JP2002332521A - Method for producing steel with ultrafine ferritic structure - Google Patents

Method for producing steel with ultrafine ferritic structure

Info

Publication number
JP2002332521A
JP2002332521A JP2001141816A JP2001141816A JP2002332521A JP 2002332521 A JP2002332521 A JP 2002332521A JP 2001141816 A JP2001141816 A JP 2001141816A JP 2001141816 A JP2001141816 A JP 2001141816A JP 2002332521 A JP2002332521 A JP 2002332521A
Authority
JP
Japan
Prior art keywords
rolling
steel
cooling
point
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001141816A
Other languages
Japanese (ja)
Inventor
Toru Hayashi
透 林
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001141816A priority Critical patent/JP2002332521A/en
Publication of JP2002332521A publication Critical patent/JP2002332521A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing steel with a ultrafine ferritic structure which does not cause separation in a Charpy test while maintaining sufficient strength and toughness as steel for structural purposes, and has no reduction of shelf energy. SOLUTION: A steel stock containing precipitate forming elements is heated at the Ac3 point or higher. After that, the steel stock is rolled at a draft of <=40%, or is not rolled, and is cooled to the temperature lower than the Ac3 point. Next, heating to the Ac3 point or higher and cooling to the Ac1 point or lower are repeated, respectively, for one or more times. Finally, the steel stock is heated to the Ac3 point or higher and rolled at the Ar3 point or higher, and is thereafter cooled. The cooling is carried out preferably by a method of performing rapid cooling at >=3 deg.C/s directly after the rolling, and stopping the cooling at >=500 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超微細フェライト
組織鋼(超微細フェライト組織からなる鋼材)の製造方
法に関し、特に、造船、橋梁、建築、海洋構造物、ペン
ストック、タンク材等の、厚鋼板が利用される構造物に
用いられる超微細フェライト組織鋼の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine ferritic steel (steel material having an ultrafine ferrite structure), and particularly to a method for shipbuilding, bridges, buildings, marine structures, penstocks, tank materials and the like. The present invention relates to a method for manufacturing an ultrafine ferritic steel used for a structure using a thick steel plate.

【0002】[0002]

【従来の技術】鋼のフェライト粒超微細化は、Ni、Mn等
の鋼の強度を上昇させる効果のある元素の多量添加をす
ることなく、鋼の強度を上昇させ、靱性を向上させる唯
一の手段である。これら元素を多量添加しないことはリ
サイクル性にも優れる。近年、鋼のフェライト粒超微細
化に関して精力的に研究が行われ、例えば、CAMP-ISIJ,
12(1999),357. に示されているようなメカニカルミリン
グによる方法や、CAMP-ISIJ,12(1999),365. に示されて
いるような微小試験片を用いたオーステナイトの大圧下
による方法が公開されている。
2. Description of the Related Art Ultra-fine ferrite grain refinement of steel is the only method that increases the strength of steel and improves toughness without adding a large amount of elements such as Ni and Mn that have the effect of increasing the strength of steel. Means. Not adding a large amount of these elements is also excellent in recyclability. In recent years, vigorous research has been conducted on ultra-fine ferrite grains in steel, for example, CAMP-ISIJ,
A method using mechanical milling as shown in 12 (1999), 357. and a method using large austenite under reduced pressure using a small test piece as shown in CAMP-ISIJ, 12 (1999), 365. Has been published.

【0003】しかし、これらの方法では微小なサンプル
しか得られず、工業的に利用可能な厚鋼板を製造しうる
までには至っていない。また特開2000−309850号公報で
はフェライト域での温間加工等により、シャルピー試験
でのシェルフエネルギーが高い11.8mm角の棒材を得てい
るものの、未だ、板材での製造はできていない。また、
CAMP-ISIJ,13(2000),1136.では5mm厚の超微細粒フェラ
イト鋼の創製に成功しているが、シャルピー試験におい
てセパレーションが発生し、シェルフエネルギーが低下
する問題が解決できていない。セパレーションが発生し
シェルフエネルギーが低下する材料は構造用鋼として信
頼性を欠き、安心して利用できない。
[0003] However, only small samples can be obtained by these methods, and it has not been possible to produce industrially usable thick steel plates. In Japanese Patent Application Laid-Open No. 2000-309850, although a 11.8 mm square bar having a high shelf energy in a Charpy test is obtained by warm working in a ferrite region or the like, it has not yet been manufactured from a plate material. Also,
CAMP-ISIJ, 13 (2000), 1136. succeeded in creating a 5mm-thick ultrafine-grained ferritic steel, but did not solve the problem that separation occurred in the Charpy test and the shelf energy decreased. Materials that cause separation and reduce shelf energy lack reliability as structural steel and cannot be used with confidence.

【0004】シャルピーのシェルフエネルギーを低下さ
せないためには、圧延を行わないかあるいはオーステナ
イト域で圧延を終了させる必要があることが知られてい
る。しかし、従来では圧延を行わないか、あるいはオー
ステナイト域で圧延を終了させると、フェライト粒径が
0.5 μm 〜3 μm となる超微細フェライト組織鋼は得ら
れなかった。
[0004] It is known that rolling must not be performed or rolling must be terminated in the austenite region in order not to lower the Charpy shelf energy. However, conventionally, if rolling is not performed or rolling is stopped in the austenite region, the ferrite grain size will decrease.
An ultrafine ferritic steel with a thickness of 0.5 μm to 3 μm was not obtained.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術の問題に
鑑み、本発明は、構造用鋼として十分な強度、靭性を有
しながらシャルピー試験でセパレーションが発生せず、
シェルフエネルギーが低下しない超微細フェライト組織
鋼の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, the present invention has sufficient strength and toughness as structural steel, but does not cause separation in a Charpy test.
An object of the present invention is to provide a method for producing an ultrafine ferritic structure steel in which shelf energy is not reduced.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上述のフ
ェライト粒を超微細化した鋼板で、シャルピー試験にお
いてセパレーションが発生せず、シェルフエネルギーが
低下しない材料の開発に鋭意取り組んできたなかで、変
態前のオーステナイト粒を超微細化することで最終的に
得られるフェライト粒を超微細化する手法に想到した。
Means for Solving the Problems The inventors of the present invention have been keenly engaged in the development of a material in which the above-mentioned ferrite grains are made ultra-fine, in which no separation occurs in the Charpy test and the shelf energy does not decrease. Then, the present inventors have conceived a method for ultrafine-refining ferrite grains finally obtained by ultrafine-refining austenite grains before transformation.

【0007】すなわち、完全にオーステナイト単相とな
るAc3点以上の温度への加熱と、完全にオーステナイト
が変態し終わるAr1点以下の温度への冷却により、前記
加熱では1つのフェライト粒の粒界から複数のオーステ
ナイトを核生成させることにより微細化し、逆に前記冷
却では1つのオーステナイト粒の粒界から複数のフェラ
イトを核生成させることにより微細化し、これら加熱と
冷却を繰り返すごとに微細化が進み、最終的に超微細オ
ーステナイト粒を得ることができることを見い出した。
That is, by heating to a temperature of three or more points of Ac where the phase becomes completely austenite single phase and cooling to a temperature of one point or less of Ar at which austenite completely transforms, one grain of ferrite grains is obtained by the heating. Austenite is refined by nucleating a plurality of austenites from the boundaries. Conversely, in the cooling, a plurality of ferrites are nucleated from a grain boundary of one austenite grain to be refined. It has been found that ultrafine austenite grains can be finally obtained.

【0008】ただし、これだけでは十分な超微細フェラ
イト粒組織は得られない。この後に圧延と冷却を巧みに
組み合わせることで超微細フェライト粒組織が得られる
のである。つまりオーステナイト未再結晶域で圧延し
て、この超微細オーステナイト粒をつぶし、オーステナ
イト粒界密度を上昇させ、最終的に得られるフェライト
粒を0.5 〜3μm の超微細フェライト粒とする。この場
合、圧延により導入された歪エネルギーがフェライトの
粒成長を促進してしまうので、圧延後は直ちに冷却し、
ベイナイトやマルテンサイトが生成しない温度域で冷却
停止することが好ましい。
However, this alone cannot provide a sufficient ultrafine ferrite grain structure. Subsequent skillful combination of rolling and cooling results in an ultrafine ferrite grain structure. That is, the ultrafine austenite grains are crushed by rolling in the austenite non-recrystallized region, the austenite grain boundary density is increased, and the finally obtained ferrite grains are formed into ultrafine ferrite grains of 0.5 to 3 μm. In this case, since the strain energy introduced by rolling promotes the grain growth of ferrite, it is cooled immediately after rolling,
It is preferable to stop cooling in a temperature range where bainite and martensite are not generated.

【0009】本発明は、上記の知見に基づいてなされた
ものであり、その要旨は以下のとおりである。 (1)析出物形成元素を含有する鋼素材をAc3点以上に
加熱後、圧下率40%以下で圧延後もしくは圧延せずに、
Ac3点未満に冷却し、次いでAc3点以上への加熱とAr1
点以下への冷却を各1回以上繰り返した後、最終的にA
c3点以上に加熱してAr3点以上で圧延し、その後冷却す
ることを特徴とする超微細フェライト組織鋼の製造方
法。
[0009] The present invention has been made based on the above findings, and the gist thereof is as follows. (1) After heating a steel material containing a precipitate-forming element to three or more points of Ac, and rolling or not rolling at a rolling reduction of 40% or less,
Cool to less than Ac 3 points, then heat to more than Ac 3 points and Ar 1
After repeating the cooling to below the point one or more times,
and heated above c 3 points was rolled by Ar 3 point or more, then the production method of ultra-fine ferrite structure steel, characterized by cooling.

【0010】(2)析出物形成元素を含有する鋼素材を
Ac3点以上に加熱後、圧下率40%以下で圧延後もしくは
圧延せずに、Ac3点未満に冷却し、次いでAc3点以上へ
の加熱とAr1点以下への冷却を各1回以上繰り返した
後、最終的にAc3点以上に加熱してAr3点以上で圧延
し、その後直ちに3℃/s以上で急冷し、該急冷を500 ℃
以上で停止することを特徴とする超微細フェライト組織
鋼の製造方法。
[0010] (2) After heating a steel material containing the precipitate-forming elements in three or more points Ac, without rolling or after rolling at a reduction ratio of 40% or less, cooled to Ac less than 3 points, then Ac 3 point Heating to above and cooling to Ar 1 point or less are repeated at least once each, then finally heating to Ac 3 points or more and rolling at Ar 3 points or more, then immediately quenching at 3 ° C / s or more. Quenching at 500 ℃
A method for producing an ultrafine ferritic steel characterized by stopping as described above.

【0011】(3)前記鋼素材を最初に加熱する温度
は、該鋼素材中の析出物形成元素によって形成される析
出物が溶解しうる温度とすることを特徴とする(1)ま
たは(2)に記載の超微細フェライト組織鋼の製造方
法。 (4)前記鋼素材を、mass%で、C:0.01〜0.40%、S
i:0.05〜0.80%、Mn:0.2 〜2.5 %、Al:0.01〜0.08
%、Nb:0.005 〜0.10%を含有し、さらに、Ti:0.005
〜0.025 %、V:0.005 〜0.10%のうち1種または2種
を含有するものとしたことを特徴とする(1)〜(3)
のいずれかに記載の超微細フェライト組織鋼の製造方
法。
(3) The temperature at which the steel material is first heated is a temperature at which a precipitate formed by a precipitate-forming element in the steel material can be dissolved. The method for producing an ultrafine ferritic steel according to (1). (4) The steel material is expressed as mass%, C: 0.01 to 0.40%, S
i: 0.05 to 0.80%, Mn: 0.2 to 2.5%, Al: 0.01 to 0.08
%, Nb: 0.005 to 0.10%, and Ti: 0.005%
(1) to (3), wherein one or two of V: 0.005 to 0.10% are contained.
The method for producing an ultrafine ferritic steel according to any one of the above.

【0012】(5)前記鋼素材を、さらに、mass%で、
Cu:0.1 〜2.0 %、Ni:0.1 〜2.0%、Cr:0.1 〜1.0
%、Mo:0.05〜0.5 %、B:0.0005〜0.0025%のうち1
種または2種以上を含有するものとしたことを特徴とす
る(4)記載の超微細フェライト組織鋼の製造方法。
(5) The steel material is further added by mass%
Cu: 0.1 to 2.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.0
%, Mo: 0.05-0.5%, B: 0.0005-0.0025%
(4) The method for producing an ultrafine ferritic steel according to (4), wherein the steel contains one or more kinds.

【0013】[0013]

【発明の実施の形態】本発明において、析出物形成元素
を含有する鋼素材(スラブ、ブルーム、ビレット等)を
用いる理由は、繰り返し変態処理の際に、析出物により
オーステナイト粒あるいはフェライト粒をピンニングし
粒成長を抑制するためである。析出物形成元素を含有し
ていない鋼素材では、繰り返し変態処理を行っても超微
細オーステナイト粒は得られない。析出物形成元素とし
ては、Ti、Nb、V等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The reason for using a steel material (slab, bloom, billet, etc.) containing a precipitate-forming element in the present invention is that pinning of austenite grains or ferrite grains by precipitates during repeated transformation treatment. This is for suppressing grain growth. In the case of a steel material containing no precipitate-forming element, ultra-fine austenite grains cannot be obtained even after repeated transformation treatment. Examples of the precipitate forming element include Ti, Nb, and V.

【0014】ここで、繰り返し変態処理とは、Ac3点以
上への加熱とAr1点以下への冷却を交互に各1回以上行
う処理を意味する。なお、繰り返し変態処理の第1段は
Ac3点以上への加熱、最終段はAr1点以下への冷却とす
る。鋼素材の最初の加熱(初期加熱)は、オーステナイ
ト化のために到達温度をAc3点以上とするが、なかで
も、初期加熱前の鋼素材中に既に存在している析出物
(当該鋼素材に含有される析出物形成元素によって形成
されたもの)の少なくとも溶解しうる温度に設定するこ
とが好ましい。析出物を一旦溶解させると、繰り返し変
態処理中にピンニング効果の高い微細な析出物が析出
し、均一にオーステナイト粒を超微細化することが可能
となるからである。
Here, the repetitive transformation process means a process in which heating to three or more points of Ac and cooling to one or less points of Ar are alternately performed at least once. The first stage of the repetitive transformation process is heating to the point of Ac 3 or more, and the final stage is cooling to the point of Ar 1 or less. In the first heating (initial heating) of the steel material, the attained temperature is set to three points or more for the austenitization. Among them, the precipitates already existing in the steel material before the initial heating (the steel material) Is preferably set at a temperature at which at least the precipitate formed by the precipitate-forming element contained in the compound can be dissolved. This is because once the precipitate is dissolved, a fine precipitate having a high pinning effect is precipitated during the repeated transformation treatment, so that the austenite grains can be ultrafine uniformly.

【0015】なお、前記析出物が溶解しうる温度:T
(K)は、用いる析出物に応じて log[%Ti][%N]=−8000/T+0.322 log[%Nb][%N]=−10230 /T+0.04 log[%V][%N]=−8330/T+3.06 log[%Ti][%C]=−7000/T+2.75 log[%Nb][%C]=−7510/T+2,96 log[%V][%C]=−10800 /T+7.18 の式を用いるか、実験的に求めるか、もしくは熱力学計
算ソフトウェア用いる等により決定することができる。
The temperature at which the precipitate can be dissolved: T
(K) is log [% Ti] [% N] =-8000 / T + 0.322 log [% Nb] [% N] =-10230 / T + 0.04 log [% V] [% N] =-8330 / T + 3.06 log [% Ti] [% C] =-7000 / T + 2.75 log [% Nb] [% C] = − 7510 / T + 2,96 log [% V] [% C] = -10800 / T + 7.18, can be determined experimentally, or can be determined by using thermodynamic calculation software.

【0016】初期加熱後の圧延(1次圧延)は行っても
行わなくてもよい。1次圧延を行わない場合は次工程の
繰り返し変態処理開始までの間、例えば放冷する。1次
圧延の実行有無は状況に応じて適宜決定される。例え
ば、板厚の厚い鋼板を得たいときなどは1次圧延を省略
しうる。なお、1次圧延を行うと、オーステナイト粒が
再結晶し、微細化するので、繰り返し変態処理の繰り返
し数を、1次圧延なしで同じオーステナイト粒径を得よ
うとする場合よりも減らすことができる。
Rolling (primary rolling) after the initial heating may or may not be performed. In the case where the primary rolling is not performed, cooling is performed, for example, until the next transformation process starts. Whether or not the primary rolling is performed is appropriately determined according to the situation. For example, when it is desired to obtain a thick steel plate, the primary rolling can be omitted. In addition, when primary rolling is performed, austenite grains are recrystallized and refined, so that the number of repetitions of the repeated transformation treatment can be reduced as compared with a case where the same austenite grain size is obtained without primary rolling. .

【0017】ただし、1次圧延を行う場合、その圧下率
は、40%を超えると繰り返し変態処理後の圧延(2次圧
延)で十分な圧下量を稼げず結晶粒の微細化が不十分と
なってしまうので、40%以下とする必要がある。初期加
熱後1次圧延(または放冷等)された材料は、繰り返し
変態処理(当該処理の第1段はAc3点以上への加熱)に
供するために、一旦Ac3点未満に冷却される。この冷却
は放冷でよい。
However, in the case of performing primary rolling, if the rolling reduction exceeds 40%, sufficient rolling reduction cannot be achieved in rolling (secondary rolling) after repeated transformation treatment, and crystal grain refinement is insufficient. Therefore, it is necessary to make it 40% or less. The material that has been subjected to primary rolling (or cooling, etc.) after the initial heating is once cooled to less than Ac three points in order to be subjected to repeated transformation processing (the first stage of the processing is heating to three or more Ac points). . This cooling may be left to cool.

【0018】繰り返し変態処理はオーステナイト粒組織
を超微細化するためになされる。まず、Ac3点以上に加
熱すると組織はオーステナイト単相組織となる。このと
き加熱温度がAc3点未満であると一部にフェライトが残
存したオーステナイト主体組織となり、このAc3点未満
から直ちに冷却すると、残存フェライトが優先的に成長
し、オーステナイト粒界からの新たなフェライトの核生
成が不十分となってしまう。したがって、最終的に得ら
れるフェライト組織は微細化されない。
The repetitive transformation treatment is performed to make the austenite grain structure ultra-fine. First, when heated to three or more Ac points, the structure becomes an austenitic single phase structure. The heating temperature at this time becomes a part of the austenite principal tissue ferrite remained If it is Ac less than 3 points, when immediately cooled from the Ac less than 3 points, the remaining ferrite grows preferentially, new from austenite grain boundaries Nucleation of ferrite becomes insufficient. Therefore, the finally obtained ferrite structure is not refined.

【0019】また、同じ理由で、冷却をAr1点超で中止
した場合もオーステナイトが残存したフェライト主体組
織となり、この状態から直ちに加熱すると残存したオー
ステナイトが優先的に粒成長し、フェライト粒界からの
新たなオーステナイトの核生成が抑制され、組織の微細
化が不十分となる。上述したAc3点以上への加熱とAr1
点以下への冷却の繰り返しを行い、変態を繰り返せば繰
り返すほど、組織は微細化するが、6回以上繰り返して
もその効果は飽和するうえ、時間とコストがかかるため
その繰り返し回数は2回から6回が適切である。ここで
いう繰り返し回数の定義は、1回のAc3点以上への昇温
あるいは1回のAr1点以下への降温をそれぞれ繰り返し
1回とする(昇温1回、降温1回の場合は繰り返し回数
=2回)。
For the same reason, when the cooling is stopped at more than one point of Ar, the structure becomes a ferrite-based structure in which austenite remains. Immediately after heating in this state, the remaining austenite grows preferentially and grows from the ferrite grain boundary. Nucleation of new austenite is suppressed, and the micronization of the structure becomes insufficient. Heating to above 3 points of Ac and Ar 1
The more the repetition of cooling to below the point and the transformation are repeated, the more the structure becomes finer, but the effect is saturated even if it is repeated more than 6 times, and it takes time and cost, so the number of repetitions is 2 times. Six times is appropriate. The definition of the number of repetitions here is defined as one repetition of one temperature increase to three points or more of Ac or one temperature decrease to one point or less of Ar (in the case of one temperature increase and one temperature decrease, (The number of repetitions = 2).

【0020】繰り返し変態処理後は圧延(2次圧延)を
行う。2次圧延では、オーステナイト域で圧延するため
に圧延開始温度をAc3点以上、圧延終了温度をAr3点以
上とする必要があるが、好ましくはオーステナイト未再
結晶域で圧延することである。このためにはオーステナ
イト未再結晶域を拡大する元素(Nbなど)の利用が特に
有効である。これにより超微細オーステナイト粒がさら
につぶされて、フェライト核生成サイトとしてのオース
テナイト粒界が増加するばかりか変形帯などのフェライ
ト核生成サイトの増加も期待できる。これらの効果を十
分に得るためには、2次圧延の圧延温度は(Ar3点+10
0℃)〜Ar3点、圧下率は80%以上とするのが好まし
い。
After the repeated transformation, rolling (secondary rolling) is performed. In the secondary rolling, in order to perform rolling in the austenite region, it is necessary to set the rolling start temperature to at least three points of Ac and the rolling end temperature to be at least three points of Ar. For this purpose, the use of an element (such as Nb) that expands the austenite unrecrystallized region is particularly effective. As a result, the ultrafine austenite grains are further crushed, so that not only the austenite grain boundaries as ferrite nucleation sites increase but also the number of ferrite nucleation sites such as deformation bands can be expected. In order to obtain these effects sufficiently, the rolling temperature of the secondary rolling is (Ar 3 points + 10
0 ° C.) to Ar 3 points, and the rolling reduction is preferably 80% or more.

【0021】なお、Ac3点、Ar1点、Ar3点は、熱膨張
試験により測定できる。なお、Ac3点とAr3点は化学組
成に依存し、その依存性は次式に示すような成分含有量
の1次結合式で精度よく記述できる(単位:変態点は
℃、成分含有量はmass%)。 Ac3点=961.6 −311.9C+49.5Si−36.4Mn−51Cu−29Ni
−8.7Cr +13.5Mo−140V+318.9Ti +308.1Nb +12.7Al
+611.2B Ar3点=910 −273C−74Mn−5Cu −56Ni−16Cr−9Mo しかし、圧延により導入された歪エネルギーによりフェ
ライトの粒成長が助長される懸念がある。これを解決す
るのが、2次圧延に続く加速冷却である。すなわち、2
次圧延直後の加工オーステナイト組織状態から急冷し、
フェライトの核生成・成長を一定温度範囲で抑制し、し
かる後にフェライトの核生成可能な最低の温度域で一挙
にフェライト核生成を行うことが肝要である。そのため
には、2次圧延直後から急冷を行うこと、および、該急
冷を500 ℃以上で停止することが好ましく、前記急冷の
冷却速度は3℃/s以上が好ましい。なお、より好ましく
は冷却速度5℃/s以上である。また、急冷の停止後は通
常どおり放冷すればよい。
[0021] Incidentally, Ac 3 point, Ar 1 point, Ar 3 point can be measured by a thermal expansion test. Note that the Ac 3 point and the Ar 3 point depend on the chemical composition, and the dependence can be accurately described by a primary bond formula of the component content as shown in the following formula (unit: transformation point is ° C., component content) Is mass%). Ac 3 points = 961.6−311.9C + 49.5Si−36.4Mn−51Cu−29Ni
−8.7Cr + 13.5Mo−140V + 318.9Ti + 308.1Nb + 12.7Al
+ 611.2B Ar 3 points = 910−273C−74Mn−5Cu−56Ni−16Cr−9Mo However, there is a concern that grain energy of ferrite is promoted by the strain energy introduced by rolling. The solution to this is accelerated cooling following secondary rolling. That is, 2
Rapid cooling from the processed austenite structure state immediately after the next rolling,
It is important to suppress the ferrite nucleation and growth within a certain temperature range, and then to perform ferrite nucleation all at once in the lowest temperature range where ferrite nucleation is possible. For this purpose, it is preferable to perform quenching immediately after the secondary rolling, and to stop the quenching at 500 ° C. or higher, and it is preferable that the quenching cooling rate be 3 ° C./s or higher. The cooling rate is more preferably 5 ° C./s or more. After the rapid cooling is stopped, cooling may be performed as usual.

【0022】次に、本発明で用いる鋼素材の好適化学組
成について説明する。なお、各化学成分の濃度(含有
量)に係る%はmass%を意味する。 C:0.01〜0.40% Cは、強度の確保および炭化物の析出の観点から0.01%
以上が好ましく、一方、靱性劣化防止の観点から0.40%
以下が好ましい。
Next, the preferred chemical composition of the steel material used in the present invention will be described. In addition,% concerning the concentration (content) of each chemical component means mass%. C: 0.01 to 0.40% C is 0.01% from the viewpoint of securing strength and precipitation of carbide.
More preferably, the content is 0.40% from the viewpoint of preventing toughness deterioration.
The following is preferred.

【0023】Si:0.05〜0.80% Siは、製鋼上0.05%以上が好ましいが、0.80%超では母
材の靭性を劣化させる。 Mn:0.2 〜2.5 % Mnは、母材の強度を確保する上で0.5 %以上が好ましい
が、2.0 %を超えると溶接部の靱性を著しく劣化させ
る。
Si: 0.05 to 0.80% Si is preferably contained in an amount of 0.05% or more in steel making, but if it exceeds 0.80%, the toughness of the base material is deteriorated. Mn: 0.2 to 2.5% Mn is preferably 0.5% or more in order to secure the strength of the base material, but if it exceeds 2.0%, the toughness of the welded portion is significantly deteriorated.

【0024】Al:0.01〜0.08% Alは、鋼の脱酸上0.01%以上が好ましいが、0.08%を超
えると母材の靱性を低下させると同時に溶接金属部を希
釈し同部の靱性を劣化させる。 Nb:0.005 〜0.10% Nbは、Nb(C,N) として析出し、繰り返し変態処理中のオ
ーステナイト粒あるいはフェライト粒の粒成長を抑制す
る効果があるとともに、オーステナイト未再結晶域を拡
大するため、0.005 %以上が好ましいが、0.10%を超え
ると溶接熱影響部の靱性を劣化させる。なお、より好ま
しくは0.050 %以下である。
Al: 0.01 to 0.08% Al is preferably 0.01% or more in terms of deoxidation of steel, but if it exceeds 0.08%, the toughness of the base material is reduced, and at the same time, the weld metal is diluted to deteriorate the toughness of the same. Let it. Nb: 0.005 to 0.10% Nb precipitates as Nb (C, N), has the effect of suppressing the growth of austenite grains or ferrite grains during the repeated transformation treatment, and expands the austenite unrecrystallized region. The content is preferably 0.005% or more, but if it exceeds 0.10%, the toughness of the heat affected zone deteriorates. It is more preferably 0.050% or less.

【0025】Ti:0.005 〜0.025 % Tiは、Ti(C,N) として析出し、繰り返し変態処理中のオ
ーステナイト粒あるいはフェライト粒の粒成長を抑制す
る効果があり、この効果を得るには0.005 %以上が好ま
しいが、0.025 %を超えるとTi(C,N) 粒子の粗大化によ
り期待する効果は得られない。
Ti: 0.005 to 0.025% Ti precipitates as Ti (C, N) and has the effect of suppressing the growth of austenite grains or ferrite grains during the repeated transformation treatment. To obtain this effect, 0.005% The above is preferable, but if it exceeds 0.025%, the expected effect cannot be obtained due to the coarsening of the Ti (C, N) particles.

【0026】V:0.005-0.10% Vは、V(C,N) として析出し、繰り返し変態処理中のオ
ーステナイト粒あるいはフェライト粒の粒成長を抑制す
る効果があり、この効果を得るには0.005 %以上が好ま
しいが、0.10%を超えると靱性の劣化を招く。 Cu:0.1 〜2.0 % Cuは、0.1 %以上で固溶強化および析出強化による強度
上昇をもたらすが、2.0 %超では靱性を劣化させる。
V: 0.005-0.10% V precipitates as V (C, N) and has the effect of suppressing the growth of austenite grains or ferrite grains during the repeated transformation treatment. To obtain this effect, 0.005% The above is preferable, but if it exceeds 0.10%, toughness is deteriorated. Cu: 0.1 to 2.0% Cu increases the strength due to solid solution strengthening and precipitation strengthening at 0.1% or more, but deteriorates toughness at more than 2.0%.

【0027】Ni:0.1 〜2.0 % Niは、0.1 %以上で母材の高靱性を保ちつつ強度を上昇
させるが、高価であるうえ、リサイクル性を阻害するの
で2.0 %を上限とするのがよい。 Cr:0.1 〜1.0 %、Mo:0.05〜0.5 % Cr、Moは、それぞれ0.1 %以上、0.05%以上で母材の高
強度化に有効となるが、含有過多では靱性に悪影響を与
えるので上限をそれぞれ1.0 %、0.5 %とするのがよ
い。
Ni: 0.1 to 2.0% Ni increases the strength while maintaining the high toughness of the base material at 0.1% or more, but is expensive and hinders the recyclability, so the upper limit is preferably 2.0%. . Cr: 0.1 to 1.0%, Mo: 0.05 to 0.5% Cr and Mo are effective in increasing the strength of the base material when the content is 0.1% or more and 0.05% or more, respectively. It is better to set them to 1.0% and 0.5%, respectively.

【0028】B:0.0005〜0.0025% Bは、0.0005%以上で前記初期加熱時にオーステナイト
粒界に偏析しフェライト変態を抑制することで、高強度
化に寄与するが、0.0025%を超えると硬化が著しくなり
靱性劣化を招く虞がある。
B: 0.0005% to 0.0025% B is 0.0005% or more, which segregates at the austenite grain boundaries during the initial heating and suppresses ferrite transformation, thereby contributing to high strength. However, if it exceeds 0.0025%, hardening is remarkable. There is a possibility that the toughness may be deteriorated.

【0029】[0029]

【実施例】表1に示す化学組成になる鋼素材を用い、表
2に示す加熱・圧延・冷却条件にて、板厚20〜30mmの鋼
板を製造した。これらの鋼板について、板厚中心部から
採取したJIS14A号引張およびJIS4号シャルピー
試験片を用いて母材の強度および靱性を調査した。その
結果を表2に示す。
EXAMPLE A steel plate having a thickness of 20 to 30 mm was manufactured using steel materials having the chemical composition shown in Table 1 and under the heating, rolling and cooling conditions shown in Table 2. With respect to these steel sheets, the strength and toughness of the base metal were investigated using JIS No. 14A tensile and JIS No. 4 Charpy test pieces collected from the center of the sheet thickness. Table 2 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表2よりわかるように、発明例(本発明の
実施例)では、比較例に比べ、より高強度、高靱性が得
られており、また、シャルピー試験でのシェルフエネル
ギーも従来レベル(100J以下)と比較して非常に高い。
なお、比較例では、発明例と同レベルのシェルフエネル
ギーを示しているが、破面遷移温度が格段に高く(すな
わち悪く)なっている。
As can be seen from Table 2, in the invention example (Example of the present invention), higher strength and higher toughness were obtained as compared with the comparative example, and the shelf energy in the Charpy test was at the conventional level ( 100J or less).
Although the comparative example shows the same level of shelf energy as the inventive example, the fracture surface transition temperature is much higher (ie, worse).

【0033】[0033]

【発明の効果】本発明によれば、構造用鋼として十分な
強度、靭性を有しながらシャルピー試験でセパレーショ
ンが発生せず、シェルフエネルギーが低下しない超微細
フェライト組織鋼が得られるという優れた効果を奏す
る。
According to the present invention, there is obtained an excellent effect that an ultrafine ferritic steel having sufficient strength and toughness as a structural steel, not causing separation in a Charpy test, and not reducing the shelf energy can be obtained. To play.

フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA11 AA14 AA15 AA16 AA17 AA19 AA22 AA23 AA24 AA31 AA35 AA36 BA01 CA01 CA02 CA03 CB02 CC02 CC03 CC04 CD02 CD03 CF02 CF03 Continued on the front page F term (reference) 4K032 AA01 AA02 AA04 AA05 AA11 AA14 AA15 AA16 AA17 AA19 AA22 AA23 AA24 AA31 AA35 AA36 BA01 CA01 CA02 CA03 CB02 CC02 CC03 CC04 CD02 CD03 CF02 CF03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 析出物形成元素を含有する鋼素材をAc3
点以上に加熱後、圧下率40%以下で圧延後もしくは圧延
せずに、Ac3点未満に冷却し、次いでAc3点以上への加
熱とAr1点以下への冷却を各1回以上繰り返した後、最
終的にAc3点以上に加熱してAr3点以上で圧延し、その
後冷却することを特徴とする超微細フェライト組織鋼の
製造方法。
A steel material containing a precipitate-forming element is made of Ac 3
After heating above the point, rolling to a rolling reduction of 40% or less, or without rolling, cooling to less than Ac 3 points, then heating to Ac 3 points or more and cooling to Ar 1 point or less is repeated at least once each. And finally rolling to at least three points of Ac and rolling at three or more points of Ar, followed by cooling.
【請求項2】 析出物形成元素を含有する鋼素材をAc3
点以上に加熱後、圧下率40%以下で圧延後もしくは圧延
せずに、Ac3点未満に冷却し、次いでAc3点以上への加
熱とAr1点以下への冷却を各1回以上繰り返した後、最
終的にAc3点以上に加熱してAr3点以上で圧延し、その
後直ちに3℃/s以上で急冷し、該急冷を500 ℃以上で停
止することを特徴とする超微細フェライト組織鋼の製造
方法。
2. The steel material containing a precipitate-forming element is made of Ac 3
After heating above the point, rolling to a rolling reduction of 40% or less, or without rolling, cooling to less than Ac 3 points, then heating to Ac 3 points or more and cooling to Ar 1 point or less is repeated at least once each. After that, finally, the material is heated to three or more points of Ac and rolled at three or more points of Ar, and then immediately cooled at 3 ° C / s or more, and the rapid cooling is stopped at 500 ° C or more. Manufacturing method of structured steel.
【請求項3】 前記鋼素材を最初に加熱する温度は、該
鋼素材中の析出物形成元素によって形成される析出物の
少なくとも一部が溶解しうる温度とすることを特徴とす
る請求項1または2に記載の超微細フェライト組織鋼の
製造方法。
3. The temperature at which the steel material is first heated is a temperature at which at least a part of the precipitates formed by the precipitate-forming elements in the steel material can be dissolved. Or the method for producing an ultrafine ferritic steel according to item 2.
【請求項4】 前記鋼素材を、mass%で、C:0.01〜0.
40%、Si:0.05〜0.80%、Mn:0.2 〜2.5 %、Al:0.01
〜0.08%、Nb:0.005 〜0.10%を含有し、さらに、Ti:
0.005 〜0.025 %、V:0.005 〜0.10%のうち1種また
は2種を含有するものとしたことを特徴とする請求項1
〜3のいずれかに記載の超微細フェライト組織鋼の製造
方法。
4. The steel material is expressed in mass%, C: 0.01 to 0.2.
40%, Si: 0.05 to 0.80%, Mn: 0.2 to 2.5%, Al: 0.01
0.08%, Nb: 0.005 to 0.10%, and further, Ti:
2. The method according to claim 1, wherein one or two of 0.005 to 0.025% and V: 0.005 to 0.10% are contained.
The method for producing an ultrafine ferritic steel according to any one of claims 1 to 3.
【請求項5】 前記鋼素材を、さらに、mass%で、Cu:
0.1 〜2.0 %、Ni:0.1 〜2.0 %、Cr:0.1 〜1.0 %、
Mo:0.05〜0.5 %、B:0.0005〜0.0025%のうち1種ま
たは2種以上を含有するものとしたことを特徴とする請
求項4記載の超微細フェライト組織鋼の製造方法。
5. The steel material according to claim 1, further comprising:
0.1-2.0%, Ni: 0.1-2.0%, Cr: 0.1-1.0%,
5. The method for producing an ultrafine ferritic steel according to claim 4, wherein one or more of Mo: 0.05 to 0.5% and B: 0.0005 to 0.0025% are contained.
JP2001141816A 2001-05-11 2001-05-11 Method for producing steel with ultrafine ferritic structure Pending JP2002332521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141816A JP2002332521A (en) 2001-05-11 2001-05-11 Method for producing steel with ultrafine ferritic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141816A JP2002332521A (en) 2001-05-11 2001-05-11 Method for producing steel with ultrafine ferritic structure

Publications (1)

Publication Number Publication Date
JP2002332521A true JP2002332521A (en) 2002-11-22

Family

ID=18988210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141816A Pending JP2002332521A (en) 2001-05-11 2001-05-11 Method for producing steel with ultrafine ferritic structure

Country Status (1)

Country Link
JP (1) JP2002332521A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732789A (en) * 2012-06-05 2012-10-17 舞阳钢铁有限责任公司 High-performance ocean platform steel and its production method
KR20180109763A (en) * 2017-03-28 2018-10-08 다이도 토쿠슈코 카부시키가이샤 Annealed steel material and method for manufacturing the same
JP7062961B2 (en) 2017-03-28 2022-05-09 大同特殊鋼株式会社 Annealed steel and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732789A (en) * 2012-06-05 2012-10-17 舞阳钢铁有限责任公司 High-performance ocean platform steel and its production method
KR20180109763A (en) * 2017-03-28 2018-10-08 다이도 토쿠슈코 카부시키가이샤 Annealed steel material and method for manufacturing the same
CN108660367A (en) * 2017-03-28 2018-10-16 大同特殊钢株式会社 Annealing steel and its manufacturing method
KR102047317B1 (en) * 2017-03-28 2019-11-21 다이도 토쿠슈코 카부시키가이샤 Annealed steel material and method for manufacturing the same
US10988823B2 (en) 2017-03-28 2021-04-27 Daido Steel Co., Ltd. Annealed steel material and method for manufacturing the same
JP7062961B2 (en) 2017-03-28 2022-05-09 大同特殊鋼株式会社 Annealed steel and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
WO2008093897A1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JP2003147479A (en) Non-heatteated high strength and high toughness forging, and production method therefor
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2003147482A (en) Non-heatteated high strength and high toughness forging, and production method therefor
JP2000160245A (en) Production of high strength steel excellent in hic resistance
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2006342387A (en) High-strength hot-rolled steel sheet and its manufacturing method
JP2002275576A (en) Low yield ratio steel for low temperature use and production method therefor
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP2002332521A (en) Method for producing steel with ultrafine ferritic structure
JP2001342520A (en) Method for manufacturing high tension steel of low yield ratio and superior toughness with little fluctuation of material property
JP2003147481A (en) Non-heatteated high strength and high toughness steel for forging, method of producing the steel, and method of producing forging
JPH06116639A (en) Production of ultrahigh tensile strength steel having stress corrosion cracking resistance
JP2003277829A (en) Method of producing high toughness, high tensile strength steel
JP2003147480A (en) Non-heatteated high strength and high toughness forging, and production method therefor
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP2003147436A (en) Method for manufacturing non-heat treated forging with high strength and high toughness
JP2003105439A (en) Low yield ratio steel for low temperature use, and production method therefor