JP2002335764A - 電解水交互散布栽培方法 - Google Patents

電解水交互散布栽培方法

Info

Publication number
JP2002335764A
JP2002335764A JP2001188875A JP2001188875A JP2002335764A JP 2002335764 A JP2002335764 A JP 2002335764A JP 2001188875 A JP2001188875 A JP 2001188875A JP 2001188875 A JP2001188875 A JP 2001188875A JP 2002335764 A JP2002335764 A JP 2002335764A
Authority
JP
Japan
Prior art keywords
water
strongly
mixed
spraying
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001188875A
Other languages
English (en)
Inventor
Hiroshi Kono
弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001188875A priority Critical patent/JP2002335764A/ja
Publication of JP2002335764A publication Critical patent/JP2002335764A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cultivation Of Plants (AREA)
  • Catching Or Destruction (AREA)

Abstract

(57)【要約】 【課題】 近年、無農薬作物や減農薬作物に感心をもつ
人が多くなり、無害食品の需要が高まっているが、諸理
由から無農薬或いは減農薬農法では大量の収穫量を期待
することは出来ず、環境保全や健康志向から無農薬或い
は減農薬の農法が期待されていた。 【解決手段】 隔膜1を有する電解槽2で、電解質を添
加した原水を電気分解して生成した強酸化水5と強還元
水6を、作物に交互散布して栽培する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、作物の栽培方法と
して従来より行われている大量の農薬や肥料を使用する
農薬農法とは異なる無農薬或いは減農薬栽培を目指す農
法の中で、水を電気分解して生成した電解水を使った農
法に関するものである。
【0002】
【従来の技術】従来より、作物の栽培は、適量とされる
肥料と農薬を使用する農法で行なわれていたが、近年は
増産や病害虫の駆除のために肥料と農薬が大量に使用さ
れるに至った。こうして過剰な農薬使用から薬害が問題
となり、更に消費者の無農薬野菜への感心が高まる中で
無農薬栽培や減農薬栽培が研究されている。安全な食物
に対する需要傾向はますます高まり、様々な自然農法が
研究されている。一例として、肥料は化学肥料の代わり
に堆肥等を使用し、害虫の駆除は人手で駆除し、最小限
の農薬を使用する等の方法もあるが、この農法は大変は
労力を必要とするので小規模農業には良いが大規模農業
には不向きであった。自然農法の農作物は、上記で説明
したように小規模農業であるために収量は少なく値段の
高いという欠点があるが、それでも安全作物への需要は
近年ますます多くなって来ている。そうした理由から近
年は様々な農法が研究され隆盛時期ではあるが、上記の
自然農法の他に、微生物を活用した微生物農法や、酵素
を有効利用する農法も開発されている。代表的な微生物
農法はEM菌を使った農法であろう。この農法は、一定
の効果を上げている事は周知の事実である。又、酵素農
法では、万田酵素を使用する農法があって、この農法も
評価を得ている。この事例にある微生物農法や酵素農法
は、微生物や酵素の使い方に熟知すれば効果が出るが、
十分に研究する事なしに使用すると失敗する場合もあ
り、なかなか普及していないという現実がある。
【0003】
【発明が解決しようとする課題】近年、無農薬作物や減
農薬作物に感心をもつ人が多くなり、無害食品の需要が
ますます高まっているが、現在、農薬を使用しない農法
では大量の収穫量を望む事は出来ない。この理由は、夫
々の農法を活用するには農法を十分に理解した上で習得
する必要がある上に、農薬栽培に比べて作業量が多いの
でなかなか普及しないという現実がある。そこで、農薬
に依存しなく熟練を要しない様々な農法が模索検討され
ていた。その経過の中で、電解水を農業に使用する発想
で研究が進められている。この電解水とは、水を電気分
解して生成した水で、アルカリイオン水もそうである。
アルカリイオン水は電解質を添加しないので弱アルカリ
性を示す。一方、水(通常は淡水)に電解質を少量添加
し、電気分解して生成した水は酸性、アルカリ性共に強
いので強電解水と言われる。強電解水は、電解質として
食塩等を水に添加した薄い食塩水を電気分解して生成す
るが、電解槽に隔膜を設けて電気分解する場合と、隔膜
を設けないで電気分解する場合がある。図1に示すよう
に、隔膜(1)を設けた電解槽(2)で、陽極(3)と
陰極(4)間に直流電流を通電すると、陽極側の電解槽
(2)には強酸化水(5)が生成され、陰極側の電解槽
(2)には強還元水(6)が生成される。ここで、強酸
化水(5)は強酸性水とも言われ、強還元水(6)は強
アルカリ水とも言われる。強酸化水(5)はpH2.5
前後であり、酸化還元電位は1.1〜1.3Vである。
強還元水(6)はpH11以上であり、酸化還元電位は
マイナス0.6〜0.7Vである。一方、隔膜(1)を
設けない電解槽(2)に、陽極(3)と陰極(4)間に
直流電流を通電すると中性に近い中性水(7)が生成さ
れ、この中には次亜塩素酸が多く含まれ、次亜塩素酸水
と言う場合もある。強酸化水(5)には強い殺菌力があ
り、医療面では患部の殺菌や器具の消毒に使用されてい
る。強還元水(6)は強酸化水(5)を中和して中性の
水に戻し、又、強還元水(6)には界面活性力があるの
で蛋白質や油脂の溶解に使用されている。強還元水
(6)には弱いが殺菌力もある。強酸化水(5)の殺菌
原理であるが、強酸化水(5)は極端に電子が欠乏した
水であり、細菌やウイルスの外膜を通して内部の電子を
奪い取るために膜を破壊し、死滅させてしまうものと考
えられる。一方、強還元水(6)は、電子が豊富な水で
あり、作物に電子を与えて生育を促進させる効果があ
る。この殺菌力と生育促進力を農業に活用させようとす
るものであるが、現状では農薬や化学肥料が多く使われ
ているので、少しでも農薬や化学肥料の使用量を減少さ
せる事が出来れば良い、との考えで電解水農法が研究さ
れている。しかし、この電解水農法は従来から行われて
いる農法とは全く異なる農法であって、現状は試行錯誤
状態であり、電解水の間違った使い方も現実として行わ
れている。そこで、間違った電解水農法を見過ごす事
は、電解水農法の普及にとっては障害になるので、今後
一層の研究を行い、正しい電解水農法の確立と普及が急
務であると考える。ここで、農業に使用する電解水は、
弱酸性や弱アルカリ性を示す電解水も効果は薄い理由か
ら除外するものではないが、本農法では強酸性と強アル
カリ性を示す強電解水を使用する。
【0004】
【課題を解決するための手段】電解水農法の最も重要な
点は、強電解水の特性と使用方法である。一般に、強電
解水を生成するために原水に添加する電解質として食塩
が使用されていた。この理由は、食塩は最も容易に入手
出来る電解質であり、主に強電解水の殺菌効果を期待す
る場合には食塩が使用されていた。この食塩を原水に添
加して電気分解した水で、陽極側からは強酸性の強酸化
水(5)、陰極側からは強アルカリ性の強還元水(6)
が生成される。強力な殺菌力がある強酸化水(5)を作
物に散布すれば農薬の代替となると容易に連想する事は
出来る。こうして電解水農法が研究され始めたが、全く
新規の農法であるので、正誤入り乱れて混乱の中で行わ
れている状態である。強電解水は医療面で盛んに使用さ
れている。この理由は電解水の中の強酸化水(5)(強
酸性水とも言う)の殺菌効果に注目したものであり、強
酸化水(5)は消毒薬とは異なり副作用や残留性がない
事が特徴である。この強酸化水(5)は電子が極端に不
足した水であり、pH2.5前後、ORP(酸化還元電
位)はプラス1.3ボルト前後の化学特性を有する。酸
化還元電位が高いので、病原菌から瞬時に電子を奪って
殺菌する特徴があるが、この殺菌手段は物理的な殺菌方
法であるので、近年になって問題になっている病原菌に
耐性を与える事はない。又、強酸化水(5)は残留性が
ない事が特徴でもある。処置部分の殺菌は出来たが組織
を破壊しては使用面で問題が残る。もし強酸化水に残留
性があると、何時までも処置部分を侵食し続け、処置部
分に重大な障害をもたらす事になってしまうが、幸いに
も、強酸化水は残留性がなく、殺菌後には瞬時に中性の
水に戻るので、大量使用しても何ら組織を侵食する事は
ない。然も、瞬間殺菌なので消毒薬より短時間で殺菌す
るという特徴があり、緊急を要する殺菌には大変有効で
ある。又、廃棄しても消毒薬のような薬害は全くない。
農業用の強電解水であるが、電解質を食塩(精製塩)と
するとナトリウムを作物に供給する事になるので好まし
くなく、農業用の強電解水として最適な電解質を選択
し、強電解水の使用方法を検証する必要がある。
【0005】
【発明の実施の形態】農業用の強電解水であるが、電解
質を食塩(塩化ナトリウム:NaCl)とするとナトリ
ウムを作物に供給する事になって好ましくないが、肥料
としても使用される塩化カリウム(KCl)を使用する
と栄養素であるカリウムを補給するので塩化カリウムが
好ましい。他に、塩化マグネシウム(MgCl)も使
用可能である。原水に塩化カリウム等の電解質を少量添
加し、隔膜(1)を有する電解槽(2)で直流を印加し
て電気分解すると、陽極側には強酸化水(5)が、陰極
側には強還元水(6)が生成される。強酸化水(5)は
pH2.5前後の強酸性を示すが、これは電解水生成装
置の特性に依存するが、通水量、電圧・電流、そして電
解質の量等で任意に調整する事が出来る。強酸化水
(5)と同時に強還元水(6)も生成され、pH11以
上となり、これも任意に調整する事が出来る。強酸化水
(5)は、電子が極端に不足した水であり、病原菌から
電子を奪う働きが非常に強く、殺菌力や脱臭効果、そし
て弛緩効果が強い。つまり、対象体を酸化させる働きが
強い水である。これに対して、強還元水(6)は、電子
が豊富な水であり、作物に電子を与えて還元する働きが
ある。農業において、作物に強酸化水(5)を散布する
と殺菌や害虫駆除ができる事が検証する。強酸化水
(5)は電子が極端に不足した水であるので、細菌の外
膜を通して内部から電子を奪い、外膜を破壊する事で細
菌を死滅させるものと考えられる。作物に強酸化水
(5)のみ散布すると、特に葉面において酸焼け現象、
生育抑制、軟弱化、減収等の障害が確認されるので、酸
性を中和させる目的で強アルカリ性の強還元水(6)を
散布すると良い。この強還元水の効果は、強酸化水を中
和させるだけでなく、作物に豊富な電子を与えるので作
物の生育促進効果をもたらす事が確認されている。又、
ミネラルの補給としても優れている。電解水の使用方法
には、作物の葉面散布の他に、潅水や潅注方法もある。
これは、強酸化水(5)を作物の根元に潅水或いは潅注
して土壌菌の殺菌を行うもので、適量の強酸化水(5)
を使用する。強酸化水(5)は殺菌効果があるものの、
作物の根が長時間この強酸化水(5)に浸漬させると酸
焼けを起こして成長の阻害となるので、強還元水(6)
で中和する必要がある。作物に強電解水を使用するに
は、上記の理由から強酸化水(5)或いは強還元水
(6)の単独使用よりは双方の使用が作物の生育には良
い事を実証する。しかし、作物は多種多様あり、耐酸性
度も異なるので、一様な使用方法は通用しなく、作物に
適した使用方法がある事も実証する。強電解水は、電子
が過剰或いは過不足状態の水であるので、放置しておけ
ば酸化・還元されて通常の水に戻ってしまうので散布方
法を検証する。又、散布方法や散布時刻についても、交
互散布の核心部分を検証する。検証は、強酸化水(5)
のみ散布、強還元水(6)のみ散布、交互散布、そして
散布しない場合の比較栽培で行う。稲・豆類は10a当
り100リットルを10日間隔で交互散布する。葉・根
菜類は10a当り150〜200リットル、果菜類は1
0a当り200〜300リットル、果樹類は10a当り
500〜600リットルを1週間間隔で交互散布する。
植付け後の根が十分に活着していない時期には、強酸化
水(5)の散布はpH3以上でも酸焼けを起こす作物も
あるので希釈等の処理をする。幼植時期にpH2.5程
度の強酸化水(5)を散布すると、酸焼けや生育障害を
起こす場合もある。強酸化水(5)の散布は、最初はp
H2.7程度の強酸化水から始め、3回目頃からpH
2.5乃至2.6にする。又、個々の作物の強酸化水
(5)に対する耐酸性度を事前に調査しておく事は重要
である。強酸性水(5)に農薬を混入させる場合は、電
解水は水のクラスターが小さくなっていると言われ、葉
面からの浸透力が強いので農薬量は通常量よりも少ない
量で良いと推測されるが、この件も実証する事にする。
ここで、強酸化水(5)、強還元水(6)を希釈した結
果と、生薬(農薬)を添加した結果のpHとORP(酸
化還元電位)の変化を表1乃至2に示す。表から理解出
来るように、強酸化水(5)及び強還元水(6)を5倍
に希釈すると原水と化学特性の差は見られなくなるの
で、希釈では効果が期待出来ない。
【0006】
【表1】
【0007】
【表2】
【0008】
【実施例】第1実施例を説明する。本実施例は、稲作に
おける強酸化水(5)と強還元水(6)を交互に散布す
る農法例である。強電解水を散布する試験区と、比較す
るために強電解水を散布しない対照区とを用意するが、
夫々の面積は50mとする。先ず、種もみを強酸化水
(5)に8時間浸漬して完全に殺菌し、次に強還元水
(6)に24時間浸漬した後に、育苗させる。田植え
後、電解水区に希釈農薬を併用して電解水の交互散布を
始めた。強酸化水区には、生薬として「キトサン」を
1,000倍に希釈して使用したが、「キトサン」はオ
キアミや蟹等のキチン質より抽出した漢方農薬である。
強還元水区には、生薬として「ローザル」を1,000
倍に希釈して使用したが、「ローザル」は海藻(アルカ
リ性)に生薬のアネモネ等を入れて抽出した漢方農薬で
ある。ここで、強酸化水(5)及び強還元水(6)に、
希釈生薬(農薬)を添加した結果のpHとORP(酸化
還元電位)の変化を表3乃至4に示す。
【0009】
【表3】
【0010】
【表4】
【0011】対照区には、「マラソン」、「アリジ
ン」、「ダコニール」、「スミチオン」、「トレボ
ン」、「ビームゾル」等を1,000倍から2,000
倍に希釈して散布する。電解水区と対照区共に散布量は
5リットルである。この散布状態を表5に示すが、田植
えは4月16日にした。栽培期間は、田植えから100
日である。
【0012】
【表5】
【0013】上記の対照区と電解水区の収穫量に基づ
き、10a当りの収穫量を換算して表6に示す。
【0014】
【表6】
【0015】表6に示すように、10a当りの玄米収穫
量は、対照区では426Kgとなり、電解水区では46
2Kgとなって、電解水区の収穫量は対照区の約1.1
倍の増量となった。
【0016】第2実施例を説明する。コシヒカリともち
米で実施したが、本実施例では電解水区の収量は、電解
水を使用しない対照区の収量の1.5倍の収量があっ
た。
【0017】第3実施例を説明する。中生ヒノヒカリを
電解水交互散布栽培した。栽培面積は80aであった。
4月20日に、種子を強酸化水(5)に浸漬して8時間
消毒し、翌日に強還元水(6)に24時間浸漬した。4
月27日に、さい芽開始し、翌日にもみまきをした。結
果を表7に示す。ここで、全電解水区の根長であるが、
根毛が育苗箱の底から長く伸びたために測定不可能とな
ってしまったので「+α」を付加しているが、他の区よ
りも格段に成長が良かった。
【0018】
【表7】
【0019】そして5月29日に田植えをし、6日後か
ら強電解水の交互散布を夫々3回行った。収穫日は9月
29日で、育苗期間は30日、田植えから収穫までは4
ヶ月であった。電解水区と対照区の10a当りの玄米収
量を比較し表8に示す。
【0020】
【表8】
【0021】表8に示すように、10a当りの玄米収量
は、対照区が412Kgであるのに対して電解水区は7
67Kgとなり、約1.8倍の大幅な収量増加となっ
た。
【0022】平成11、12年の結果を表9に示すが、
平成12年の各結果が前年より良く、継続する事が良い
との検証が出来た。
【0023】
【表9】
【0024】第4実施例を説明する。本実施例は、強還
元水(6)を3回と強酸化水(5)を3回、スイカとキ
ュウリへ交互散布した実施例であり、散布状況を表10
に示す。
【0025】
【表10】
【0026】交互散布区は、スイカ、キュウリ共に正常
な生育をした。強酸化連区では、6月22日にスイカの
1株がつる枯れ病になり、キュウリは6月1日以降は下
葉に強い酸焼けが発生し、生育を阻害する事が分かっ
た。強還元連区では、交互散布区の次に生育がよく、強
還元水の連続散布障害はない事が検証出来た。
【0027】第5実施例を説明する。本実施例は、スイ
ートコーンへ強電解水を散布した実施例であり、強電解
水を交互に散布した場合、散布しない場合、強酸化水
(5)のみを散布した場合、強還元水(6)のみを散布
した場合であり、夫々の散布状態を表11に示す。
【0028】
【表11】
【0029】7月15日に収穫し重量を測定した結果を
表12に示すが、強酸化水(5)の連続散布でも、大し
て障害は発生しなかった。スイートコーンは強酸化水に
耐性が強い事が分かった。やはり、収穫量やアブラムシ
発生数から見ても交互散布した場合が良かった。
【0030】
【表12】
【0031】第6実施例を説明する。本実施例は、枝豆
へ強電解水を交互散布した実施例であり、強電解水を散
布した場合、散布しない場合、強酸化水(5)のみを散
布した場合、そして強還元水(6)のみを散布した場合
であり、夫々の散布状態を表13に示す。
【0032】
【表13】
【0033】7月15日に収穫して重量を測定した結果
を表14に示すが、強酸化水(5)の連続散布すると、
草勢長も草勢重も他の区域よりも劣り、強酸化水(5)
の連続散布障害が強く確認された。
【0034】
【表14】
【0035】第7実施例を説明する。本実施例は、野菜
(アマガラシ、ナス、トマトキュウリ)へ強電解水を交
互散布した実施例である。交互散布区には、強酸化水
(5)と「キトサン」の1,000倍希釈液を混合、強
還元水(6)と「ローザル」の1,000倍希釈液を混
合して交互散布した。強電解水を散布しない対照区に
は、「ダコニール」、「スミチオン」、「ランネー
ト」、「トレボン」、「バイレトン」、「ビームゾル」
の1,000倍希釈液を混合して散布した。散布状況を
表15に示す。
【0036】
【表15】
【0037】アマガラシの収穫比較を表16に示すが、
交互散布区では初期より収量や合計収量も多く、対照区
の農薬散布より効果が認められた
【0038】
【表16】
【0039】ナスの収穫比較を表17に示すが、交互散
布区が対照区より効果が認められた。
【0040】
【表17】
【0041】トマトの収穫比較を表18に示すが、交互
散布区が対照区より効果が認められた。
【0042】
【表18】
【0043】キュウリの収穫比較を表19に示すが、交
互散布区が対照区より平均重量が重かった。
【0044】
【表19】
【0045】第8実施例を説明する。本実施例は、冬季
のトマトの温室栽培において、強電解水の散布栽培の結
果を表20に示したものである。結果は、交互散布区で
は最も正常株が多く糖度が高かった。
【0046】
【表20】
【0047】第9実施例を説明する。本実施例は、トマ
トの強酸化水潅注栽培の実施例である。加温したビニー
ルハウス内で、強酸化水(5)で潅注する株と潅注しな
い株との比較をした。条件は、夫々潅注区と無処理区の
140株に対して行った。潅注区の140株のトマトに
強酸化水(5)の葉面散布後、青枯れ病発生株を取り去
り、株穴を中心に、1回当り5リットルの潅注を2回行
った。無処理区の140株のトマトに強酸化水(5)の
葉面散布したが、その後は潅注しない方法を採った。こ
こで、強酸化水(5)のみで潅注すると、根が強酸化水
(5)の酸化力で酸焼けし易いので、強酸化水(5)を
中和させるために強還元水(6)で潅注させる必要があ
る。以上の条件で栽培したトマトの青枯れ病の発生数を
表21に示すが、青枯れ病に対しての有効性が実証され
た。ここで、強電解水とは、強酸化水(5)と強還元水
(6)の総称である。
【0048】
【表21】
【0049】第10実施例を説明する。本実施例は、ハ
クサイへ強電解水を交互散布した実施例である。交互散
布区には、強酸化水(5)と展着剤「アプローチ」と生
薬「キトサン」の1,000倍希釈液を混合、強還元水
(6)と展着剤「アプローチ」と生薬「ローザル」の
1,000倍希釈液を混合して交互散布し、散布状況を
表22に示す。
【0050】
【表22】
【0051】ハクサイの糖度と重量の比較を表23に示
す。
【表23】
【0052】第11実施例を説明する。強酸化水(5)
と強還元水(6)を生成するには、原水に電解質を添加
し、隔膜(1)を有する電解槽(2)で電気分解して生
成するが、本実施例及び以前の実施例は農業用の強電解
水を生成する目的であるので、電解質として塩化カリウ
ム(KCl)を一般に使用するが、他に塩化マグネシウ
ム(MgCl)を使用する。カリウムは作物の必須栄
養素として多量に吸収され、成長が盛んな根先や新芽に
多く蓄積され、作物の細胞液内でイオンとして存在し、
光合成を助ける働きがある。又、タンパク質の合成にも
大きく関わり、耐病性を高める働きがある。マグネシウ
ムは、カルシウムの吸収を促進させる働きがある。塩化
マグネシウム(MgCl)も電解質であり、これを添
加して電気分解すれば強酸化水(5)と強還元水(6)
を生成する事は出来るが、散布試験では、塩化マグネシ
ウムの単独は好ましくなく、塩化カリウムとの混合が良
い事が実証出来た。又、塩化カリウムと塩化マグネシウ
ムとの混合比は同重量を基準にして、比率を変える事が
良い事も実証出来た。
【0053】第12実施例を説明する。電解質として、
塩化カリウム、塩化マグネシウムと天然塩の混合とす
る。混合比は、略同重量を基準とし、適宜調整する。こ
の方法は、塩化カリウムでカリウムが作物に補給され、
塩化マグネシウムでマグネシウムが補給されるが、これ
に天然塩に含有する微量ミネラルを補給する特長があ
る。昨今の作物にはこのミネラルが不足しているので旨
みがないと言われているが、ミネラルを補給すると食味
と栄養価が改善される。これらの電解質を原水に添加し
て電気分解し、強電解水を生成する。この強電解水に
は、様々なミネラルが多く含有されるので、交互散布す
る事と相乗効果で作物の生育に効果をもたらす。
【0054】第13実施例を説明する。本実施例は、電
解質を塩化カリウム、塩化マグネシウム、塩化カルシウ
ムを略同重量だけ混合して強電解水を生成する実施例で
ある。
【0055】カルシウムは酸性土壌の改良だけではな
く、養分として作物体内でペクチンと結合して細胞膜を
強化し、耐病性強化効果と根の生育促進効果がある。同
時に混合するマグネシウムはカルシウムの吸収を助ける
働きもする。これらの混合比率は重量比で略同量が良い
結果を出した。
【0056】第14実施例を説明する。上記実施例は、
原水に電解質を添加溶解させた後に電気分解していた。
この場合の原水は淡水であるが、原水に電解質を溶解さ
せた状態の電解質濃度は低い。例えば、食塩を添加する
場合でも、塩分濃度は0.5%程度で十分である。この
事から、本実施例では、電気分解に利用する水は、海水
と淡水を混合して利用する。海水を利用する事は、海水
中のミネラルを作物に補給するので、大変有意義であ
る。又、表層水よりもミネラルが豊富な海洋深層水を使
用すると、より多くの効果が期待出来る。
【0057】第15実施例を説明する。作物の生育促進
にはミネラルが大切であるので、様々な手段で原水にミ
ネラルを溶解させると効果的である。手段の一例とし
て、鉱石やセラミックスを原水成いは溶液に浸漬させて
ミネラルを溶出させた後で使用する手段等もある。この
手段は、ミネラル補給後に電気分解する手段と、電気分
解後にミネラルを補給する手段とがある。又、ミネラル
濃縮液や粉末を溶解させても良い。
【0058】第16実施例を説明する。上記実施例と重
複するが、一般作物に強酸化水(5)を連続散布した実
施例である。強酸化水(5)を連続散布すると以下の事
が確認出来た。 1:酸焼けを起こし、樹勢が弱った。 2:電解水の効果を発揮出来ない。 3:耐病性が下がる。特に、スイカやトマトで顕著だっ
た。 4:品質(糖度)が低下する。トマトや白菜で顕著だっ
た。 5:草丈が低く、収量が低下した。枝豆で顕著だった。
【0059】第17実施例を説明する。上記実施例と重
複するが、一般作物に対する強酸化水(5)の散布時期
に関する実施例である。強酸化水(5)を散布して以下
の事が確認出来た。雨天、曇天、夕方、夜間には散布し
てはならない。これは、散布後に強酸化水(5)が速や
かに蒸発する環境にないと、葉面から吸収されて葉面の
酸焼けを起こすだけでなく根まで障害を引き起こすの
で、樹勢が弱まり、病気多発を引き起こすので注意す
る。
【0060】第18実施例を説明する。本実施例は、強
電解水に通常濃度の農薬を併用した実施例である。強酸
化水(5)及び強還元水(6)に通常濃度の農薬(ダイ
セン)をキュウリに使用した。散布後5日目に、葉面の
酸焼け、退色、軟弱等の薬害が発生した。その結果、落
花率70%以上にもなってしまった。
【0061】第19実施例を説明する。本実施例は、強
還元水(6)に酸性農薬を混合してメロンに散布した実
施例である。強還元水(6)にDDVPと酸性農薬のダ
イセンを通常濃度で混合して散布した。対照区には強酸
化水(5)を散布して比較した結果を表24に示すが、
糖度、果重、ネット共に対照区より劣り、葉柄が大きく
曲がるという薬害が確認され、糖度、果重が劣る事と共
に、ネットは著しく少なかった事が際立った。
【0062】
【表24】
【0063】第20実施例を説明する。強電解水の散布
量は作物によって異なるので、表25に散布量の目安を
示す。
【0064】
【表25】
【0065】第21実施例を説明する。本実施例は、強
酸化水と強還元水の混合水を散布する実施例である。先
ず、強酸化水と強還元水を同量混合させると、pH9.
62、酸化還元電位は131mVとなった。塩化カリウ
ムを添加して生成した強電解水を混合させると以下の化
学反応が起こる。 K + Cl −−> KCl カリウムイオンと塩素イオンが反応して塩化カリウムと
なる。又、塩素イオンは電子を失うと塩素になる。 2Cl −−> Cl + 2e 塩素は水と反応して次亜塩素酸になる。 Cl + 2HO −−> 2HOCl + 2H
次亜塩素酸が発生するためには塩素が必要だが、強電解
水同士を混合する事で塩素イオンが消費されて塩素量が
減り、結果として次亜塩素酸の発生量が減るので酸焼け
障害もなくなる。この混合水の殺菌力試験を行ったが、
試験方法は以下の通りである。 1) 被試験物質5mlが入った試験管に0.1mlの
菌を加え、所定の時間にその0.1mlを培地に接種す
る。 2) 細菌は35℃で24時間、酵母は30℃で48時
間、カビは25℃で1週間培養後、生菌数を算定する。 表26に1ml当たりの生残菌数を示す。
【0066】
【表26】
【0067】1999年5月15日に植え付けしたトマ
ト、ナス、キュウリ、アマガラシへの散布状況を表27
に示す。混合水を散布しない対照区、強酸化水と強還元
水の交互散布区、強酸化水と強還元水を同量混合した混
合水散布区、混合水を強還元水の交互散布区に分け散布
した。対照区には、「ダコニール」、「スミチオン」、
「ランネート」、「トレボン」、「バイレトン」、「ビ
ームゾル」等を表示する希釈濃度で混合し、交互散布区
には、強酸化水(5)と生薬「キトサン」の1,000
倍希釈液を混合、強還元水(6)と生薬「ローザル」の
1,000倍希釈液を混合して交互散布した。又、混合
水散布区と混合水・強還元水交互散布区には、生薬「ロ
ーザル」の1,000倍希釈液を混合して散布した。
【0068】
【表27】
【0069】収量の比較を、トマトは表28に、ナスは
表29に、キュウリは表30に、アマガラシは表31
に、夫々示す。
【0070】
【表28】
【0071】
【表29】
【0072】
【表30】
【0073】
【表31】
【0074】第22実施例を説明する。本実施例は、冬
季のトマト温室栽培において、第21実施例と同様な条
件で栽培した結果であり、トマトの品質の比較を表32
に示す。充実率(%)は、空胴果ほど%が低くなる。
(100%は、空胴なし)
【0075】
【表32】
【0076】第23実施例を説明する。本実施例は、強
酸化水と強還元水の混合比率を変えた実施例である。強
酸化水と強還元水を同量混合させても中性にはならず、
弱アルカリ性を示すが、強酸化水を多くし、強還元水を
少なく混合すると酸性の混合水が出来、殺菌力に富み、
生育促進効果もある混合水が出来る。そして、酸性農薬
を併用する事が出来る。一方、強酸化水を少なくし、強
還元水を多く混合するとアルカリ性の混合水が出来、殺
菌力がある生育促進効果が高い混合水が出来る。そし
て、アルカリ性農薬を併用する事が出来る。
【0077】
【発明の効果】本発明は上記の通り構成されるので次の
効果を奏する。上記の各実施例では、強酸化水と強還元
水を交互に散布する電解水交互散布区、強酸化水のみを
散布する強酸化連区、強還元水のみを散布する強還元連
区、そして強電解水を散布しない対照区との比較栽培の
結果を示した。
【0078】第1実施例の結果は表6に示されるが、電
解水区の収量は対照区より多い事が分かる。そして農薬
が少なくでも対照区よりも収量が多い。又、ハダニ、ア
ブラムシ、オンシツコナジラミ、スリップス等の害虫
は、殆ど見られない。この理由は、強酸化水を葉面散布
したための忌避効果であると思われる。
【0079】第2実施例はコシヒカリともち米の実施例
であるが、対照区の1.5倍の収量があり、然も糖度が
高い結果となった。
【0080】第3実施例は中生ヒノヒカリの実施例であ
り、結果は表7乃至表9に示した。電解水区の収量は対
照区の1.8倍もあり、驚くべき収量となった。又、紋
枯病も殆ど発生しなく、旺盛な生育であった。収穫時で
あっても茎は大きく、そして育く、倒伏もなかった。米
飯すると、糖度が高く、食味が良く、冷めても粘りが強
かった。
【0081】第4実施例は、スイカ、キュウリの実施例
である。交互散布区は、スイカ、キュウリ共に正常な生
育をした。強酸化連区では、スイカにつる枯れ病が発生
し、キュウリに下葉に強い酸焼けが発生した。強還元連
区では、交互散布区の次に生育がよく、強還元水の連続
散布障害はない事が検証出来た。
【0082】第5実施例は、スイートコーンの実施例で
あり、結果は表12に示した。強酸化水を連続散布して
もそれほどの酸性障害は確認されなかった。このスイー
トコーンは酸性に対する耐性があると考えられる。又、
当然であるが、強酸化水による忌避効果で害虫の発生は
なく、アブラムシは皆無であった。強還元水を連続散布
した場合は、強電解水を散布しない対照区との差は見ら
れなかったが、交互散布区では他の区域よりも収量が多
かった。
【0083】第6実施例は、枝豆の実施例であり、結果
は表14に示した。強酸化水を連続散布した強酸化連区
では、他のどの区域よりも草勢長も草勢重が著しく劣る
事が分かった。明らかに酸焼け障害が出ている。枝豆に
関しては、強還元水の連続散布は連続散布の障害もな
く、草勢長も草勢重が最も優れている事が検証出来た。
【0084】第7実施例は、野菜(アマガラシ、ナス、
トマト、キュウリ)へ強電解水を交互散布した実施例で
あり、対照区との比較結果を表16乃至表19に示し
た。
【0085】表16は、アマガラシの結果であり、交互
散布初期は収量が多く、中期は劣るものの、総収量は優
れていた。これにより、交互散布がより効果があると確
認出来た。
【0086】表17は、ナスの結果であり、交互散布区
のナスは対照区のナスより大きく収量も多く、味も良か
った。ナスに関しても、交互散布がより効果があると確
認出来た。
【0087】表18は、トマトの結果であり、交互散布
区のナスは対照区のトマトより大きく収量も多く、同時
に糖度が高かった。トマトに関しても、交互散布がより
効果がある事が確認出来た。
【0088】表19は、キュウリの結果であり、交互散
布区のキュウリは対照区のキュウリより大きく、味が良
かった。キュウリに関しても、交互散布がより効果があ
ると確認出来た。
【0089】第8実施例は、冬季のトマトの温室栽培に
おいて、強電解水の散布栽培の結果を表20に示したも
のである。結果は、交互散布区で最も正常株が多く糖度
も高かった。
【0090】第9実施例は、トマトの強電解水潅注栽培
の実施例であり、結果を表21に示すように、強酸化水
で潅注した場合と潅注しなかった場合の青枯れ病発生の
比較である。強酸化水は、pH2.5前後、且つ酸化還
元電位は1.1〜1.3Vと強力な殺菌力がある水であ
り、この強酸化水で潅注させて土壌中の病原菌を殺菌し
たり、不活性化させる。強酸化水は強酸性であるので強
酸化水のみで潅注させると、作物の根に酸焼け等の障害
を与える場合がある。そこで殺菌後は強酸性を中和させ
るためにも強還元水で潅注する必要がある。この方法も
広義の交互散布方法と言える。この強還元水は、pH1
1以上、且つ酸化還元電位はマイナス0.6〜0.7V
の電子に富む水である。強酸化水で潅注した結果は表1
3にあるように、無処理区において約半数のトマトに青
枯れ病が発生したが、潅注区では、発病株穴への潅注後
は全く青枯れ病が発生しなかった。この結果は、強酸化
水で潅注或いは無潅注の試験であって、他の栽培条件を
改善すれば無処理区での青枯れ病の発生率を減少させる
事や、その条件でも強酸化水で潅注すれば青枯れ病を全
く発生させない事も可能であり、他の病気に対しても有
効である。
【0091】特記すべき特長は以下の点である。従来よ
り、土壌消毒は「臭化メチル」や「ピクリン」で行われ
ていたが、これらは作物が植わっている状態では使用出
来なかったが、電解水による土壌消毒は、栽培中であっ
ても全く作物に障害を与える事なく出来る点である。勿
論、作物が植わっていない状態でも可能である。従来の
「臭化メチル」や「ピクリン」での土壌消毒では、先に
消毒した後に定植する必要があったので、強電解水消毒
に比べて手間と作業時間が長いという欠点があった。し
かし、強電解水による土壌消毒は、作物がある状態での
作業が可能であるので、それだけ作業の簡素化が出来
る。又、「臭化メチル」や「ピクリン」を使用すると、
地下水を汚染し、河川を通って海に達して海浜生物の汚
染を招いてしまう。河川の水中生物のみならず海浜の水
中生物をも農薬で汚染させ、海浜の水中生物を食する人
間までも農薬で汚染される事になる。これらの消毒薬は
近く全面使用禁止となるが、在庫処理や安価に外国から
入荷する事から、非合法な使用が懸念される。現在、種
もみの消毒は主として「テリグリードC」で行われてい
る。日本では、毎年150トンもの「テリグリードC」
が大量に使用されている。この「テリグリードC」は銅
を3%含有し、魚介類への影響が心配されている。この
「テリグリードC」で消毒した廃液の処理方法である
が、河川に廃棄しないようにと指導されているが守る農
家は少ない。多くの廃液は河川に廃棄され、川下の海浜
を汚染し続けているのが現状である。又、河川に廃棄し
なくても土壌に浸透させるようにと指導を受け、従う農
家もあるが、これも土壌を汚染し、地下水から河川や海
浜に達して汚染する事になる。農業分野において誤った
薬剤の使用が、漁業分野に悪影響を与えている。しか
し、強電解水による土壌消毒は、殺菌すると瞬時に通常
の水で変化するので、薬害は全く考えられない。強電解
水消毒は、薬剤に依存しない唯一の容易且つ安全な消毒
手段である。従来の消毒は薬剤でするものとの固定観念
から、土壌・地球そして生物までも汚染させてしまっ
た。人類の生命を生かすための近代農法であるはずが、
人類のみならず全地球の生物までも薬害の汚染を広める
結果となってしまった。人類は、そろそろ薬害に目覚め
て、安全な農法に切り替える必要があろう。
【0092】第10実施例は、ハクサイに強電解水を交
互散布した実施例であり、表23に示すように交互散布
した場合が、他のどの場合より糖度や重量が高い事が実
証出来た。強酸化連区は、糖度、重量が著しく低く、強
酸化水の連続散布の障害が強く発生した。
【0093】第11実施例は、電解質についてである。
農業用の強電解水を生成するためには電解質として塩化
カリウム(KCl)を使用する。塩化ナトリウム(Na
Cl)を使用する事が出来ないという事ではなく、カリ
ウムは作物の栄養素でもあるので使用する方が好まし
く、ナトリウムを与えない効果もある。又、作物の品質
向上効果も現れた。本実施例では、塩化カリウムと共に
塩化マグネシウム(MgCl)を電解質として使用す
る。塩化カリウムと塩化マグネシウムを電解質として原
水に添加して生成すると、強還元水にカリウムイオンと
マグネシウムイオンが多く含まれ、散布によって作物に
夫々を補給する事が出来る。マグネシウムの効果は、ミ
ネラル補給である。実証栽培では、塩化カリウムと塩化
マグネシウムの重量比率は、略同量が望ましい事が分か
った。又、この比率は作物の種類で比率を変える事が好
ましい事も分かった。
【0094】第12実施例も電解質についてである。第
11実施例では電解質は塩化カリウムと塩化マグネシウ
ムの混合としたが、これに天然塩(自然塩)を混合させ
る。天然塩には、海水中のミネラルが多種多量に含有す
るので、この3種類の電解質を添加して生成した電解水
はミネラルが豊富な強電解水となり、散布すると作物の
生育には良い効果をもたらす。ここで、天然塩のような
多種のミネラルを含まない精製塩(NaCl)はナトリ
ウムを補給するので好ましくないが、ニガリは様々なミ
ネラルを含有するので大変有意義である。
【0095】第13実施例は、電解質を塩化カリウム、
塩化マグネシウム、塩化カルシウムを略同重量だけ混合
して強電解水を生成する実施例である。カルシウムは酸
性土壌の改良だけではなく、養分として作物体内でペク
チンと結合して細胞膜を強化し、耐病性強化効果と根の
生育促進効果がある。同時に混合するマグネシウムはカ
ルシウムの吸収を助ける働きもするので、これらの混合
比率は重量比で略同量が良い結果を出した。
【0096】第14実施例は、電解質を溶解させた電気
分解前の溶液に関するものである。上記実施例で使用又
は生成される強電解水は、淡水の原水に電解質を添加溶
解させて薄い電解質溶液として電気分解していた。第1
2実施例のようにミネラルを添加するためには、塩化カ
リウムと塩化マグネシウムを淡水と海水で溶解させても
良い。又、塩化カリウムと塩化マグネシウムに天然塩や
ニガリを混合させたものを溶解させても良い。原水は淡
水でなくてはならない理由はなく、ミネラルの補給のた
めにも海水との混合で使用すれば良い。ただ、原水を海
水のみとすると塩分濃度が高過ぎるので、淡水で希釈す
る必要がある。更に、表層水よりもミネラル豊富な海洋
深層水を使用すれば、より多くのミネラルを作物に補給
する事が出来る。
【0097】第15実施例は、原水或いは溶液にミネラ
ルを様々な手段で強化して利用する実施例である。ミネ
ラルの強化には様々な手段があるが、鉱石やセラミック
スを浸漬させる事で岩石に含有するミネラルを溶出させ
て利用する事は大変有意義である。又、ミネラル添加剤
等を併用しても良い。
【0098】第16乃至第20実施例は、強電解水の散
布上の注意に関するものであり、充分に理解した後の使
用が重要である。強電解水は、電子が過剰或いは過不足
状態の水であって、放置しておけば通常の水に戻ってし
まうので、散布は強電解水が速やかに葉面に付着する事
が重要となる。散布する際の水分子径は30乃至50μ
程度の細霧よりは霧雨程度の粒径にする方が好ましい。
又、散布量は葉面が十分に濡れる事が重要である。又、
散布時刻は、強酸化水の場合は、夜間に散布すると酸焼
けを起こす事から、速やかに蒸発する時刻と共に、天候
をも考慮する必要がある。つまり、長時間に渡り葉面が
強酸化水に接触すると酸焼け等の障害を引き起こす恐れ
があるので注意しなければならない。通常、強酸化水と
強還元水は同量で交互に葉面散布するが、夫々の散布量
は作物で一様ではない事が検証出来た。
【0099】強酸化水に農薬を混入させる場合は、強電
解水は水のクラスターが小さくなっていると言われ、こ
れにより葉面からの浸透力が強いので、農薬量は通常の
1/2から1/3程度にする事が重要である。これは、
通常量を使用すると薬害を起こしてしまうからである。
強還元水に農薬を混入させる場合でも、水のクラスター
が小さくなっているので、農薬量は通常の1/2から1
/3程度にする。ここで、強還元水に混入させる農薬は
アルカリ性でなければならない。
【0100】交互散布すると次のような効果が確認され
た。 1:電解質からミネラルが補給されるので生育促進効果
が出る。 2:発根作用が促進される。 3:稲の場合は、収穫時の稲は黄色く枯れているが、交
互散布すると依然として緑が残っている。つまり、葉緑
素が多く、収穫時まで光合成が行われている事の証であ
り、この理由から収量が多く、品質も良く、糖度も高く
なる。 4:もみを強酸化水と強還元水で交互散布すると、通常
は表面が滑らかであるが、交互散布する事で表面に細毛
が発生した。この事は、原始の遺伝情報が表面化したも
のと考えられる。 5:キュウリやトマトは、収穫時期が早くなる。 6:強酸化水は土壌消毒剤の代替となる。又、強還元水
で中和する事も重要である。 7:1株当り5リットル程度の酸化水で潅注すれば、作
物には障害を与えず、病原菌を不活性化して病気の発生
を食い止める事が出来る。 8:植物が圃場に生育していて、土壌消毒剤の代替とな
るものは他にはない。
【0101】強酸化水や強還元水を散布する農法、特に
交互散布については研究途上であり、農法は未だ確定は
していない。この農法では、強酸化水や強還元水のpH
や酸化還元電位を夫々の作物に適した状態に調整する必
要があるが、研究のデータが充分に集積しているとは言
えず、今後の課題である。実証栽培でも明らかになった
が、作物に適した電解水特性と、散布期間や散布量は一
応ではなく、今後、事細かに検証する事が課題である。
然も、本実施例は全て高知県での実施例であり、土地や
気候が違えば散布条件が異なる事も考えられるが、現在
までの試験では、強酸化水或いは強還元水の単独散布よ
りは、交互散布の方が遥かに良いと結論する事は出来
る。
【0102】第21実施例は、強酸化水と強還元水の混
合水を散布する実施例である。強酸化水と強還元水を同
量混合したが、中性ではなく、pH9.62の弱アルカ
リ性を示した。ただし、この値は強電解水の状態等で一
様ではない。表26に示す混合水の殺菌力試験結果か
ら、強酸化水のみ使用時よりは殺菌力は劣るものの充分
殺菌効果を発揮する事が検証出来た。強電解水を生成す
るための電解質は、塩化カリウム以外でも同様な結果が
見られる。塩化マグネシウムでは次の反応が起こるので
塩素発生量が減少する。 Mg + 2Cl −−> MgCl 塩化カルシウムでは次の反応が起こるので塩素発生量が
減少する。 Ca + 2Cl −−> CaCl 結果として、電解質の種類に関係なく、強酸化水と強還
元水を混合すると、次亜塩素酸の量が減るので散布面の
酸焼け障害は減少或いは解消される。
【0103】トマト、ナス、キュウリ、アマガラシへの
比較散布状況を表27に示した。混合水を散布しない対
照区、強酸化水と強還元水の交互散布区、強酸化水と強
還元水を同量混合した混合水散布区、混合水と強還元水
の交互散布区に分け、農薬を併用して散布した。表28
に示すように、トマトの場合は、収量は交互散布区で最
も多いが、混合水・強還元水交互散布区では早期より収
穫する事が出来た。表29に示すように、ナスの場合
は、交互散布区と混合水散布区で収量が多く、混合水・
強還元水交互散布区では早期より収穫する事が出来た。
表30に示すように、キュウリの場合は、混合水散布区
と混合水・強還元水交互散布区で収穫が早く、しかも混
合水・強還元水交互散布区では収量が最も多かった。表
31に示すように、アマガラシの場合は、収量の差はな
かったが、強電解水を使用すると初期収量が多くなっ
た。以上の結果から、混合散布する事で収穫時期を早め
るようになる事と、無散布栽培より収量が多い事が検証
出来た。混合水は、弱アルカリ性であるので、強酸化水
を強還元水で中和する手間が要らず、何度でも散布する
事が出来る特長がある。
【0104】混合水散布の利点を示す。 1 強酸化水よりは弱いが殺菌力がある。 2 次亜塩素酸による酸焼けがない。 3 強酸化水と強還元水との混合比率を任意に調整し、
酸性混合水やアルカリ混合水を生成する事が出来る。こ
れは、夫々の混合水に適した農薬との併用を可能にす
る。 4 アルカリ混合水は、雨天でも散布可能であり、交互
散布において、強酸化水の代替となり得る。 5 混合水、混合水と強還元水の混合水は、収量及び品
質向上効果がある。
【0105】近年、農業において無農薬農法が注目され
ている。戦前、戦中を通じて、肥料は堆肥や糞尿等の自
然農法が普通であって栄養価に富んだ作物を日本人は食
していたが、戦後は一変して化学肥料・農薬を使用する
ようになった。これも、当時の社会事情に鑑みてやむを
えない事であったかもしれない。しかし、現在は、化学
肥料・農薬の大量使用が常識となっていて、この大量使
用の弊害は土壌や環境の汚染ばかりでなく、人間を含む
全ての生命体に危害を加えるまでになってしまった。
今、自然食品の需要が急増しており、自然農法が復活或
いは研究されているが、本発明の電解水交互散布農法も
その一例である。しかし、自然農法は食するには安全で
も、病害虫に弱く、栽培の手間がかかる農法である。然
も収量は多く望めないので、経営としては無理も多々あ
る。本発明の電解水交互散布農法は、化学肥料のみでも
収量は多く、さほど手間を要せず、安全な作物を供給す
る事が出来るので、社会が切望する農法であると言えよ
う。
【図面の簡単な説明】
【図1】隔膜を設けた電解装置を示す図である。
【図2】本発明の電解水交互散布のフローチャートであ
る。
【符号の説明】
1 隔膜 2 電解槽 3 陽極 4 陰極 5 強酸化水 6 強還元水

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 原水に電解質を添加して電気分解し、陽
    極側に生成される強酸化水と陰極側に生成される強還元
    水を作物に交互に散布し、病害虫の駆除及び作物の成長
    促進を図る電解水交互散布栽培方法。
  2. 【請求項2】 原水に電解質を添加して電気分解し、陽
    極側に生成される強酸化水と陰極側に生成される強還元
    水を、作物に交互に潅水或いは潅注して病害虫の駆除及
    び病原菌を不活性化し、作物の成長促進を図る電解水交
    互散布栽培方法。
  3. 【請求項3】 塩化カリウムと塩化マグネシウムを略同
    量、或いは適正比率で混合して電解質とした請求項1乃
    至2の電解水交互散布栽培方法。
  4. 【請求項4】 塩化カリウムと塩化マグネシウムと塩化
    カルシウムを略同量、或いは適正比率で混合して電解質
    とした請求項1乃至2の電解水交互散布栽培方法。
  5. 【請求項5】 塩化カリウムを略50%、塩化マグネシ
    ウムを略25%、塩化カルシウムを略25%混合して電
    解質とした請求項1乃至2の電解水交互散布栽培方法。
  6. 【請求項6】 塩化カリウムと塩化マグネシウム及び天
    然塩を略同量、或いは適正比率で混合して電解質とした
    請求項1乃至2の電解水交互散布栽培方法。
  7. 【請求項7】 原水を海水と淡水の混合とする請求項1
    乃至6の電解水交互散布栽培方法。
  8. 【請求項8】 諸手段でミネラル分を強化した原水或い
    は溶液を使用してなる請求項1乃至7の電解水交互散布
    栽培方法。
  9. 【請求項9】 強酸化水と強還元水をほぼ同量混合、或
    いは混合比率を適宜調整した混合水を、散布或いは適正
    農薬と混合して散布する、請求項1乃至8の電解水交互
    散布栽培方法。
JP2001188875A 2001-05-19 2001-05-19 電解水交互散布栽培方法 Pending JP2002335764A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188875A JP2002335764A (ja) 2001-05-19 2001-05-19 電解水交互散布栽培方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001188875A JP2002335764A (ja) 2001-05-19 2001-05-19 電解水交互散布栽培方法

Publications (1)

Publication Number Publication Date
JP2002335764A true JP2002335764A (ja) 2002-11-26

Family

ID=19027884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188875A Pending JP2002335764A (ja) 2001-05-19 2001-05-19 電解水交互散布栽培方法

Country Status (1)

Country Link
JP (1) JP2002335764A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223317A (ja) * 2003-01-20 2004-08-12 Hoshizaki Electric Co Ltd 農作業用水の製造方法
JP2006067927A (ja) * 2004-09-03 2006-03-16 Hoshizaki Electric Co Ltd 土壌改良方法
WO2008101364A3 (de) * 2007-02-20 2008-10-09 Hanspeter Steffen Pflanzenschutz -verfahren zur kontrolle von pflanzenschädlingen mittels elektrolytisch hergestellten oxidativen radikalen, uv-c licht, und luft unterstützter elektrostatischer sprühtechnologie
EP2422612A1 (de) * 2010-08-27 2012-02-29 Simply Water GmbH Verfahren zur Pflanzenbehandlung
EP2422613A1 (de) * 2010-08-27 2012-02-29 Simply Water GmbH Verfahren zur Beizung
WO2015093094A1 (ja) * 2013-12-19 2015-06-25 シャープ株式会社 機能水生成器
JP2017176158A (ja) * 2016-03-30 2017-10-05 伸介 冨永 稲作において玄米の収量を増加させ且つ食味を向上させる方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223317A (ja) * 2003-01-20 2004-08-12 Hoshizaki Electric Co Ltd 農作業用水の製造方法
JP4614623B2 (ja) * 2003-01-20 2011-01-19 ホシザキ電機株式会社 農業分野で利用する水の製造方法
JP2006067927A (ja) * 2004-09-03 2006-03-16 Hoshizaki Electric Co Ltd 土壌改良方法
WO2008101364A3 (de) * 2007-02-20 2008-10-09 Hanspeter Steffen Pflanzenschutz -verfahren zur kontrolle von pflanzenschädlingen mittels elektrolytisch hergestellten oxidativen radikalen, uv-c licht, und luft unterstützter elektrostatischer sprühtechnologie
EP2422612A1 (de) * 2010-08-27 2012-02-29 Simply Water GmbH Verfahren zur Pflanzenbehandlung
EP2422613A1 (de) * 2010-08-27 2012-02-29 Simply Water GmbH Verfahren zur Beizung
WO2015093094A1 (ja) * 2013-12-19 2015-06-25 シャープ株式会社 機能水生成器
JP2017176158A (ja) * 2016-03-30 2017-10-05 伸介 冨永 稲作において玄米の収量を増加させ且つ食味を向上させる方法

Similar Documents

Publication Publication Date Title
KR101352628B1 (ko) 미네랄 양액 및 이를 이용한 기능성 식물의 재배방법
CN103875437A (zh) 一种有机紫薯的栽培方法
CN107473841A (zh) 利用电解肥料进行农作物种植的方法
CN103300069A (zh) 生物杀菌剂组合物及其在枯萎病上的应用
CN102106229A (zh) 一种原生态有机蔬菜的生产方法
CN105860977A (zh) 一种处理重金属污染土壤的土壤修复剂
CN102674992A (zh) 一种蔬菜专用活性生物药肥
CN107006535A (zh) 有机蔬菜病虫害防治药物及其制备方法
CN105923711B (zh) 一种机能水及其机能水农业种植方法
CN102598981A (zh) 一种无农药露天蔬菜栽培方法
CN103819274B (zh) 亚磷酸盐-壳寡糖复合生物药肥的制备方法
CN102284475B (zh) 防治土传病害的土壤微生态环境修复方法
CN101020766A (zh) 一种可降解液态地膜制品及其制作方法
CN102643143A (zh) 一种核桃树专用活性生物药肥
CN102344323B (zh) 一种棉花专用液体增花保果防虫药肥及其制备方法
Bakke Control of leafy spurge, Euphorbia Esula L.
JP2002335764A (ja) 電解水交互散布栽培方法
CN102276365B (zh) 一种茶叶专用液体aom有机防虫药肥及其制备方法
JPH03293002A (ja) ミネラル液及びその抽出方法
CN102633568A (zh) 一种小麦专用活性生物药肥
CN1263365C (zh) 耐寒实生晚桃的栽培技术
JP5023276B2 (ja) 土壌病害防除剤および土壌病害防除方法
CN108243879A (zh) 有机水稻种植过程中的草害防控方法
CN102633569A (zh) 一种玉米专用活性生物药肥
CN102336611A (zh) 一种大豆增产专用液体药肥及其制备方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309