JP2002336655A - Method for cleaning exhaust gas - Google Patents

Method for cleaning exhaust gas

Info

Publication number
JP2002336655A
JP2002336655A JP2001150866A JP2001150866A JP2002336655A JP 2002336655 A JP2002336655 A JP 2002336655A JP 2001150866 A JP2001150866 A JP 2001150866A JP 2001150866 A JP2001150866 A JP 2001150866A JP 2002336655 A JP2002336655 A JP 2002336655A
Authority
JP
Japan
Prior art keywords
methane
exhaust gas
catalyst
alumina
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001150866A
Other languages
Japanese (ja)
Inventor
Tomokazu Ishii
伴和 石井
Takaaki Kanazawa
孝明 金沢
Akira Nishimura
彰 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001150866A priority Critical patent/JP2002336655A/en
Publication of JP2002336655A publication Critical patent/JP2002336655A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning method by which exhaust gas can be purified by oxidizing methane even at low temperature and the lowering degree of methane oxidizing activity of a catalyst can be made small even at high temperature. SOLUTION: A catalyst obtained by depositing at least Pd on a carrier consisting of alumina-zirconia manufactured by a coprecipitation method is used for cleaning the exhaust gas the oxidizing component of which is more excessive than the reducing component and which is in a lean atmosphere. Through the reason is not clarified, hydrocarbon including methane can be oxidized efficiently even at a low temperature and the high temperature durability of the catalyst is enhanced remarkably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中の主とし
てメタンを酸化浄化する排ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying method for oxidizing and purifying mainly methane in exhaust gas.

【0002】[0002]

【従来の技術】自動車の排ガスを浄化する排ガス浄化用
触媒として、従来より三元触媒が広く用いられている。
この三元触媒は、アルミナなどの多孔質担体に白金(P
t)などの貴金属を担持してなり、理論空燃比近傍でC
O,HC及びNOx を効率よく浄化することができる。
2. Description of the Related Art Three-way catalysts have been widely used as exhaust gas purifying catalysts for purifying exhaust gas from automobiles.
This three-way catalyst uses platinum (P) on a porous carrier such as alumina.
t) and other precious metals.
O, it is possible to efficiently purify HC and NO x.

【0003】HCの中でもオレフィン系炭化水素は比較的
浄化しやすいが、飽和炭化水素はオレフィン系炭化水素
に比べて浄化しにくく、中でもメタンは特に酸化浄化し
にくい飽和炭化水素である。しかしながら近年の排ガス
規制に対応するためには、メタンの浄化が不可欠であ
る。
[0003] Among HCs, olefinic hydrocarbons are relatively easy to purify, but saturated hydrocarbons are more difficult to purify than olefinic hydrocarbons, and methane is a saturated hydrocarbon that is particularly difficult to purify by oxidation. However, purification of methane is indispensable to comply with recent exhaust gas regulations.

【0004】ところが三元触媒などを用いてメタンを酸
化浄化しようとすると、きわめて高温条件下とする必要
があり、低温域では浄化することは困難である。そのた
め熱による貴金属の粒成長などが生じ、触媒が早期に劣
化してしまうという問題があった。
However, when oxidizing and purifying methane using a three-way catalyst or the like, it is necessary to set the temperature to extremely high temperature, and it is difficult to purify methane in a low temperature range. For this reason, there is a problem in that the noble metal grains grow due to heat and the catalyst is deteriorated early.

【0005】そこでメタンを浄化できる触媒の開発が進
められ、触媒金属としてパラジウム(Pd)が有効である
ことがわかっている。そして例えば特開平11−137998号
公報には、アルミナ担体にPdと、Ru,Ir及びCuから選ば
れる少なくとも一種が担持され、メタン浄化能を示す触
媒が開示されている。また特開平7-053976号公報には、
PdとCoの共沈物を触媒金属として用いたメタン酸化用触
媒が開示されている。
Therefore, a catalyst capable of purifying methane has been developed, and it has been found that palladium (Pd) is effective as a catalyst metal. For example, JP-A-11-137998 discloses a catalyst in which Pd and at least one selected from Ru, Ir, and Cu are supported on an alumina carrier and exhibit methane purification ability. Also, JP-A-7-053976 discloses that
A catalyst for methane oxidation using a coprecipitate of Pd and Co as a catalyst metal is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら特開平11
−137998号公報に開示された触媒では、 700℃以上の高
温雰囲気下ではPdが大きく粒成長し、活性の劣化が著し
いという問題がある。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
The catalyst disclosed in -137998 has a problem that Pd undergoes large grain growth in a high temperature atmosphere of 700 ° C. or higher, and the activity is significantly deteriorated.

【0007】また特開平7-053976号公報に開示の触媒で
は、担体を用いていないためPdとCoの共沈物中の粒子が
粗大化し、とりわけ高温耐久後の活性低下が大きいとい
う不具合がある。
Further, the catalyst disclosed in Japanese Patent Application Laid-Open No. 7-053976 has a disadvantage that since no carrier is used, the particles in the coprecipitate of Pd and Co become coarse, and the activity decreases particularly after high-temperature durability.

【0008】排ガスの最高温度は近年益々高温となる傾
向があり、耐久前(初期)において低温域でメタンを酸
化浄化できても、高温耐久後には浄化活性が低下するよ
うな触媒は実用的でない。
In recent years, the maximum temperature of exhaust gas tends to be higher and higher, and even if methane can be oxidized and purified in a low temperature range before endurance (initial stage), a catalyst whose purification activity decreases after endurance at high temperature is not practical. .

【0009】本発明はこのような事情に鑑みてなされた
ものであり、低温域からメタンを酸化浄化でき、かつ高
温域においても活性の低下度合いが小さい排ガス浄化方
法を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of purifying exhaust gas which can oxidize and purify methane from a low temperature range and has a small degree of activity decrease even in a high temperature range. .

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化方法の特徴は、共沈法により製造された
アルミナ・ジルコニアよりなる担体に少なくともPdを担
持してなる触媒を還元成分より酸化成分が過剰のリーン
雰囲気の排ガス中に配置し、排ガス中の主としてメタン
を酸化して浄化することにある。
The feature of the exhaust gas purifying method of the present invention which solves the above-mentioned problems is that a catalyst comprising at least Pd supported on a carrier made of alumina / zirconia produced by a coprecipitation method is converted from a reducing component. An oxidizing component is disposed in an exhaust gas in an excess lean atmosphere to oxidize and purify mainly methane in the exhaust gas.

【0011】アルミナ・ジルコニアよりなる担体は、モ
ル比で Al2O3:ZrO2=99:1〜90:10の組成を有するこ
とが望ましい。
The carrier made of alumina / zirconia preferably has a composition of Al 2 O 3 : ZrO 2 = 99: 1 to 90:10 in a molar ratio.

【0012】[0012]

【発明の実施の形態】本発明の排ガス浄化方法では、共
沈法により製造されたアルミナ・ジルコニアよりなる担
体に少なくともPdを担持してなる触媒を用い、その触媒
を酸素過剰のリーン雰囲気の排ガス中で用いている。こ
れにより理由は不明であるが、低温域からメタンを含む
炭化水素を効率よく浄化することができ、かつ高温耐久
性が著しく向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying method of the present invention, a catalyst comprising at least Pd supported on an alumina / zirconia carrier produced by a coprecipitation method is used, and the catalyst is used in an exhaust gas in an oxygen-rich lean atmosphere. Used in Although the reason is not clear, hydrocarbons including methane can be efficiently purified from a low temperature range, and the high temperature durability is significantly improved.

【0013】本発明に用いられる触媒は、共沈法により
製造されたアルミナ・ジルコニアよりなる担体を用いて
いる。すなわちこの担体は、硝酸アルミニウムなどの水
溶性のアルミニウム化合物と、オキシ硝酸ジルコニウム
などの水溶性のジルコニウム化合物の混合水溶液を調製
し、そこへアルカリ水溶液を添加することで酸化物前駆
体を共沈させ、それを乾燥・焼成することで製造された
ものである。
The catalyst used in the present invention uses a carrier made of alumina / zirconia produced by a coprecipitation method. That is, for this carrier, a mixed aqueous solution of a water-soluble aluminum compound such as aluminum nitrate and a water-soluble zirconium compound such as zirconium oxynitrate is prepared, and an alkali aqueous solution is added thereto to coprecipitate the oxide precursor. , And dried and fired.

【0014】共沈法で得られたアルミナ・ジルコニアよ
りなる担体は、 Al2O3と、ZrO2及びAl2O3-ZrO2複合酸化
物の混合物と考えられるが、詳細な組成は不明である。
しかし共沈法で得られたアルミナ・ジルコニアを担体と
することにより、担持される少なくともPdの安定性が向
上し、高温耐久後も少なくともPdの粒成長が抑制される
ため、高温耐久後も低温域からメタンを酸化浄化するこ
とが可能となる。因みにアルコキシド法によってもアル
ミナ・ジルコニアを製造することができるが、アルコキ
シド法で得られたアルミナ・ジルコニアを担体とした触
媒では高温耐久性が低いことがわかっている。製法の違
いにより高温耐久性に差異が生じる理由は、まだ不明で
ある。
The support made of alumina / zirconia obtained by the coprecipitation method is considered to be a mixture of Al 2 O 3 and a composite oxide of ZrO 2 and Al 2 O 3 -ZrO 2, but the detailed composition is unknown. is there.
However, by using alumina / zirconia obtained by the coprecipitation method as a carrier, the stability of at least Pd to be supported is improved, and the grain growth of at least Pd is suppressed even after high-temperature durability. It is possible to oxidize and purify methane from the area. Incidentally, alumina / zirconia can also be produced by the alkoxide method, but it has been found that a catalyst using alumina / zirconia obtained by the alkoxide method as a carrier has low durability at high temperatures. The reason why the difference in the high-temperature durability due to the difference in the production method is still unknown.

【0015】本発明で用いられる共沈法で製造されたア
ルミナ・ジルコニアからなる担体は、モル比で Al2O3
ZrO2=99:1〜90:10の組成とすることが望ましい。 A
l2O3がこの範囲より多くなると耐久前(初期)における
メタンの低温浄化活性が低下し、ZrO2がこの範囲より多
くなると高温耐久後のメタンの低温浄化活性が低下す
る。
The carrier comprising alumina and zirconia produced by the coprecipitation method used in the present invention has a molar ratio of Al 2 O 3 :
It is desirable to have a composition of ZrO 2 = 99: 1 to 90:10. A
When l 2 O 3 exceeds this range, the low-temperature purification activity of methane before durability (initial stage) decreases, and when ZrO 2 exceeds this range, the low-temperature purification activity of methane after high temperature durability decreases.

【0016】本発明で用いられるアルミナ・ジルコニア
からなる担体は、アルミナ・ジルコニア単独とするのが
最も好ましいが、 Al2O3、ZrO2、TiO2、CeO2、SiO2など
の酸化物を混合することもできる。これらの他の酸化物
は、アルミナ・ジルコニアの作用を妨げない範囲で用い
ることができ、その場合でも触媒中に1〜5重量%の範
囲とすることが望ましい。またこれらの他の酸化物は、
アルミナ・ジルコニアと物理的に混合してもよいし、場
合によってはアルミナ・ジルコニアを製造する共沈時に
共沈させることで混合することも可能である。
The alumina / zirconia carrier used in the present invention is most preferably made of alumina / zirconia alone, but is preferably a mixture of oxides such as Al 2 O 3 , ZrO 2 , TiO 2 , CeO 2 and SiO 2. You can also. These other oxides can be used in a range that does not hinder the action of alumina / zirconia, and even in such a case, it is desirable that the content be in the range of 1 to 5 wt% in the catalyst. Also these other oxides
It may be physically mixed with alumina / zirconia, or in some cases, may be mixed by coprecipitation during coprecipitation for producing alumina / zirconia.

【0017】アルミナ・ジルコニアからなる担体の形状
は、粉末状、ペレット状、あるいはモノリスハニカム基
材にアルミナ・ジルコニア粉末をコートした形状などと
することができる。
The carrier made of alumina / zirconia can be in the form of powder, pellets, or a monolith honeycomb substrate coated with alumina / zirconia powder.

【0018】上記担体には、少なくともPdが担持され
る。少なくともPdを担持することにより、メタンの高い
低温浄化活性が発現される。Pdの担持量は、触媒中に
0.1〜10重量%の範囲が好ましい。Pdの担持量が 0.1重
量%より少ないとメタンの低温浄化活性の発現が困難と
なり、10重量%を超えて担持しても活性が飽和するとと
もにコストが上昇してしまう。
At least Pd is supported on the carrier. By supporting at least Pd, high-temperature purification activity of methane at low temperature is exhibited. The amount of Pd supported in the catalyst
A range of 0.1 to 10% by weight is preferred. If the amount of Pd carried is less than 0.1% by weight, it becomes difficult to exhibit low-temperature purification activity of methane, and even if it exceeds 10% by weight, the activity will be saturated and the cost will increase.

【0019】アルミナ・ジルコニアよりなる担体にPdを
担持するには、吸着担持法、含浸担持法、吸水担持法な
ど従来用いられている担持法を用いることができる。ま
たアルミナ・ジルコニアよりなる担体を製造する共沈時
に、水溶液中にPdの水溶性化合物を混合しておくことで
担持することも可能である。
In order to support Pd on a support made of alumina / zirconia, a conventional supporting method such as an adsorption supporting method, an impregnating supporting method, and a water absorbing supporting method can be used. Further, at the time of coprecipitation for producing a carrier composed of alumina / zirconia, it is also possible to carry the Pd by mixing a water-soluble compound of Pd into an aqueous solution.

【0020】なおPd以外に、Pt,Rh,Irなどの貴金属あ
るいはNi,Co,Cu,Feなどの卑金属を担持することも差
し支えない。Pd以外の触媒金属の担持量は、Pdによるメ
タンの低温浄化活性を低下させない範囲であればよく、
通常は1〜3重量%の範囲とするのが好ましい。
In addition to Pd, noble metals such as Pt, Rh and Ir or base metals such as Ni, Co, Cu and Fe may be supported. The carried amount of the catalyst metal other than Pd may be within a range that does not decrease the low-temperature purification activity of methane by Pd,
Usually, it is preferably in the range of 1 to 3% by weight.

【0021】本発明の排ガス浄化方法では、メタンを含
み酸化成分が還元成分より過剰のリーン雰囲気の排ガス
中に上記した触媒を配置する。このようにリーン雰囲気
の排ガス中に配置しない場合には、メタンの酸化浄化が
困難となる。なお、酸化成分とはO2、NOx などをいい、
還元成分とはメタンを含むHC(炭化水素),CO,H2など
をいう。
In the exhaust gas purifying method of the present invention, the above-described catalyst is disposed in the exhaust gas in a lean atmosphere containing methane and having an oxidizing component in excess of the reducing component. When the methane is not disposed in the exhaust gas in a lean atmosphere, it is difficult to purify methane by oxidation. Incidentally, the oxidizing component refers to O 2 , NO x and the like,
The reducing components HC containing methane (hydrocarbon), CO, refers to like H 2.

【0022】リーン雰囲気の排ガスのリーン雰囲気の程
度は、空燃比(A/F)換算で15〜40の範囲が好まし
く、25〜35の範囲が特に望ましい。この値が15より低い
とメタンの酸化浄化が困難となり、40より高くなると高
温時に触媒金属が粒成長して活性が低下する場合があ
る。なお、リーンバーンエンジンはA/F=18〜24の範
囲で燃焼されるので、本発明を適用するに最適である。
The degree of the lean atmosphere of the exhaust gas in the lean atmosphere is preferably in a range of 15 to 40 in terms of an air-fuel ratio (A / F), and particularly preferably in a range of 25 to 35. If this value is lower than 15, it is difficult to purify methane by oxidation, and if it is higher than 40, the catalytic metal may grow at high temperatures and its activity may decrease. It should be noted that the lean burn engine is burned in the range of A / F = 18 to 24, and is therefore most suitable for applying the present invention.

【0023】[0023]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0024】(実施例1)硝酸アルミニウムとオキシ硝
酸ジルコニウムを、モル比で Al2O3:ZrO2=99:1とな
る組成比で混合し、その混合粉末を蒸留水に溶解して混
合水溶液を調製した。この混合水溶液を撹拌しながら、
濃度5重量%の炭酸水素ナトリウム水溶液を徐々に滴下
し、pHが7〜8となった時点で滴下を終了した。そして
得られた沈殿物を遠心分離し、蒸留水で数回洗浄した
後、 120℃で24時間乾燥した。
Example 1 Aluminum nitrate and zirconium oxynitrate were mixed at a molar ratio of Al 2 O 3 : ZrO 2 = 99: 1, and the mixed powder was dissolved in distilled water to obtain a mixed aqueous solution. Was prepared. While stirring this mixed aqueous solution,
An aqueous solution of sodium hydrogen carbonate having a concentration of 5% by weight was gradually dropped, and the dropping was completed when the pH reached 7 to 8. Then, the obtained precipitate was centrifuged, washed several times with distilled water, and dried at 120 ° C. for 24 hours.

【0025】得られたアルミナ・ジルコニア担体粉末に
所定濃度の硝酸パラジウム水溶液の所定量を含浸させ、
蒸発・乾固してPdを担持した。そして 450℃で2時間焼
成し、触媒粉末を調製した。この触媒粉末におけるPdの
担持量は2重量%である。この触媒粉末を常法でペレッ
トとし、ペレット触媒を調製した。
The obtained alumina-zirconia carrier powder is impregnated with a predetermined amount of an aqueous solution of palladium nitrate having a predetermined concentration,
After evaporation and drying, Pd was supported. Then, the mixture was calcined at 450 ° C. for 2 hours to prepare a catalyst powder. The supported amount of Pd in this catalyst powder was 2% by weight. The catalyst powder was formed into pellets by a conventional method to prepare a pellet catalyst.

【0026】このペレット触媒を評価装置に所定量充填
し、表1に示すモデルガス(A/F=32.4)を流通させ
ながら、モデルガスの温度を20℃/分の昇温速度で室温
から500℃まで昇温し、その間のCH4 の浄化率を連続的
に測定した。得られた結果からメタン50%浄化温度を算
出し、結果を耐久前として図1に示す。
A predetermined amount of the pellet catalyst is charged into an evaluation device, and the temperature of the model gas is raised from room temperature to 500 ° C. at a rate of 20 ° C./min while flowing the model gas (A / F = 32.4) shown in Table 1. The temperature was raised to ° C., during which the purification rate of CH 4 was continuously measured. The methane 50% purification temperature was calculated from the obtained result, and the result is shown in FIG.

【0027】[0027]

【表1】 [Table 1]

【0028】また、上記ペレット触媒を評価装置に所定
量充填し、表2に示すリッチモデルガスとリーンモデル
ガスを交互に1分間ずつ空間速度17万/hrで流通させな
がら、触媒入りガス温度 900℃で5時間保持する高温耐
久試験を行った。そして高温耐久試験後のペレット触媒
について、上記と同様にしてメタン50%浄化温度を測定
し、結果を耐久後として図1に示す。
Further, a predetermined amount of the above-mentioned pellet catalyst was charged into an evaluation device, and while the rich model gas and the lean model gas shown in Table 2 were alternately passed at a space velocity of 170,000 / hr for 1 minute, the temperature of the gas containing the catalyst was 900. A high-temperature endurance test of holding at 5 ° C. for 5 hours was performed. Then, for the pellet catalyst after the high-temperature durability test, the methane 50% purification temperature was measured in the same manner as above, and the result is shown in FIG.

【0029】[0029]

【表2】 [Table 2]

【0030】(実施例2)硝酸アルミニウムとオキシ硝
酸ジルコニウムを、モル比で Al2O3:ZrO2=95:5とな
る組成比で混合したこと以外は実施例1と同様にしてア
ルミナ・ジルコニア担体粉末を調製し、実施例1と同様
にしてペレット触媒とした。そして実施例1と同様にし
て耐久前及び耐久後のメタン50%浄化温度を測定し、結
果を図1に示す。
Example 2 Alumina-zirconia was prepared in the same manner as in Example 1 except that aluminum nitrate and zirconium oxynitrate were mixed at a molar ratio of Al 2 O 3 : ZrO 2 = 95: 5. A carrier powder was prepared and used as a pellet catalyst in the same manner as in Example 1. The methane 50% purification temperatures before and after the durability test were measured in the same manner as in Example 1, and the results are shown in FIG.

【0031】(実施例3)硝酸アルミニウムとオキシ硝
酸ジルコニウムを、モル比で Al2O3:ZrO2=90:10とな
る組成比で混合したこと以外は実施例1と同様にしてア
ルミナ・ジルコニア担体粉末を調製し、実施例1と同様
にしてペレット触媒とした。そして実施例1と同様にし
て耐久前及び耐久後のメタン50%浄化温度を測定し、結
果を図1に示す。
Example 3 Alumina / zirconia was prepared in the same manner as in Example 1 except that aluminum nitrate and zirconium oxynitrate were mixed at a molar ratio of Al 2 O 3 : ZrO 2 = 90: 10. A carrier powder was prepared and used as a pellet catalyst in the same manner as in Example 1. The methane 50% purification temperatures before and after the durability test were measured in the same manner as in Example 1, and the results are shown in FIG.

【0032】(実施例4)硝酸アルミニウムとオキシ硝
酸ジルコニウムを、モル比で Al2O3:ZrO2=80:20とな
る組成比で混合したこと以外は実施例1と同様にしてア
ルミナ・ジルコニア担体粉末を調製し、実施例1と同様
にしてペレット触媒とした。そして実施例1と同様にし
て耐久前及び耐久後のメタン50%浄化温度を測定し、結
果を図1に示す。
Example 4 Alumina-zirconia was prepared in the same manner as in Example 1 except that aluminum nitrate and zirconium oxynitrate were mixed at a molar ratio of Al 2 O 3 : ZrO 2 = 80: 20. A carrier powder was prepared and used as a pellet catalyst in the same manner as in Example 1. The methane 50% purification temperatures before and after the durability test were measured in the same manner as in Example 1, and the results are shown in FIG.

【0033】(比較例1)オキシ硝酸ジルコニウムを用
いなかったこと以外は実施例1と同様にして担体粉末を
調製し、実施例1と同様にしてペレット触媒とした。そ
して実施例1と同様にして耐久前及び耐久後のメタン50
%浄化温度を測定し、結果を図1に示す。
Comparative Example 1 A carrier powder was prepared in the same manner as in Example 1 except that zirconium oxynitrate was not used, and a pellet catalyst was obtained in the same manner as in Example 1. Then, in the same manner as in Example 1, methane 50 before and after endurance was used.
% Purification temperature was measured, and the results are shown in FIG.

【0034】(比較例2)γ-Al2O3粉末を用意し、実施
例1と同様にしてPdを2重量%担持して触媒粉末を調製
した。これを実施例1と同様にしてペレット触媒とし、
実施例1と同様にして耐久前及び耐久後のメタン50%浄
化温度を測定して、結果を図1に示す。
[0034] (Comparative Example 2) γ-Al 2 O 3 powder was prepared to prepare a catalyst powder and 2 wt% on the Pd in the same manner as in Example 1. This was used as a pellet catalyst in the same manner as in Example 1,
The 50% purification temperature of methane before and after endurance was measured in the same manner as in Example 1, and the results are shown in FIG.

【0035】<評価>図1より、各実施例は比較例2に
比べて耐久後のメタン50%浄化温度が低く、耐久後も低
温域からメタンを酸化浄化できていることがわかる。つ
まり共沈法で製造されたアルミナ・ジルコニア担体を用
いることによって、γ-Al2O3担体を用いた場合に比べて
高温耐久性が向上していることが明らかである。
<Evaluation> From FIG. 1, it can be seen that in each of the examples, the methane 50% purification temperature after durability was lower than that in Comparative Example 2, and methane was oxidized and purified from a low temperature region even after durability. In other words, it is clear that the use of the alumina-zirconia support manufactured by the coprecipitation method improves the high-temperature durability as compared with the case where the γ-Al 2 O 3 support is used.

【0036】また各実施例どうしの比較より、実施例2
が耐久前におけるメタンの低温浄化活性が最も高く、ま
た耐久前と耐久後の活性の差がほとんど認められない。
そして実施例2よりZrO2量が少なくなるにつれて耐久前
と耐久後の活性の差が大きくなり、ZrO2を含まない比較
例1では耐久前と耐久後の活性の差がきわめて大きく耐
久性が低いことがわかる。一方、実施例4では耐久前と
耐久後ともにメタン50%浄化温度が高くなってしまう。
Further, from the comparison between the respective embodiments, it was found that the second embodiment
Has the highest methane purification activity at low temperatures before endurance, and almost no difference in activity between before and after endurance.
Then, as the amount of ZrO 2 becomes smaller than that in Example 2, the difference in activity between before and after endurance increases, and in Comparative Example 1 containing no ZrO 2 , the difference in activity between before and after endurance is extremely large and durability is low. You can see that. On the other hand, in Example 4, the methane 50% purification temperature becomes high both before and after endurance.

【0037】したがって担体の組成をモル比で Al2O3
ZrO2=90:1〜90:10の範囲とすることによって、耐久
前と耐久後の差が小さくなり、かつ耐久前と耐久後とも
に低温域からメタンを効率よく浄化できることが明らか
である。
Therefore, the composition of the carrier is expressed as a molar ratio of Al 2 O 3 :
It is apparent that by setting ZrO 2 = 90: 1 to 90:10, the difference between before and after endurance becomes small, and methane can be efficiently purified from a low temperature region both before and after endurance.

【0038】[0038]

【発明の効果】すなわち本発明の排ガス浄化方法によれ
ば、低温域からメタンを効率よく酸化浄化でき、かつ高
温耐久性が向上する。
According to the exhaust gas purification method of the present invention, methane can be efficiently oxidized and purified from a low temperature range, and the high-temperature durability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例におけるメタン50%浄化温度
を示すグラフである。
FIG. 1 is a graph showing methane 50% purification temperatures in Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 彰 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G091 AA12 AB02 BA03 BA07 BA15 FA02 FA04 FA12 FA13 FA14 FB02 FB03 FB10 GA01 GB01X GB07W GB10X GB16X 4D048 AA18 AB01 AB07 BA03X BA08X BA31X BA42X BB01 BB02 4G069 AA03 AA08 BA01A BA01B BA05A BA05B BA20A BA20B BB02A BB02B BC72A BC72B CA03 CA07 CA15 EA01Y EA02Y EA19 FA01 FB09 FC08  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akira Nishimura 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 3G091 AA12 AB02 BA03 BA07 BA15 FA02 FA04 FA12 FA13 FA14 FB02 FB03 FB10 GA01 GB01X GB07W GB10X GB16X 4D048 AA18 AB01 AB07 BA03X BA08X BA31X BA42X BB01 BB02 4G069 AA03 AA08 BA01A BA01B BA05A BA05B BA20A BA20B BB02A BB02B BC72A BC72B CA03 CA07 CA15 EA01Y EA02Y EA19 FA01FB09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 共沈法により製造されたアルミナ・ジル
コニアよりなる担体に少なくともPdを担持してなる触媒
を還元成分より酸化成分が過剰のリーン雰囲気の排ガス
中に配置し、該排ガス中の主としてメタンを酸化して浄
化することを特徴とする排ガス浄化方法。
1. A catalyst comprising at least Pd supported on a support made of alumina / zirconia produced by a coprecipitation method is disposed in an exhaust gas in a lean atmosphere in which an oxidizing component is more excess than a reducing component, and An exhaust gas purification method comprising oxidizing and purifying methane.
【請求項2】 前記アルミナ・ジルコニアよりなる担体
はモル比で Al2O3:ZrO2=99:1〜90:10の組成を有す
ることを特徴とする請求項1に記載の排ガス浄化方法。
2. The exhaust gas purifying method according to claim 1, wherein the carrier made of alumina / zirconia has a composition of Al 2 O 3 : ZrO 2 = 99: 1 to 90:10 in a molar ratio.
JP2001150866A 2001-05-21 2001-05-21 Method for cleaning exhaust gas Pending JP2002336655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150866A JP2002336655A (en) 2001-05-21 2001-05-21 Method for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150866A JP2002336655A (en) 2001-05-21 2001-05-21 Method for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2002336655A true JP2002336655A (en) 2002-11-26

Family

ID=18995816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150866A Pending JP2002336655A (en) 2001-05-21 2001-05-21 Method for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2002336655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390999A (en) * 2016-09-18 2017-02-15 中国天辰工程有限公司 Novel anthraquinone hydrogenation slurry bed catalyst, and preparation method thereof
WO2020203838A1 (en) 2019-03-29 2020-10-08 株式会社キャタラー Catalyst material
WO2020256058A1 (en) 2019-06-20 2020-12-24 株式会社キャタラー Catalyst material for methane removal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390999A (en) * 2016-09-18 2017-02-15 中国天辰工程有限公司 Novel anthraquinone hydrogenation slurry bed catalyst, and preparation method thereof
WO2020203838A1 (en) 2019-03-29 2020-10-08 株式会社キャタラー Catalyst material
WO2020256058A1 (en) 2019-06-20 2020-12-24 株式会社キャタラー Catalyst material for methane removal

Similar Documents

Publication Publication Date Title
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
WO2002066153A1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
JPH09500570A (en) Layered catalyst composite
JPH01242149A (en) Catalyst for purification of exhaust gas
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP3988202B2 (en) Exhaust gas purification catalyst
WO2014129634A1 (en) Exhaust gas purifying catalyst and exhaust gas purification method using same
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3798727B2 (en) Exhaust gas purification catalyst
JP3882627B2 (en) Exhaust gas purification catalyst
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JP2005066482A (en) Exhaust gas cleaning catalyst and method for evaluating low temperature cleaning capacity of catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3872153B2 (en) Exhaust gas purification catalyst
JPH07171392A (en) Catalyst for exhaust gas purification
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP2002336655A (en) Method for cleaning exhaust gas
JP2002331240A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning apparatus
JP2002361090A (en) Catalyst for cleaning exhaust gas
JPH0857315A (en) Catalyst for purification of exhaust gas
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH0924247A (en) Catalyst for purifying exhaust gas