JP2002334860A - High-pressure treating apparatus - Google Patents
High-pressure treating apparatusInfo
- Publication number
- JP2002334860A JP2002334860A JP2001136512A JP2001136512A JP2002334860A JP 2002334860 A JP2002334860 A JP 2002334860A JP 2001136512 A JP2001136512 A JP 2001136512A JP 2001136512 A JP2001136512 A JP 2001136512A JP 2002334860 A JP2002334860 A JP 2002334860A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- substrate
- processing
- fluid
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高圧な処理流体を
用いる高圧処理装置に関し、より特定的には、半導体基
板、液晶表示装置用ガラス基板の如きFPD(Flat
Panel Display)用基板、フォトマスク用
ガラス基板および光ディスク用基板など(以下、単に
「基板」と称する)に、高圧な処理流体を供給すること
によって当該基板の高圧処理、例えば基板に付着した不
要物の除去処理等を行う高圧処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-pressure processing apparatus using a high-pressure processing fluid, and more particularly to an FPD (Flat) such as a semiconductor substrate or a glass substrate for a liquid crystal display.
High-pressure processing of a substrate (Panel Display), a glass substrate for a photomask, a substrate for an optical disk, etc. (hereinafter, simply referred to as a “substrate”) by supplying a high-pressure processing fluid, for example, unnecessary substances attached to the substrate. TECHNICAL FIELD The present invention relates to a high-pressure processing apparatus for performing a process for removing carbon dioxide.
【0002】[0002]
【従来の技術】近年、電子部品等が形成された基板の洗
浄における脱フロン化の流れに伴い、超臨界二酸化炭素
のような低粘度の高圧状態の処理流体を剥離液またはリ
ンス液として使用することが注目されている。2. Description of the Related Art In recent years, a low-pressure, high-pressure processing fluid such as supercritical carbon dioxide has been used as a stripping liquid or a rinsing liquid in accordance with the flow of defluorination in cleaning a substrate on which electronic parts and the like are formed. It has been noted.
【0003】また、近年の半導体デバイスの縮小化(シ
ュリンク)によって、更にデバイスの設計ルール(テク
ノロジーノード)がより微細化しており、その勢いは更
に加速されている。この様な半導体デバイスにおいて
は、構造上非常に微細な溝(トレンチ)や穴(ホール)
の洗浄が必要である。前者はキャパシタ(コンデンサの
容量部分)や横配線(平面的な配線)、後者は縦配線
(三次元的な配線、横配線と横配線との接続、トランジ
スタのゲート電極への接続)等である。In addition, due to the recent shrinking of semiconductor devices (shrinking), device design rules (technology nodes) have been further miniaturized, and the momentum has been further accelerated. In such a semiconductor device, a very fine groove (trench) or hole (hole) is structurally very small.
Cleaning is required. The former is a capacitor (capacitance portion of a capacitor) and horizontal wiring (planar wiring), and the latter is vertical wiring (three-dimensional wiring, connection between horizontal wiring and horizontal wiring, connection to gate electrode of transistor), and the like. .
【0004】この様な微細な構造では、その幅と深さの
比、いわゆるアスペクト比(縦横比)が非常に大きくな
ってきており、幅が狭く深い溝や径が小さく深い穴が形
成されている。この幅や径がサブミクロンになってい
て、そのアスペクト比も10を超えるようなものが出現
している。この様な微細構造をドライエッチング等で半
導体基板上に製造した後には、上部の平坦部分のみなら
ず、溝や穴の側壁やその底にレジスト残骸や、ドライエ
ッチングで変質したレジスト、底の金属とレジストの化
合物、酸化した金属等の汚染が残っている。In such a fine structure, the ratio of the width to the depth, that is, the so-called aspect ratio (aspect ratio) has become extremely large, and a narrow groove having a narrow width and a deep hole having a small diameter have been formed. I have. Some of them have a width or diameter of submicron and an aspect ratio of more than 10. After such a microstructure is manufactured on a semiconductor substrate by dry etching or the like, not only the upper flat portion but also the sidewalls and bottoms of the grooves and holes, the resist debris, the resist altered by dry etching, and the metal at the bottom are formed. And contamination of the resist compound, oxidized metal and the like remain.
【0005】これらの汚染は、従来、溶液系の薬液によ
って洗浄されていた。しかし、この様な微細な構造で
は、薬液の侵入及び純水による置換がスムーズにいか
ず、洗浄不良が生じるようになってきている。また、エ
ッチングされた絶縁物が配線による電気信号の遅延を防
止するために、低誘電率の材料(いわゆるLow−k
材)を使用しなくてはならなくなり、薬液によってその
特性である低誘電率が悪化すると言う問題が発生してい
る。その他、配線用の金属が露出している場合は、金属
を溶解する薬液が使用できない等の制限も生じている。Conventionally, these contaminants have been cleaned with a solution-based chemical. However, with such a fine structure, the penetration of the chemical solution and the replacement with pure water are not smooth, and cleaning failures are occurring. In addition, a material having a low dielectric constant (a so-called Low-k) is used in order to prevent the etched insulator from delaying an electric signal due to wiring.
) Must be used, and there is a problem that the chemical solution deteriorates the low dielectric constant, which is its characteristic. In addition, when the metal for wiring is exposed, there is a restriction that a chemical solution for dissolving the metal cannot be used.
【0006】このような、半導体デバイスの微細構造の
洗浄に、その特性から超臨界流体、主に二酸化炭素の超
臨界流体が注目されている。二酸化炭素の超臨界流体そ
のものは不活性であるが、二酸化炭素流体はヘキサン程
度の溶解力を有しているため、基板表面の水分や油脂分
等の除去は容易に行える。また、例えば、上記の汚染の
洗浄に使用されるアミン類やフッ化アンモン等を混入さ
せると、ある適当な濃度範囲で多成分系の超臨界流体と
なり、微細なデバイス構造に容易に侵入して上記の汚染
を除去できる。また、汚染と共に混入しているアミン類
やフッ化アンモン等を容易に微細デバイス構造より除去
可能である。[0006] In cleaning such a fine structure of a semiconductor device, a supercritical fluid, mainly a supercritical fluid of carbon dioxide, has attracted attention due to its properties. Although the supercritical fluid itself of carbon dioxide is inert, the carbon dioxide fluid has a dissolving power about the same as hexane, so that the removal of water, oil, and the like on the substrate surface can be easily performed. Also, for example, when amines or ammonium fluoride used for cleaning the above-mentioned contamination are mixed, a multi-component supercritical fluid is formed in a certain appropriate concentration range, and easily penetrates a fine device structure. The above contamination can be removed. Further, amines, ammonium fluoride, and the like contaminated with the contamination can be easily removed from the fine device structure.
【0007】また、超臨界流体では、溶液系の薬液のよ
うに低誘電率の絶縁物に浸透しても残留しないため、そ
の特性を変化させることが無い。従って、半導体デバイ
スの微細構造の洗浄に非常に適していると言え、多いに
注目されている。Further, the supercritical fluid does not remain even if it penetrates into a low-dielectric-constant insulator like a solution-type chemical solution, so that its characteristics do not change. Therefore, it is very suitable for cleaning the fine structure of a semiconductor device, and has attracted much attention.
【0008】ここで、超臨界流体とは、図3に示すよう
に、臨界圧力Pc以上かつ臨界温度Tc以上(同図網掛
け部分)で得られる物質の状態をいう。この超臨界流体
は、液体と気体の中間的性質を有するため、精密な洗浄
に適しているといえる。すなわち、超臨界流体は、液体
に近い密度を持ち溶解性が高いため、有機成分の洗浄に
有効であり、気体のように拡散性が優れるため、短時間
に均一が洗浄が可能であり、気体のように粘度が低いた
め、微細な部分の洗浄に適しているのである。Here, as shown in FIG. 3, the supercritical fluid refers to a state of a substance obtained at a critical pressure Pc or more and a critical temperature Tc or more (shaded portion in the figure). Since this supercritical fluid has intermediate properties between liquid and gas, it can be said that it is suitable for precise cleaning. In other words, supercritical fluids have a density close to that of liquids and have high solubility, so they are effective for cleaning organic components.Because they have excellent diffusibility like gases, they can be uniformly cleaned in a short time, Because of its low viscosity, it is suitable for cleaning fine parts.
【0009】この超臨界流体に変化させる物質には、二
酸化炭素、水、亜酸化窒素、アンモニア、エタノール等
が用いられる。ここで、二酸化炭素は、臨界圧力Pcが
7.4MPa、臨界温度Tcが約31℃であり、比較的
簡単に超臨界状態が得られること、及び無毒であること
から、多く用いられている。As the substance to be changed into the supercritical fluid, carbon dioxide, water, nitrous oxide, ammonia, ethanol, and the like are used. Here, carbon dioxide is often used because the critical pressure Pc is 7.4 MPa, the critical temperature Tc is about 31 ° C., and a supercritical state can be obtained relatively easily, and carbon dioxide is nontoxic.
【0010】上記超臨界流体を用いて基板の洗浄処理を
行う装置としては、図4に示す構成が考えられる。図4
に示す高圧処理装置は、液体の二酸化炭素が封入された
ボンベ11と、凝縮器12と、昇圧器13と、加熱器1
4と、基板洗浄槽15と、減圧器17と、分離回収槽1
8と、バルブV1,V2とで構成される。[0010] As an apparatus for cleaning a substrate using the supercritical fluid, a configuration shown in FIG. 4 is conceivable. FIG.
The high-pressure processing apparatus shown in FIG. 1 includes a cylinder 11 filled with liquid carbon dioxide, a condenser 12, a booster 13, and a heater 1
4, substrate cleaning tank 15, decompressor 17, and separation and recovery tank 1
8 and valves V1 and V2.
【0011】以下、この構成による高圧処理装置の洗浄
動作を簡単に説明する。まず、被洗浄物である基板が、
基板洗浄槽15内に設置されて密閉される。基板が設置
されると、以下の洗浄処理が開始される。最初にボンベ
11の液体二酸化炭素が、凝縮器12へ供給されて液体
のまま貯留される。液体二酸化炭素は、昇圧器13にお
いて臨界圧力Pc以上の圧力まで昇圧され、さらに加熱
器14において臨界温度Tc以上の温度まで加熱されて
超臨界二酸化炭素となり、基板洗浄槽15へ送られる。
基板洗浄槽15では、超臨界二酸化炭素と基板とを接触
させることで洗浄が行われる。Hereinafter, the cleaning operation of the high-pressure processing apparatus having the above configuration will be briefly described. First, the substrate to be cleaned is
It is set in the substrate cleaning tank 15 and hermetically closed. When the substrate is set, the following cleaning process is started. First, the liquid carbon dioxide in the cylinder 11 is supplied to the condenser 12 and stored as a liquid. The liquid carbon dioxide is boosted to a pressure equal to or higher than the critical pressure Pc in the booster 13, is further heated to a temperature equal to or higher than the critical temperature Tc in the heater 14, becomes supercritical carbon dioxide, and is sent to the substrate cleaning tank 15.
In the substrate cleaning tank 15, cleaning is performed by bringing supercritical carbon dioxide into contact with the substrate.
【0012】基板洗浄後の汚染物質(洗浄によって基板
から超臨界二酸化炭素に混入した有機物、無機物、金
属、パーティクル、水等)が混じった超臨界二酸化炭素
は、減圧器17において最終的な減圧がなされて気化さ
れた後、分離回収槽18において気体の二酸化炭素と汚
染物質とに分離される。分離された汚染物質は排出さ
れ、気体の二酸化炭素は、回収されて凝縮器12で再利
用される。以上の洗浄処理が所定の時間繰り返されて、
基板洗浄が完了する。The supercritical carbon dioxide mixed with the contaminants after cleaning the substrate (organic substances, inorganic substances, metals, particles, water, etc. mixed into the supercritical carbon dioxide from the substrate by the cleaning) is subjected to a final decompression in the decompressor 17. After being made and vaporized, it is separated into gaseous carbon dioxide and pollutants in the separation and recovery tank 18. The separated contaminants are discharged, and the gaseous carbon dioxide is recovered and reused in the condenser 12. The above cleaning process is repeated for a predetermined time,
Substrate cleaning is completed.
【0013】[0013]
【発明が解決しようとする課題】ここで、基板の洗浄性
能を向上させると共に洗浄時間の短縮を図るため、高圧
状態の超臨界二酸化炭素による洗浄だけではなく、基板
洗浄槽15内の圧力を低下させて低圧状態の超臨界二酸
化炭素又は気体の二酸化炭素による洗浄をも行う方法が
考えられる。この洗浄の原理としては、超臨界状態の処
理流体の膨張エネルギーによる汚染の除去である。そし
て、この方法を実現させるには、高圧状態の基板洗浄槽
15内を低圧状態に戻すために、基板洗浄槽15の二次
側にバッファタンクを設けて、このバッファタンクを用
いて大幅な減圧を行わせる。Here, in order to improve the cleaning performance of the substrate and shorten the cleaning time, not only cleaning with supercritical carbon dioxide in a high pressure state but also reduction of the pressure in the substrate cleaning tank 15 is performed. A method of performing cleaning with supercritical carbon dioxide in a low pressure state or gaseous carbon dioxide is also conceivable. The principle of this cleaning is removal of contamination by the expansion energy of the processing fluid in a supercritical state. In order to realize this method, a buffer tank is provided on the secondary side of the substrate cleaning tank 15 in order to return the inside of the substrate cleaning tank 15 in a high pressure state to a low pressure state. Is performed.
【0014】しかしながら、上述した従来の高圧処理装
置の構成では、基板洗浄槽15内の超臨界二酸化炭素を
減圧器17へ送出させるために必要な圧力の下限値に制
約されて、十分な減圧を行えるバッファタンクを設ける
ことができない。このため、バッファタンクによって基
板洗浄槽15内の圧力を可能な範囲で低下させても、基
板の洗浄性能を効果的に向上させること及び洗浄時間の
短縮を図ることができなかった。However, in the above-described configuration of the conventional high-pressure processing apparatus, the lower limit of the pressure required for sending the supercritical carbon dioxide in the substrate cleaning tank 15 to the decompressor 17 is restricted, and a sufficient pressure reduction is performed. A buffer tank that can be used cannot be provided. For this reason, even if the pressure in the substrate cleaning tank 15 is reduced as much as possible by the buffer tank, the cleaning performance of the substrate cannot be effectively improved and the cleaning time cannot be reduced.
【0015】このような問題は、超臨界流体を用いた洗
浄方式に限らず、亜臨界流体や、例えばアンモニアによ
る高圧ガスを用い、密閉処理槽内で基板を現像、洗浄、
乾燥等の高圧処理する場合にも同様である。Such a problem is not limited to a cleaning method using a supercritical fluid, and a substrate is developed and cleaned in a closed processing tank using a subcritical fluid or a high-pressure gas such as ammonia.
The same applies to high-pressure treatment such as drying.
【0016】ここで、亜臨界流体とは、一般的に図3に
おいて、臨界点手前の領域にある高圧状態の液体を言
う。この領域の流体は、超臨界流体とは、区別される場
合があるが、密度等の物理的性質は連続的に変化するた
め、物理的な境界は存在しなく、亜臨界流体として使用
される場合もある。亜臨界あるいは広義には臨界点近傍
の超臨界領域に存在するものは高密度液化ガスとも称す
る。Here, the subcritical fluid generally refers to a liquid in a high pressure state in a region just before the critical point in FIG. Fluids in this region may be distinguished from supercritical fluids, but since physical properties such as density change continuously, there is no physical boundary and they are used as subcritical fluids In some cases. Those existing in the subcritical or supercritical region near the critical point in a broad sense are also referred to as high-density liquefied gas.
【0017】すなわち、このような高圧流体を用いる基
板処理と、処理槽内の圧力を低下させて低圧状態の処理
流体による基板処理とを、従来の装置構成で行わせても
処理時間の短縮を図ることができなかった。That is, even if the substrate processing using such a high-pressure fluid and the substrate processing using a processing fluid in a low-pressure state by reducing the pressure in the processing tank are performed by a conventional apparatus configuration, the processing time can be reduced. I couldn't plan.
【0018】それ故に、本発明の目的は、高圧状態の処
理流体による基板処理に加え、基板処理槽内の圧力を十
分に低下させて低圧状態の処理流体による基板処理をも
行うことにより、処理性能の効果的な向上及び処理時間
の短縮を図ることが可能な高圧処理装置を提供すること
である。Therefore, an object of the present invention is to provide a method for processing a substrate by using a processing fluid in a low-pressure state by sufficiently lowering the pressure in a substrate processing tank in addition to a substrate processing using a processing fluid in a high-pressure state. An object of the present invention is to provide a high-pressure processing apparatus capable of effectively improving performance and reducing processing time.
【0019】[0019]
【課題を解決するための手段および発明の効果】上記目
的を達成するために、本発明は以下に述べる特徴を有し
ている。第1の発明は、処理流体を用いて基板に所定の
処理を施す高圧処理装置であって、処理流体を供給する
供給部と、供給部から供給された処理流体を高圧状態に
変化させて、処理槽内に設置された基板を高圧処理流体
と接触させて処理する基板処理部と、処理槽内の高圧処
理流体を所定の圧力まで減圧させる減圧部と、減圧部で
減圧された処理流体を下流に送出するのに必要な圧力ま
で昇圧させる昇圧部とを備えることを特徴とする。Means for Solving the Problems and Effects of the Invention In order to achieve the above object, the present invention has the following features. A first invention is a high-pressure processing apparatus for performing a predetermined process on a substrate using a processing fluid, comprising: a supply unit that supplies a processing fluid; and a processing fluid supplied from the supply unit that is changed to a high-pressure state. A substrate processing unit that processes a substrate installed in a processing tank by contacting the substrate with a high-pressure processing fluid, a depressurizing unit that depressurizes the high-pressure processing fluid in the processing tank to a predetermined pressure, and a processing fluid that is depressurized by the depressurizing unit. And a pressure raising section for raising the pressure to a pressure required for downstream transmission.
【0020】上記のように、第1の発明によれば、処理
槽内の高圧状態の処理流体を十分に減圧できる減圧部と
共に、下流への送出のために必要な圧力まで昇圧可能な
昇圧部を設ける。これにより、低圧状態の処理流体を用
いて高性能な基板処理を実現することが可能となる。As described above, according to the first aspect, the pressure reducing section capable of sufficiently reducing the pressure of the processing fluid in the processing tank in a high pressure state, and the pressure increasing section capable of increasing the pressure required for downstream delivery. Is provided. This makes it possible to realize high-performance substrate processing using a processing fluid in a low-pressure state.
【0021】第2の発明は、第1の発明に従属する発明
であって、昇圧部から送出される処理流体を、回収して
再利用させる処理流体回収部をさらに備えることを特徴
とする。A second invention is an invention according to the first invention, and further comprises a processing fluid recovery unit for recovering and reusing the processing fluid sent from the pressure increasing unit.
【0022】上記のように、第2の発明によれば、処理
流体回収のために必要な圧力まで昇圧可能な昇圧部をさ
らに設ける。これにより、低圧状態の処理流体を確実に
回収することを実現することが可能となる。As described above, according to the second aspect of the present invention, the pressure increasing section capable of increasing the pressure to the pressure required for the treatment fluid recovery is further provided. This makes it possible to reliably recover the processing fluid in the low pressure state.
【0023】第3の発明は、超臨界流体を用いて基板に
所定の処理を施す高圧処理装置であって、所定の超臨界
流体を供給する供給部と、供給部から供給された超臨界
流体を用いて、処理槽内に設置された基板を超臨界流体
と接触させて処理する基板処理部と、処理槽内の超臨界
流体を所定の圧力まで減圧させる減圧部と、減圧部で減
圧された超臨界流体を下流に送出するのに必要な圧力ま
で昇圧させる昇圧部とを備えることを特徴とする。According to a third aspect of the present invention, there is provided a high-pressure processing apparatus for performing a predetermined process on a substrate using a supercritical fluid, comprising: a supply unit for supplying a predetermined supercritical fluid; and a supercritical fluid supplied from the supply unit. A substrate processing unit that processes a substrate placed in a processing tank by contacting the substrate with a supercritical fluid, a depressurizing unit that depressurizes the supercritical fluid in the processing tank to a predetermined pressure, and is depressurized by a depressurizing unit. And a pressure raising unit for raising the pressure to a pressure necessary for sending the supercritical fluid downstream.
【0024】上記のように、第3の発明によれば、処理
槽内の超臨界流体を十分に減圧できる減圧部と共に、減
圧された超臨界流体を下流へ送出のために必要な圧力ま
で昇圧可能な昇圧部を設ける。これにより、低圧状態の
超臨界流体等を用いた高性能な基板処理を実現すること
が可能となる。As described above, according to the third aspect of the present invention, the pressure reducing section capable of sufficiently reducing the pressure of the supercritical fluid in the processing tank and the pressure rising to the pressure required for sending the reduced pressure supercritical fluid downstream are provided. Provide a possible booster. Thus, high-performance substrate processing using a low-pressure supercritical fluid or the like can be realized.
【0025】第4の発明は、第3の発明に従属する発明
であって、昇圧部から送出される超臨界流体を、回収し
て再利用させる超臨界流体回収部をさらに備えることを
特徴とする。A fourth invention is an invention according to the third invention, further comprising a supercritical fluid recovery unit for recovering and reusing the supercritical fluid sent from the pressure increasing unit. I do.
【0026】上記のように、第4の発明によれば、減圧
された超臨界流体を回収のために必要な圧力まで昇圧可
能な昇圧部をさらに設ける。これにより、低圧状態の超
臨界流体を確実に回収することを実現することが可能と
なる。As described above, according to the fourth aspect of the present invention, the pressurizing section which can increase the pressure of the decompressed supercritical fluid to a pressure required for recovery is further provided. This makes it possible to reliably recover the supercritical fluid in a low pressure state.
【0027】第5の発明は、第4の発明に従属する発明
であって、処理槽内の超臨界流体の流出経路を、超臨界
流体回収部又は減圧部のいずれかに切り替える切替部を
さらに備え、基板処理部は、流出経路が、超臨界流体回
収部に切り替えられた場合に、供給後の超臨界流体を用
いて基板を高圧処理し、減圧部に切り替えられた場合
に、減圧された超臨界流体を用いて基板を処理すること
を特徴とする。According to a fifth aspect of the present invention, there is provided the invention according to the fourth aspect, further comprising a switching unit for switching the outflow path of the supercritical fluid in the processing tank to one of a supercritical fluid recovery unit and a decompression unit. The substrate processing unit, when the outflow path is switched to the supercritical fluid recovery unit, performs high-pressure processing on the substrate using the supplied supercritical fluid, and when the substrate is switched to the decompression unit, the pressure is reduced. The method is characterized in that a substrate is processed using a supercritical fluid.
【0028】上記のように、第5の発明によれば、処理
槽内の圧力を切り替えるために超臨界流体の流出経路を
制御する。これにより、高圧状態の超臨界流体に加え、
低圧状態の超臨界流体等を用いた高性能かつ短時間によ
る基板処理を実現することができる。As described above, according to the fifth aspect, the outflow path of the supercritical fluid is controlled to switch the pressure in the processing tank. As a result, in addition to the supercritical fluid in a high pressure state,
High-performance and short-time substrate processing using a supercritical fluid or the like in a low-pressure state can be realized.
【0029】第6の発明は、第5の発明に従属する発明
であって、切替部は、流出経路の切り替えをパルス的に
行うことを特徴とする。A sixth invention is an invention according to the fifth invention, wherein the switching unit switches the outflow path in a pulsed manner.
【0030】上記のように、第6の発明によれば、流出
経路の切り替えがパルス的に行われるように制御する。
これによって、処理槽内を短時間に圧力変動させる、す
なわち、高圧状態の超臨界流体による基板処理と、低圧
状態の超臨界流体による基板処理とを繰り返して行うこ
とができる。これにより、例えば、高圧状態の超臨界流
体の膨張エネルギーによる汚染物質の除去を短時間のう
ちに多数回繰り返すこととなり、処理性能をさらに向上
させることが可能となる。As described above, according to the sixth aspect of the present invention, control is performed such that the outflow path is switched in a pulsed manner.
Thus, the pressure in the processing tank can be changed in a short time, that is, the substrate processing using the supercritical fluid in a high pressure state and the substrate processing using the supercritical fluid in a low pressure state can be repeatedly performed. Thus, for example, the removal of contaminants by the expansion energy of the supercritical fluid in a high-pressure state is repeated many times in a short time, so that the processing performance can be further improved.
【0031】[0031]
【発明の実施の形態】以下では、この発明の実施の形態
を、添付図面を参照して詳細に説明する。図1は、本発
明の一実施形態に係る高圧処理装置の構成を示すブロッ
ク図である。図1において、本実施形態の係る高圧処理
装置は、ボンベ1と、凝縮器2と、昇圧器3と、加熱器
4と、基板洗浄槽5と、バッファタンク6と、圧縮機9
と、減圧器7と、分離回収槽8と、バルブV1〜V3と
で構成される。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing a configuration of a high-pressure processing apparatus according to one embodiment of the present invention. In FIG. 1, a high-pressure processing apparatus according to the present embodiment includes a cylinder 1, a condenser 2, a booster 3, a heater 4, a substrate cleaning tank 5, a buffer tank 6, a compressor 9
, A pressure reducer 7, a separation and recovery tank 8, and valves V1 to V3.
【0032】まず、本実施形態の高圧処理装置の各構成
を説明する。ボンベ1には、基板の洗浄に用いられる液
化状の二酸化炭素が封入されている。凝縮器2は、分離
回収槽8から供給される気体の二酸化炭素を冷却して液
化させる。昇圧器3は、凝縮器2で液化された液体二酸
化炭素を、臨界圧力Pc以上の所定の圧力まで昇圧させ
る。加熱器4は、昇圧器3で昇圧された液体二酸化炭素
を、臨界温度Tc以上の所定の温度まで加熱する。これ
により、液体の二酸化炭素が超臨界流体へ変化する(図
3を参照)。この超臨界二酸化炭素が、本発明に適用可
能な処理流体の1つに相当する。First, each configuration of the high-pressure processing apparatus of the present embodiment will be described. The cylinder 1 is filled with liquefied carbon dioxide used for cleaning the substrate. The condenser 2 cools and liquefies gaseous carbon dioxide supplied from the separation and recovery tank 8. The booster 3 raises the pressure of the liquid carbon dioxide liquefied in the condenser 2 to a predetermined pressure equal to or higher than the critical pressure Pc. The heater 4 heats the liquid carbon dioxide pressurized by the booster 3 to a predetermined temperature equal to or higher than the critical temperature Tc. Thereby, the liquid carbon dioxide changes into a supercritical fluid (see FIG. 3). This supercritical carbon dioxide corresponds to one of the processing fluids applicable to the present invention.
【0033】処理槽として基板洗浄槽5では、生成され
た超臨界二酸化炭素を用いて基板が洗浄される。バッフ
ァタンク6は、基板洗浄槽5内の超臨界二酸化炭素をタ
ンク内に膨張させることによって、タンク容量に応じた
超臨界二酸化炭素の減圧を行う。In the substrate cleaning tank 5 as a processing tank, the substrate is cleaned using the generated supercritical carbon dioxide. The buffer tank 6 decompresses supercritical carbon dioxide according to the tank capacity by expanding supercritical carbon dioxide in the substrate cleaning tank 5 into the tank.
【0034】圧縮機9は、バッファタンク6で減圧され
た処理流体を、減圧器7へ送出するために必要な所定の
圧力まで再び昇圧させる。減圧器7は、基板洗浄槽5に
おいて洗浄処理が終わった超臨界二酸化炭素を、減圧に
よって気化させる。分離回収槽8では、減圧器7で気化
された二酸化炭素と汚染物質とが分離されると共に、気
体の二酸化炭素が再び凝縮器2へ供給される。The compressor 9 raises the pressure of the processing fluid depressurized in the buffer tank 6 again to a predetermined pressure necessary for sending it to the decompressor 7. The decompressor 7 vaporizes the supercritical carbon dioxide that has been subjected to the cleaning process in the substrate cleaning tank 5 by decompression. In the separation / recovery tank 8, the vaporized carbon dioxide and the contaminants are separated by the pressure reducer 7, and gaseous carbon dioxide is supplied to the condenser 2 again.
【0035】バルブV1は、生成された高圧状態の超臨
界二酸化炭素を基板洗浄槽5へ供給するために用いら
れ、加熱器4の二次側と基板洗浄槽5の一次側とを接続
する配管上に設けられる。バルブV2は、基板洗浄槽5
内を低圧にさせると共に、基板洗浄槽5での洗浄処理が
終わった低圧状態の超臨界二酸化炭素を回収するために
用いられ、基板洗浄槽5の二次側とバッファタンク6の
一次側とを接続する配管上に設けられる。バルブ3は、
基板洗浄槽5内を高圧にさせると共に、基板洗浄槽5で
の洗浄処理が終わった高圧状態の超臨界二酸化炭素を回
収するために用いられ、基板洗浄槽5の二次側と減圧器
7の一次側とを接続する配管上に設けられる。The valve V1 is used to supply the generated supercritical carbon dioxide in a high pressure state to the substrate cleaning tank 5, and is a pipe connecting the secondary side of the heater 4 and the primary side of the substrate cleaning tank 5. Provided above. The valve V2 is connected to the substrate cleaning tank 5
The inside of the substrate cleaning tank 5 is used to collect the low pressure state supercritical carbon dioxide which has been subjected to the cleaning process in the substrate cleaning tank 5 and the secondary side of the substrate cleaning tank 5 and the primary side of the buffer tank 6. It is provided on the connecting pipe. Valve 3 is
It is used to increase the pressure inside the substrate cleaning tank 5 and to recover the supercritical carbon dioxide in the high pressure state after the cleaning processing in the substrate cleaning tank 5 is completed. It is provided on a pipe that connects to the primary side.
【0036】ここで、ボンベ1や基板洗浄槽5に至る配
管系が本発明の供給部に相当し、バッファタンク6を含
む配管系が減圧部に、圧縮機9を含む配管系が昇圧部
に、バルブV3より下流で減圧器7や分離回収槽8を含
む配管系が回収部にそれぞれ相当する。そして、基板洗
浄槽5が基板処理部を構成し、バルブV1〜バルブV3
が切替部を構成する。Here, the piping system leading to the cylinder 1 and the substrate cleaning tank 5 corresponds to the supply unit of the present invention, the piping system including the buffer tank 6 corresponds to the pressure reducing unit, and the piping system including the compressor 9 corresponds to the pressure increasing unit. The piping system including the decompressor 7 and the separation / recovery tank 8 downstream of the valve V3 respectively corresponds to the recovery section. The substrate cleaning tank 5 constitutes a substrate processing unit, and includes a valve V1 to a valve V3.
Constitute a switching unit.
【0037】次に、この構成による本実施形態に係る高
圧処理装置で行われる基板の洗浄動作を説明する。な
お、本実施形態では、処理流体として二酸化炭素を用い
た場合を説明するが、その他、亜酸化窒素、アルコー
ル、エタノール、水等の超臨界流体の状態へ変化できる
物質であってもよい。また、本実施形態の基板洗浄槽に
用いられる基板洗浄方式は、複数の基板を同時に洗浄す
るバッチ方式又は枚葉方式のいずれであってもよい。Next, a description will be given of a substrate cleaning operation performed by the high-pressure processing apparatus according to the present embodiment having this configuration. In the present embodiment, a case where carbon dioxide is used as the processing fluid will be described. However, other substances that can change to a supercritical fluid state such as nitrous oxide, alcohol, ethanol, and water may be used. Further, the substrate cleaning method used in the substrate cleaning tank of the present embodiment may be either a batch method for simultaneously cleaning a plurality of substrates or a single-wafer method.
【0038】まず、被洗浄物である基板が基板洗浄槽5
内に設置される。基板が設置されると、バルブV1,V
3が開栓、バルブV2が閉栓されて、以下の洗浄処理が
開始される。First, the substrate to be cleaned is placed in the substrate cleaning tank 5.
It is installed in. When the substrate is installed, the valves V1, V
3 is opened, the valve V2 is closed, and the following cleaning process is started.
【0039】最初に、処理流体として用いられる炭酸ガ
スはボンベ1内に5〜6MPaの圧力で液体として貯留
されており、この液体二酸化炭素が凝縮器2へ供給され
て液体として貯蔵される。液体二酸化炭素は、昇圧器3
において臨界圧力Pc以上の圧力まで昇圧され、さらに
加熱器4において臨界温度Tc以上の所定の温度まで加
熱されて超臨界流体となり、基板洗浄槽5へ順次送られ
る。First, carbon dioxide used as a processing fluid is stored as a liquid in the cylinder 1 at a pressure of 5 to 6 MPa, and this liquid carbon dioxide is supplied to the condenser 2 and stored as a liquid. Liquid carbon dioxide is booster 3
The pressure is increased to a pressure equal to or higher than the critical pressure Pc, and further heated to a predetermined temperature equal to or higher than the critical temperature Tc in the heater 4 to become a supercritical fluid, which is sequentially sent to the substrate cleaning tank 5.
【0040】ここで、所定の圧力及び温度は、洗浄対象
である基板の種類や所望する洗浄性能に基づいて、自由
に設定することが可能である。そして、基板洗浄槽5で
は、この高圧状態の超臨界二酸化炭素によって基板の洗
浄が行われる。基板洗浄によって汚染物質が混じった高
圧状態の超臨界流体は、減圧器7において減圧されて気
化された後、分離回収槽8において気体の二酸化炭素と
汚染物質とに分離される。分離された汚染物質は排出さ
れ、気体の二酸化炭素は、回収されて凝縮器2で再利用
される。例えば、この減圧器7は、超臨界二酸化炭素を
約80℃以上に維持し、圧力を15MPaから6MPa
に減圧することで気体の二酸化炭素とする。Here, the predetermined pressure and temperature can be freely set based on the type of the substrate to be cleaned and the desired cleaning performance. In the substrate cleaning tank 5, the substrate is cleaned with the supercritical carbon dioxide in the high pressure state. The high-pressure supercritical fluid mixed with contaminants by the substrate cleaning is decompressed and vaporized in the decompressor 7, and then separated into gaseous carbon dioxide and contaminants in the separation and recovery tank 8. The separated pollutants are discharged, and the gaseous carbon dioxide is collected and reused in the condenser 2. For example, the decompressor 7 maintains the supercritical carbon dioxide at about 80 ° C. or higher and increases the pressure from 15 MPa to 6 MPa.
The pressure is reduced to gaseous carbon dioxide.
【0041】高圧状態の超臨界二酸化炭素による基板洗
浄が所定の時間行われると、次にバルブV1,V3が閉
栓、バルブV2が開栓される。このバルブ処理により、
基板洗浄槽5内の高圧状態の超臨界二酸化炭素がバッフ
ァタンク6に流入し、基板洗浄槽5内の圧力がタンクの
容量に応じて低下する。よって、基板洗浄槽5では、こ
の膨張した低圧状態の超臨界二酸化炭素によって基板の
洗浄が行われる。After the substrate has been washed with supercritical carbon dioxide in a high pressure state for a predetermined time, the valves V1 and V3 are closed and the valve V2 is opened. By this valve processing,
The supercritical carbon dioxide in a high pressure state in the substrate cleaning tank 5 flows into the buffer tank 6, and the pressure in the substrate cleaning tank 5 decreases according to the capacity of the tank. Therefore, in the substrate cleaning tank 5, the substrate is cleaned with the expanded supercritical carbon dioxide in the low pressure state.
【0042】この基板洗浄によって汚染物質が混じった
低圧状態の超臨界二酸化炭素は、バッファタンク6への
流入により圧力が低下し気体へと変化する。このバッフ
ァタンク6内の気体は圧力が低すぎてそのままでは減圧
器7へ送出できない。そこで、圧縮機9が、減圧器7へ
送出するために必要な所定の圧力まで、気体の二酸化炭
素を昇圧させる。圧縮機9から送出される昇圧された気
体の二酸化炭素は、減圧器7において減圧された後、分
離回収槽において気体の二酸化炭素と汚染物質とに分離
される。分離された汚染物資は排出され、気体の二酸化
炭素は、回収されて凝縮器2で再利用される。The supercritical carbon dioxide in a low pressure state contaminated with contaminants by the cleaning of the substrate is reduced in pressure by flowing into the buffer tank 6 and changes to a gas. The gas in the buffer tank 6 is too low in pressure and cannot be sent to the pressure reducer 7 as it is. Therefore, the compressor 9 increases the pressure of the gaseous carbon dioxide to a predetermined pressure required for sending the gas to the decompressor 7. The pressurized gaseous carbon dioxide sent from the compressor 9 is decompressed by the pressure reducer 7 and then separated into gaseous carbon dioxide and contaminants in the separation and recovery tank. The separated contaminants are discharged, and the gaseous carbon dioxide is recovered and reused in the condenser 2.
【0043】この処理によって、高圧状態の超臨界二酸
化炭素を用いた基板洗浄と低圧状態の超臨界二酸化炭素
を用いた基板洗浄とが行われる。一連の基板の洗浄処理
が完了し、基板洗浄槽5から基板が取り出される。By this processing, substrate cleaning using supercritical carbon dioxide in a high-pressure state and substrate cleaning using supercritical carbon dioxide in a low-pressure state are performed. After a series of substrate cleaning processing is completed, the substrate is taken out of the substrate cleaning tank 5.
【0044】ここで、図2に示すタイミングチャートの
ように、バルブV1,V3とバルブV2の開閉動作をパ
ルス的に交互に行うことが好ましい。これにより、基板
洗浄槽5内をパルス的に短時間で圧力変動させることが
でき、膨張エネルギーを繰返し汚染物質に与えることに
よって、洗浄性能をさらに向上させることが可能とな
る。Here, as shown in the timing chart of FIG. 2, it is preferable that the opening and closing operations of the valves V1 and V3 and the valve V2 are alternately performed in a pulsed manner. Accordingly, the pressure in the substrate cleaning tank 5 can be changed in a pulsed manner in a short time, and the cleaning performance can be further improved by repeatedly applying the expansion energy to the contaminants.
【0045】以上のように、本発明の一実施形態に係る
高圧処理装置によれば、十分な減圧を行えるバッファタ
ンク6と共に、減圧器7へ送出するために必要な所定の
圧力まで昇圧可能な圧縮機9を設け、バルブV1〜V3
の開閉動作を適切に制御する。これにより、高圧状態の
超臨界流体に加え、低圧状態の超臨界流体を用いた高性
能かつ短時間による基板洗浄を実現することが可能とな
る。As described above, according to the high-pressure processing apparatus according to one embodiment of the present invention, the pressure can be increased to a predetermined pressure necessary for sending the pressure to the pressure reducer 7 together with the buffer tank 6 capable of sufficiently reducing the pressure. A compressor 9 is provided, and valves V1 to V3 are provided.
The opening and closing operation of the is controlled appropriately. This makes it possible to realize high-performance and short-time substrate cleaning using a supercritical fluid in a low pressure state in addition to a supercritical fluid in a high pressure state.
【0046】また、バルブV1,V3とバルブV2の開
閉がパルス的に交互に動作するように制御することによ
って、洗浄性能をさらに向上させることが可能となる。Further, by controlling the opening and closing of the valves V1 and V3 and the opening and closing of the valve V2 alternately in a pulsed manner, it is possible to further improve the cleaning performance.
【0047】なお、本発明は、上述した実施例および変
形例に限定されるものではなく、以下のように他の形態
でも実施することができる。It should be noted that the present invention is not limited to the above-described embodiments and modifications, but can be implemented in other forms as described below.
【0048】(1)上記実施形態では、バッファタンク
6での減圧処理によって、基板洗浄槽5で低圧状態の超
臨界流体による基板洗浄を行う場合を説明したが、この
減圧処理による処理流体の変化は、上述した超臨界流体
の状態を維持させる変化に限られない。例えば、臨界圧
力Pc未満にまで減圧させて超臨界流体を気体の状態、
または、減圧と同時に冷却し気液共存の2相状態まで変
化させてもよく、対象基板の洗浄目的に応じて(バッフ
ァタンク6の容量を)任意に設定することが可能であ
る。(1) In the above embodiment, the case where the substrate cleaning is performed by the supercritical fluid in the low pressure state in the substrate cleaning tank 5 by the decompression process in the buffer tank 6 has been described. Is not limited to the change that maintains the state of the supercritical fluid described above. For example, the supercritical fluid is reduced to a pressure lower than the critical pressure Pc to convert the supercritical fluid into a gaseous state,
Alternatively, cooling may be performed simultaneously with depressurization to change the state to a two-phase state in which gas and liquid coexist, and it is possible to arbitrarily set the capacity of the buffer tank 6 according to the purpose of cleaning the target substrate.
【0049】(2)また、基板洗浄槽5で低圧状態の超
臨界流体による基板洗浄だけを行う場合には、基板洗浄
槽5の二次側と減圧器7の一次側との間にバルブV3を
備える配管を設ける必要はない。(2) When only cleaning the substrate with a supercritical fluid in a low pressure state in the substrate cleaning tank 5, the valve V 3 is connected between the secondary side of the substrate cleaning tank 5 and the primary side of the pressure reducing device 7. It is not necessary to provide a pipe provided with.
【0050】(3)また、上記実施形態においてバッフ
ァタンク6の下流側に減圧器7を配置して、超臨界流体
を気化した後に分離回収槽8へ送出する構成としている
が、分離回収槽8において減圧した後、気液分離するよ
う構成してもよい。(3) In the above embodiment, the decompressor 7 is disposed downstream of the buffer tank 6 so that the supercritical fluid is vaporized and then sent to the separation and recovery tank 8. After depressurizing in, gas-liquid separation may be performed.
【0051】(4)また、上記実施形態において処理流
体は、基板洗浄槽5に超臨界流体として供給されるが、
基板洗浄槽5に供給される所定の高圧状態とは1MPa
以上であればよく、好ましくは、高密度、高溶解性、低
粘度、高拡散性の性質が認められる流体である。すなわ
ち、1MPa以上であればバッファタンク6での減圧処
理により、基板洗浄槽5で高圧状態に加え低圧状態の処
理を実現することができる。よって亜臨界流体や高圧ガ
スを用いて実施できることは言うまでもない。さらに、
洗浄処理は5MPa以上に昇圧される処理流体を供給す
れば好適に実施できる。そして、洗浄処理は5〜30M
Paで行うことが好ましく、より好ましくは7.1〜2
0MPaである。(4) In the above embodiment, the processing fluid is supplied to the substrate cleaning tank 5 as a supercritical fluid.
The predetermined high pressure state supplied to the substrate cleaning tank 5 is 1 MPa
Any fluid may be used as long as it is at least the above, and preferably a fluid having properties of high density, high solubility, low viscosity, and high diffusivity. That is, if the pressure is 1 MPa or more, the depressurizing process in the buffer tank 6 can realize the processing in the substrate cleaning tank 5 in the low pressure state in addition to the high pressure state. Therefore, it goes without saying that the present invention can be implemented using a subcritical fluid or a high pressure gas. further,
The cleaning process can be suitably performed by supplying a processing fluid whose pressure is increased to 5 MPa or more. And the washing process is 5-30M
Pa is preferable, and more preferably 7.1 to 2
0 MPa.
【0052】(5)また、上記高圧処理装置は、基板洗
浄について説明したが、基板乾燥や基板現像に用いられ
るものであっても良い。すなわち、基板洗浄槽5にリン
ス洗浄(水洗)後の基板を搬入設置する。この基板洗浄
槽5内で基板に付着した水分を超臨界または亜臨界状態
にある高圧状態の処理流体中に溶解し除去する。この
時、基板洗浄槽5内を高圧状態から低圧状態にして処理
流体の膨張力を利用して水分を吹き飛ばすことで乾燥効
果を高め、乾燥時間を短くすることができる。この後、
処理流体は上記実施形態と同様に回収され再利用され
る。(5) Although the high-pressure processing apparatus has been described for cleaning a substrate, it may be used for drying a substrate or developing a substrate. That is, the substrate after the rinsing cleaning (washing with water) is carried in and installed in the substrate cleaning tank 5. In the substrate cleaning tank 5, the water adhering to the substrate is dissolved and removed in a supercritical or subcritical high-pressure processing fluid. At this time, the inside of the substrate cleaning tank 5 is changed from a high pressure state to a low pressure state, and the moisture is blown off using the expansion force of the processing fluid, whereby the drying effect can be enhanced and the drying time can be shortened. After this,
The processing fluid is collected and reused similarly to the above embodiment.
【0053】また、基板現像は、レジストパターン形成
済みのシリコンウェハを、基板洗浄槽5に搬入設置す
る。この基板洗浄槽5内で基板上のレジストパターンを
超臨界または亜臨界状態にある高圧状態の処理流体で現
像する。この時、基板洗浄槽5内を高圧状態から低圧状
態にして現像処理の拡散を高めることができ、現像処理
時間を短くすることが可能となる。In the substrate development, the silicon wafer on which the resist pattern has been formed is carried into the substrate cleaning tank 5 and installed. In the substrate cleaning tank 5, the resist pattern on the substrate is developed with a supercritical or subcritical high-pressure processing fluid. At this time, it is possible to increase the diffusion of the development processing by changing the inside of the substrate cleaning tank 5 from the high pressure state to the low pressure state, and it is possible to shorten the development processing time.
【0054】(6)また、基板の処理動作は、現像処
理、洗浄処理、乾燥処理を単独で実施する場合に限られ
るものではなく、現像処理が終了した基板に対して乾燥
処理を引き続き行うように実施しても良い。また、乾燥
処理が終了した基板に対して引き続き洗浄処理を行うよ
うに実施しても良い。(6) The processing operation of the substrate is not limited to the case where the developing process, the cleaning process, and the drying process are independently performed, and the drying process may be continuously performed on the substrate after the developing process. May be implemented. Further, the cleaning process may be performed on the substrate after the drying process.
【0055】その他、特許請求の範囲に記載された技術
的事項の範囲で種々の設計変更を施すことが可能であ
る。In addition, it is possible to make various design changes within the technical scope described in the claims.
【0056】以上の説明から明らかなように、本発明に
よれば、処理槽内の高圧状態の処理流体を十分に減圧で
きる減圧部と共に、下流への送出のために必要な圧力ま
で昇圧可能な昇圧部を設ける。これにより、低圧状態の
処理流体を用いて高性能な基板処理を実現することが可
能とされる。As is apparent from the above description, according to the present invention, the pressure of the processing fluid in the processing tank in the high pressure state can be sufficiently reduced, and the pressure can be increased to the pressure required for downstream delivery. A booster is provided. This makes it possible to realize high-performance substrate processing using a processing fluid in a low-pressure state.
【図1】本発明の一実施形態に係る基板洗浄処理装置の
構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a substrate cleaning apparatus according to an embodiment of the present invention.
【図2】バルブV1〜V3の開閉動作の一例を示すタイ
ミングチャートである。FIG. 2 is a timing chart showing an example of an opening and closing operation of valves V1 to V3.
【図3】超臨界流体を説明する図である。FIG. 3 is a diagram illustrating a supercritical fluid.
【図4】超臨界流体を用いて基板洗浄を行う従来装置の
構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of a conventional apparatus for cleaning a substrate using a supercritical fluid.
1,11…ボンベ 2,12…凝縮器 3,13…昇圧器 4,14…加熱器 5,15…基板洗浄槽 6…バッファタンク 7,17…減圧器 8,18…分離回収槽 9…圧縮機 V1〜V3…バルブ 1,11 ... cylinder 2,12 ... condenser 3,13 ... booster 4,14 ... heater 5,15 ... substrate washing tank 6 ... buffer tank 7,17 ... decompressor 8,18 ... separation and recovery tank 9 ... compression Machine V1-V3 ... Valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/1333 500 G02F 1/1333 500 (72)発明者 村岡 祐介 京都市上京区堀川通寺之内上る4丁目天神 北町1番地の1 大日本スクリーン製造株 式会社内 (72)発明者 斉藤 公続 京都市上京区堀川通寺之内上る4丁目天神 北町1番地の1 大日本スクリーン製造株 式会社内 (72)発明者 北門 龍治 京都市上京区堀川通寺之内上る4丁目天神 北町1番地の1 大日本スクリーン製造株 式会社内 (72)発明者 井上 陽一 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 大柴 久典 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 渡邉 克充 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 山形 昌弘 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 2H088 FA21 HA01 2H090 JC19 3B201 AA02 AA03 BB02 BB82 BB90 BB91 CC11 CD22 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/1333 500 G02F 1/1333 500 (72) Inventor Yusuke Muraoka Go up to Horikawa-dori Teranouchi, Kamigyo-ku, Kyoto-shi (72) Inventor: Kimitsutsu Saito 4-chome Tenjin Kitamachi 1-1-1 Dainippon Screen Manufacturing Co., Ltd. (72) Inventor Ryuji Kitamon 4-chome Horikawa-dori Teranouchi, Kamigyo-ku, Kyoto 1 Tenjin Kitamachi 1 Dainippon Screen Mfg. Co., Ltd. (72) Inventor Yoichi Inoue 2-3-3 Niihama, Araimachi, Takasago City, Hyogo Prefecture No. 1 Kobe Steel, Ltd. Takasago Works (72) Inventor Hisanori Oshiba 2-3-1, Niihama, Arai-cho, Takasago-shi, Hyogo Stock Inside the Kobe Steel, Ltd.Takasago Works (72) Inventor Katsumitsu Watanabe 2-3-1, Shinama, Araimachi, Takasago City, Hyogo Prefecture Inside the Kobe Steel Works Takasago Works, Ltd. (72) Inventor Masahiro Yamagata 2-chome, Araimachi, Takasago City, Hyogo Prefecture No.3-1 F-term (reference) in Kobe Steel, Ltd. Takasago Works 2H088 FA21 HA01 2H090 JC19 3B201 AA02 AA03 BB02 BB82 BB90 BB91 CC11 CD22
Claims (6)
す高圧処理装置であって、 処理流体を供給する供給部と、 前記供給部から供給された処理流体を高圧状態に変化さ
せて、処理槽内に設置された基板を高圧処理流体と接触
させて処理する基板処理部と、 前記処理槽内の高圧処理流体を所定の圧力まで減圧させ
る減圧部と、 前記減圧部で減圧された処理流体を下流に送出するのに
必要な圧力まで昇圧させる昇圧部とを備えることを特徴
とする、高圧処理装置。1. A high-pressure processing apparatus for performing a predetermined process on a substrate using a processing fluid, comprising: a supply unit for supplying a processing fluid; and a processing fluid supplied from the supply unit, which is changed to a high-pressure state, A substrate processing unit configured to contact a substrate installed in a processing tank with a high-pressure processing fluid for processing; a decompression unit configured to reduce the pressure of the high-pressure processing fluid in the processing tank to a predetermined pressure; and a process reduced in pressure by the decompression unit. A high-pressure processing device, comprising: a pressure increasing unit configured to increase the pressure to a pressure required for sending the fluid downstream.
回収して再利用させる処理流体回収部をさらに備えるこ
とを特徴とする、請求項1に記載の高圧処理装置。2. The processing fluid delivered from the pressure increasing section,
The high-pressure processing apparatus according to claim 1, further comprising a processing fluid recovery unit that recovers and reuses the processing fluid.
施す高圧処理装置であって、 所定の超臨界流体を供給する供給部と、 前記供給部から供給された前記超臨界流体を用いて、処
理槽内に設置された基板を超臨界流体と接触させて処理
する基板処理部と、 前記処理槽内の前記超臨界流体を所定の圧力まで減圧さ
せる減圧部と、 前記減圧部で減圧された前記超臨界流体を下流に送出す
るのに必要な圧力まで昇圧させる昇圧部とを備えること
を特徴とする、高圧処理装置。3. A high-pressure processing apparatus for performing a predetermined process on a substrate using a supercritical fluid, comprising: a supply unit for supplying a predetermined supercritical fluid; and a supercritical fluid supplied from the supply unit. A substrate processing unit for processing a substrate provided in a processing tank by contacting the substrate with a supercritical fluid; a decompression unit for depressurizing the supercritical fluid in the processing tank to a predetermined pressure; A high-pressure processing device, comprising: a pressure increasing unit configured to increase the pressure to a pressure required for sending the supercritical fluid downstream.
を、回収して再利用させる超臨界流体回収部をさらに備
えることを特徴とする、請求項3に記載の高圧処理装
置。4. The high-pressure processing apparatus according to claim 3, further comprising a supercritical fluid recovery unit that recovers and reuses the supercritical fluid sent from the pressure increasing unit.
路を、前記超臨界流体回収部又は前記減圧部のいずれか
に切り替える切替部をさらに備え、 前記基板処理部は、前記流出経路が、前記超臨界流体回
収部に切り替えられた場合に、供給後の前記超臨界流体
を用いて基板を高圧処理し、前記減圧部に切り替えられ
た場合に、減圧された前記超臨界流体を用いて基板を処
理することを特徴とする、請求項4に記載の高圧処理装
置。5. The apparatus according to claim 1, further comprising: a switching unit configured to switch an outflow path of the supercritical fluid in the processing tank to one of the supercritical fluid recovery unit and the decompression unit. When switched to the supercritical fluid recovery unit, the substrate is subjected to high pressure processing using the supplied supercritical fluid, and when switched to the decompression unit, using the depressurized supercritical fluid. The high-pressure processing apparatus according to claim 4, wherein the substrate is processed.
をパルス的に行うことを特徴とする、請求項5に記載の
高圧処理装置。6. The high-pressure processing apparatus according to claim 5, wherein the switching unit switches the outflow path in a pulsed manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001136512A JP2002334860A (en) | 2001-05-07 | 2001-05-07 | High-pressure treating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001136512A JP2002334860A (en) | 2001-05-07 | 2001-05-07 | High-pressure treating apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002334860A true JP2002334860A (en) | 2002-11-22 |
JP2002334860A5 JP2002334860A5 (en) | 2005-03-17 |
Family
ID=18983774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001136512A Pending JP2002334860A (en) | 2001-05-07 | 2001-05-07 | High-pressure treating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002334860A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104238A1 (en) * | 2009-03-13 | 2010-09-16 | 주식회사 에이앤디코퍼레이션 | Substrate processing apparatus using high-pressure processor and gas recycling method of high-pressure processor |
JP2012087983A (en) * | 2010-10-19 | 2012-05-10 | Tokyo Electron Ltd | Fluid heating device and substrate processing apparatus |
JP2013175681A (en) * | 2012-02-27 | 2013-09-05 | Kyoto Univ | Substrate cleaning method, substrate cleaning device, and vacuum processing apparatus |
JP2015513047A (en) * | 2012-08-24 | 2015-04-30 | サウジ アラビアン オイル カンパニー | Method for driving a CO2 compressor of a CO2 capture system using waste heat of an internal combustion engine |
CN115739844A (en) * | 2022-10-28 | 2023-03-07 | 浙江大学 | Supercritical wafer cleaning/drying medium recovery method and system |
-
2001
- 2001-05-07 JP JP2001136512A patent/JP2002334860A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104238A1 (en) * | 2009-03-13 | 2010-09-16 | 주식회사 에이앤디코퍼레이션 | Substrate processing apparatus using high-pressure processor and gas recycling method of high-pressure processor |
KR101047862B1 (en) | 2009-03-13 | 2011-07-08 | 주식회사 에이앤디코퍼레이션 | Substrate treatment apparatus using high pressure processor and gas recycling method of high pressure processor |
JP2012087983A (en) * | 2010-10-19 | 2012-05-10 | Tokyo Electron Ltd | Fluid heating device and substrate processing apparatus |
JP2013175681A (en) * | 2012-02-27 | 2013-09-05 | Kyoto Univ | Substrate cleaning method, substrate cleaning device, and vacuum processing apparatus |
JP2015513047A (en) * | 2012-08-24 | 2015-04-30 | サウジ アラビアン オイル カンパニー | Method for driving a CO2 compressor of a CO2 capture system using waste heat of an internal combustion engine |
CN115739844A (en) * | 2022-10-28 | 2023-03-07 | 浙江大学 | Supercritical wafer cleaning/drying medium recovery method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5450494B2 (en) | Supercritical drying method for semiconductor substrates | |
US20020014257A1 (en) | Supercritical fluid cleaning process for precision surfaces | |
JP3978023B2 (en) | High pressure processing method | |
TW546726B (en) | High pressure processing apparatus and method | |
JP3358172B2 (en) | Clean Precision Surface Forming Method | |
US6735978B1 (en) | Treatment of supercritical fluid utilized in semiconductor manufacturing applications | |
CN101441996B (en) | Method for forming and etching hard mask layer | |
JP4053253B2 (en) | High pressure processing apparatus and method | |
US20040003831A1 (en) | Supercritical fluid cleaning process for precision surfaces | |
KR100597656B1 (en) | Cleaning method and apparatus for manufacturing semiconductor device | |
JP2002334860A (en) | High-pressure treating apparatus | |
US20080006291A1 (en) | Cleaning method and cleaning apparatus | |
US7951723B2 (en) | Integrated etch and supercritical CO2 process and chamber design | |
JP3982791B2 (en) | High pressure processing equipment | |
JP2018113372A (en) | Substrate processing method and substrate processing apparatus | |
JP2004186530A (en) | Cleaning apparatus and cleaning method | |
JP2016025111A (en) | Substrate cleaning method, substrate processing method, substrate processing system, and method for manufacturing semiconductor device | |
JP4008900B2 (en) | Supercritical processing method | |
JP3835593B2 (en) | High pressure processing equipment | |
JP2005259743A (en) | Resist peeling device, resist peeling method using the same, and manufacturing method of semiconductor device | |
JP5600447B2 (en) | Plasma etching method | |
US20070197037A1 (en) | Surface preparation for gate oxide formation that avoids chemical oxide formation | |
Rubin et al. | Carbon dioxide-based supercritical fluids as IC manufacturing solvents | |
US8598042B1 (en) | Device manufacturing and cleaning method | |
JP2005150282A (en) | Supercritical processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040412 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060707 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070605 |