, an analysis using the finite element method was performed using each of the parameters as parameters to verify the validity of the theory of the present invention. The analysis
FIG. 1 shows the examination results. FIG. 1 is a calculation result showing the correlation between the outer layer thickness ratio, the heating depth, and the required elongation according to the present invention. The outline of the analysis method by the finite element method is described as a solution at that time, using the heating depth (radius ratio) and the outer layer thickness (radius ratio) indicating the straight lines A and B as input conditions on the horizontal axis in FIG. 1
The vertical axis of the graph indicates that the fracture does not occur after quenching, that is, the required elongation of the core material before quenching is obtained as a solution of the calculation result, and the result is shown in FIG.

【0026】図1において、まず、直線Aは、外層厚み
(対半径比)が0.15、すなわち従来の外層厚みにお
ける計算結果を示す。図から明らかなように本外層厚み
が0.15と小さい場合には、その加熱深度を従来の如
く1.0としても焼入れ後に芯材が破断することのない
焼入れ前の芯材の必要伸びは、13%程度であり、この
結果は、図1に示すように従来の焼入れ前の芯材の伸び
(最大)が15%あることにより、従来の外層厚み(対
半径比)が0.15では、焼入れ時、芯材が破断するこ
となく実施可能であったことを明確に裏付けている。
In FIG. 1, first, a straight line A shows the calculation result when the outer layer thickness (ratio to radius) is 0.15, that is, the conventional outer layer thickness. As is clear from the figure, when the thickness of the outer layer is as small as 0.15, the required elongation of the core material before quenching is such that the core material does not break after quenching even if the heating depth is set to 1.0 as in the prior art. , About 13%. This result shows that, as shown in FIG. 1, the conventional elongation (maximum) of the core material before quenching is 15%. This clearly demonstrates that the quenching could be performed without breaking the core material.

【0027】同様に、直線Bは、外層厚み(対半径比)
が、従来実施困難であった0.2の場合であり、加熱深
度を従来の如く1.0とすると、焼入れ前の芯材の必要
伸びは、約22%となる。この値は、前記従来の焼入れ
前の芯材の伸び(最大)15%を大きく超えるものであ
り、このままでは、焼入れにより芯材が破断する。そこ
で、本発明においては、前記の通り、加熱深度(対半径
比)を0.7以下とし、予備熱処理により、芯材の伸び
を15%以上に付与している。これにより焼入れ時に、
芯材が破断することなく外層厚みを大きくすることが可
能となった。
Similarly, the straight line B is the outer layer thickness (ratio to radius).
However, this is the case of 0.2, which has been difficult to implement conventionally, and if the heating depth is 1.0 as in the past, the required elongation of the core material before quenching is about 22%. This value greatly exceeds the conventional elongation (maximum) of the core material before quenching of 15%, and the core material is broken by quenching. Therefore, in the present invention, as described above, the heating depth (radius ratio) is set to 0.7 or less, and the elongation of the core material is given to 15% or more by the preliminary heat treatment. Due to this, during quenching,
The thickness of the outer layer can be increased without breaking the core material.

【0028】ここで、本発明における加熱深度の下限に
ついて説明する。本発明が対象とする圧延ロールでは、
いずれの外層厚みの場合でも、複合ロールの使用径範囲
において十分な耐摩耗性を発揮させるために外層部全体
に十分焼きが入っていることが必要である。このため、
焼入れ時の加熱深度は、最低外層厚以上の深さを有する
ことが必須である。なお、本発明の複合ロール構造で
は、一般に外層厚み(対半径比)が大きくなるにつれ
て、焼入れ後に芯材が破断することのない焼入れ前の芯
材の必要伸びが増加することがいわれているため、上記
の解析は、本発明の外層厚み(対半径比)の上限につい
ての解析・検討結果について以下に説明する。
Here, the lower limit of the heating depth in the present invention will be described. In the rolling roll targeted by the present invention,
Regardless of the thickness of the outer layer, it is necessary that the entire outer layer be sufficiently baked in order to exhibit sufficient wear resistance in the range of the diameter of the composite roll. For this reason,
It is essential that the heating depth during quenching has a depth not less than the minimum outer layer thickness. In the composite roll structure of the present invention, it is generally said that as the outer layer thickness (ratio to radius) increases, the required elongation of the core material before quenching without breakage of the core material after quenching increases. The above analysis will be described below with respect to the results of analysis and study on the upper limit of the outer layer thickness (ratio to radius) of the present invention.

【0029】図1において、直線Cは、外層厚み(対半
径比)が大きい0.4の場合であり、加熱深度を従来の
如く1.0とすると、焼入れ前の芯材の必要伸びは、約
37%となる。この値は、芯材に前記予備熱処理を実施
しても実用的に限界である35%を超えている。そこ
で、本発明においては、前記の通り、加熱深度(対半径
比)を0.7以下としているため、焼入れ前の芯材の必
要伸びは約35%以下の実用可能レベルとなり、これに
より芯材が破断することなく外層厚みを大きくすること
が可能である。
In FIG. 1, the straight line C is a case where the outer layer thickness (ratio to radius) is 0.4, and if the heating depth is 1.0 as in the prior art, the required elongation of the core material before quenching is as follows. It is about 37%. This value exceeds the practical limit of 35% even if the above-mentioned preliminary heat treatment is performed on the core material. Therefore, in the present invention, as described above, since the heating depth (radius ratio) is set to 0.7 or less, the required elongation of the core material before quenching becomes a practically usable level of about 35% or less. It is possible to increase the thickness of the outer layer without breaking.

【0030】次に、直線Dは外層厚み(対半径比)がさ
らに大きく0.45の場合であり、この場合、前記の通
り加熱深度(対半径比)を0.7以下で、かつ外層厚で
ある下限値の0.45の加熱深度としても、焼入れ前の
芯材の必要伸びは約37%程度(・イ点)の大きな伸び
を必要とし実用可能レベルでない。一方、実用的に限界
である35%(・ロ点)にするには、加熱深度を0.3
7以下とする必要があり、この場合外部全ての深さ(外
層厚み0.45)において、十分焼きが入らなく好まし
くない。これにより、本発明における外層厚み(対半径
比)の上限を0.4(対半径比)とした。以上の種々の
解析・検討結果に基づき、本発明の適正な低周波漸進誘
導加熱・焼入れの前の芯材の伸びが15%以上、適正な
外層厚を半径比0.2〜0.4、適正な加熱深度範囲を
外層厚以上半径比0.7以下の範囲とした。
Next, the straight line D is the case where the outer layer thickness (ratio to radius) is even larger and 0.45. In this case, as described above, the heating depth (ratio to radius) is 0.7 or less and the outer layer thickness is less than 0.7. Even if the heating depth is 0.45, which is the lower limit, the required elongation of the core material before quenching requires a large elongation of about 37% (point A), which is not a practically usable level. On the other hand, in order to reach the practical limit of 35% (point B), the heating depth must be set to 0.3%.
It is necessary to be not more than 7, and in this case, it is not preferable because sufficient baking is not performed at all the outer depths (outer layer thickness: 0.45). Thereby, the upper limit of the outer layer thickness (radius ratio) in the present invention was set to 0.4 (radius ratio). Based on the above various analysis and examination results, the proper elongation of the core material before the low-frequency progressive induction heating and quenching of the present invention is 15% or more, and the appropriate outer layer thickness is set to a radius ratio of 0.2 to 0.4, An appropriate heating depth range was set to a range of the outer layer thickness or more and the radius ratio of 0.7 or less.

【0031】なお、低周波漸進誘導加熱・水焼入れにお
いて、芯材破断を生じさせないことを第一に考えると、
水焼き入れによる冷却を緩和することも、確かに有効な
方策の一つではある。しかし、冷却を緩和すると冷間圧
延用ワークロールに要求されるショア硬さ90以上とい
う高硬度が達成できなくなる場合があり、これは本発明
者らの本意とすることではない。ショア硬さで90以上
が得られるよう境界深さまで外層全体を完全にマルテン
サイト変態させ、内層の変態を制御することにより芯材
の破断を防ぐことが本発明の狙いとするところである。
In consideration of the fact that the core material is not broken in low frequency progressive induction heating and water quenching,
Reducing cooling by water quenching is certainly one of the effective measures. However, if the cooling is moderated, it may not be possible to achieve a high hardness of 90 or more in Shore hardness required for the work roll for cold rolling, and this is not the intention of the present inventors. It is an object of the present invention to completely transform the outer layer to martensite to a boundary depth so as to obtain a Shore hardness of 90 or more and to control the transformation of the inner layer to prevent the core material from breaking.

【0032】以下、前記の各種の試験により、本発明の
成立性を十分に確証することができたため、実際の圧延
ロールに適用した実施例について述べる。
Hereinafter, since the above-mentioned various tests could sufficiently confirm the feasibility of the present invention, examples applied to actual rolling rolls will be described.

【実施例】表1に、本発明例としてNo.1〜4に、比
較例としてNo.5〜7に示す。本発明例No.1は、
表1に示すように、芯材S35Cおよび外層材を使用
し、しかも、外層厚み0.255(対半径比)の冷間圧
延用ワークロール用素材を連続鋳掛け肉盛り法にて製作
後、軟化焼鈍を実施した。その後、前記ワークロール用
素材の端部より、試験片を採取し、焼入れ前の芯材の伸
びを測定した。表1に示すように、この時の芯材の伸び
が21%であったため、引続き低周波誘導加熱・水焼入
れを行い実際の冷間圧延用ロールを製作した。なお、前
記低周波誘導加熱焼入れの方法は、加熱深度(A1 変態
点:約726℃以上となる範囲)が外層厚より大なる
0.6(対半径比)135mmとなる加熱条件下で加熱
後、通常の水焼入れを行い、その後500〜550℃で
2回、焼き戻しを行った。途中、割損を起こすことな
く、焼入れを終え、焼き戻し後の硬さは、ショア93と
いう好結果を得た。
Examples Table 1 shows No. 1 as an example of the present invention. Nos. 1 to 4 are comparative examples. 5 to 7. Invention Example No. 1 is
As shown in Table 1, a core material S35C and an outer layer material were used, and a work roll material for cold rolling with an outer layer thickness of 0.255 (radius ratio) was manufactured by continuous casting overlaying and then softened. Annealing was performed. Thereafter, a test piece was collected from the end of the work roll material, and the elongation of the core material before quenching was measured. As shown in Table 1, since the elongation of the core material at this time was 21%, low-frequency induction heating and water quenching were carried out to manufacture actual rolls for cold rolling. Incidentally, the method of low-frequency induction heating quenching, heating depth (A 1 transformation point: the range of about 726 ° C. or higher) heated under heated conditions the atmospheric becomes 0.6 (vs. radius ratio) than the outer layer thickness becomes 135mm Thereafter, normal water quenching was performed, and thereafter, tempering was performed twice at 500 to 550 ° C. The quenching was completed without any breakage on the way, and the hardness after tempering obtained a good result of Shore 93.

【0033】本発明例No.2〜4は、表1に示す芯材
SCM440およびそれぞれの外層材を使用し、しか
も、それぞれの外層厚み0.364、0.25、0.3
83(外層厚比)の冷間圧延用ワークロール用素材を連
続鋳掛け肉盛り法にて各々製作後、全てに軟化焼鈍を実
施した。なお、この場合、いずれも芯材の伸びを確保す
るために前記の軟化焼鈍後、予備熱処理として、約10
00℃から表面冷却速度約−10℃/minで衝風冷却
し、その後約720℃で2回焼き戻しを行った。その
後、各々のワークロール用素材の端部より、試験片を採
取し、焼入れ前の芯材の伸びを測定した。表1に示すよ
うに、この時の芯材の伸びが32、20、30%と高い
伸びを有していることを確認したため、引続き低周波誘
導加熱・水焼入れを行い実際の冷間圧延用ロールを製作
した。なお、前記低周波誘導加熱・水焼入れの方法は、
加熱深度(A1 変態点:約726℃以上となる範囲)を
それぞれの外層厚より大なる0.7、0.6、0.5と
なる加熱条件下で加熱後、通常の水焼入れを行い、その
後500〜550℃で2回、焼き戻しを行った。途中、
割損を起こすことなく、焼入れを終え、焼き戻し後の硬
さは、ショア94、93、95という好結果を得た。
Inventive Example No. Nos. 2 to 4 use the core material SCM440 shown in Table 1 and the respective outer layer materials, and have the respective outer layer thicknesses of 0.364, 0.25, 0.3.
83 (outer layer thickness ratio) of the material for the work roll for cold rolling was manufactured by the continuous casting overlay method, and then all were softened and annealed. In this case, in order to secure the elongation of the core material, in all cases, after the above-described softening annealing, about 10
The blast cooling was performed at a surface cooling rate of about −10 ° C./min from 00 ° C., and then tempering was performed twice at about 720 ° C. Thereafter, test pieces were sampled from the end of each work roll material, and the elongation of the core material before quenching was measured. As shown in Table 1, since it was confirmed that the elongation of the core material at this time had a high elongation of 32, 20, and 30%, low-frequency induction heating and water quenching were performed to perform actual cold rolling. Rolls were made. The method of low-frequency induction heating and water quenching is as follows:
The heating depth (A 1 transformation point: range of about 726 ° C. or more) is heated under heating conditions of 0.7, 0.6, and 0.5 which are larger than the respective outer layer thicknesses, and then normal water quenching is performed. Then, tempering was performed twice at 500 to 550 ° C. On the way,
The quenching was completed without causing any breakage, and the hardness after tempering obtained good results of Shores 94, 93 and 95.

【0034】No.5の比較例の場合も、前記実施例で
あるNo.2〜4と同様にして、表1に示す芯材SCM
440および外層材を使用し、しかも、外層厚み0.2
5(対半径比)の冷間圧延用ワークロール用素材を連続
鋳掛け肉盛り法にて製作後、軟化焼鈍を実施した。その
後、前記実施例No.2〜4と同様な予備熱処理を施
し、その後、前記ワークロール用素材の端部より、試験
片を採取し、焼入れ前の芯材の伸びを測定した。表1に
示すように、この時の芯材の伸びが25%であったため
引続き低周波誘導加熱・水焼入れを行い実際の冷間圧延
用ロールを製作した。しかしながら、前記の低周波誘導
加熱・水焼入れにおいて、表1に示す通り、加熱深度を
制御せず従来の方法である1.0(対半径比)で実施し
たため低周波誘導加熱・水焼入れ後に芯材に大きな引張
り力が作用し、芯材が破断した。
No. Also in the case of the comparative example of No. 5, No. 5 of the above-described example was used. In the same manner as in 2 to 4, the core material SCM shown in Table 1
440 and an outer layer material, and an outer layer thickness of 0.2
After producing a work roll material for cold rolling of 5 (radius ratio) by a continuous casting overlay method, softening annealing was performed. Then, in the above-mentioned Example No. The same preliminary heat treatment as in Examples 2 to 4 was performed, and thereafter, a test piece was collected from the end of the work roll material, and the elongation of the core material before quenching was measured. As shown in Table 1, since the elongation of the core material at this time was 25%, low-frequency induction heating and water quenching were performed to produce actual rolls for cold rolling. However, in the low frequency induction heating / water quenching, as shown in Table 1, the heating depth was not controlled and the conventional method was used (1.0 to radius ratio). A large tensile force was applied to the material, and the core material was broken.

【0035】No.6の比較例の場合も、前記実施例で
あるNo.2〜4と同様にして、表1に示す芯材SCM
440および外層材を使用し、しかも、外層厚み0.2
27(対半径比)の冷間圧延用ワークロール用素材を連
続鋳掛け肉盛り法にて製作後、軟化焼鈍を実施した。そ
の後、前記実施例No.1と同様な予備熱処理を省略
し、その後、前記ワークロール用素材の端部より、試験
片を採取し、焼入れ前の芯材の伸びを測定した。表1に
示すように、この時の芯材の伸びが8%であったが、引
続き低周波誘導加熱・水焼入れを行い実際の冷間圧延用
ロールを製作した。しかしながら、前記の低周波誘導加
熱・水焼入れにおいて、表1に示す通り、加熱深度を
0.6と制御したにもかかわらず、低周波誘導加熱・水
焼入れ後に芯材に大きな引張り力が作用し、芯材が破断
した。
No. Also in the case of the comparative example of No. 6, No. 6 of the above-described example was used. In the same manner as in 2 to 4, the core material SCM shown in Table 1
440 and an outer layer material, and an outer layer thickness of 0.2
After producing a work roll material for cold rolling of 27 (radius ratio) by a continuous casting overlay method, softening annealing was performed. Then, in the above-mentioned Example No. The same preliminary heat treatment as in Example 1 was omitted, and thereafter, a test piece was sampled from the end of the work roll material, and the elongation of the core material before quenching was measured. As shown in Table 1, although the elongation of the core material at this time was 8%, low-frequency induction heating and water quenching were carried out to produce actual rolls for cold rolling. However, in the low frequency induction heating / water quenching, as shown in Table 1, despite the control of the heating depth to 0.6, a large tensile force acts on the core material after the low frequency induction heating / water quenching. The core material was broken.

【0036】No.7の比較例の場合も、前記実施例で
あるNo.2〜4と同様にして、表1に示す芯材SCM
440および外層材を使用し、しかも、外層厚み0.4
5(対半径比)の冷間圧延用ワークロール用素材を連続
鋳掛け肉盛り法にて製作後、軟化焼鈍を実施した。その
後、前記実施例No.2〜4と同様な予備熱処理を施
し、その後、前記ワークロール用素材の端部より、試験
片を採取し、焼入れ前の芯材の伸びを測定した。表1に
示すように、この時の芯材の伸びが24%であったた
め、引続き低周波誘導加熱・水焼入れを行い実際の冷間
圧延用ロールを製作した。しかしながら、前記の低周波
誘導加熱・水焼入れにおいて、表1に示す通り、予備熱
処理の実施および加熱深度を0.6と制御したにもかか
わらず、外層厚み(対半径比)が0.45と大きかった
ため、低周波誘導加熱・水焼入れ後に芯材に大きな引張
り力が作用し、芯材が破断した。
No. Also in the case of the comparative example of No. 7, No. 7 of the above example was used. In the same manner as in 2 to 4, the core material SCM shown in Table 1
440 and an outer layer material, and an outer layer thickness of 0.4
After producing a work roll material for cold rolling of 5 (radius ratio) by a continuous casting overlay method, softening annealing was performed. Then, in the above-mentioned Example No. The same preliminary heat treatment as in Examples 2 to 4 was performed, and thereafter, a test piece was collected from the end of the work roll material, and the elongation of the core material before quenching was measured. As shown in Table 1, since the elongation of the core material at this time was 24%, low-frequency induction heating and water quenching were carried out to manufacture actual rolls for cold rolling. However, in the low frequency induction heating and water quenching, as shown in Table 1, despite the execution of the preliminary heat treatment and the control of the heating depth at 0.6, the outer layer thickness (radius ratio) was 0.45. Because of the large size, a large tensile force was applied to the core after low-frequency induction heating and water quenching, and the core was broken.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】以上のように、本発明によれば焼入れ
時、芯材の破断を起こすことなく外層の厚肉化によっ
て、有効径をアップした複合ワークロールの製造が可能
となり、ワークロール原単位の改善、ひいては鉄鋼製品
の製造コストの削減に寄与するものである。
As described above, according to the present invention, it is possible to manufacture a composite work roll having an increased effective diameter by increasing the thickness of the outer layer without causing breakage of the core material during quenching. This contributes to the improvement of units and, consequently, the reduction of manufacturing costs of steel products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の外層厚比、加熱深度、必要伸びの相関
を示す計算結果である。
FIG. 1 is a calculation result showing a correlation between an outer layer thickness ratio, a heating depth, and a required elongation according to the present invention.

【図2】本発明に係るロールの焼入れ時の加熱深度、お
よび焼入れ後のロール内部の組織および応力分布を示す
図である。
FIG. 2 is a diagram showing a heating depth during quenching of a roll according to the present invention, and a structure and a stress distribution inside the roll after quenching.

【図3】従来ロールの焼入れ時の加熱深度、および焼入
れ後のロール内部の組織および応力分布を示す図であ
る。
FIG. 3 is a diagram showing a heating depth during quenching of a conventional roll, and a structure and stress distribution inside the roll after quenching.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 301 C22C 38/00 301L 302 302E 38/24 38/24 38/58 38/58 (72)発明者 小家 隆之 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社エンジニアリング事業本 部内 Fターム(参考) 4E016 CA09 DA03 EA02 FA04 FA14 4K042 AA20 BA03 CA04 CA06 CA07 CA08 CA10 CA13 DA01 DB01 DD02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C22C 38/00 301 C22C 38/00 301L 302 302E 38/24 38/24 38/58 38/58 (72) Inventor Takayuki Koya 46-59, Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka New F-term in the Engineering Division, Nippon Steel Corporation 4E016 CA09 DA03 EA02 FA04 FA14 4K042 AA20 BA03 CA04 CA06 CA07 CA08 CA10 CA13 DA01 DB01 DD02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋳鋼または鍛鋼からなる芯材の周囲に、
ハイス系材料からなる外層を連続鋳掛け肉盛り法により
形成後、低周波漸進誘導加熱・水焼入れを施して製造さ
れる冷間圧延用複合ワークロールの製造方法において、
該低周波漸進誘導加熱時、芯材のA1 変態点以上に加熱
される深度範囲を外層の厚み以上ワークロールの半径の
0.7以下とし、その後水焼入れを施すことを特徴とす
る冷間圧延用複合ワークロールの製造方法。
1. Around a core material made of cast steel or forged steel,
After forming the outer layer made of a high-speed material by continuous casting and overlaying, in a method of manufacturing a composite work roll for cold rolling manufactured by performing low frequency progressive induction heating and water quenching,
At low frequency gradual induction heating, cold to a depth range to be heated above the A 1 transformation point of the core material and less 0.7 of the radius of the outer layer of thickness above the work rolls, and then characterized by applying water quenching A method for manufacturing a composite work roll for rolling.
【請求項2】 芯材の周囲に、ハイス系材料からなる外
層を連続鋳掛け肉盛り法により形成後、低周波漸進誘導
加熱・水焼入れを施して製造された冷間圧延用複合ワー
クロールにおいて、該低周波漸進誘導加熱時、芯材のA
1 変態点以上に加熱される深度範囲を外層の厚み以上ワ
ークロールの半径の0.7以下とし、その後水焼入れを
施してなる冷間圧延用複合ワークロールであって、該外
層の化学成分が質量%で、 C :0.9〜1.5%、 Si:0.2〜2.5%、 Mn:0.2〜2.5%、 Cr:4.0〜10.0%、 Mo:2.0〜8.0%、 V :0.5〜5.0%、 含有し、残部Feおよび不可避的不純物からなることを
特徴とする冷間圧延用複合ワークロール。
2. A composite work roll for cold rolling manufactured by forming an outer layer made of a high-speed material around a core material by continuous casting and overlaying, and then performing low frequency progressive induction heating and water quenching. During the low frequency progressive induction heating, the core material A
The depth range heated to 1 transformation point or more is a thickness of the outer layer and 0.7 or less of the radius of the work roll, and then a cold rolled composite work roll subjected to water quenching, wherein the chemical composition of the outer layer is In mass%, C: 0.9 to 1.5%, Si: 0.2 to 2.5%, Mn: 0.2 to 2.5%, Cr: 4.0 to 10.0%, Mo: 2.0-8.0%, V: 0.5-5.0%, The composite work roll for cold rolling characterized by containing, the balance being Fe and unavoidable impurities.
【請求項3】 外層がさらに質量%で、Ni:0.2〜
5%、W:0.2〜5%、Co:0.2〜5.0%から
選ばれる1種以上を含むことを特徴とする請求項2記載
の冷間圧延用複合ワークロール。
3. The composition according to claim 3, wherein the outer layer further comprises:
The composite work roll for cold rolling according to claim 2, comprising one or more selected from 5%, W: 0.2 to 5%, and Co: 0.2 to 5.0%.
JP2001142592A 2001-05-14 2001-05-14 Method for manufacturing composite work roll for cold rolling and work roll Withdrawn JP2002336904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142592A JP2002336904A (en) 2001-05-14 2001-05-14 Method for manufacturing composite work roll for cold rolling and work roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142592A JP2002336904A (en) 2001-05-14 2001-05-14 Method for manufacturing composite work roll for cold rolling and work roll

Publications (1)

Publication Number Publication Date
JP2002336904A true JP2002336904A (en) 2002-11-26

Family

ID=18988869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142592A Withdrawn JP2002336904A (en) 2001-05-14 2001-05-14 Method for manufacturing composite work roll for cold rolling and work roll

Country Status (1)

Country Link
JP (1) JP2002336904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766753A (en) * 2012-08-08 2012-11-07 耿震宇 Forged steel cold roll induction quenching cooling method
CN105369031A (en) * 2015-12-03 2016-03-02 中钢集团邢台机械轧辊有限公司 Induction quenching method for eliminating quenching ring cracks of roll bodies of supporting rolls
CN105483354A (en) * 2015-12-23 2016-04-13 中钢集团邢台机械轧辊有限公司 Heat treatment method for large high-speed steel cold-rolled work roll

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766753A (en) * 2012-08-08 2012-11-07 耿震宇 Forged steel cold roll induction quenching cooling method
CN105369031A (en) * 2015-12-03 2016-03-02 中钢集团邢台机械轧辊有限公司 Induction quenching method for eliminating quenching ring cracks of roll bodies of supporting rolls
CN105483354A (en) * 2015-12-23 2016-04-13 中钢集团邢台机械轧辊有限公司 Heat treatment method for large high-speed steel cold-rolled work roll

Similar Documents

Publication Publication Date Title
US11001916B2 (en) Method for manufacturing a martensitic stainless steel part from a sheet
US20220251676A1 (en) High-strength steel sheet and method for manufacturing same
JP6583587B2 (en) Carburizing steel sheet and method for manufacturing carburizing steel sheet
JP4963479B2 (en) Manufacturing method of high carbon steel sheet
WO2016080315A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP4910898B2 (en) High strength steel plate and manufacturing method thereof
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
US20190368014A1 (en) Quench hardened steel
JP2000265240A (en) Carbon steel sheet excellent in fine blankability
JP2003147485A (en) High toughness high carbon steel sheet having excellent workability, and production method therefor
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
JP7125923B2 (en) High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts
JPH06299240A (en) Manufacture of steel material for bearing having excellent spheroidizing characteristic
JP3772202B2 (en) Composite work roll for cold rolling and manufacturing method thereof
JP2002336904A (en) Method for manufacturing composite work roll for cold rolling and work roll
JP6747623B1 (en) ERW steel pipe
WO2017033773A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JP2009046721A (en) Steel sheet for heat treatment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060911

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805