JP2002329525A - Positive electrode container for sodium-sulfur battery - Google Patents

Positive electrode container for sodium-sulfur battery

Info

Publication number
JP2002329525A
JP2002329525A JP2001134458A JP2001134458A JP2002329525A JP 2002329525 A JP2002329525 A JP 2002329525A JP 2001134458 A JP2001134458 A JP 2001134458A JP 2001134458 A JP2001134458 A JP 2001134458A JP 2002329525 A JP2002329525 A JP 2002329525A
Authority
JP
Japan
Prior art keywords
container
sodium
anode
corrosion
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001134458A
Other languages
Japanese (ja)
Other versions
JP3617628B2 (en
Inventor
Takashi Ando
孝志 安藤
Hiroshi Uragami
洋 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001134458A priority Critical patent/JP3617628B2/en
Publication of JP2002329525A publication Critical patent/JP2002329525A/en
Application granted granted Critical
Publication of JP3617628B2 publication Critical patent/JP3617628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode container for a sodium-sulfur battery having a constriction part capable of sufficiently absorbing and moderating the expansion and contraction of the positive electrode container due to thermal variation, preventing the corrosion of the constriction part from easily progressing, and having an improved service life. SOLUTION: This positive electrode container for a sodium-sulfur battery is provided with the constriction part 13 radially bent at a position in the vicinity of the upper end of a bottomed cylindrical container formed of a metal material and having an anticorrosive film 14 formed of a metal having high corrosion resistance formed on the inside surface of the container. The upper end of the anticorrosive film 14 is positioned above the upper end face of a conductive material 12 for the positive electrode impregnated with a positive electrode active material housed in the positive electrode container 1, and below the lowest constriction end part 13a where the lower bend of the constriction part 13 starts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、ナトリウム−硫
黄電池において、陽極活物質を含浸した陽極用導電材を
収容するために用いられる陽極容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode container used for accommodating an anode conductive material impregnated with an anode active material in a sodium-sulfur battery.

【0002】[0002]

【従来の技術】 ナトリウム−硫黄電池は、一方に陰極
活物質である溶融金属ナトリウム、他方には陽極活物質
である溶融硫黄を配し、両者をナトリウムイオンに対し
て選択的な透過性を有するβ−アルミナ固体電解質で隔
離し、300〜360℃程度の温度で作動させる高温二
次電池である。
2. Description of the Related Art A sodium-sulfur battery has molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both have selective permeability to sodium ions. This is a high-temperature secondary battery that operates at a temperature of about 300 to 360 ° C., isolated by a β-alumina solid electrolyte.

【0003】 このようなナトリウム−硫黄電池の構造
は、例えば図8に示すように、陽極活物質である溶融硫
黄Sが含浸されたグラファイトマット等の陽極用導電材
12を収容する有底円筒状の陽極容器1と、陰極活物質
である溶融金属ナトリウムNaを収容するカートリッジ
(ナトリウム保護管)6と、このカートリッジ6を内部
に収容し、ナトリウムイオンNa+を選択的に透過させ
る機能を有する有底円筒状の固体電解質管5と、カート
リッジ6と固体電解質管5の間の間隙部に、そのカート
リッジ6及び固体電解質管5からそれぞれ所定の間隔を
おいて配設された有底円筒状の隔壁管11からなる。
As shown in FIG. 8, for example, a structure of such a sodium-sulfur battery has a cylindrical shape with a bottom that accommodates an anode conductive material 12 such as a graphite mat impregnated with molten sulfur S as an anode active material. And a cartridge (sodium protective tube) 6 containing molten sodium metal Na as a cathode active material, and a cartridge 6 containing the cartridge 6 therein and having a function of selectively transmitting sodium ions Na +. A bottomed cylindrical solid electrolyte tube 5, and a bottomed cylindrical partition wall disposed at a predetermined distance from the cartridge 6 and the solid electrolyte tube 5 in a gap between the cartridge 6 and the solid electrolyte tube 5. It consists of a tube 11.

【0004】 固体電解質管5はその開口端にガラス接
合されたα−アルミナ製の絶縁リング4及び陽極筒状金
具3を介して陽極容器1と結合されている。また、絶縁
リング4の上端面には陰極金具8が熱圧接合され、この
陰極金具8に陰極蓋9が溶接固定されている。陽極容器
1の外周上部と陰極蓋9の上面には、それぞれ陽極側端
子2と陰極側端子10が設けられている。カートリッジ
6の上部空間には、窒素ガスやアルゴンガス等の不活性
ガスGが所定の圧力で封入され、この不活性ガスGによ
りカートリッジ6内のナトリウムNaがカートリッジ6
底部に設けられた小孔7から流出する方向へ加圧されて
いる。
The solid electrolyte tube 5 is connected to the anode container 1 via an α-alumina insulating ring 4 and an anode cylindrical metal fitting 3 which are glass-joined to the open end thereof. A cathode fitting 8 is joined to the upper end surface of the insulating ring 4 by heat and pressure, and a cathode lid 9 is fixed to the cathode fitting 8 by welding. An anode terminal 2 and a cathode terminal 10 are provided on the outer peripheral upper portion of the anode container 1 and the upper surface of the cathode lid 9, respectively. An inert gas G such as nitrogen gas or argon gas is sealed at a predetermined pressure in the upper space of the cartridge 6, and sodium Na in the cartridge 6 is removed by the inert gas G.
It is pressurized in the direction of flowing out of the small holes 7 provided at the bottom.

【0005】 このような構造を有するナトリウム−硫
黄電池において、放電時にはカートリッジ6の小孔7か
ら供給されるナトリウムNaが、隔壁管11とカートリ
ッジ6との間隙内で上方に移動した後、隔壁管11の上
端を乗り越えて、隔壁管11と固体電解質管5との間隙
内で下方に移動し、更に、固体電解質管5をナトリウム
イオンNa+となって透過して、陽極容器1内の硫黄S
及び外部回路を通ってきた電子と反応し多硫化ナトリウ
ムを生成する。充電時には放電とは逆にナトリウムNa
及び硫黄Sの生成反応が起こる。
In the sodium-sulfur battery having such a structure, the sodium Na supplied from the small hole 7 of the cartridge 6 at the time of discharging moves upward in the gap between the partition tube 11 and the cartridge 6, 11, moves downward in the gap between the partition tube 11 and the solid electrolyte tube 5, and further passes through the solid electrolyte tube 5 as sodium ions Na +, and the sulfur S in the anode container 1 is removed.
And reacts with electrons that have passed through the external circuit to produce sodium polysulfide. During charging, contrary to discharging, sodium Na
And the reaction of producing sulfur S occurs.

【0006】 ナトリウム−硫黄電池用の陽極容器1
は、アルミニウムやアルミニウム合金等の金属材料を円
筒状に形成し、下端開口部に底蓋を嵌合するとともに、
上端近傍部に、容器の熱変化に伴う膨張・収縮を吸収緩
和するための径方向に屈曲するくびれ部13を形成する
ことにより構成される。また、陽極容器1は、腐食性の
活物質に対する耐食性を高めるため、容器本体の内周面
に、クロム−鉄合金粉末等をプラズマ溶射して耐腐食性
の高い金属からなる耐食皮膜が形成される。
Anode container 1 for sodium-sulfur battery
Is formed of a metal material such as aluminum or aluminum alloy into a cylindrical shape, and fits the bottom lid to the lower end opening,
In the vicinity of the upper end, a constricted portion 13 that is bent in the radial direction for absorbing and relaxing expansion and contraction due to thermal change of the container is formed. Further, in the anode container 1, a corrosion-resistant film made of a metal having high corrosion resistance is formed on the inner peripheral surface of the container body by plasma spraying a chromium-iron alloy powder or the like in order to increase the corrosion resistance to a corrosive active material. You.

【0007】 図6及び図7は従来の陽極容器の部分断
面図であり、耐食皮膜14は、図6のように、くびれ部
13を含めて陽極容器1の内周面全体を被覆するように
形成されるか、図7のように、耐食皮膜14の上端が、
くびれ部13の下側の屈曲が開始するくびれ最下端部1
3aより上方に位置するように形成されるのが一般的で
あった。
FIGS. 6 and 7 are partial cross-sectional views of a conventional anode container. The corrosion-resistant coating 14 covers the entire inner peripheral surface of the anode container 1 including the constricted portion 13 as shown in FIG. It is formed or as shown in FIG.
The lowermost lower end portion 1 at which the lower side of the constricted portion 13 starts bending.
In general, it was formed so as to be located above 3a.

【0008】[0008]

【発明が解決しようとする課題】 しかしながら、前記
図6のように、くびれ部13の内周面全体にクロム−鉄
合金のような硬質の耐食皮膜14が形成されていると、
当該耐食皮膜14によりくびれ部13の変形が規制され
て、陽極容器1の膨張・収縮を十分に吸収緩和できず、
耐食皮膜14にクラックが発生しやすいという問題があ
った。
However, as shown in FIG. 6, when a hard corrosion-resistant film 14 such as a chromium-iron alloy is formed on the entire inner peripheral surface of the constricted portion 13,
The deformation of the constricted portion 13 is regulated by the corrosion-resistant coating 14, and the expansion and contraction of the anode container 1 cannot be sufficiently absorbed and reduced.
There is a problem that cracks are easily generated in the corrosion resistant film 14.

【0009】 また、陽極容器1の内周面は、耐食皮膜
14との密着性を向上させる目的で、耐食皮膜14の溶
射に先立って、ブラスト処理(粗面化処理)が施される
が、このように粗面化された陽極容器1の内周面は、活
性化されるとともに多流化ナトリウムとの濡れ性が良く
なっている。このため、クロム−鉄合金のような多流化
ナトリウムとの濡れ性が非常に良い耐食皮膜14の上端
が、前記図7のようにくびれ最下端部13aより上方に
位置するように形成されていると、多硫化ナトリウムが
短期間でくびれ部13まで浸み上がって、粗面化された
くびれ部13内周面の凹部に残存し、化学的な局部腐食
を進行させるという問題もあった。
Further, the inner peripheral surface of the anode container 1 is subjected to a blast treatment (roughening treatment) prior to the thermal spraying of the corrosion-resistant coating 14 for the purpose of improving the adhesion with the corrosion-resistant coating 14. The inner peripheral surface of the anode container 1 thus roughened is activated and has improved wettability with multi-flow sodium. For this reason, the upper end of the corrosion-resistant coating 14 having a very good wettability with multi-flow sodium such as a chromium-iron alloy is formed so as to be located above the constricted lowermost end 13a as shown in FIG. In this case, there is a problem that sodium polysulfide soaks up to the constricted portion 13 in a short period of time and remains in the concave portion on the inner peripheral surface of the constricted portion 13 to promote chemical local corrosion.

【0010】 本発明は、このような従来の事情に鑑み
てなされたものであり、その目的とするところは、くび
れ部が熱変化による陽極容器の膨張・収縮を十分に吸収
緩和できるとともに、くびれ部の腐食が進行しにくく寿
命が向上したナトリウム−硫黄電池用陽極容器を提供す
ることにある。
The present invention has been made in view of such a conventional situation, and an object of the present invention is to make it possible for a constricted portion to sufficiently absorb and alleviate the expansion and contraction of an anode container due to a heat change, and to constrict the constricted portion. It is an object of the present invention to provide an anode container for a sodium-sulfur battery in which corrosion of a part hardly progresses and life is improved.

【0011】[0011]

【課題を解決するための手段】 本発明によれば、金属
材料よりなる有底円筒状の容器の上端近傍部位に径方向
に屈曲するくびれ部を備えるとともに、容器の内周面に
耐腐食性の高い金属からなる耐食皮膜が形成されたナト
リウム−硫黄電池用陽極容器であって、前記耐食皮膜の
上端が、陽極容器に収容される陽極活物質を含浸した陽
極用導電材の上端面より上方で、前記くびれ部の下側の
屈曲が開始するくびれ最下端部より下方に位置すること
を特徴とするナトリウム−硫黄電池用陽極容器、が提供
される。
According to the present invention, a constricted portion bent in the radial direction is provided near the upper end of a cylindrical container having a bottom made of a metal material, and the inner peripheral surface of the container has corrosion resistance. An anode container for a sodium-sulfur battery formed with a corrosion-resistant film made of a metal having a high content, wherein the upper end of the corrosion-resistant film is higher than the upper end surface of the anode conductive material impregnated with the anode active material contained in the anode container. And an anode container for a sodium-sulfur battery, wherein the anode container is located below a lowermost end of the constriction where the lower part of the constriction starts to bend.

【0012】[0012]

【発明の実施の形態】 図1は、本発明の実施形態の一
例を示す部分断面図である。陽極容器1の内周面に形成
された耐食皮膜14の上端は、陽極容器1に収容される
陽極活物質を含浸したグラファイトマット等の陽極用導
電材12の上端面よりも上方に位置し、これにより、腐
食しやすいアルミニウムやアルミニウム合金からなる陽
極容器1が、陽極用導電材12と直接接触するのを防止
する。
FIG. 1 is a partial sectional view showing an example of an embodiment of the present invention. The upper end of the corrosion-resistant coating 14 formed on the inner peripheral surface of the anode container 1 is located higher than the upper end surface of the anode conductive material 12 such as graphite mat impregnated with the anode active material accommodated in the anode container 1, This prevents the anode container 1 made of aluminum or aluminum alloy which is easily corroded from directly contacting the anode conductive material 12.

【0013】 そしてまた、耐食皮膜14の上端は、く
びれ部13の下側の屈曲が開始するくびれ最下端部13
aより下方、すなわちくびれ部13の下の直管部に位置
するので、従来のように耐食皮膜14の上端がくびれ最
下端部13aより上方まで達している場合に比して、多
硫化ナトリウムがくびれ部13まで浸み上がりにくく、
多硫化ナトリウムによるくびれ部13の腐食が著しく減
少する。
Further, the upper end of the corrosion-resistant coating 14 is located at the lowermost lower end portion 13 at which the lower side of the constricted portion 13 starts to bend.
a, that is, in the straight pipe portion below the constricted portion 13, compared with the case where the upper end of the corrosion-resistant coating 14 reaches the upper portion of the constricted lowermost portion 13 a as in the conventional case, the sodium polysulfide is It is difficult to soak up to the constricted part 13,
Corrosion of the constriction 13 by sodium polysulfide is significantly reduced.

【0014】 更に、陽極容器1のくびれ最下端部13
aより上方の部分の内周面は、耐食皮膜形成のための溶
射が必要ないので、溶射時間の短縮及び溶射材料の使用
量の削減が可能になる。
Furthermore, the lowermost lower end 13 of the anode container 1
Since the inner peripheral surface of the portion above "a" does not require thermal spraying for forming a corrosion resistant film, it is possible to shorten the thermal spraying time and reduce the amount of the thermal spray material used.

【0015】 本発明においては、くびれ部13の下側
の屈曲が開始するくびれ最下端部13aから陽極容器1
の上端までの内周面が、粗面化処理を施されておらず、
その表面の算術平均粗さRaが1.0μm以下であるこ
とが好ましく、0.3〜0.6μmであるとより好まし
い。なお、本発明における「算術平均粗さRa」とは、
JIS B 0601−1994に定義される値であ
る。
In the present invention, the anode container 1 is moved from the lowermost lower end 13 a where the lower part of the constriction 13 starts to bend.
The inner peripheral surface up to the upper end of the
The arithmetic average roughness Ra of the surface is preferably 1.0 μm or less, more preferably 0.3 to 0.6 μm. In the present invention, the "arithmetic mean roughness Ra"
It is a value defined in JIS B 0601-1994.

【0016】 通常、陽極容器は、引き抜き加工によっ
て円筒状に形成されるが、引き抜き加工後の加工面は、
その算術平均粗さRaが1.0μm以下の平滑な表面状
態となっている場合が多いので、引き抜き加工後にブラ
スト処理等の粗面化処理を施さなければ、前記のような
表面粗さが満たされる。
Normally, the anode container is formed in a cylindrical shape by a drawing process.
In many cases, the arithmetic average roughness Ra is a smooth surface state of 1.0 μm or less, so that if the surface is not subjected to a roughening treatment such as blasting after the drawing process, the above surface roughness is satisfied. It is.

【0017】 図3はくびれ最下端部から陽極容器1の
上端までの内周面に粗面化処理(ブラスト処理)が施さ
れている場合における、くびれ部13の腐食状態を示す
概要図である。陽極容器は、通常、アルミニウム又はア
ルミニウム合金から構成されており、これらの材質にブ
ラスト処理を施すと、その表面に凹凸が形成されるとと
もに著しく活性化して、多硫化ナトリウムとの濡れ性が
向上する。そして、このような状態となったくびれ部の
内周面に多硫化ナトリウムが浸み上がってくると、その
多硫化ナトリウムが凹部に残存して科学的な局部腐食が
生じ、短期間の内にかなりの深さまで腐食が進行する。
FIG. 3 is a schematic diagram showing a corroded state of the constricted portion 13 when the inner peripheral surface from the lowermost portion of the constricted portion to the upper end of the anode container 1 is subjected to a roughening process (blasting process). . The anode container is usually made of aluminum or an aluminum alloy, and when blasting is performed on these materials, the surface is unevenly formed and is significantly activated, and the wettability with sodium polysulfide is improved. . Then, when sodium polysulfide soaks into the inner peripheral surface of the constricted portion in such a state, the sodium polysulfide remains in the concave portion, causing scientific local corrosion, and within a short time Corrosion proceeds to a considerable depth.

【0018】 これに対し、くびれ最下端部から陽極容
器1の上端までの内周面が、粗面化処理を施されておら
ず、その表面の算術平均粗さRaが1.0μm以下であ
る場合には、図2のように、くびれ部13の内周面全体
が、均一な平滑面となっているため、浸み上がってきた
多硫化ナトリウムが内周面上に残存しにくく、図に示す
ような位置に極浅い腐食が生じる程度で、局部的な腐食
は発生しにくい。更に、当該範囲に粗面化処理を施さな
い場合には、陽極容器内周面全体に粗面化処理を施す場
合に比して処理時間が短縮するので、電池の製造費用が
低減される。
On the other hand, the inner peripheral surface from the lowermost part of the constriction to the upper end of the anode container 1 is not subjected to a roughening treatment, and the arithmetic average roughness Ra of the surface is 1.0 μm or less. In this case, as shown in FIG. 2, since the entire inner peripheral surface of the constricted portion 13 is a uniform smooth surface, the soaked sodium polysulfide hardly remains on the inner peripheral surface. Local corrosion is unlikely to occur only to the extent that very shallow corrosion occurs at the position shown. Further, when the surface is not subjected to the surface roughening treatment, the processing time is shortened as compared with the case where the entire inner peripheral surface of the anode container is subjected to the surface roughening treatment, so that the battery manufacturing cost is reduced.

【0019】 また、本発明においては、耐食皮膜14
の上端部分が、上方に向かって漸次肉薄になるように形
成されていることが好ましい。図5のように、耐食皮膜
14の厚みが、その上端までほぼ一定である場合には、
耐食皮膜14の上端と陽極容器1との接触部分に溶射時
の残留応力が作用して、耐食皮膜14の剥離が生じた
り、当該接触部分に異種金属の接触による深い腐食が発
生しやすい。
In the present invention, the corrosion-resistant coating 14
Is preferably formed so that an upper end portion thereof gradually becomes thinner upward. As shown in FIG. 5, when the thickness of the corrosion resistant film 14 is substantially constant up to its upper end,
Residual stress at the time of thermal spraying acts on the contact portion between the upper end of the corrosion-resistant coating 14 and the anode container 1, so that the corrosion-resistant coating 14 is likely to be peeled off or deep corrosion is likely to occur at the contact portion due to contact of dissimilar metals.

【0020】 これに対し、図4のように耐食皮膜14
の上端部分が漸次肉薄になるよう肉厚に勾配を持たせる
と、溶射時の残留応力が軽減されて、耐食皮膜14の剥
離が生じにくくなるとともに、異種金属の接触による腐
食も極浅い腐食に抑えられる。
On the other hand, as shown in FIG.
When the upper end portion is gradually thinned, the residual stress at the time of thermal spraying is reduced, the peeling of the corrosion-resistant coating 14 is less likely to occur, and the corrosion due to the contact of dissimilar metals is also extremely shallow. Can be suppressed.

【0021】[0021]

【実施例】 以下、本発明を実施例に基づいて更に詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

【0022】(試験No.1)長さ490mm、外径8
0mm、厚み2.3mmのアルミニウム合金からなる容
器を引き抜き加工により形成し、その上端近傍部位に径
方向に屈曲するくびれ部を設けた。次いで、くびれ部の
下側の屈曲が開始するくびれ最下端部から陽極容器上端
までの範囲を除く容器内周面に、ブラスト処理を施して
粗面化した後、容器の内周面にクロム−鉄合金(クロム
含有量が72質量%)を溶射し、図1に示すように、そ
の上端が、陽極容器1に収容される陽極用導電材12の
上端面より上方で、くびれ最下端部13aより下方に位
置するような、厚さ60μmの耐食皮膜14を形成し
た。なお、当該耐食性皮膜14の上端部分には、上方に
向かって漸次肉薄になるように、皮膜の肉厚に勾配を持
たせた。
(Test No. 1) Length 490 mm, outer diameter 8
A container made of an aluminum alloy having a thickness of 0 mm and a thickness of 2.3 mm was formed by drawing, and a constricted portion bent in the radial direction was provided near the upper end thereof. Next, the inner peripheral surface of the container excluding the range from the lowermost end of the constriction where the lower bend starts to the upper end of the anode container is subjected to blasting to roughen the surface. As shown in FIG. 1, an iron alloy (chromium content: 72% by mass) is thermally sprayed, and the upper end thereof is located above the upper end surface of the anode conductive material 12 accommodated in the anode container 1 and has a narrowed lowermost end portion 13a. A corrosion-resistant film 14 having a thickness of 60 μm was formed so as to be located below. The upper end portion of the corrosion-resistant coating 14 was provided with a gradient in the thickness of the coating so as to gradually become thinner upward.

【0023】 こうして得られた陽極容器を使用して図
8に示すような構造のナトリウム−硫黄電池を5本作製
し、運転時の最高温度を360℃として5年間の試験運
転を行い、2年運転後と5年運転後とにおける陽極容器
くびれ部の腐食状態(腐食発生数、最大腐食深さ)を光
学顕微鏡で観察した。その結果を表1に示す。
Using the anode container thus obtained, five sodium-sulfur batteries having a structure as shown in FIG. 8 were manufactured, and a maximum operation temperature of 360 ° C. was performed for 5 years, and a test operation was performed for 2 years The corrosion state (the number of occurrences of corrosion, the maximum corrosion depth) of the constricted part of the anode vessel after the operation and after the operation for 5 years was observed with an optical microscope. Table 1 shows the results.

【0024】(試験No.2)長さ490mm、外径8
0mm、厚み2.3mmのアルミニウム合金からなる容
器を引き抜き加工により形成し、その上端近傍部位に径
方向に屈曲するくびれ部を設けた。次いで、容器の内周
面全体にブラスト処理を施して粗面化した後、クロム−
鉄合金(クロム含有量が72質量%)を溶射し、図7に
示すように、その上端が、くびれ最下端部13aより上
方に位置するような、厚さ60μmの耐食皮膜14を形
成した。こうして得られた陽極容器を使用して図8に示
すような構造のナトリウム−硫黄電池を5本作製し、前
記試験No.1と同様に試験運転及び観察を行った。そ
の結果を表1に示す。
(Test No. 2) Length 490 mm, outer diameter 8
A container made of an aluminum alloy having a thickness of 0 mm and a thickness of 2.3 mm was formed by drawing, and a constricted portion bent in the radial direction was provided near the upper end thereof. Next, after blasting the entire inner peripheral surface of the container to roughen the surface,
An iron alloy (chromium content: 72% by mass) was thermally sprayed to form a corrosion-resistant coating 14 having a thickness of 60 μm such that the upper end thereof was located above the lowermost lower end portion 13a, as shown in FIG. Using the anode container thus obtained, five sodium-sulfur batteries having a structure as shown in FIG. Test operation and observation were performed in the same manner as in Example 1. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】 表1に示す試験運転後の観察結果より、
くびれ最下端部から陽極容器上端までの範囲については
内周面に粗面化処理を施さず、耐食性皮膜の上端がくび
れ最下端部より下方に位置するようにした試験No.1
の陽極容器は、容器の内周全面に粗面化処理を施し、耐
食性皮膜の上端がくびれ最下端部より上方に位置するよ
うにした試験No.2の陽極容器に比して、くびれ部が
腐食しにくいことが確認された。
From the observation results after the test operation shown in Table 1,
In the test No. in which the inner peripheral surface was not subjected to surface roughening treatment in the range from the lowermost part of the neck to the upper end of the anode container, the upper end of the corrosion-resistant film was positioned below the lowermost part of the neck. 1
The anode container of Test No. 1 was subjected to a surface roughening treatment on the entire inner periphery of the container so that the upper end of the corrosion-resistant coating was located above the constricted lowermost end. It was confirmed that the constricted portion was less likely to corrode than the anode container of No. 2.

【0027】(試験No.3)前記試験No.1と同様
にして作製した陽極容器を使用して図8に示すような構
造のナトリウム−硫黄電池を5本作製し、運転時の最高
温度を340℃として5年間の試験運転を行い、2年運
転後と5年運転後とにおける陽極容器くびれ部の腐食状
態(腐食発生数、最大腐食深さ)を光学顕微鏡で観察し
た。その結果を表2に示す。
(Test No. 3) Using the anode container manufactured in the same manner as in Example 1, five sodium-sulfur batteries having the structure shown in FIG. 8 were manufactured, and the maximum temperature during operation was set to 340 ° C., and a test operation was performed for 5 years. The corrosion state (corrosion occurrence number, maximum corrosion depth) of the constricted part of the anode vessel after the operation and after the operation for 5 years was observed with an optical microscope. Table 2 shows the results.

【0028】(試験No.4)容器の内周面全体にブラ
スト処理を施して粗面化した以外は、前記試験No.1
と同様にして作製した陽極容器を使用して図8に示すよ
うな構造のナトリウム−硫黄電池を5本作製し、前記試
験No.3と同様に試験運転及び観察を行った。その結
果を表2に示す。
(Test No. 4) The test No. 4 was conducted except that the entire inner peripheral surface of the container was subjected to blasting to roughen the surface. 1
Five sodium-sulfur batteries having a structure as shown in FIG. Test operation and observation were performed in the same manner as in Example 3. Table 2 shows the results.

【0029】[0029]

【表2】 [Table 2]

【0030】 表2に示す試験運転後の観察結果より、
くびれ最下端部から陽極容器上端までの範囲については
内周面に粗面化処理を施さなかった試験No.3の陽極
容器は、容器の内周全面に粗面化処理を施した試験N
o.4の陽極容器に比して、くびれ部が腐食しにくいこ
とが確認された。
From the observation results after the test operation shown in Table 2,
Test No. in which the inner peripheral surface was not subjected to surface roughening treatment in the range from the lowermost part of the neck to the upper end of the anode container. The anode container No. 3 was a test N in which the inner peripheral surface of the container was roughened.
o. It was confirmed that the constricted portion was less likely to corrode than the anode container of No. 4.

【0031】[0031]

【発明の効果】 以上説明したように、本発明のナトリ
ウム−硫黄電池用陽極容器は、くびれ部が陽極容器の熱
変化による膨張・収縮を十分に吸収緩和できるだけの変
形の自由度を有するとともに、従来の陽極容器に比し
て、多硫化ナトリウムの浸み上がりによるくびれ部の腐
食が著しく低減されるので、電池の耐久性と信頼性が向
上し、長期に渡って安定して使用できる。また、溶射時
間や粗面化処理時間の短縮、溶射材料使用量の削減が可
能となり、電池製造費用の低減を図ることができる。
As described above, the anode container for a sodium-sulfur battery of the present invention has a degree of freedom of deformation such that the constricted portion can sufficiently absorb and mitigate expansion and contraction due to heat change of the anode container. Corrosion of the constricted portion due to infiltration of sodium polysulfide is significantly reduced as compared with the conventional anode container, so that the durability and reliability of the battery are improved, and the battery can be used stably for a long period of time. In addition, it is possible to reduce the time required for the thermal spraying and the surface roughening treatment, and to reduce the amount of the thermal spraying material used, thereby reducing the battery manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態の一例を示す部分断面図で
ある。
FIG. 1 is a partial sectional view showing an example of an embodiment of the present invention.

【図2】 くびれ最下端部から陽極容器の上端までの内
周面に粗面化処理が施されておらず、その表面の算術平
均粗さRaが1.0μm以下である場合における、くび
れ部の腐食状態を示す概要図である。
FIG. 2 is a constricted portion in a case where the inner peripheral surface from the constricted lowermost portion to the upper end of the anode container is not subjected to a surface roughening treatment and the arithmetic average roughness Ra of the surface is 1.0 μm or less. It is a schematic diagram showing the corrosion state of a.

【図3】 くびれ最下端部から陽極容器の上端までの内
周面に粗面化処理が施されている場合における、くびれ
部の腐食状態を示す概要図である。
FIG. 3 is a schematic diagram showing a corroded state of a constricted portion when a roughening process is performed on an inner peripheral surface from a lowermost portion of the constricted portion to an upper end of the anode container.

【図4】 耐食皮膜の上端部分が漸次肉薄になるよう肉
厚に勾配を持たせた場合における、陽極容器の腐食状態
を示す概要図である。
FIG. 4 is a schematic diagram showing a corrosion state of an anode container when a thickness is given a gradient so that an upper end portion of the corrosion resistant film becomes gradually thinner.

【図5】 耐食皮膜の厚みが、その上端までほぼ一定で
ある場合における、陽極容器の腐食状態を示す概要図で
ある。
FIG. 5 is a schematic diagram showing a state of corrosion of the anode container when the thickness of the corrosion-resistant film is substantially constant up to its upper end.

【図6】 従来のナトリウム−硫黄電池用陽極容器を示
す部分断面図である。
FIG. 6 is a partial sectional view showing a conventional anode container for a sodium-sulfur battery.

【図7】 従来のナトリウム−硫黄電池用陽極容器を示
す部分断面図である。
FIG. 7 is a partial sectional view showing a conventional anode container for a sodium-sulfur battery.

【図8】 ナトリウム−硫黄電池の構造の一例を示す断
面図である。
FIG. 8 is a sectional view showing an example of the structure of a sodium-sulfur battery.

【符号の説明】[Explanation of symbols]

1…陽極容器、2…陽極側端子、3…陽極筒状金具、4
…絶縁リング、5…固体電解質管、6…カートリッジ、
7…小孔、8…陰極金具、9…陰極蓋、10…陰極側端
子、11…隔壁管、12…陽極用導電材、13…くびれ
部、13a…くびれ最下端部、14…耐食皮膜。
DESCRIPTION OF SYMBOLS 1 ... Anode container, 2 ... Anode side terminal, 3 ... Anode cylindrical fitting, 4
... insulating ring, 5 ... solid electrolyte tube, 6 ... cartridge,
7 ... Small hole, 8 ... Cathode fitting, 9 ... Cathode cover, 10 ... Cathode side terminal, 11 ... Partition tube, 12 ... Anode conductive material, 13 ... Constriction part, 13a ... Constriction lowermost end part, 14 ... Corrosion-resistant coating.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ00 AJ12 AJ13 AJ14 AK05 AL13 AM15 BJ02 BJ13 DJ02 DJ12 DJ14 EJ01 HJ03 HJ04 HJ12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ00 AJ12 AJ13 AJ14 AK05 AL13 AM15 BJ02 BJ13 DJ02 DJ12 DJ14 EJ01 HJ03 HJ04 HJ12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属材料よりなる有底円筒状の容器の上
端近傍部位に径方向に屈曲するくびれ部を備えるととも
に、容器の内周面に耐腐食性の高い金属からなる耐食皮
膜が形成されたナトリウム−硫黄電池用陽極容器であっ
て、 前記耐食皮膜の上端が、陽極容器に収容される陽極活物
質を含浸した陽極用導電材の上端面より上方で、前記く
びれ部の下側の屈曲が開始するくびれ最下端部より下方
に位置することを特徴とするナトリウム−硫黄電池用陽
極容器。
1. A cylindrical container having a bottom and made of a metal material, having a constricted portion bent in a radial direction near an upper end thereof, and a corrosion-resistant film made of a metal having high corrosion resistance formed on an inner peripheral surface of the container. An anode container for a sodium-sulfur battery, wherein the upper end of the corrosion-resistant coating is above the upper end surface of the anode conductive material impregnated with the anode active material contained in the anode container, and the lower part of the constriction is bent. The anode container for a sodium-sulfur battery, wherein the anode container is located below the lowermost end of the constriction at which the opening of the container starts.
【請求項2】 前記くびれ部の下側の屈曲が開始するく
びれ最下端部から陽極容器上端までの内周面が、粗面化
処理を施されておらず、その表面の算術平均粗さRaが
1.0μm以下である請求項1記載のナトリウム−硫黄
電池用陽極容器。
2. The inner peripheral surface from the lowermost end of the constriction where the lower side of the constricted portion starts to bend to the upper end of the anode container is not subjected to a surface roughening treatment, and the arithmetic average roughness Ra of the surface is not provided. The anode container for a sodium-sulfur battery according to claim 1, wherein a is 1.0 μm or less.
【請求項3】 前記耐食皮膜の上端部分が、上方に向か
って漸次肉薄になるように形成された請求項1又は2に
記載のナトリウム−硫黄電池用陽極容器。
3. The anode container for a sodium-sulfur battery according to claim 1, wherein an upper end portion of the corrosion-resistant film is formed so as to become gradually thinner upward.
JP2001134458A 2001-05-01 2001-05-01 Anode container for sodium-sulfur battery Expired - Fee Related JP3617628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134458A JP3617628B2 (en) 2001-05-01 2001-05-01 Anode container for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134458A JP3617628B2 (en) 2001-05-01 2001-05-01 Anode container for sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JP2002329525A true JP2002329525A (en) 2002-11-15
JP3617628B2 JP3617628B2 (en) 2005-02-09

Family

ID=18982139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134458A Expired - Fee Related JP3617628B2 (en) 2001-05-01 2001-05-01 Anode container for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3617628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353596B1 (en) 2012-06-05 2014-01-27 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353596B1 (en) 2012-06-05 2014-01-27 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery

Also Published As

Publication number Publication date
JP3617628B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US4770956A (en) Electrochemical storage cell
CN105591043B (en) Component with component reinforcement and feedthrough
JPS6215996B2 (en)
US4076903A (en) Alkali metal-sulphur cells
JP2002329525A (en) Positive electrode container for sodium-sulfur battery
JP3615163B2 (en) Anode container for sodium-sulfur battery
JP2957822B2 (en) Method for producing anode container in sodium-sulfur battery
JP3113799B2 (en) Sodium-sulfur battery
CN202423402U (en) Anode container and sodium-sulfur cell
JP3561210B2 (en) Anode container for sodium-sulfur single cell and sodium-sulfur single cell using the same
KR101380404B1 (en) Sodium sulfur battery
JP3103730B2 (en) Method for manufacturing sodium-sulfur battery and anode container for the same
KR101451408B1 (en) sodium sulfur battery
JP2005071902A (en) Method for forming spray coating film on inner circumferential surface of positive electrode container for sodium-sulfur battery
JP2001338624A (en) Anode container for sodium-sulfur cell
JP3074250B2 (en) Sodium-sulfur battery
JP2815531B2 (en) Method for producing anode container for sodium-sulfur battery
JPH0878048A (en) Sodium-sulfur cell
JPH05258769A (en) Manufacture of sodium-sulphur battery
JPS62290067A (en) Manufacture of battery
JPH0576140B2 (en)
JP4170627B2 (en) Sodium-sulfur battery
US4921766A (en) Electrochemical storage cell
JPH0389469A (en) Sodium-sulfur battery
JPH0878049A (en) Sodium-sulfur cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3617628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees