JP2002331292A - Fluoric acid-containing wastewater treatment method and apparatus - Google Patents

Fluoric acid-containing wastewater treatment method and apparatus

Info

Publication number
JP2002331292A
JP2002331292A JP2001137644A JP2001137644A JP2002331292A JP 2002331292 A JP2002331292 A JP 2002331292A JP 2001137644 A JP2001137644 A JP 2001137644A JP 2001137644 A JP2001137644 A JP 2001137644A JP 2002331292 A JP2002331292 A JP 2002331292A
Authority
JP
Japan
Prior art keywords
hydrofluoric acid
liquid
concentration
ion exchange
acid wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001137644A
Other languages
Japanese (ja)
Inventor
Junji Mizutani
淳二 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2001137644A priority Critical patent/JP2002331292A/en
Publication of JP2002331292A publication Critical patent/JP2002331292A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat fluoric acid-containing wastewater for recovering both fluoric acid and water for recycle at a low operation cost with least waste generated. SOLUTION: The fluoric acid-containing wastewater treatment apparatus is constituted of a fluoric acid wastewater supply system 1, an alkali supply system 2 for supplying KOH or the like for neutralizing fluoric acid-containing wastewater, an evaporation/concentration device 3 for concentrating a neutralized liquid to about 50 time while recovering distilled water, an ion exchange device 5 receiving the supply of a concentrated liquid and the supply of pure water from a pure water supply system 6 and generating hydrogen ions and hydroxyl ions from both liquids to separate and discharge highly concentrated fluoric acid and alkali, or the like. Fluoric acid wastewater can be treated so as to recover distilled water of high purity and highly concentrated fluoric acid in a reutilizable form without almost generating waste.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希薄濃度のフッ酸
を含むフッ酸排水を処理するフッ酸排水処理装置に関
し、特に半導体等の電子部品の製造工程中の洗浄に使用
したフッ酸排水の処理技術として好都合に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrofluoric acid wastewater treatment apparatus for treating hydrofluoric acid wastewater containing dilute hydrofluoric acid, and more particularly to a hydrofluoric acid wastewater treatment apparatus used for cleaning during a manufacturing process of electronic parts such as semiconductors. It is conveniently used as a processing technology.

【0002】[0002]

【従来の技術】フッ酸排水は、通常、消石灰でフッ酸を
中和してフッ化カルシウムにして、これを沈殿分離する
方法で処理されていた。しかしながら、この方法では、
フッ化カルシウムのスラッジから成る多量の廃棄物が発
生するという問題があった。又、このような処理方法に
よれば、フッ化カルシウムを含んだ懸濁水からフッ化カ
ルシウムを分離するために沈殿操作や脱水操作が必要に
なり、そのために広いスペースを占める大型の設備が必
要になるという問題もあった。
2. Description of the Related Art Usually, hydrofluoric acid wastewater is treated by a method of neutralizing hydrofluoric acid with slaked lime to form calcium fluoride, and separating and separating the calcium fluoride. However, in this method,
There is a problem in that a large amount of waste consisting of calcium fluoride sludge is generated. In addition, according to such a treatment method, a precipitation operation and a dehydration operation are required to separate calcium fluoride from the suspension water containing calcium fluoride, and thus large facilities that occupy a large space are required. There was also the problem of becoming.

【0003】このような通常の処理方法に対して、フッ
酸排水を苛性ソーダ水溶液や苛性カリ水溶液のようなア
ルカリ性水溶液で中和した後蒸発濃縮して蒸留水を回収
するフッ酸含有排水の処理方法が提案されている(特開
平9−271785号公報参照)。この方法によれば、
フッ酸排水が濃縮水になって大幅に減量されるので、こ
れに化学当量の消石灰を添加することにより、後処理を
効率的に実施できるとされている。
[0003] In contrast to such a conventional treatment method, there is a method of treating a hydrofluoric acid-containing wastewater in which neutralized hydrofluoric acid wastewater is diluted with an alkaline aqueous solution such as an aqueous solution of caustic soda or potassium hydroxide, and then concentrated by evaporation to recover distilled water. It has been proposed (see JP-A-9-271785). According to this method,
Since hydrofluoric acid wastewater becomes concentrated water and is greatly reduced in weight, it is said that by adding a chemical equivalent of slaked lime to this, post-treatment can be carried out efficiently.

【0004】しかしながら、このように処理方法では、
多量のフッ化カルシウムの廃棄物が発生するという問題
は解決されていない。一方、硝フッ酸廃液を第一電気透
析装置の脱酸室を通過させ、PH調整室で水酸化カリウ
ム(苛性カリ)を添加してフッ酸を中和し、第二電気透
析装置の脱塩室を通過させ、ここでイオン交換膜の作用
の下にアルカリライン及び酸ラインからそれぞれ水酸化
ナトリウム及びフッ酸を取り出し、前者をこの系で再利
用すると共に後者を回収し、残りの硝フッ酸廃液を第一
電気透析装置の濃縮室を通過させ、ここで硝酸を分離す
るようにした硝フッ酸廃液から硝酸とフッ酸とを分離回
収する方法及び装置が提案されている(特開平9−10
557号公報参照)。
However, in such a processing method,
The problem of generating a large amount of calcium fluoride waste has not been solved. On the other hand, the nitric hydrofluoric acid waste liquid is passed through the deoxidizing chamber of the first electrodialyzer, and potassium hydroxide (caustic potash) is added to neutralize the hydrofluoric acid in the pH adjusting chamber, and the desalting chamber of the second electrodialyzer is used. Through which sodium hydroxide and hydrofluoric acid are respectively taken out of the alkali line and the acid line under the action of the ion exchange membrane, and the former is reused in this system, and the latter is recovered. And a method for separating and recovering nitric acid and hydrofluoric acid from nitric hydrofluoric acid waste liquid in which nitric acid is separated therefrom has been proposed (JP-A-9-10).
557).

【0005】この方法及び装置では、更に第三電気透析
室を設けて、その濃縮室にPH調整後の硝フッ酸廃液を
入れて通過させると共に、第二電気透析装置を通過した
後の硝フッ酸廃液を第三電気透析室の脱塩室に入れて通
過させ、その中の塩であるフッ化カリウムを濃縮室側に
移動させるようにした方法及び装置も提案されている。
In this method and apparatus, a third electrodialysis chamber is further provided, and a nitric hydrofluoric acid waste liquid after the pH adjustment is put into and passed through the concentrating chamber, and the nitric hydrofluoric acid after passing through the second electrodialysis apparatus is passed. There has also been proposed a method and an apparatus in which an acid waste liquid is passed through a desalting chamber of a third electrodialysis chamber, and potassium salt as a salt therein is moved to a concentration chamber side.

【0006】しかしながら、この方法では、バイポーラ
膜を用いてアルカリライン及び酸ラインの水を電離して
フッ酸を生成させるための水素イオンを発生させている
ため、例えば4モル/リットルという高濃度の塩では電
流効率が89%と低い値になること、バイポーラ膜が不
純物も透過させるためこの不純物が再使用を目的とする
回収フッ酸中に混入すること、廃液中の水を回収できな
いこと、等の諸問題がある。即ち、この方法は、ステン
レス鋼板等の酸洗いに利用された硝フッ酸廃液の再利用
に関するものであり、不純物が厳しく規制される電子部
品洗浄用のフッ酸の再利用を可能にする処理に適用でき
るような技術ではない。
However, in this method, since hydrogen ions for generating hydrofluoric acid are generated by ionizing water in an alkali line and an acid line using a bipolar membrane, a high concentration of, for example, 4 mol / l is obtained. The salt has a low current efficiency of 89%, the bipolar membrane also allows impurities to permeate, and the impurities are mixed into the recovered hydrofluoric acid for reuse, and the water in the waste liquid cannot be recovered. There are various problems. That is, this method relates to the reuse of nitric hydrofluoric acid waste liquid used for pickling stainless steel sheets and the like, and to a process that enables reuse of hydrofluoric acid for cleaning electronic components in which impurities are strictly regulated. It is not an applicable technology.

【0007】[0007]

【発明が解決しようとする課題】本発明は従来技術にお
ける上記問題を解決し、殆ど廃棄物を発生させることな
く、運転コストが低く、フッ酸含有排水中のフッ酸及び
水の両方を電子部品等の洗浄に再使用可能な程度に高純
度で回収して有効に再利用でき、環境保全に最適なフッ
酸排水処理方法及び装置を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, reduces the operating cost, generates little waste, and converts both hydrofluoric acid and water in hydrofluoric acid-containing wastewater into electronic components. An object of the present invention is to provide a method and an apparatus for treating hydrofluoric acid wastewater, which can be recovered with high purity to such an extent that they can be reused for washing and the like and can be effectively reused, and are optimal for environmental conservation.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1の発明は、希薄濃度のフッ酸を含
むフッ酸排水を処理するフッ酸排水処理方法において、
前記フッ酸排水に加えられると水溶性の高い塩を生成さ
せるアルカリを前記フッ酸排水に加えて該フッ酸排水を
中和液にする中和工程と、前記中和液を蒸発濃縮装置で
蒸発させ前記塩の溶解度以下で高濃度に濃縮して濃縮液
にする濃縮工程と、イオン交換操作であって少なくとも
水素イオンを発生させる側に純水を供給して該純水を電
気分解して固体高分子電解質膜を透過させて前記水素イ
オンを発生させる操作を含むイオン交換操作によって前
記濃縮液をフッ酸含有水とアルカリ含有水と残りの脱塩
水とに分離してそれぞれフッ酸含有水系とアルカリ含有
水系と前記蒸発濃縮装置に戻す戻し系とに排出可能にす
る分離工程と、を有することを特徴とする。
According to the present invention, there is provided a hydrofluoric acid wastewater treatment method for treating hydrofluoric acid wastewater containing dilute hydrofluoric acid.
A neutralization step of adding an alkali that forms a highly water-soluble salt when added to the hydrofluoric acid wastewater to the hydrofluoric acid wastewater to make the hydrofluoric acid wastewater a neutralizing solution, and evaporating the neutralized solution with an evaporator A concentration step of concentrating the solution to a high concentration below the solubility of the salt to obtain a concentrated solution, and supplying pure water to at least a side where hydrogen ions are generated in an ion exchange operation, and electrolyzing the pure water to obtain a solid. The concentrated solution is separated into hydrofluoric acid-containing water, alkali-containing water, and the remaining demineralized water by an ion exchange operation including an operation of generating the hydrogen ions by permeating the polymer electrolyte membrane, and respectively separating the hydrofluoric acid-containing water system and the alkali. A separation step for allowing discharge to a water-containing system and a return system for returning to the evaporative concentration apparatus.

【0009】請求項2の発明は、上記に加えて、前記濃
縮液の濃度を検出する濃度検出工程と、検出した濃度が
前記高濃度になると前記濃縮液を濃縮液貯留部に静置し
て上部の液と下部の不純物含有液とに分離させる静置工
程と、前記イオン交換操作の対象になるように前記上部
の液を取り出す上部液取り出し工程と、前記不純物含有
液を排出する排液工程と、を有することを特徴とする。
According to a second aspect of the present invention, in addition to the above, a concentration detecting step for detecting the concentration of the concentrated solution, and when the detected concentration becomes the high concentration, the concentrated solution is allowed to stand still in the concentrated solution storage section. A standing step of separating the upper liquid and a lower impurity-containing liquid, an upper liquid extracting step of extracting the upper liquid to be subjected to the ion exchange operation, and a draining step of discharging the impurity-containing liquid And the following.

【0010】この場合、濃縮液を濃縮液貯留部に静置す
る静置工程は、通常、蒸発濃縮装置の濃縮液溜部から濃
縮液を取り出して別の貯留部に入れて静置する方法で行
われるが、濃縮液溜部自体に静置する方法で行われても
よい。
In this case, the step of allowing the concentrated liquid to stand still in the concentrated liquid storage section usually involves removing the concentrated liquid from the concentrated liquid storage section of the evaporating and concentrating apparatus, placing it in another storage section, and allowing it to stand still. This may be performed, but may be performed by a method of allowing the concentrated liquid to stand still in the concentrated liquid reservoir itself.

【0011】請求項3の発明は、希薄濃度のフッ酸を含
むフッ酸排水を処理するフッ酸排水処理装置において、
前記フッ酸排水を供給可能なフッ酸排水供給系と、前記
フッ酸排水に加えられると水溶性の高い塩を生成させる
アルカリであって前記フッ酸排水に加えられて該フッ酸
排水を中和液にするアルカリを供給可能なアルカリ供給
系と、前記中和液を取り入れて蒸発させ前記塩の溶解度
以下で高濃度に濃縮して濃縮液にする蒸発濃縮装置と、
前記濃縮液が供給されると共に純水が供給されイオン交
換操作であって少なくとも水素イオンを発生させる側に
純水を供給して該純水を電気分解して固体高分子電解質
膜を透過させて前記水素イオンを発生させる操作を含む
イオン交換操作によって前記濃縮液をフッ酸含有水とア
ルカリ含有水と残りの脱塩水とに分離してそれぞれフッ
酸含有水系とアルカリ含有水系と前記蒸発濃縮装置に戻
す戻し系とに排出可能にするイオン交換装置と、前記純
水を供給可能な純水供給系と、を有することを特徴とす
る。
A third aspect of the present invention is a hydrofluoric acid wastewater treatment apparatus for treating hydrofluoric acid wastewater containing diluted hydrofluoric acid.
A hydrofluoric acid wastewater supply system capable of supplying the hydrofluoric acid wastewater, and an alkali that generates a highly water-soluble salt when added to the hydrofluoric acid wastewater and added to the hydrofluoric acid wastewater to neutralize the hydrofluoric acid wastewater An alkali supply system capable of supplying alkali to be liquefied, and an evaporative concentration device that takes in the neutralized solution, evaporates and concentrates to a high concentration below the solubility of the salt to form a concentrated solution,
Pure water is supplied while the concentrated liquid is supplied.Pure water is supplied to at least the side where hydrogen ions are generated in an ion exchange operation, and the pure water is electrolyzed and permeated through the solid polymer electrolyte membrane. The concentrated solution is separated into hydrofluoric acid-containing water, alkali-containing water, and the remaining demineralized water by an ion exchange operation including an operation of generating the hydrogen ions, and the concentrated liquid is separated into a hydrofluoric acid-containing water system, an alkali-containing water system, and the evaporative concentration device, respectively. It is characterized by having an ion exchange device capable of discharging to a return system and a pure water supply system capable of supplying the pure water.

【0012】請求項4の発明は、上記に加えて、前記濃
縮液の濃度を検出する濃度検出手段と、前記濃縮液を溜
める濃縮液貯留手段と、該濃縮液貯留手段によって貯留
された濃縮液の上部の液を前記イオン交換装置に供給す
る上部液供給系と、前記貯留された濃縮液の下部の液を
排出する不純物液排出系と、前記イオン交換装置を作動
させるイオン交換装置作動手段と、前記濃度検出手段が
前記高濃度を検出すると前記貯留手段を作動させて前記
濃縮液を溜めてそれから所定時間経過後に前記上部液供
給系が前記上部の液を前記イオン交換装置に供給し前記
不純物液排出系が前記下部の液を排出し前記供給後に前
記作動手段が前記イオン交換装置を作動させるように制
御する制御手段と、を有することを特徴とする。
According to a fourth aspect of the present invention, in addition to the above, a concentration detecting means for detecting the concentration of the concentrated liquid, a concentrated liquid storing means for storing the concentrated liquid, and a concentrated liquid stored by the concentrated liquid storing means. An upper liquid supply system for supplying the upper liquid to the ion exchange device, an impurity liquid discharge system for discharging the lower liquid of the stored concentrated liquid, and an ion exchange device operating means for operating the ion exchange device. When the concentration detection means detects the high concentration, the storage means is operated to store the concentrated liquid, and after a lapse of a predetermined time, the upper liquid supply system supplies the upper liquid to the ion exchange device, and And a control means for controlling the operating means to operate the ion exchange device after the liquid is discharged and the liquid is discharged from the lower part and supplied.

【0013】この場合、濃縮液貯留手段としては、通
常、適当なタンク等の濃縮液貯留部を蒸発濃縮装置の外
部に設けると共に、濃縮液を濃縮蒸発装置の濃縮液溜部
から外部の濃縮液貯留部に移す適当な濃縮液移載装置を
設ける構成にされるが、濃縮液を静置する間蒸発濃縮装
置による濃縮を停止させる濃縮停止手段を設けて、蒸発
濃縮装置の濃縮液溜部自体を濃縮液貯留部にする手段と
してもよい。この場合には、別の濃縮液貯留部関連設備
が不要になって設備コストを下げられると共に、これを
設置するスペースが不要になる。但し、上記の如く蒸発
濃縮装置内で上部液と下部液とを分離させる静置時間が
必要になり、この時間中濃縮操作ができないので、蒸発
濃縮装置の稼働率が低下することになる。従って、この
手段は、設備計画上、この点が問題にならないような場
合に採用される。
In this case, as the concentrated liquid storage means, a concentrated liquid storage section such as a suitable tank is usually provided outside the evaporative concentration apparatus, and the concentrated liquid is supplied from the concentrated liquid storage section of the concentrated evaporator to the external concentrated liquid. The apparatus is provided with a suitable concentrated liquid transfer device for transferring the concentrated liquid to the storage section, but provided with a concentration stopping means for stopping concentration by the evaporative concentration apparatus while the concentrated liquid is allowed to stand still, and the concentrated liquid reservoir itself of the evaporative concentration apparatus is provided. May be used as a concentrated liquid storage unit. In this case, another equipment for storing the concentrated liquid is not required, so that the equipment cost can be reduced, and the space for installing the equipment is not required. However, as described above, a standing time for separating the upper liquid and the lower liquid in the evaporative concentration apparatus is required, and the concentration operation cannot be performed during this time, so that the operation rate of the evaporative concentration apparatus decreases. Therefore, this means is adopted when this point is not a problem in the facility planning.

【0014】[0014]

【発明の実施の形態】図1は本発明を適用したフッ酸排
水処理装置の全体構成の一例を示す。本装置は、希薄濃
度のフッ酸を含むフッ酸排水として、例えば電子部品の
製造工程中の洗浄に使用された後のフッ酸排水であって
濃度が0.5%程度以下で0.1%程度までのフッ酸排
水を処理する装置であり、フッ酸排水を供給可能なフッ
酸排水供給系1、アルカリ供給系2、蒸発濃縮装置3、
イオン交換装置5、等で構成されている。
FIG. 1 shows an example of the overall configuration of a hydrofluoric acid wastewater treatment apparatus to which the present invention is applied. The present apparatus is a hydrofluoric acid wastewater containing a dilute concentration of hydrofluoric acid, for example, a hydrofluoric acid wastewater after being used for cleaning in a manufacturing process of an electronic component. A hydrofluoric acid wastewater supply system 1, an alkali supply system 2, an evaporative concentrator 3, which is capable of supplying hydrofluoric acid wastewater.
It comprises an ion exchange device 5 and the like.

【0015】フッ酸排水供給系1は、通常、電子部品等
を洗浄した後のフッ酸排水を中間タンクに溜めた後、本
装置での処理に適合するように図示しないポンプで連続
的に又は間歇的に送水するように構成されていて、蒸発
濃縮装置3の胴体部分31の下部に結合される。
The hydrofluoric acid wastewater supply system 1 usually stores hydrofluoric acid wastewater after washing electronic components and the like in an intermediate tank, and then continuously or with a pump (not shown) so as to be compatible with the treatment in the present apparatus. It is configured to supply water intermittently and is connected to the lower part of the body part 31 of the evaporative concentration device 3.

【0016】アルカリ供給系2は、水酸化カリウム(K
OH)や水酸化ナトリウム(NaOH)等のフッ酸排水
に加えられると水溶性の高い塩として例えばフッ化カリ
ウム(KF)を生成させるアルカリを供給にするもので
あり、KOH溶解タンク21を含む配管系で構成されて
いる。このようなアルカリは、フッ酸排水に加えられて
これを中和液にする。アルカリ供給系2は、通常図示の
如くフッ酸排水供給系1に接続されるが、蒸発濃縮装置
3の胴体部分に直接接続されてもよい。
The alkali supply system 2 comprises potassium hydroxide (K
OH) or sodium hydroxide (NaOH) to supply an alkali that generates potassium fluoride (KF) as a highly water-soluble salt when added to hydrofluoric acid wastewater. It is composed of a system. Such alkali is added to hydrofluoric acid wastewater to make it a neutralizing solution. The alkali supply system 2 is usually connected to the hydrofluoric acid drainage supply system 1 as shown in the figure, but may be directly connected to the body of the evaporative concentration device 3.

【0017】蒸発濃縮装置3は、中和液を取り入れて蒸
発させ、例えば塩KFの溶解度以下で濃縮率50倍程度
に高濃度に濃縮して濃縮液にする装置であり、前記胴体
部分31、加熱蒸気室32、加熱管33、凝縮水室3
4、加熱蒸気系35、濃縮液を溜める濃縮液溜部36、
本例では別体になっている凝縮器37、その真空ポンプ
38、蒸留水ポンプ39、冷却水系40、加熱蒸気ドレ
ン系41、濃縮液循環ポンプ42を含む濃縮液循環系4
3、濃縮液排出系44、濃縮液排出ポンプ45、等で構
成されている。なお、本例の蒸発濃縮装置3は減圧水平
管単効蒸気加熱式の装置であるが、多重効用式や蒸気圧
縮式等の高効率の蒸発濃縮装置を使用することも可能で
ある。
The evaporating and concentrating device 3 is a device which takes in the neutralized solution and evaporates it, for example, concentrates it into a concentrated solution at a concentration of about 50 times less than the solubility of the salt KF to obtain a concentrated solution. Heating steam chamber 32, heating pipe 33, condensed water chamber 3
4, a heated steam system 35, a concentrated liquid reservoir 36 for storing the concentrated liquid,
In this embodiment, the condenser 37, which is a separate component, the vacuum pump 38, the distilled water pump 39, the cooling water system 40, the heated steam drain system 41, and the concentrated liquid circulation system 4 including the concentrated liquid circulation pump 42
3, a concentrated liquid discharging system 44, a concentrated liquid discharging pump 45, and the like. Although the evaporative concentrator 3 of this example is a single-effect vapor heating type device with a reduced-pressure horizontal tube, a high-efficiency evaporative concentrator such as a multi-effect type or a vapor compression type can also be used.

【0018】イオン交換装置5は、濃縮液排出系44か
ら濃縮液が供給されると共に、純水を供給可能な純水供
給系6から純水が供給されることにより、イオン交換操
作によって濃縮液をフッ酸含有水として例えば2%程度
のフッ酸水とアルカリ含有水として例えば6%のKOH
水溶液と残りの脱塩水とに分離して排出可能にする装置
であり、処理されるべき濃縮液が流される被処理液室5
1を形成するように配置された一対のアニオン交換膜5
2及びカチオン交換膜53、これらの膜に対向して配設
されそれぞれ図示しない陽極及び陰極に接触し純水が供
給されるカチオン型の固体高分子電解質膜54及びアニ
オン型の固体高分子電解質膜55を備えている。
The ion exchange device 5 receives the concentrated liquid from the concentrated liquid discharge system 44 and the pure water from the pure water supply system 6 capable of supplying pure water. As hydrofluoric acid-containing water, for example, about 2% hydrofluoric acid water and as alkali-containing water, for example, 6% KOH
This is a device for separating and discharging an aqueous solution and the remaining demineralized water, and a liquid chamber 5 to be treated, through which a concentrated liquid to be treated flows.
A pair of anion exchange membranes 5 arranged to form
2 and a cation exchange membrane 53, a cation-type solid polymer electrolyte membrane 54 and an anion-type solid polymer electrolyte membrane which are disposed opposite to these membranes, respectively, and are supplied with pure water in contact with an anode and a cathode (not shown). 55 are provided.

【0019】電気分解された残りの脱塩水は、戻し系5
6を介して濃縮液溜部36に排出され返送される。フッ
酸水及びアルカリ含有水はそれぞれフッ酸含有水系であ
るフッ酸回収系57及びアルカリ含有水系であるKOH
回収系58に排出される。発生した酸素及び水素は直接
又は配管系を介して大気中に放出される。なお、図1で
はイオン交換装置5を仮に1基だけ示しているが、通常
このような装置が複数組設けられる。上記のイオン交換
操作では、少なくとも水素イオンを発生させる側に純水
を供給してこの純水を電気分解して固体高分子電解質膜
を透過させて前記水素イオンを発生させればよいが、本
例では、上記の如くカチオン型及びアニオン型の固体高
分子電解質膜55によって後述するようにH+及びOH
−を発生させてい。
The remaining electrolyzed demineralized water is supplied to a return system 5
The liquid is discharged to the concentrated liquid reservoir 36 through the pipe 6 and returned. The hydrofluoric acid water and the alkali-containing water are respectively a hydrofluoric acid recovery system 57 which is a hydrofluoric acid-containing water system and a KOH which is an alkali-containing water system.
It is discharged to the recovery system 58. The generated oxygen and hydrogen are released to the atmosphere directly or via a piping system. Although FIG. 1 shows only one ion exchange device 5, a plurality of such devices are usually provided. In the above-described ion exchange operation, pure water may be supplied to at least a side where hydrogen ions are generated, and the pure water may be electrolyzed and permeated through the solid polymer electrolyte membrane to generate the hydrogen ions. In the example, H + and OH are used as described later by the cationic and anionic solid polymer electrolyte membranes 55 as described above.
-Is occurring.

【0020】なお、図1では詳細図示を省略している
が、電気系統、手動弁や自動弁を含む装備品、運転操作
装置等の通常の設備が必要に応じて設けられる。そして
本装置は、自動運転や手動運転等、使用目的に適合した
運転操作が可能なように構成される。
Although not shown in detail in FIG. 1, ordinary equipment such as an electric system, equipment including a manual valve and an automatic valve, and an operation device are provided as necessary. The present device is configured to perform a driving operation suitable for the purpose of use, such as automatic driving or manual driving.

【0021】図2は、本発明を適用したフッ酸排水処理
方法の一例を示す。フッ酸排水処理方法は、図1に示す
ような装置を用いて希薄濃度のフッ酸を含むフッ酸排水
を処理する方法であり、基本的に中和工程Aと濃縮工程
Bとイオン交換操作からなる分離工程Cとで構成されて
いる。
FIG. 2 shows an example of a hydrofluoric acid wastewater treatment method to which the present invention is applied. The hydrofluoric acid wastewater treatment method is a method of treating hydrofluoric acid wastewater containing a dilute concentration of hydrofluoric acid using an apparatus as shown in FIG. 1, and basically comprises a neutralization step A, a concentration step B, and an ion exchange operation. And a separation step C.

【0022】中和工程Aでは、前記アルカリとして例え
ばKOHをフッ酸排水に加えてフッ酸排水を例えばPH
10程度までの中和液にする。中和液の塩であるフッ化
カリウムKFは水によく溶解し、その飽和溶解度は30
%以上である。このようにフッ酸排水のフッ酸を中和す
ることにより、次の濃縮工程Bにおいて、フッ酸が蒸発
して蒸留水中に混入することが防止される。その結果、
高純度の蒸留水が得られ、これを洗浄水として再利用す
ることが可能になると共に、蒸気濃縮装置の凝縮水に接
触する部分に使用する材料がフッ酸によって腐食される
ことがなくなり、低コストの材料を採用することができ
る。
In the neutralization step A, for example, KOH as the alkali is added to the hydrofluoric acid wastewater, and the hydrofluoric acid wastewater is added to, for example, PH.
Make up to about 10 neutralization solution. Potassium fluoride KF, a salt of the neutralizing solution, is well soluble in water and has a saturation solubility of 30%.
% Or more. By thus neutralizing the hydrofluoric acid in the hydrofluoric acid wastewater, it is possible to prevent the hydrofluoric acid from evaporating and entering the distilled water in the next concentration step B. as a result,
High-purity distilled water is obtained, which can be reused as washing water, and the material used for the part of the steam concentrator that comes into contact with the condensed water is not corroded by hydrofluoric acid. Cost material can be adopted.

【0023】濃縮工程Bでは、中和液を蒸発濃縮装置で
蒸発させて高濃度に濃縮する。即ち、前記KFの溶解度
30%以下の濃度として本例では十分余裕のある6%程
度の高濃度に濃縮する。このときの濃縮倍率は50倍で
ある。この場合、上記の如くフッ酸が中和されていて、
蒸留水側への移行とそれに伴う諸問題は解決されてい
る。なお、濃縮液溜部36の底部の濃縮液は、適当な間
隔では少量づつ排出され、不純物が一定以上溜まらない
ようにされる。
In the concentration step B, the neutralized liquid is evaporated to a high concentration by an evaporator. That is, the concentration of the KF is set to a concentration of 30% or less, and in this example, the concentration is increased to a high concentration of about 6%, which is a sufficient margin. The concentration magnification at this time is 50 times. In this case, hydrofluoric acid is neutralized as described above,
The transition to the distilled water side and the associated problems have been solved. Note that the concentrated liquid at the bottom of the concentrated liquid reservoir 36 is discharged little by little at appropriate intervals so that impurities do not accumulate more than a certain amount.

【0024】このようにKFが濃縮されて十分減量され
れば、濃縮液を従来技術のように消石灰で処理すること
も比較的容易になる。しかしその場合には、依然として
同量のスラッジが発生すると共に少量化されてはいるが
混濁液も残存し、これらを廃棄処分する必要が生ずる。
そのため本発明では、次に説明するように、高度に濃縮
された液を更にイオン交換操作によって処理するという
特異な処理方法を採用している。
[0024] If the KF is concentrated and sufficiently reduced in this way, it becomes relatively easy to treat the concentrate with slaked lime as in the prior art. However, in that case, the same amount of sludge is still generated and the turbid liquid remains, though reduced in amount, and it is necessary to dispose of these.
Therefore, in the present invention, as described below, a unique treatment method of further treating a highly concentrated liquid by an ion exchange operation is employed.

【0025】分離工程Cでは、純水を供給してイオン交
換操作によって濃縮液をフッ酸含有水とアルカリ含有水
とに分離して排出可能にする。即ち、図1に示すような
イオン交換装置により、固体高分子電解質膜54、55
部分に純水を供給しつつ、アニオン交換膜52とカチオ
ン交換膜53とで囲まれた被処理液室51を通過するよ
うに濃縮液を供給する。
In the separation step C, pure water is supplied, and the concentrated liquid is separated into hydrofluoric acid-containing water and alkali-containing water by an ion exchange operation to be discharged. That is, the solid polymer electrolyte membranes 54 and 55 are formed by the ion exchange device as shown in FIG.
While supplying pure water to the portion, the concentrated liquid is supplied so as to pass through the liquid chamber to be treated 51 surrounded by the anion exchange membrane 52 and the cation exchange membrane 53.

【0026】これにより、図3に示す如く、純水が電気
分解されて水素イオンH+と水酸イオンOH−とを発生
させ、濃縮されているが中和されイオン結合になってい
るフッ酸カリウムKFのF−及びK+がそれぞれアニオ
ン交換膜52及びカチオン交換膜53を透過してH+及
びOH−と結合し、フッ酸HF及び水酸化カリウムKO
Hを生成させ、これらを含有した水が排出されることに
なる。この場合、固体高分子電解質膜を用いて純水を電
気分解しているので、不純物を透過させることなくH+
及びOH−を供給し、生成させるHF及びKOHを高純
度のものにすることができる。
As a result, as shown in FIG. 3, pure water is electrolyzed to generate hydrogen ions H + and hydroxyl ions OH−, which are concentrated but neutralized to form ionic bonds of potassium hydrofluoride. F− and K + of KF pass through the anion exchange membrane 52 and the cation exchange membrane 53 and bind to H + and OH−, respectively.
H is generated, and water containing these is discharged. In this case, since pure water is electrolyzed using the solid polymer electrolyte membrane, H +
And OH- to be supplied, and the HF and KOH to be produced can be of high purity.

【0027】なお、電子部品等の洗浄に再使用するため
にはこのように高純度のHFが必要になるので、H+を
発生させるためには上記の如くカチオン型の固体高分子
電解質膜54が設けられるが、OH−を発生させる側で
は、アニオン型の固体高分子電解質膜55を用いること
なく、通常の電極液を電解する方式を採用することも可
能である。
Since high-purity HF is required for reuse in cleaning electronic parts and the like, the cation-type solid polymer electrolyte membrane 54 is used to generate H + as described above. Although it is provided, it is also possible to adopt a method of electrolyzing a normal electrode solution without using the anion-type solid polymer electrolyte membrane 55 on the OH-generating side.

【0028】これらの含有水は、それぞれHF及びKO
Hを高濃度に含有しているので、それぞれ再利用可能で
ある。その結果、本発明のフッ酸排水処理方法によれ
ば、廃棄物をほとんど発生させることなく、フッ酸排水
を処理することができる。
These water contents are HF and KO, respectively.
Since H is contained at a high concentration, each can be reused. As a result, according to the hydrofluoric acid wastewater treatment method of the present invention, hydrofluoric acid wastewater can be treated with almost no waste.

【0029】発明者等は、以上のようなフッ酸排水処理
装置及び方法を用いてフッ酸排水の処理実験を行い、以
下のような結果を得た: フッ酸排水処理量 :1000L/h 濃度 :0.1% 使用アルカリ :KOH水溶液 使用量 :20L/h 濃度 :14% 中和値 :PH9.5 濃縮率 :50倍 濃縮液中の塩(KF)濃度 :6%(1モル/リットル) 生成した蒸留水中のフッ素イオン濃度:1ppm以下 濃縮蒸発時の蒸発温度 :約70℃ イオン交換装置 膜面積 :800cm2 ×10セル分 電流×電圧 :3V×120A×10セル分 電流効率 :98 % 純水供給量 陽極室 :0.4L/h×10セル分 陰極室 :0.15L/h×10セル分 分離されたフッ酸含有水量 :44L/h フッ酸濃度 :2% 不純物としてのカリウム :1ppm以下 分離された水酸化カリウム含有水量 :20L/h 水酸化カリウム濃度 :14% 以上の実験結果によれば、フッ酸排水から十分高濃度の
フッ酸含有水を回収でき、電子部品等を洗浄するときの
濃度0.5%程度の洗浄用フッ酸水として再使用するこ
とができる。又、水酸化カリウムも中和用アルカリとし
て使用するときの濃度の約14%という十分な高濃度で
回収でき、上記の用途として再使用することができた。
又、固体高分子電解質膜を使用しているので、濃縮液中
の塩(KF)濃度が6%(1モル/リットル)という高
濃度において、98%という高い電流効率が得られた。
The inventors conducted an experiment for treating hydrofluoric acid wastewater using the above hydrofluoric acid wastewater treatment apparatus and method, and obtained the following results: hydrofluoric acid wastewater treatment amount: 1000 L / h concentration : 0.1% Alkali used: KOH aqueous solution Used amount: 20 L / h Concentration: 14% Neutralization value: PH9.5 Concentration ratio: 50 times Salt (KF) concentration in concentrated solution: 6% (1 mol / L) Fluorine ion concentration in the generated distilled water: 1 ppm or less Evaporation temperature at the time of concentration evaporation: about 70 ° C. Ion exchange device Membrane area: 800 cm 2 × 10 cells Current × voltage: 3 V × 120 A × 10 cells Current efficiency: 98% pure Water supply Anode chamber: 0.4 L / h × 10 cells Cathode chamber: 0.15 L / h × 10 cells Separated hydrofluoric acid content water: 44 L / h Hydrofluoric acid concentration: 2% Potassium as an impurity: 1 ppm Bottom Separated potassium hydroxide-containing water content: 20 L / h Potassium hydroxide concentration: 14% According to the above experimental results, a sufficiently high concentration of hydrofluoric acid-containing water can be recovered from hydrofluoric acid wastewater to clean electronic components and the like. It can be reused as a hydrofluoric acid solution having a concentration of about 0.5%. Also, potassium hydroxide could be recovered at a sufficiently high concentration of about 14% of the concentration when used as an alkali for neutralization, and could be reused as described above.
Further, since the solid polymer electrolyte membrane was used, a high current efficiency of 98% was obtained when the concentration of the salt (KF) in the concentrated solution was as high as 6% (1 mol / L).

【0030】一方、イオン交換装置では、高濃縮液をイ
オン交換処理したが、膜の目詰まり等の問題が発生せ
ず、十分な分離性能を確保することができた。又、蒸発
温度を70℃とし、濃縮液を冷却することなくイオン交
換装置に流したが、膜に異状は見られなかった。
On the other hand, in the ion exchange apparatus, the highly concentrated solution was subjected to the ion exchange treatment. However, no problems such as clogging of the membrane occurred, and sufficient separation performance could be secured. Further, the evaporation temperature was set to 70 ° C., and the concentrated liquid was passed through the ion exchange apparatus without cooling, but no abnormality was found in the membrane.

【0031】以上から、濃縮処理と純水供給を伴ったイ
オン交換処理とを併用した本発明のフッ酸排水処理装置
及び方法によれば、イオン交換膜の分離性能や耐久性に
影響を及ぼすことなく、フッ酸排水を再使用可能なよう
に処理することができる。従って、本発明は、電子部品
等の洗浄において、フッ酸及びアルカリという原材料を
節約すると共に、廃棄物の発生をなくすることにより、
省資源及び環境保全という公益的目的に寄与することが
できる。
As described above, according to the hydrofluoric acid wastewater treatment apparatus and method of the present invention using both the concentration treatment and the ion exchange treatment accompanied by the supply of pure water, the separation performance and durability of the ion exchange membrane are affected. Instead, the hydrofluoric acid wastewater can be treated so that it can be reused. Therefore, the present invention saves raw materials such as hydrofluoric acid and alkali in cleaning electronic parts and the like, and eliminates generation of waste.
It can contribute to the public benefit of resource saving and environmental conservation.

【0032】図4は本発明を適用したフッ酸排水処理装
置の他の例を示す。本例の装置は、図1の装置に加え
て、濃縮液の濃度を検出する濃度検出手段としての比重
センサ7、濃縮液を溜める濃縮液貯留手段としての前記
濃縮液溜部36及び蒸発濃縮装置3による濃縮の停止を
可能にする濃縮停止手段となるそれぞれフッ酸排水供給
系1とアルカリ供給系2と加熱蒸気供給系35とに設け
られた自動開閉弁10、11、12及び前記濃縮液循環
ポンプ42等、貯留された上部の液をイオン交換装置5
に供給するように適当な高さ位置に開口した吸入口81
及び前記濃縮液排出ポンプ45を備えた上部液供給系
8、濃縮液溜部36の下部の液を排出するように濃縮液
循環系43から分岐された不純物液排出系としての自動
ブロー弁91及び循環系自動弁92を備えたブローライ
ン9、イオン交換装置を作動させる作動手段として純水
供給系6に設けられた自動開閉弁13等、制御手段とし
ての操作制御盤14、等を備えている。
FIG. 4 shows another example of a hydrofluoric acid wastewater treatment apparatus to which the present invention is applied. The apparatus of the present embodiment includes, in addition to the apparatus of FIG. 1, a specific gravity sensor 7 as a concentration detecting means for detecting the concentration of the concentrated liquid, the concentrated liquid storage section 36 as a concentrated liquid storing means for storing the concentrated liquid, and an evaporative concentration apparatus. Automatic opening / closing valves 10, 11, and 12 provided in the hydrofluoric acid drainage supply system 1, the alkali supply system 2, and the heating steam supply system 35, which serve as concentration stop means capable of stopping concentration by 3 and the concentrated liquid circulation, respectively. The stored upper liquid such as a pump 42 is transferred to the ion exchange device 5.
Inlet 81 opened at an appropriate height to supply
An upper liquid supply system 8 having the concentrated liquid discharge pump 45; an automatic blow valve 91 as an impurity liquid discharge system branched from the concentrated liquid circulation system 43 so as to discharge liquid below the concentrated liquid reservoir 36; A blow line 9 provided with a circulating system automatic valve 92, an automatic opening / closing valve 13 provided in the pure water supply system 6 as an operating means for operating the ion exchange device, an operation control panel 14 as a control means, and the like are provided. .

【0033】符号15及び16は濃縮液のPHを検出す
るPHメーター及びアルカリ供給系2に設けられた自動
調整弁であり、濃縮液を例えばPH10にするようにK
OHの流量を制御する。
Reference numerals 15 and 16 denote a PH meter for detecting the pH of the concentrated solution and an automatic adjusting valve provided in the alkali supply system 2.
Control the flow rate of OH.

【0034】図5は上記のような装置により実施できる
フッ酸排水処理方法の基本的工程を示す。本例では、図
2の方法に対して、濃縮液の濃度を検出する濃度検出工
程B1 、検出した濃度が予め定めた一定の濃度になると
濃縮工程を停止して濃縮液を濃縮液溜部31に静置して
上部の液と下部の不純物含有液とに分離させる静置工程
2 、イオン交換操作の対象になるように上部の液を取
り出す上部液取り出し工程B3 、及び不純物含有液を排
出する排液工程B4 が追加されている。図4の装置によ
れば、これらの工程は操作制御盤14で自動運転によっ
て実施される。
FIG. 5 can be implemented by an apparatus as described above.
The basic steps of the hydrofluoric acid wastewater treatment method are shown. In this example,
Concentration detection method that detects the concentration of the concentrated solution
About B1When the detected concentration reaches a predetermined constant concentration
After stopping the concentration step, the concentrated liquid is allowed to stand still in the concentrated liquid reservoir 31.
Stationary process for separating the upper liquid and the lower impurity-containing liquid
B TwoThe upper liquid so that it can be subjected to ion exchange operations.
Upper liquid removal process BThreeAnd liquid containing impurities
Outgoing drainage process BFourHas been added. According to the device of FIG.
If these steps are performed, the operation control panel
Implemented.

【0035】即ち、制御装置14は、比重センサ7が目
的とする高濃度として例えば6%の濃度に対応する比重
1.03g/cm3 を検出すると、濃縮停止手段が濃縮
を停止し、これから所定時間経過後として濃縮液中の不
純物がほぼ沈降した状態になるまでの例えば30分後に
上部液供給系8が上部の液をイオン交換装置5に供給
し、ブローライン9のブロー弁91を開いて濃縮液溜部
36の下部の不純物の沈澱した液を排出し、続いてイオ
ン交換装置5を作動させるように制御する。
That is, when the specific gravity sensor 7 detects a specific gravity of 1.03 g / cm 3 corresponding to, for example, a concentration of 6% as the target high concentration, the concentration stopping means stops the concentration, and the control unit 14 starts the concentration. The upper liquid supply system 8 supplies the upper liquid to the ion exchanger 5, for example, 30 minutes after the elapse of time until the impurities in the concentrated liquid are substantially settled down, and the blow valve 91 of the blow line 9 is opened. The liquid in which impurities are precipitated in the lower part of the concentrated liquid reservoir 36 is discharged, and then the ion exchange device 5 is controlled to operate.

【0036】蒸発濃縮装置3による濃縮の停止は、通
常、自動開閉弁10、11、12を閉鎖し、濃縮液循環
ポンプ42及び濃縮液排出ポンプ45を停止することに
より行われる。濃縮を再開するときには、当然これらの
弁を開きポンプ類を運転することになる。濃縮を停止し
て濃縮液を静置する時間は、実際の運転状態に合わせて
通常タイマで設定されるが、不純物の沈降の程度を判断
できる他の適当な方法で設定されてもよい。
The stop of the concentration by the evaporative concentration device 3 is usually performed by closing the automatic on-off valves 10, 11, and 12 and stopping the concentrate circulation pump 42 and the concentrate discharge pump 45. When the concentration is resumed, these valves are opened and the pumps are operated. The time during which the concentration is stopped and the concentrated liquid is allowed to stand is usually set by a timer according to the actual operation state, but may be set by another appropriate method that can determine the degree of sedimentation of impurities.

【0037】なお不純物をブローするときには、上記の
如くブロー弁91を開けるが、本例では濃縮液循環系4
3を利用しているので、この系に自動弁92を設けて、
この弁を閉めて循環ポンプ42を短時間運転することに
なる。イオン交換装置5への純水の供給は、濃縮液の供
給と相前後して行われる。
When the impurities are blown, the blow valve 91 is opened as described above.
3, the automatic valve 92 is provided in this system.
This valve is closed and the circulation pump 42 is operated for a short time. The supply of pure water to the ion exchange device 5 is performed before and after the supply of the concentrated liquid.

【0038】本例の装置によれば、フッ酸排水中にある
程度の不純物が含まれているときに、これを濃縮操作に
対応させてブローダウンするので、濃縮液中に不純物が
累積して滞留することがなく、イオン交換装置に濃縮液
を供給するときに、問題になる量の不純物の持ち込みを
防止することができる。その結果、イオン交換装置の運
転状態を良好に維持し、膜の洗浄等の操作を大幅に軽減
し、膜の耐久性を高めることができる。又、蒸発濃縮装
置3やイオン交換装置5の関連部分へのスケールの固着
等の問題を解消することができる。
According to the apparatus of this embodiment, when a certain amount of impurities is contained in the hydrofluoric acid wastewater, the impurities are blown down in correspondence with the concentration operation, so that the impurities accumulate in the concentrated liquid and remain. When supplying the concentrated liquid to the ion exchange apparatus, it is possible to prevent the introduction of a problematic amount of impurities. As a result, the operation state of the ion exchange device can be maintained in good condition, operations such as cleaning of the membrane can be greatly reduced, and the durability of the membrane can be increased. In addition, it is possible to solve the problem such as sticking of the scale to the relevant portions of the evaporative concentration device 3 and the ion exchange device 5.

【0039】図6は本発明を適用したフッ酸排水処理装
置の更に他の例を示す。本例の装置は、図4の装置に較
べて、濃縮液貯留手段の1つとして別置きの貯留タンク
17を設けた点が相違する。貯留タンク17は大気圧式
のタンクで、図示の如く大気に開放されている。又、フ
ッ酸排水供給系1とアルカリ供給系2と加熱蒸気供給系
35とに設けられた自動開閉弁10、11、12及び前
記濃縮液循環ポンプ42、濃縮液循環系43を切り換え
るための自動弁92、93、等の一時的な濃縮中断手段
となる機器類も濃縮液貯留手段を構成する。ブローライ
ン9にはブロー弁91が設けられる。貯留タンク17が
大気圧式であるので、不純物の沈澱した底部の液は重力
で排出される。
FIG. 6 shows still another example of the hydrofluoric acid wastewater treatment apparatus to which the present invention is applied. The apparatus of this example is different from the apparatus of FIG. 4 in that a separate storage tank 17 is provided as one of the concentrated liquid storage means. The storage tank 17 is an atmospheric pressure tank and is open to the atmosphere as shown in the figure. Also, automatic opening / closing valves 10, 11, and 12 provided in the hydrofluoric acid wastewater supply system 1, the alkali supply system 2, and the heating steam supply system 35, and the automatic operation for switching the concentrate circulation pump 42 and the concentrate circulation system 43 are performed. The devices such as the valves 92 and 93 serving as temporary concentration interrupting means also constitute the concentrated liquid storing means. The blow line 9 is provided with a blow valve 91. Since the storage tank 17 is of the atmospheric pressure type, the liquid at the bottom where impurities are precipitated is discharged by gravity.

【0040】本例の装置によるフッ酸排水の処理工程
は、基本的には図4の装置と同様に図5の工程で行われ
る。この場合、静置工程B2 では、比重計7で検出した
濃度が予め定めた一定の濃度になると、フッ酸排水供給
系1の自動開閉弁10及び濃縮液循環系43の自動弁9
2等を閉にして自動弁93を開にし、濃縮工程を一時中
断して濃縮液溜部36の液を貯留タンク17内に排出す
ることになる。この排出はごく短時間で行われ、排出が
完了すると、弁93を閉じ92、10等を開き、濃縮工
程を直ちに再開する。
The process of treating hydrofluoric acid wastewater by the apparatus of this embodiment is basically performed in the step of FIG. 5 similarly to the apparatus of FIG. In this case, the left step B 2, it reaches a certain concentration concentration detected by the specific gravity meter 7 is predetermined, automatic opening and closing valve hydrofluoric acid waste water supply system 1 10 and the automatic valve of the concentrate circulating system 43 9
By closing the second valve and the like and opening the automatic valve 93, the concentration step is temporarily interrupted and the liquid in the concentrated liquid reservoir 36 is discharged into the storage tank 17. This discharge is performed in a very short time, and when the discharge is completed, the valve 93 is closed and the valves 92, 10 and the like are opened, and the concentration step is immediately restarted.

【0041】一方、貯留タンク17では、濃縮操作とは
別個独立して静置工程B2 が行われ、図4の装置と同様
に図5の工程B2 以下の工程が実施される。このような
装置によれば、貯留タンク17及び自動弁93が追加に
なるが、濃縮液を静置させる間も蒸発濃縮装置を停止さ
せる必要がないので、設備全体としての稼働率を良くす
ることができる。
On the other hand, the storage tank 17, a separate independent stand Step B 2 It is made from the concentration operation, Step B 2 following the step of FIG. Like the device of FIG. 4 is performed. According to such a device, the storage tank 17 and the automatic valve 93 are added, but it is not necessary to stop the evaporating and concentrating device while the concentrated liquid is allowed to stand still, so that the operation rate of the entire equipment is improved. Can be.

【0042】図7は本発明を適用したフッ酸排水処理装
置の濃縮系の他の例を示す。本例の蒸発濃縮装置3は二
重効用式の装置であり、2基の胴体部分311 、3
2 、第1加熱蒸気系351 、胴体部分311 から蒸発
した第2加熱蒸気系35 2 、第1胴体部分311 である
程度濃縮された半濃縮液を第2胴体部分312 に導く液
移送系12 、第1及び第2加熱蒸気ドレン系411 、4
2 、第1及び第2真空ポンプ381 、382 、等を備
えている。
FIG. 7 shows a hydrofluoric acid wastewater treatment apparatus to which the present invention is applied.
5 shows another example of a concentrating system. The evaporating and concentrating apparatus 3 of this example is
It is a heavy duty type device and has two fuselage parts 311, 3
1Two, First heating steam system 351, Torso part 311Evaporation from
Second heating steam system 35 TwoThe first body part 311Is
The partially concentrated semi-concentrated liquid is supplied to the second body part 31.TwoLiquid leading to
Transfer system 1Two, First and second heated steam drain system 411, 4
1Two, First and second vacuum pumps 381, 38Two, Etc.
I have.

【0043】本例の装置では、第1及び第2胴体部分3
1 、312 の蒸発温度はそれぞれ約70℃及び40°
℃にされる。従って、冷却水としては通常の工業用水、
冷却塔の冷却水、地下水、河川水等、何れの水も使用可
能である。本例の装置によれば、イオン交換操作に送ら
れる濃縮水の温度を下げられるので、分離性能面では多
少不利になり、運転操作も多少複雑化するが、蒸気消費
量を大幅に低減させることができると共に、冷却器等を
設けることなく必然的に蒸発温度を低下させ、イオン交
換装置の膜の耐久性を向上させることができる。
In the apparatus of this embodiment, the first and second body parts 3
1 1, 31 2 of the evaporation temperature are about 70 ° C. and 40 °
° C. Therefore, as the cooling water, ordinary industrial water,
Any water such as cooling water for a cooling tower, groundwater, river water, etc. can be used. According to the apparatus of this example, since the temperature of the concentrated water sent to the ion exchange operation can be lowered, the separation performance is somewhat disadvantageous and the operation operation is somewhat complicated, but the steam consumption is significantly reduced. In addition, the evaporation temperature can be necessarily lowered without providing a cooler or the like, and the durability of the membrane of the ion exchange device can be improved.

【0044】なお、図1の装置において、真空ポンプ3
8による真空度を高くし、蒸発温度を40℃〜50℃に
するようにしてもよい。その場合にも、イオン交換膜の
耐久性を向上させることができる。又、運転実績等から
必要になれば、図1の装置の濃縮液排出系44に冷却器
を追加装備することも可能である。
In the apparatus shown in FIG.
The degree of vacuum according to 8 may be increased and the evaporation temperature may be set to 40 ° C to 50 ° C. Also in that case, the durability of the ion exchange membrane can be improved. Further, if necessary based on operation results, etc., a cooler can be additionally provided in the concentrated liquid discharge system 44 of the apparatus shown in FIG.

【0045】[0045]

【発明の効果】以上の如く本発明によれば、請求項1の
発明においては、フッ酸排水処理方法が、所定の構成を
備えた中和工程と濃縮工程と分離工程とを有するので、
中和工程でフッ酸排水に加えられると水溶性の高い塩を
生成させるアルカリをフッ酸排水に加えてこれを中和液
にするので、濃縮工程で蒸発させた蒸留水中へのフッ酸
の混入を防止し、これを再使用可能な水にすることがで
きる。又、濃縮工程で中和液を蒸発させ塩の溶解度以下
で高濃度に濃縮して濃縮液にするので、塩としてイオン
結合で含有しているフッ酸及びアルカリを高濃度にし
て、これらを回収したときに再使用可能にすることがで
きる。そして分離工程では、少なくとも水素イオンを発
生させる側に純水を供給して該純水を電気分解して固体
高分子電解質膜を透過させて前記水素イオンを発生させ
る操作を含むイオン交換操作によって濃縮液をフッ酸含
有水とアルカリ含有水とに分離して排出可能にするの
で、この操作をすることにより、高濃度のフッ酸とアル
カリとを別々に回収することができる。又、不純物を含
有する可能性のある残りの脱塩水は蒸発濃縮装置に戻さ
れ、例えば、その濃縮水溜部の底部濃縮水の間歇的な少
量のブロー排水という通常の方法によって処理される。
As described above, according to the present invention, in the invention of claim 1, the method for treating hydrofluoric acid wastewater includes a neutralization step, a concentration step, and a separation step having a predetermined structure.
Addition of an alkali that forms a highly water-soluble salt when added to hydrofluoric acid wastewater in the neutralization process to hydrofluoric acid wastewater to make it a neutralized solution, so that hydrofluoric acid is mixed into distilled water evaporated in the concentration process And this can be made reusable water. Also, in the concentration step, the neutralized solution is evaporated and concentrated to a high concentration below the solubility of the salt to form a concentrated solution, so the hydrofluoric acid and alkali contained in the ionic bond as salts are concentrated and recovered. Can be made reusable when done. In the separation step, pure water is supplied to at least a side where hydrogen ions are generated, and the pure water is concentrated by an ion exchange operation including an operation of electrolyzing the pure water and permeating the solid polymer electrolyte membrane to generate the hydrogen ions. Since the liquid is separated into hydrofluoric acid-containing water and alkali-containing water and can be discharged, by performing this operation, high-concentration hydrofluoric acid and alkali can be separately recovered. The remaining demineralized water, which may contain impurities, is returned to the evaporating and concentrating device and treated, for example, by the usual method of intermittent small-volume blow drainage at the bottom of the concentrated water reservoir.

【0046】その結果、従来技術の消石灰処理のように
スラッジや混濁液を発生させることなく、即ち殆ど廃棄
物を発生させることなく、フッ酸排水を蒸留水とフッ酸
と処理材料として追加供給したアルカリとに完全に分離
することができる。そしてこの場合、分離されたフッ酸
とアルカリとが高濃度になっているので、その全量を再
使用することができる。又、固体高分子電解質膜を用い
て純水を電解してフッ酸生成用の水素イオンを発生させ
るので、フッ酸中への不純物の混入が防止され、電子部
品等の洗浄に必要な高純度のフッ酸として再生すること
ができる。更に、このときの電流効率を良くし、消費電
力を少なくすることができる。
As a result, hydrofluoric acid wastewater was additionally supplied as distilled water, hydrofluoric acid, and a processing material without generating sludge or turbid liquid as in the case of the slaked lime treatment of the prior art, that is, generating almost no waste. It can be completely separated from alkali. In this case, since the separated hydrofluoric acid and alkali have a high concentration, the entire amount can be reused. In addition, since pure water is electrolyzed using a solid polymer electrolyte membrane to generate hydrogen ions for hydrofluoric acid generation, impurities are prevented from being mixed into hydrofluoric acid, and the high purity necessary for cleaning electronic components and the like is prevented. Can be regenerated as hydrofluoric acid. Further, current efficiency at this time can be improved, and power consumption can be reduced.

【0047】その結果、請求項1の発明によれば、フッ
酸を使用した洗浄工程における運転コストを下げられる
と共に、省資源及び廃棄物の発生防止という公益的目的
に寄与することができる。
As a result, according to the first aspect of the present invention, it is possible to reduce the operating cost in the cleaning step using hydrofluoric acid and to contribute to the public benefit of resource saving and prevention of generation of waste.

【0048】請求項3の発明においては、フッ酸排水処
理装置が、所定の構成を備えたフッ酸排水供給系とアル
カリ供給系と蒸発濃縮装置とイオン交換装置と純水供給
系とを有するので、処理されるフッ酸排水を供給し、こ
れに加えられると水溶性の高い塩を生成させるアルカリ
をフッ酸排水に加えてこれを中和液にし、これを蒸発濃
縮装置に取り入れて蒸発させて塩の溶解度以下で高濃度
に濃縮して濃縮液にし、この液をイオン交換装置に供給
すると共に純水を供給してイオン交換操作によって濃縮
液をフッ酸含有水とアルカリ含有水とに分離して排出す
ることができる。その結果、請求項1の発明と同様の作
用効果を得ることができる。
According to the third aspect of the present invention, the hydrofluoric acid wastewater treatment apparatus includes a hydrofluoric acid wastewater supply system, an alkali supply system, an evaporative concentration device, an ion exchange device, and a pure water supply system having a predetermined structure. The hydrofluoric acid wastewater to be treated is supplied, and an alkali that forms a highly water-soluble salt when added to the hydrofluoric acid wastewater is added to the hydrofluoric acid wastewater to make it a neutralized solution, which is taken into an evaporator and evaporated to evaporate. The solution is concentrated to a high concentration below the solubility of the salt to form a concentrated solution, and this solution is supplied to an ion exchange device and pure water is supplied to separate the concentrated solution into hydrofluoric acid-containing water and alkali-containing water by an ion exchange operation. Can be discharged. As a result, the same function and effect as the first aspect can be obtained.

【0049】請求項2の発明においては、フッ酸排水処
理方法が、請求項1の発明に加えて、所定の構成を備え
た濃度検出工程と静置工程と上部液取り出し工程と排液
工程とを有するので、濃縮工程中に濃縮液の濃度を検出
し、静置工程で、検出した濃度が予め定めた目的とする
高濃度になると濃縮工程を中断又は停止して濃縮液を蒸
発濃縮装置とは別に設けられた濃縮液貯留部又は蒸発濃
縮装置自体の濃縮液溜部に静置して上部の液と下部の不
純物含有液とに分離させ、取り出し工程で、イオン交換
操作の対象になる上部の液を取り出しイオン交換操作に
供給し、排出工程で不純物含有液を排出するので、フッ
酸排水中にある程度不純物が含まれているときに、これ
を濃縮操作に対応させて排出し、濃縮液中に不純物を累
積して滞留させずとがなく、イオン交換操作には不純物
を含まない濃縮液を供給し、不純物を別個に排出するこ
とができる。
According to a second aspect of the present invention, in addition to the first aspect of the present invention, the method for treating hydrofluoric acid wastewater includes a concentration detecting step having a predetermined structure, a standing step, an upper liquid removing step, and a draining step. Therefore, the concentration of the concentrated solution is detected during the concentration step, and the concentration step is interrupted or stopped when the detected concentration reaches a predetermined target high concentration in the stationary step, and the concentrated solution is evaporated and concentrated. Is separated from the upper liquid and the lower impurity-containing liquid by leaving the liquid in the concentrated liquid storage part or the concentrated liquid storage part of the evaporative concentration apparatus itself, and in the removal step, the upper part to be subjected to ion exchange operation The liquid containing impurities is taken out and supplied to the ion exchange operation, and the impurity-containing liquid is discharged in the discharging step. When the hydrofluoric acid wastewater contains some impurities, this is discharged in accordance with the concentration operation, and the concentrated liquid is discharged. Accumulation of impurities inside and no stagnation Without, the ion exchange operation to supply concentrate free of impurities, it is possible to separately discharge the impurities.

【0050】その結果、イオン交換操作を実施するとき
に不純物の持ち込みが防止され、使用されるイオン交換
操作のための装置の運転状態を良好にし、その膜の洗浄
等の操作を大幅に軽減し、膜の耐久性を高めることがで
きる。又、蒸発濃縮のための装置やイオン交換装置の関
連部分へのスケールの固着等を防止することができる。
As a result, the introduction of impurities when performing the ion exchange operation is prevented, the operation state of the apparatus used for the ion exchange operation is improved, and operations such as cleaning of the membrane are greatly reduced. In addition, the durability of the film can be increased. In addition, it is possible to prevent the scale from sticking to a device for evaporative concentration or a related portion of the ion exchange device.

【0051】請求項4の発明においては、フッ酸排水処
理装置が、請求項3の発明に加えて、所定の構成を備え
た濃度検出手段と濃縮液貯留手段と上部液供給系と不純
物排出系とイオン交換装置作動手段と制御手段とを有す
るので、制御手段により、濃度検出手段が予め定めた高
濃度を検出すると、濃縮液貯留手段を作動させて濃縮液
を貯留しそれから所定時間経過後に上部液供給系が貯留
された濃縮液のうちの上部の液をイオン交換装置に供給
し、不純物液排出系が不純物の降下沈澱した下部の液を
排出し、供給後に作動手段がイオン交換装置を作動させ
るように制御するすることにより、請求項2の発明と同
様の作用効果を得ることができる。又、請求項2の方法
を自動的に実施できるので、殆ど廃棄物を発生させない
フッ酸排水の処理を自動的に行って省力化を図ることが
できる。
According to a fourth aspect of the present invention, in addition to the third aspect of the present invention, the hydrofluoric acid wastewater treatment apparatus further comprises a concentration detecting means having a predetermined structure, a concentrated liquid storing means, an upper liquid supply system, and an impurity discharging system. And the ion exchange device operating means and the control means. When the concentration detecting means detects a predetermined high concentration by the control means, the concentrated liquid storing means is operated to store the concentrated liquid, and after a predetermined time elapses, the upper part is turned on. The liquid supply system supplies the upper liquid of the stored concentrated liquid to the ion exchange device, and the impurity liquid discharge system discharges the lower liquid in which the impurities are precipitated, and after the supply, the operating means operates the ion exchange device. By controlling so as to cause the same effect as in the second aspect of the invention. Further, since the method of claim 2 can be automatically carried out, the treatment of hydrofluoric acid wastewater which hardly generates waste can be automatically carried out to save labor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したフッ酸排水処理装置の全体構
成の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of the entire configuration of a hydrofluoric acid wastewater treatment apparatus to which the present invention is applied.

【図2】本発明を適用したフッ酸排水処理方法の基本構
成を示す説明図である。
FIG. 2 is an explanatory diagram showing a basic configuration of a hydrofluoric acid wastewater treatment method to which the present invention is applied.

【図3】上記装置及び方法におけるイオン交換操作の説
明図である。
FIG. 3 is an explanatory view of an ion exchange operation in the apparatus and method.

【図4】本発明を適用したフッ酸排水処理装置の全体構
成の他の例を示す説明図である。
FIG. 4 is an explanatory view showing another example of the entire configuration of the hydrofluoric acid wastewater treatment apparatus to which the present invention is applied.

【図5】本発明を適用したフッ酸排水処理方法の基本構
成の他の例を示す説明図である。
FIG. 5 is an explanatory view showing another example of the basic configuration of the hydrofluoric acid wastewater treatment method to which the present invention is applied.

【図6】本発明を適用したフッ酸排水処理装置の全体構
成の更に他の例を示す説明図である。
FIG. 6 is an explanatory view showing still another example of the entire configuration of the hydrofluoric acid wastewater treatment apparatus to which the present invention is applied.

【図7】本発明を適用したフッ酸排水処理装置の濃縮装
置部分の他の例を示す説明図である。
FIG. 7 is an explanatory view showing another example of the concentrating device portion of the hydrofluoric acid wastewater treatment device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 フッ酸排水供給系 2 アルカリ供給系 3 蒸発濃縮装置 5 イオン交換装置 6 純水供給系 7 比重センサ(濃度検出手段) 8 上部液供給系 10、11、12 自動開閉弁( 濃縮液貯留手段) 13 自動開閉弁( イオン交換装置作動手
段) 14 操作制御盤(制御手段) 17 濃縮液貯留タンク(濃縮液貯留手段) 36 濃縮液溜部(濃縮液貯留手段) 42 循環ポンプ(濃縮液貯留手段) 45 濃縮液排出ポンプ(上部液供給系、濃
縮液貯留手段) 57 フッ酸回収系(フッ酸含有水系) 58 KOH回収系(アルカリ含有水系) 91 自動ブロー弁(不純物液排出系) 92 循環系自動弁(不純物液排出系、濃縮
液貯留手段) 93 自動弁(不純物液排出系、濃縮液貯留
手段) A 中和工程 B 濃縮工程 C 分離工程 B1 濃度検出工程 B2 静置工程 B3 上部液取り出し工程 B4 排液工程
Reference Signs List 1 hydrofluoric acid drainage supply system 2 alkali supply system 3 evaporative concentrator 5 ion exchanger 6 pure water supply system 7 specific gravity sensor (concentration detection means) 8 upper liquid supply system 10, 11, 12 automatic open / close valve (concentrate storage means) 13 Automatic open / close valve (Ion exchange device operating means) 14 Operation control panel (Control means) 17 Concentrated liquid storage tank (Concentrated liquid storing means) 36 Concentrated liquid storage section (Concentrated liquid storing means) 42 Circulation pump (Concentrated liquid storing means) 45 Concentrated liquid discharge pump (upper liquid supply system, concentrated liquid storage means) 57 Hydrofluoric acid recovery system (hydrofluoric acid-containing water system) 58 KOH recovery system (alkali-containing water system) 91 Automatic blow valve (impurity liquid discharge system) 92 Automatic circulation system The valve (impurity liquid discharge system, concentrate storage means) 93 automatic valve (impurity liquid discharge system, concentrate storage means) A neutralization step B concentration step C separation step B 1 concentration detecting step B 2 standing step B 3 top Extraction Step B 4 draining step

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/46 ZAB C02F 1/46 103 Fターム(参考) 4D006 GA17 HA02 JA02 KA01 KB18 MA03 MA13 MA14 MA40 MB07 PA04 PB08 PB27 PB28 PC01 4D034 AA27 BA01 CA12 CA21 4D061 DA08 DB18 EA09 EB01 EB04 EB13 EB39 ED20 FA02 GC05──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C02F 1/46 ZAB C02F 1/46 103 F-term (Reference) 4D006 GA17 HA02 JA02 KA01 KB18 MA03 MA13 MA14 MA40 MB07 PA04 PB08 PB27 PB28 PC01 4D034 AA27 BA01 CA12 CA21 4D061 DA08 DB18 EA09 EB01 EB04 EB13 EB39 ED20 FA02 GC05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希薄濃度のフッ酸を含むフッ酸排水を処
理するフッ酸排水処理方法において、 前記フッ酸排水に加えられると水溶性の高い塩を生成さ
せるアルカリを前記フッ酸排水に加えて該フッ酸排水を
中和液にする中和工程と、前記中和液を蒸発濃縮装置で
蒸発させ前記塩の溶解度以下で高濃度に濃縮して濃縮液
にする濃縮工程と、イオン交換操作であって少なくとも
水素イオンを発生させる側に純水を供給して該純水を電
気分解して固体高分子電解質膜を透過させて前記水素イ
オンを発生させる操作を含むイオン交換操作によって前
記濃縮液をフッ酸含有水とアルカリ含有水と残りの脱塩
水とに分離してそれぞれフッ酸含有水系とアルカリ含有
水系と前記蒸発濃縮装置に戻す戻し系とに排出可能にす
る分離工程と、を有することを特徴とするフッ酸排水処
理方法。
1. A hydrofluoric acid wastewater treatment method for treating a hydrofluoric acid wastewater containing a dilute concentration of hydrofluoric acid, wherein an alkali which generates a highly water-soluble salt when added to the hydrofluoric acid wastewater is added to the hydrofluoric acid wastewater. A neutralization step of converting the hydrofluoric acid wastewater into a neutralized solution, a concentration step of evaporating the neutralized solution with an evaporator and concentrating the solution to a high concentration below the solubility of the salt to obtain a concentrated solution, and an ion exchange operation. The concentrated liquid is supplied by an ion exchange operation including an operation of supplying pure water to at least a side where hydrogen ions are generated, electrolyzing the pure water and permeating the solid polymer electrolyte membrane to generate the hydrogen ions. A separation step of separating the hydrofluoric acid-containing water, the alkali-containing water and the remaining demineralized water into a hydrofluoric acid-containing water system, an alkali-containing water system, and a return system for returning to the evaporating and concentrating apparatus. Characteristic Hydrofluoric acid wastewater treatment method of.
【請求項2】 前記濃縮液の濃度を検出する濃度検出工
程と、検出した濃度が前記高濃度になると前記濃縮液を
濃縮液貯留部に静置して上部の液と下部の不純物含有液
とに分離させる静置工程と、前記イオン交換操作の対象
になるように前記上部の液を取り出す上部液取り出し工
程と、前記不純物含有液を排出する排液工程と、を有す
ることを特徴とする請求項1に記載のフッ酸排水処理方
法。
2. A concentration detecting step for detecting a concentration of the concentrated solution, and when the detected concentration becomes the high concentration, the concentrated solution is allowed to stand still in a concentrated solution storing section, and an upper liquid and a lower impurity-containing liquid are separated from each other. And a draining step of draining the impurity-containing liquid. Item 4. The hydrofluoric acid wastewater treatment method according to Item 1.
【請求項3】 希薄濃度のフッ酸を含むフッ酸排水を処
理するフッ酸排水処理装置において、 前記フッ酸排水を供給可能なフッ酸排水供給系と、前記
フッ酸排水に加えられると水溶性の高い塩を生成させる
アルカリであって前記フッ酸排水に加えられて該フッ酸
排水を中和液にするアルカリを供給可能なアルカリ供給
系と、前記中和液を取り入れて蒸発させ前記塩の溶解度
以下で高濃度に濃縮して濃縮液にする蒸発濃縮装置と、
前記濃縮液が供給されると共に純水が供給されイオン交
換操作であって少なくとも水素イオンを発生させる側に
純水を供給して該純水を電気分解して固体高分子電解質
膜を透過させて前記水素イオンを発生させる操作を含む
イオン交換操作によって前記濃縮液をフッ酸含有水とア
ルカリ含有水と残りの脱塩水とに分離してそれぞれフッ
酸含有水系とアルカリ含有水系と前記蒸発濃縮装置に戻
す戻し系とに排出可能にするイオン交換装置と、前記純
水を供給可能な純水供給系と、を有することを特徴とす
るフッ酸排水処理装置。
3. A hydrofluoric acid wastewater treatment apparatus for treating hydrofluoric acid wastewater containing dilute hydrofluoric acid, comprising: a hydrofluoric acid wastewater supply system capable of supplying the hydrofluoric acid wastewater; An alkali supply system capable of supplying an alkali which is a salt that produces a high salt and is added to the hydrofluoric acid wastewater to convert the hydrofluoric acid wastewater into a neutralizing solution; and An evaporative concentration device that concentrates to a high concentration below the solubility to make a concentrated solution,
Pure water is supplied while the concentrated liquid is supplied.Pure water is supplied to at least the side where hydrogen ions are generated in an ion exchange operation, and the pure water is electrolyzed and permeated through the solid polymer electrolyte membrane. The concentrated solution is separated into hydrofluoric acid-containing water, alkali-containing water, and the remaining demineralized water by an ion exchange operation including an operation of generating the hydrogen ions, and the separated liquid is separated into a hydrofluoric acid-containing water system, an alkali-containing water system, and the evaporative concentrator. A hydrofluoric acid wastewater treatment apparatus, comprising: an ion exchange device capable of discharging to a return system; and a pure water supply system capable of supplying the pure water.
【請求項4】 前記濃縮液の濃度を検出する濃度検出手
段と、前記濃縮液を溜める濃縮液貯留手段と、該濃縮液
貯留手段によって貯留された濃縮液の上部の液を前記イ
オン交換装置に供給する上部液供給系と、前記貯留され
た濃縮液の下部の液を排出する不純物液排出系と、前記
イオン交換装置を作動させるイオン交換装置作動手段
と、前記濃度検出手段が前記高濃度を検出すると前記貯
留手段を作動させて前記濃縮液を溜めてそれから所定時
間経過後に前記上部液供給系が前記上部の液を前記イオ
ン交換装置に供給し前記不純物液排出系が前記下部の液
を排出し前記供給後に前記作動手段が前記イオン交換装
置を作動させるように制御する制御手段と、を有するこ
とを特徴とする請求項3に記載のフッ酸排水処理装置。
4. A concentration detecting means for detecting the concentration of the concentrated liquid, a concentrated liquid storing means for storing the concentrated liquid, and a liquid above the concentrated liquid stored by the concentrated liquid storing means is supplied to the ion exchange device. An upper liquid supply system for supplying, an impurity liquid discharge system for discharging a liquid below the stored concentrated liquid, an ion exchange device operating means for operating the ion exchange device, and the concentration detecting means for detecting the high concentration. Upon detection, the storage means is operated to store the concentrated liquid, and after a lapse of a predetermined time, the upper liquid supply system supplies the upper liquid to the ion exchange device, and the impurity liquid discharge system discharges the lower liquid. The hydrofluoric acid wastewater treatment apparatus according to claim 3, further comprising control means for controlling the operation means to operate the ion exchange device after the supply.
JP2001137644A 2001-05-08 2001-05-08 Fluoric acid-containing wastewater treatment method and apparatus Withdrawn JP2002331292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137644A JP2002331292A (en) 2001-05-08 2001-05-08 Fluoric acid-containing wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137644A JP2002331292A (en) 2001-05-08 2001-05-08 Fluoric acid-containing wastewater treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2002331292A true JP2002331292A (en) 2002-11-19

Family

ID=18984719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137644A Withdrawn JP2002331292A (en) 2001-05-08 2001-05-08 Fluoric acid-containing wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2002331292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174416A (en) * 2002-11-28 2004-06-24 Kurita Water Ind Ltd Recovery method for hydrofluoric acid
JP2007117874A (en) * 2005-10-27 2007-05-17 Ebara Corp Method and apparatus for treating wastewater containing component to be crystallized
US7311799B2 (en) 2002-11-28 2007-12-25 Sasakura Engineering Co., Ltd. Hydrofluoric acid wastewater treatment method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174416A (en) * 2002-11-28 2004-06-24 Kurita Water Ind Ltd Recovery method for hydrofluoric acid
US7311799B2 (en) 2002-11-28 2007-12-25 Sasakura Engineering Co., Ltd. Hydrofluoric acid wastewater treatment method and device
JP4507271B2 (en) * 2002-11-28 2010-07-21 栗田工業株式会社 Method for recovering hydrofluoric acid
JP2007117874A (en) * 2005-10-27 2007-05-17 Ebara Corp Method and apparatus for treating wastewater containing component to be crystallized
JP4503523B2 (en) * 2005-10-27 2010-07-14 荏原エンジニアリングサービス株式会社 A method and apparatus for treating wastewater containing a crystallization target component.

Similar Documents

Publication Publication Date Title
JP2008223115A (en) Method for treating salt water
WO2016063578A1 (en) Ammonia-containing wastewater treatment apparatus and treatment method
US4209369A (en) Process for electrolysis of sodium chloride by use of cation exchange membrane
CN102851684B (en) A kind of perhalogeno water function of mechanical steam recompression method alkali-making process and device
CN105906128A (en) Method and system for recovering sodium chloride from high salinity wastewater
CN208120896U (en) Can resource recycling power plant desulfurization wastewater zero discharge treatment device
JP2520317B2 (en) Ultrapure water production apparatus and method
KR100553026B1 (en) Method and apparatus for treatment of hydrofluoric acid drainage
JP3148664B2 (en) Evaporative concentration method and apparatus
ZA200500206B (en) Method and device for recycling metal pickling baths
JP2005329380A (en) Evaporation concentrator for aqueous waste liquid and aqueous cleaning device using the same
JP2002331292A (en) Fluoric acid-containing wastewater treatment method and apparatus
JP4147408B2 (en) Hydrofluoric acid wastewater treatment method and apparatus
CN204939142U (en) Treatment facility of desulfurization waste water that flue gas desulfurization system discharged
JP3194123B2 (en) Ultrapure water production and wastewater treatment method for closed system
CN105152405A (en) Method and equipment for treating desulfurization wastewater discharged by flue gas desulfurization system
TWI566818B (en) Ammonia gas recovery and treatment apparatus and method thereof
CN213416572U (en) Evaporation device
JP4392556B2 (en) Hydrofluoric acid waste liquid treatment apparatus and method
JP2002166263A (en) Water recovery utilization system
JPS6193897A (en) Apparatus for making ultra-pure water
CN215161146U (en) High salt effluent disposal system of membrane distillation
JP2004174416A (en) Recovery method for hydrofluoric acid
JP3910050B2 (en) Method for treating waste liquid containing tetraalkylammonium hydroxide
JP3217402B2 (en) Wastewater desulfurization equipment wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080520