JP2002326008A - Foamed body-used filter and its manufacturing method - Google Patents

Foamed body-used filter and its manufacturing method

Info

Publication number
JP2002326008A
JP2002326008A JP2001134703A JP2001134703A JP2002326008A JP 2002326008 A JP2002326008 A JP 2002326008A JP 2001134703 A JP2001134703 A JP 2001134703A JP 2001134703 A JP2001134703 A JP 2001134703A JP 2002326008 A JP2002326008 A JP 2002326008A
Authority
JP
Japan
Prior art keywords
water
forming material
soluble
filter
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001134703A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimura
浩之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Inoac Technical Center Co Ltd
Original Assignee
Inoue MTP KK
Inoac Corp
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp, Inoac Technical Center Co Ltd filed Critical Inoue MTP KK
Priority to JP2001134703A priority Critical patent/JP2002326008A/en
Publication of JP2002326008A publication Critical patent/JP2002326008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filter for efficiently collecting the substance to be collected by deciding so that the particle size of a bubble forming material or the like to be used when the filter is manufactured by using a foamed body obtained by an extraction method is matched to the size or the like of the substance to be collected by the filter to be manufactured finally, and to provide a method for manufacturing the filter. SOLUTION: This filter is manufactured by preparing a compact by mixing at least one thermoplastic resin 12, a water-soluble bubble forming material consisting of a granular material whose particle size is set in the prescribed range by classification and which is stable thermally at the hot melting temperature of the resin 12 to keep its shape and a water-soluble macromolecular compound consisting of a granular material whose particle size is set to be almost similar to that of the water-soluble bubble forming material by classification and which functions as a lubricant when heated and by extracting/removing the water-soluble bubble forming material and the water-soluble macromolecular compound from the prepared compact by using water, so that bubbles 16 of the size similar to the particle size of the water-soluble bubble forming material and the water-soluble macromolecular compound are formed in the filter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、フィルタに関
し、更に詳細には、抽出法により得られる発泡体を用い
たフィルタを、作製する際に使用する気泡形成材の粒子
寸法を所定の範囲に制御することで、該フィルタを得た
際の不純物量および収縮率を低減すると共に、強度を向
上させ得るフィルタと、該フィルタを好適に製造し得る
方法とに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter, and more particularly, to controlling a particle size of a cell forming material used in producing a filter using a foam obtained by an extraction method within a predetermined range. Accordingly, the present invention relates to a filter capable of reducing the amount of impurities and shrinkage when obtaining the filter and improving the strength, and a method capable of suitably manufacturing the filter.

【0002】[0002]

【従来の技術】一般に各種物質を目的に応じて捕集する
ようなフィルタには、捕集すべき物質の大きさに応じた
フィルタ有効径を有すると共に、通常の使用において
は、該フィルタを通過する空気等の流体の流れを阻害し
ないように低い圧力損失を達成する物性が求められる。
2. Description of the Related Art Generally, a filter for collecting various substances according to the purpose has a filter effective diameter corresponding to the size of the substance to be collected, and in ordinary use, passes through the filter. There is a demand for physical properties that achieve low pressure loss so as not to obstruct the flow of fluid such as air.

【0003】しかし前記フィルタ有効径が、被捕集物の
大きさに合っていない場合には、効率的な該被捕集物の
捕集が困難となったり、圧力損失が高くなりすぎたりし
て、何れの場合も好適な効果を長期間に亘って発現し得
なくなってしまう。
However, if the effective diameter of the filter does not match the size of the object to be collected, it becomes difficult to efficiently collect the object to be collected or the pressure loss becomes too high. In either case, a suitable effect cannot be exhibited over a long period of time.

【0004】また前記圧力損失についても、使用時にお
ける重要な要素の一つであり、該圧力損失が大きいと、
ゴミ等の被捕集物の捕集効率が高まる一方で目詰まりを
起こし易い、すなわちメンテナンス等を頻繁に行なう必
要が生じ、実際の使用においては大きな問題となってし
まう。この圧力損失は前記フィルタ有効径にも大きく影
響を値であるが、その一方で使用されるフィルタの内部
構造が連通状態になければ、該フィルタ有効径の大きさ
に関わらず該圧力損失が高くフィルタ用途に適さないも
のとなってしまう。すなわち前記フィルタの物性を考え
た場合、フィルタ有効径と圧力損失とは相反すると共
に、重要な物性値であることが分かる。
[0004] The pressure loss is also one of the important factors in use, and if the pressure loss is large,
While the collection efficiency of the collected matter such as dust increases, clogging is likely to occur, that is, frequent maintenance or the like needs to be performed, which poses a serious problem in actual use. This pressure loss has a large effect on the effective diameter of the filter, but on the other hand, if the internal structure of the filter used is not in a communicating state, the pressure loss is high regardless of the size of the effective diameter of the filter. It is not suitable for filter applications. That is, when considering the physical properties of the filter, it can be seen that the filter effective diameter and the pressure loss are contradictory and are important physical property values.

【0005】これらの点を考えるに、フィルタ有効径を
任意に制御し得ると共に、該フィルタ有効径以外の物性
によって圧力損失を高めることのない構造を有する物質
を使用してフィルタを作製することが望ましい。このよ
うな物質の一つとして、所謂3次元に連通した状態の気
泡を有する発泡体が挙げられ、該発泡体の内部に形成さ
れる気泡径がすなわち前記フィルタ有効径となる。一般
に前記発泡体を製造する方法としては、主材料中に発泡
材を混入し、該発泡材がら発生した窒素等のガスにより
気泡を形成させる発泡法や、主材料中に予め気泡形成材
を混入・分散させた後に、該気泡形成材を取り除いて気
泡を形成する抽出法が知られている。
In view of these points, it is necessary to manufacture a filter using a substance having a structure that can control the effective diameter of the filter arbitrarily and does not increase the pressure loss due to physical properties other than the effective diameter of the filter. desirable. As one of such substances, there is a foam having so-called three-dimensionally connected bubbles, and the diameter of the bubbles formed inside the foam is the filter effective diameter. Generally, as a method for producing the foam, a foaming method is used in which a foaming material is mixed into a main material and bubbles are formed by a gas such as nitrogen generated from the foaming material, or a foaming material is previously mixed in the main material. -An extraction method is known in which the foam-forming material is removed after dispersion to form bubbles.

【0006】しかし前記発泡法の場合、様々な主材料を
利用し得る利点がある一方で、発生する気泡径を均一に
する制御が難しく、また数十μmといった微小径の気泡
形成が困難である。これに対して前記抽出法の場合で
は、形成される気泡径等は使用する気泡材の種類に依存
するので、前述の均一性および大きさを任意に制御し得
る長所がある。
However, the foaming method has an advantage that various main materials can be used, but it is difficult to control the uniformity of the generated bubble diameter, and it is difficult to form bubbles having a small diameter of several tens μm. . On the other hand, in the case of the extraction method, the diameter and the like of the formed bubble depend on the type of the bubble material to be used. Therefore, there is an advantage that the uniformity and size described above can be arbitrarily controlled.

【0007】[0007]

【発明が解決しようとする課題】しかし前記抽出法によ
って発泡体を得る場合、一般に混合される気泡形成材に
ついては混合度合い、抽出の容易性、すなわち3次元連
通気泡構造が得られることが重要視されており、該気泡
形成材の大きさの分布には注意が払われていなかった。
However, when a foam is obtained by the above-mentioned extraction method, it is important to obtain a three-dimensional open-cell structure, in which the degree of mixing and the ease of extraction, ie, the three-dimensional open-cell structure, are generally obtained for the foam-forming material to be mixed. No attention has been paid to the size distribution of the cell forming material.

【0008】また前記抽出法においては、使用される気
泡形成材の大きさが一定の範囲内にない場合には、抽出
不可能となってしまうことが考えられ、このような状況
下においては、前記気孔形成材が発泡体を形成する主材
料中から充分に抽出除去できずに残留してしまい、その
結果、骨格の形成等に多大な影響を与えてしまうことが
考えられる。具体的には、均質な骨格が形成されず強度
が低下する、残留した気泡形成材が得られる発泡体の物
性および化学的特性に影響を与え、連泡率が低下する、
収縮率が大きくなる等の問題が指摘される。
In the above-mentioned extraction method, if the size of the foam forming material used is not within a certain range, it is considered that extraction is impossible. It is conceivable that the pore-forming material remains without being sufficiently extracted and removed from the main material forming the foam, and as a result, it greatly affects the formation of the skeleton and the like. Specifically, the uniform skeleton is not formed, the strength is reduced, the residual foam forming material affects the physical properties and chemical properties of the foam obtained, and the open cell rate is reduced,
Problems such as an increase in shrinkage are pointed out.

【0009】[0009]

【発明の目的】この発明は、発泡体によりフィルタを得
る場合に顕在化する前記問題に鑑み、これを好適に解決
するべく提案されたものであって、抽出法により得られ
る発泡体を用いてフィルタを作製する際に、使用する気
泡形成材等の粒子寸法を、最終的に得られるフィルタが
達成し得る、被捕集物の大きさ等により決定すること
で、該被捕集物を効率的に捕集し得るフィルタと、該フ
ィルタの製造方法とを提供することを目的とする。また
前記気泡形成材等の粒子寸法の範囲を所定の範囲内とす
ることで該気泡形成材の抽出除去を容易化し、フィルタ
を得た際の不純物量および収縮率を低減すると共に、強
度を向上させ得るフィルタと、該フィルタの製造方法と
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-mentioned problem that appears when a filter is obtained from a foam, and has been proposed to suitably solve the problem. When producing a filter, the particle size of the bubble forming material or the like to be used is determined by the size of the collected object, which can be achieved by the finally obtained filter, so that the collected object can be efficiently used. It is an object of the present invention to provide a filter that can be trapped selectively and a method for manufacturing the filter. Further, by setting the range of the particle size of the bubble forming material or the like within a predetermined range, extraction and removal of the bubble forming material is facilitated, and the amount of impurities and shrinkage when a filter is obtained are reduced, and the strength is improved. An object of the present invention is to provide a filter that can be made to work and a method for manufacturing the filter.

【0010】[0010]

【課題を解決するための手段】前記課題を克服し、所期
の目的を達成するため本願の発明に係るフィルタは、少
なくとも1種類の熱可塑性樹脂と、その粒子寸法が分級
により所定範囲に設定され、該熱可塑性樹脂の熱溶融温
度で熱的に安定で形状を維持し得る粒状体からなる水溶
解性気泡形成材と、その粒子寸法が分級により該水溶性
気泡形成材の粒子寸法と略同じ範囲に設定され、滑材と
して作用する同じく粒状体からなる水溶解性高分子化合
物との加熱混合による成形体から、前記水溶解性の気泡
形成材および高分子化合物を水で抽出除去することで、
3次元連通気泡構造になっており、前記粒子寸法の範囲
は水溶解性物質の抽出除去率、得られるフィルタの連通
率および強度を向上させ得る値に設定されていることを
特徴とする。
In order to overcome the above-mentioned problems and achieve the intended object, a filter according to the present invention has at least one kind of thermoplastic resin and a particle size of the thermoplastic resin set within a predetermined range by classification. A water-soluble bubble-forming material made of a granular material that is thermally stable and can maintain its shape at the heat melting temperature of the thermoplastic resin, and the particle size of which is approximately the same as the particle size of the water-soluble bubble-forming material by classification. The water-soluble bubble-forming material and the polymer compound are extracted and removed with water from a molded product obtained by heating and mixing with a water-soluble polymer compound, which is set in the same range and also functions as a lubricant, also consisting of a granular material. so,
It has a three-dimensional communication bubble structure, and the range of the particle size is set to a value that can improve the extraction and removal rate of the water-soluble substance, the communication rate and the strength of the obtained filter.

【0011】前記課題を克服し、所期の目的を達成する
ため本願の別の発明に係るフィルタは、少なくとも1種
類の熱可塑性樹脂と、その粒子寸法が分級により所定範
囲に設定され、該熱可塑性樹脂の熱溶融温度で熱的に安
定で形状を維持し得る粒状体からなる水溶解性気泡形成
材と、滑材として作用する水溶解性高分子化合物との加
熱混合による成形体から、前記水溶解性の気泡形成材お
よび高分子化合物を水で抽出除去することで、3次元連
通気泡構造になっており、前記粒子寸法の範囲は水溶解
性気泡形成材の抽出除去率、得られるフィルタの連通率
および強度を向上させ得る値に設定されていることを特
徴とする。
[0011] In order to overcome the above problems and achieve the intended object, a filter according to another invention of the present application has at least one kind of thermoplastic resin and the particle size thereof is set within a predetermined range by classification. From a molded body obtained by heating and mixing a water-soluble bubble-forming material made of a granular material capable of maintaining a shape that is thermally stable at the heat melting temperature of a plastic resin and a water-soluble polymer compound that acts as a lubricant, The water-soluble bubble-forming material and the polymer compound are extracted and removed with water to form a three-dimensional open-cell structure. The range of the particle size is the extraction / removal rate of the water-soluble bubble-forming material and the filter obtained. Are set to values that can improve the communication rate and strength of

【0012】同じく前記課題を克服し、所期の目的を達
成するため、本願の更に別の発明に係る発泡体の製造方
法は、少なくとも1種類の熱可塑性樹脂と、その粒子寸
法が分級により所定範囲に設定され、該熱可塑性樹脂の
熱溶融温度で熱的に安定で形状を維持し得る粒状体から
なる水溶解性気泡形成材と、その粒子寸法が分級により
該水溶性気泡形成材の粒子寸法と略同じ範囲に設定さ
れ、滑材として作用する同じく粒状体からなる水溶解性
高分子化合物とを加熱状態下で混合し、得られた混合物
を所定形状に成形した後、この成形体を水に接触させて
前記水溶解性の気泡形成材および高分子化合物を抽出除
去することで3次元連通気泡構造をなし、かつ水溶解性
物質の抽出除去率、得られるフィルタの連通率および強
度の向上が図られたフィルタを製造するようにしたこと
を特徴とする。
[0012] In order to overcome the above-mentioned problems and achieve the intended object, a method for producing a foam according to yet another aspect of the present invention comprises a method for producing at least one type of thermoplastic resin, the particle size of which is determined by classification. A water-soluble bubble-forming material consisting of a granular material which is set in a range and is thermally stable and can maintain its shape at the heat-melting temperature of the thermoplastic resin, and particles of the water-soluble bubble-forming material whose particle size is classified by classification. After being mixed with a water-soluble polymer compound, which is set in substantially the same range as the dimensions and also functions as a lubricating material, and is formed of a granular material, and the resulting mixture is formed into a predetermined shape, the molded body is formed. By contacting with water to extract and remove the water-soluble bubble-forming material and the polymer compound, a three-dimensional communication bubble structure is formed, and the extraction and removal rate of the water-soluble substance, the communication rate and strength of the obtained filter are reduced. Improved Characterized in that so as to produce the filter.

【0013】同じく前記課題を克服し、所期の目的を達
成するため、本願の更に別の発明に係る発泡体の製造方
法は、少なくとも1種類の熱可塑性樹脂と、その粒子寸
法が分級により所定範囲に設定され、該熱可塑性樹脂の
熱溶融温度で熱的に安定で形状を維持し得る粒状体から
なる水溶解性気泡形成材と、滑材として作用する水溶解
性高分子化合物とを加熱状態下で混合し、得られた混合
物を所定形状に成形した後、この成形体を水に接触させ
て前記水溶解性の気泡形成材および高分子化合物を抽出
除去することで3次元連通気泡構造をなし、かつ水溶解
性気泡形成材の抽出除去率、得られるフィルタの連通率
および強度の向上が図られたフィルタを製造するように
したことを特徴とする。
[0013] In order to overcome the above-mentioned problems and achieve the intended object, a method for producing a foam according to yet another aspect of the present invention comprises a method for producing at least one type of thermoplastic resin and the particle size of the thermoplastic resin by classification. A range is set, and a water-soluble bubble-forming material composed of a granular material that is thermally stable and can maintain a shape at a heat melting temperature of the thermoplastic resin and a water-soluble polymer compound that acts as a lubricant are heated. After mixing under the condition, the obtained mixture is molded into a predetermined shape, and the molded body is brought into contact with water to extract and remove the water-soluble cell-forming material and the polymer compound, thereby forming a three-dimensional communication cell structure. And a filter in which the extraction and removal rate of the water-soluble bubble-forming material, the communication rate and the strength of the obtained filter are improved.

【0014】[0014]

【発明の実施の形態】次に、本発明に係るフィルタにつ
き、好適な実施例を挙げて、添付図面を参照しながら以
下説明する。本願の発明者は、抽出法により発泡体を製
造する際に気泡を形成する気泡形成材等の粒子寸法の範
囲を制御することによって、被捕集物を効率的に捕集
し、圧力損失をできる限り抑制し得ると共に、抽出時に
おける該気泡形成材の抽出除去の割合を向上させること
で、連通度および強度を向上させるフィルタが得られる
ことを知見したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a filter according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments. The inventor of the present application controls the particle size range of a cell forming material or the like that forms cells when producing a foam by an extraction method, thereby efficiently collecting trapped objects and reducing pressure loss. It has been found that a filter capable of improving the degree of communication and the strength can be obtained by suppressing as much as possible and improving the rate of extraction and removal of the bubble forming material at the time of extraction.

【0015】前記フィルタ10は、図1に示す如く、主
成分である熱可塑性樹脂12からなり、気泡形成材およ
び高分子化合物が抽出除去されることで形成される微細
な気泡16が3次元的に連通する、所謂3次元連通気泡
構造を有している。
As shown in FIG. 1, the filter 10 is made of a thermoplastic resin 12 as a main component, and fine bubbles 16 formed by extracting and removing a bubble forming material and a polymer compound are three-dimensionally formed. , A so-called three-dimensional communication bubble structure.

【0016】前記熱可塑性樹脂12としては、TPE
(ポリエステル系、ポリエーテル系、ポリエーテルポリ
エステル系、スチレン系およびポリアミド系他)、オレ
フィン樹脂(PE(LD-PE,HD-PE,LL-PE、α
オレフィン化PE)、PPおよびTPO)、TPU、ポリ
アミド、ポリイミドまたはポリアセタールその他加熱す
ることで溶融する樹脂であれば、如何なる樹脂であって
も使用可能である。また溶融点の近似する熱可塑性樹脂
複数の使用も物性等を考慮すれば使用可能である。
As the thermoplastic resin 12, TPE is used.
(Polyester type, polyether type, polyether polyester type, styrene type, polyamide type, etc.), olefin resin (PE (LD-PE, HD-PE, LL-PE, α
Any resin that can be melted by heating can be used, such as olefinated PE), PP and TPO), TPU, polyamide, polyimide or polyacetal. The use of a plurality of thermoplastic resins having similar melting points can also be used in consideration of physical properties and the like.

【0017】前記気泡形成材としては、水溶解性であっ
て、かつ前記熱可塑性樹脂12が熱溶融する際にも熱的
に安定で形状を維持し得る物質であれば何れも使い得
る。例えば無機物としては、NaCl、KCl、CaC
2、NH4Cl、NaNO3、NaNO2等が挙げられ
る。有機物としては、TME(トリメチロールエタン)、
トリメチロールプロパン、トリメチロールブタン、しょ
糖、可溶性でんぷん、ソルビトール、グリシンまたは各
有機酸(リンゴ酸、クエン酸、グルタミン酸またはコハ
ク酸)のナトリウム塩等が挙げられる。なお使用に際し
ては、所定の分級が可能な多数の粒状物が使用される。
As the foam-forming material, any substance can be used as long as it is water-soluble and is thermally stable and can maintain its shape even when the thermoplastic resin 12 is thermally melted. For example, as inorganic substances, NaCl, KCl, CaC
l 2 , NH 4 Cl, NaNO 3 , NaNO 2 and the like. As organic substances, TME (trimethylolethane),
Examples include trimethylolpropane, trimethylolbutane, sucrose, soluble starch, sorbitol, glycine or the sodium salt of each organic acid (malic acid, citric acid, glutamic acid or succinic acid). At the time of use, a large number of granular materials that can be subjected to a predetermined classification are used.

【0018】前記高分子化合物としては、ポリエチレン
グリコール、ポリエチレングリコールジアクリレート、
ポリエチレングリコールジオレエート、ポリエチレング
リコールジアセテート等のポリエチレングリコール誘導
体その他、水に溶解し、前記熱可塑性樹脂12が熱溶融
する際に熱分解等しない安定な物質であり、同時に該熱
可塑性樹脂12の粘度を低下させる働きをする化合物で
あれば如何なるものであっても使用可能である。殊にポ
リエチレングリコールは、メルトフローが高く、かつ水
溶解性が高いので好適に使用し得る。また気泡形成材と
して有機系物質を選択した場合は、該気泡形成材の抽出
・除去を促進する作用も確認されている。更に成形を押
出成形方法で行なう場合、前記ポリエチレングリコール
の分子量は2,000〜30,000、好ましくは5,0
00〜25,000、更に好ましくは15,000〜2
5,000の範囲が好適であるとの知見が得られてい
る。なお使用に際しては、必要に応じて前記気泡形成材
と同様に、所定の分級が可能な多数の粒状物が使用され
る。
Examples of the high molecular compound include polyethylene glycol, polyethylene glycol diacrylate,
Polyethylene glycol dioleate, polyethylene glycol derivatives such as polyethylene glycol diacetate, and other stable substances that dissolve in water and do not thermally decompose when the thermoplastic resin 12 is thermally melted. Any compound that functions to lower the viscosity can be used. Particularly, polyethylene glycol can be suitably used because it has a high melt flow and high water solubility. Further, when an organic substance is selected as the bubble-forming material, an effect of promoting the extraction and removal of the bubble-forming material has been confirmed. Further, when the molding is carried out by an extrusion molding method, the molecular weight of the polyethylene glycol is 2,000 to 30,000, preferably 5.0 to 5,000.
00 to 25,000, more preferably 15,000 to 2
It has been found that a range of 5,000 is suitable. At the time of use, a large number of granules that can be classified as required are used in the same manner as in the case of the bubble forming material.

【0019】前記高分子化合物は、滑材として作用する
ものであり、加熱混合下においては不定形となり流動状
態となることで効果的にその作用を発現する。従って前
記高分子化合物の種類によっては、粒径制御自体を必要
としなくなる場合が考えられ、このような場合、該粒径
制御を施す手間を省くことで製造コストを低減し得る。
しかし前述のように不定形となる場合であっても、後述
する理由([0030]参照)により、浮島構造となり抽出
除去が困難な気泡形成材の総量低減には一定の効果が期
待できる。また前記高分子化合物として、熱可塑性樹脂
12が熱溶融する温度で大きな溶融による状態変化を起
こし得ず、また充分な滑材作用を発現するような物質を
使用した場合には、前記気泡形成材に行なったと同様の
粒径制御が必要となり大きな意味を持つことになる。
The above-mentioned polymer compound acts as a lubricating material, and when heated and mixed, becomes amorphous and becomes in a fluid state, thereby exhibiting its effect effectively. Therefore, depending on the type of the polymer compound, there may be a case where the control of the particle size itself is not necessary. In such a case, the production cost can be reduced by eliminating the trouble of controlling the particle size.
However, even in the case of the irregular shape as described above, a certain effect can be expected to reduce the total amount of the bubble forming material which has a floating island structure and is difficult to extract and remove for the reason described later (see [0030]). In addition, when a substance that does not cause a large change in state due to large melting at a temperature at which the thermoplastic resin 12 is melted by heat and uses a substance that exhibits a sufficient lubricating effect is used as the polymer compound, the bubble-forming material In this case, the same control of the particle size as described above is required, which has a great significance.

【0020】前記気泡形成材および高分子化合物の粒子
寸法については、前記フィルタ10内に形成される気泡
16の大きさとなり、該気泡16の大きさは、捕集すべ
き被捕集物の大きさおよび圧力損失等に依存し、決定さ
れる。具体的に前記気泡16の上限、すなわち前記粒子
寸法の上限は、捕集すべき被捕集物の大きさによって決
定され、前記圧力損失は前記気泡16の下限、すなわち
前記粒子寸法の下限を決定するものであり、この数値が
小さ過ぎると、前記圧力損失が過大となりフィルタ用途
に適さなくなってしまうため注意が必要である。
The particle size of the bubble-forming material and the high molecular compound is the size of the bubbles 16 formed in the filter 10, and the size of the bubbles 16 is determined by the size of the material to be collected. It is determined depending on the pressure and the pressure loss. Specifically, the upper limit of the bubbles 16, that is, the upper limit of the particle size is determined by the size of the trapped object to be collected, and the pressure loss determines the lower limit of the bubbles 16, that is, the lower limit of the particle size. If the value is too small, the pressure loss becomes excessive and the filter becomes unsuitable for use in a filter.

【0021】前記熱可塑性樹脂12と、気泡形成材およ
び高分子化合物(水溶解性物質)との混合割合は、vol
%で10:90〜40:60の範囲内が好適である。前
記熱可塑性樹脂12の割合が10vol%未満の場合に
は、水溶解性物質の抽出・除去時にフィルタが形状を維
持できず崩壊してしまう。一方、前記熱可塑性樹脂12
の割合が40vol%を越える場合、すなわち水溶解性
物質が60vol%が未満の場合には、充分な数の気泡
が形成されなくなってしまい、その結果充分な3次元連
通気泡構造が形成されず連通度も低下してしまうことで
圧力損失が悪化する。殊に前記熱可塑性樹脂12の混合
割合は、12〜35vol%の範囲内が好適である。
The mixing ratio of the thermoplastic resin 12 with the cell forming material and the polymer compound (water-soluble substance) is vol.
% Is preferably in the range of 10:90 to 40:60. If the ratio of the thermoplastic resin 12 is less than 10 vol%, the filter cannot maintain its shape when extracting and removing the water-soluble substance, and will collapse. On the other hand, the thermoplastic resin 12
When the proportion of the water-soluble substance is less than 60 vol%, a sufficient number of bubbles are not formed, and as a result, a sufficient three-dimensional communicating cell structure is not formed, and the The pressure loss worsens as the temperature decreases. In particular, the mixing ratio of the thermoplastic resin 12 is preferably in the range of 12 to 35 vol%.

【0022】前記気泡形成材と高分子化合物との混合割
合は、vol%で45:55〜95:5の範囲内に設定
される。前記気泡形成材が45vol%未満の場合に
は、3次元的に連通した発泡構造が得られなくなり、9
5vol%を越える場合には、水溶解性物質の抽出割合
が低下して充分な気泡率、すなわち連通度が得られなく
なる。殊に前記気泡形成材と高分子化合物との混合割合
は、vol%で65:35〜88:12の範囲内が好適
である。
The mixing ratio of the cell forming material and the polymer compound is set in the range of 45:55 to 95: 5 by vol. When the amount of the cell forming material is less than 45 vol%, a three-dimensionally connected foamed structure cannot be obtained, and 9
If it exceeds 5% by volume, the extraction ratio of the water-soluble substance is reduced, and a sufficient air bubble rate, that is, communication cannot be obtained. In particular, the mixing ratio of the cell forming material and the polymer compound is preferably in the range of 65:35 to 88:12 in vol%.

【0023】前記熱可塑性樹脂、気泡形成材および高分
子化合物の混合割合を、前述の範囲に設定した場合、こ
れら混合物を成形した成形体を水に浸漬させることで、
該気泡形成材および高分子化合物は容易かつ充分に抽出
・除去可能である。すなわち、前記熱可塑性樹脂を主材
料とし、被捕集物を効率的に捕集し得ると共に、均質性
および強度を備えて3次元連通気泡構造を有するフィル
タが得られる。
When the mixing ratio of the thermoplastic resin, the foam-forming material and the high molecular compound is set in the above-mentioned range, a molded article obtained by molding the mixture is immersed in water.
The cell forming material and the polymer compound can be easily and sufficiently extracted and removed. That is, it is possible to obtain a filter having the three-dimensional communicating cell structure with the thermoplastic resin as a main material, capable of efficiently collecting trapped substances, having uniformity and strength.

【0024】本発明に係るフィルタを製造するには、図
2に示す如く、先ず気泡を形成する気泡形成材或いは該
気泡形成材および高分子化合物に分級を実施して所要範
囲の粒子寸法とし、分級された該気泡形成材或いは気泡
形成材および高分子化合物と、骨格を形成する熱可塑性
樹脂とを所定の機器を使用して、混合・混練して加熱混
合物とし、これをそのまま、または押出成形や射出成形
等を施して所定形状とされた成形体を水または所定温度
の温水に浸漬することで、前記気泡形成材および高分子
化合物を抽出・除去して、微細な気泡が3次元連通気泡
構造を有するフィルタを得るものである。また混合時の
粘性が高く混合が困難な場合には、前述した混合に先立
ち予混合を施すようにしてもよい。
In order to produce the filter according to the present invention, as shown in FIG. 2, first, a cell forming material for forming cells, or the cell forming material and the polymer compound are classified to a particle size in a required range. The classified foam-forming material or the foam-forming material and the high-molecular compound, and the thermoplastic resin forming the skeleton are mixed and kneaded using a predetermined device to form a heated mixture, which is used as it is or is subjected to extrusion molding. The foamed material and the polymer compound are extracted and removed by immersing the molded body formed into a predetermined shape by performing injection molding or the like into water or warm water at a predetermined temperature, and fine bubbles are three-dimensionally communicated. This is to obtain a filter having a structure. When the viscosity at the time of mixing is high and mixing is difficult, pre-mixing may be performed prior to the above-described mixing.

【0025】前記気泡形成材或いは該気泡形成材および
高分子化合物の分級については、その分級すべき粒子寸
法にもよるが、一般的に必要とされる粒子寸法の上限を
設定した篩いにより篩い分級を実施し、次いで必要とさ
れる粒子寸法の下限を設定したエアー分級を実施して、
設定された範囲の粒子寸法物を得るものである。基本的
に篩い分級はエアー分級より時間当りの分級効率が高
く、かつ細かい粒子寸法では目詰まりが心配されるの
で、粒子寸法の上限を篩いで分級するこで短時間にかつ
目詰まりのない効率的な分級を実施し得るので、下限の
前記エアー分級に先立って行なった方が効率がよい。
The classification of the cell forming material or the cell forming material and the high molecular compound depends on the particle size to be classified, but it is generally sieved and classified by a sieve having an upper limit of the required particle size. And then perform air classification with the lower limit of the required particle size,
This is to obtain a particle size product within a set range. Basically, sieving classification has higher classification efficiency per hour than air classification, and there is concern about clogging with fine particle size, so sieving the upper limit of particle size by sieving in a short time and efficiency without clogging Since efficient classification can be performed, it is more efficient to perform the classification before the lower limit of the air classification.

【0026】前述の熱可塑性樹脂、気泡形成材および高
分子化合物の混合・混練には、1軸式または2軸式押出
機、ニーダ、コニーダ、バンバリーミキサ、ヘンシェル
型ミキサ或いはロータ型ミキサその他の混練機等の機能
性物質を均一に分散させ得るものが好適に使用される。
この混練について、特殊な装置は必要なく、また混練速
度等も限定されない。混練時の温度は使用する熱可塑性
樹脂等の熱溶融点によって適宜設定されるが、本発明に
おいては、この熱可塑性樹脂の熱溶融点で前記気泡形成
材および高分子化合物が溶融または昇華することがない
ので、如何なる温度であっても設定可能となっている。
The mixing and kneading of the above-mentioned thermoplastic resin, bubble-forming material and polymer compound may be carried out by a single-screw or twin-screw extruder, kneader, co-kneader, Banbury mixer, Henschel mixer or rotor mixer or other kneading. Those capable of uniformly dispersing a functional substance such as a machine are suitably used.
For this kneading, no special device is required, and the kneading speed and the like are not limited. The temperature at the time of kneading is appropriately set depending on the thermal melting point of the thermoplastic resin or the like to be used.In the present invention, the bubble forming material and the polymer compound are melted or sublimated at the thermal melting point of the thermoplastic resin. Because there is no, any temperature can be set.

【0027】また前記熱可塑性樹脂、気泡形成材および
高分子化合物の混合・混練の混練時間は各種混合物の物
性により左右されるが、該混合物が充分に混合・混練さ
れればよく、通常では30〜40分程度で充分である。
この際に余りの長時間の混練は、発泡体の骨格を形成す
る前記熱可塑性樹脂の物性的な劣化を引き起こす原因と
なるので注意が必要である。混練された原料は、物性的
に押出、射出、プレスまたはローラー等により所要形状
に成形が可能であるが、殊に量産性が高い押出または複
雑形状を形成し得る射出による成形が好適である。
The kneading time for mixing and kneading the thermoplastic resin, the foam-forming material and the high molecular compound depends on the physical properties of the various mixtures. The mixture only needs to be sufficiently mixed and kneaded. About 40 minutes is enough.
At this time, care must be taken because excessively long kneading causes deterioration of the physical properties of the thermoplastic resin forming the skeleton of the foam. The kneaded raw material can be physically formed into a desired shape by extrusion, injection, pressing, a roller, or the like, but particularly, extrusion by high mass productivity or injection molding capable of forming a complicated shape is preferable.

【0028】各成分を混合して所要形状に成形された成
形体は、前記気泡形成材および高分子化合物を、溶媒で
ある水に所定時間(例えば12〜24時間、成形体の形
状・厚さ等にもよる)浸漬させることで抽出・除去され
る。この浸漬時間については、抽出すべき前記気泡形成
材および高分子化合物の粒子寸法が制御されていること
により、制御されていないフィルタに較べて短縮がなさ
れている(理由は[0030]に記載)。
The molded article formed into a required shape by mixing the respective components is prepared by mixing the foam-forming material and the polymer compound in water as a solvent for a predetermined time (for example, 12 to 24 hours, the shape and thickness of the molded article). It is extracted and removed by immersion. The immersion time is shortened compared to an uncontrolled filter by controlling the particle size of the cell forming material and the polymer compound to be extracted (the reason is described in [0030]). .

【0029】この際の浸漬は、どのような方法であって
もよいが、前記成形体全体を水に接触させる水中浸漬に
よる抽出・除去が好適である。このとき使用される水の
温度についても、殊に限定がなく室温程度のものであっ
てもよいが、前記各水溶解性物質の効率的な除去のため
に、15〜60℃の温水を利用してもよい。
The immersion at this time may be any method, but extraction and removal by immersion in water in which the whole molded body is brought into contact with water is preferred. The temperature of the water used at this time is not particularly limited and may be about room temperature. For efficient removal of the water-soluble substances, hot water of 15 to 60 ° C. is used. May be.

【0030】また前記抽出による気泡形成材等の抽出除
去については、前記熱可塑性樹脂および気泡形成材等を
混合した際に、その構造が六方最密充填となることか
ら、該気泡形成材等の粒子寸法の数値範囲が、0.16
×n〜6.45×n(ここでnは自然数)に収まるように
することで、図3に示す如く、結晶構造的(図3(a)参
照)に抽出不可能な、すなわち浮島構造的な該気泡形成
材14等が熱可塑性樹脂12中に存在する(図3(b)参
照)ことがなくなると考えられる。従って、前記フィル
タの気泡径を設定する場合には、該気泡径の範囲が前述
の数値の範囲内に収まるようにすることが望ましく、こ
のような範囲内とすることで前記気泡形成材14等の量
的および時間的に効率のよい抽出が可能となる。
As for the extraction and removal of the bubble forming material and the like by the extraction, the structure becomes hexagonal close-packed when the thermoplastic resin and the bubble forming material and the like are mixed. The numerical range of particle size is 0.16
As shown in FIG. 3, the crystal structure (see FIG. 3 (a)) cannot be extracted, that is, the floating island structure can be obtained by setting the size within a range of × n to 6.45 × n (where n is a natural number). It is considered that the bubble forming material 14 and the like no longer exist in the thermoplastic resin 12 (see FIG. 3B). Therefore, when setting the bubble diameter of the filter, it is desirable that the range of the bubble diameter falls within the range of the numerical value described above. This makes it possible to quantitatively and temporally efficiently extract.

【0031】本発明に係るフィルタが利用される用途と
して、通常の被捕集物を効率よく捕集する捕集フィルタ
が挙げられるが、該フィルタを流通する流体としては各
種気体および各種液体の何れにも対応が可能であり、例
えば常温下で使用されるクリーンルーム用フィルタおよ
びインクジェット用のインクストレーナ等の殊に微細な
被捕集物を捕集する用途に好適に使用される。
Examples of applications where the filter according to the present invention is used include an ordinary collection filter for efficiently collecting an object to be collected. The fluid flowing through the filter may be any of various gases and various liquids. It is suitable for use in applications for collecting particularly fine objects such as a filter for a clean room used at room temperature and an ink strainer for an ink jet.

【0032】[0032]

【実験例】以下に、本発明に係るフィルタの実験例を示
す。このフィルタは、後述する熱可塑性樹脂、気泡形成
材および高分子化合物を混合し、得られた混合物を汎用
の熱プレス装置を使用して、温度100℃、時間60s
ecの条件で幅150mm、長さ150mm、厚さ2m
mの試験片とした後、水による24時間の抽出処理およ
び熱風乾燥機による乾燥処理を施して得られるものであ
る。実験例については、前記気泡形成材および高分子化
合物の粒子寸法を100〜250μmにエアー分級によ
り制御し、比較例については粒子寸法の制御を行なわな
かった。そして得られた2つの試験片について、目視ま
たは各種測定機器を使用して発泡体に必要とされる各物
性、表1に示す抽出率(%)、収縮率(%)、引張強度(kg/
cm2)、C硬度(C)、被捕集物捕集前の圧力損失に対応す
る物性値として透液液速度(sec/10cc(詳細は後述))お
よび10μmの被捕集物(カーボンビーズ)の捕集率(%)
を夫々観察・測定した。
[Experimental Example] An experimental example of the filter according to the present invention will be described below. This filter is prepared by mixing a thermoplastic resin, a foam-forming material, and a polymer compound, which will be described later, and subjecting the obtained mixture to a temperature of 100 ° C. for 60 seconds using a general-purpose hot press.
Under the conditions of ec, width 150 mm, length 150 mm, thickness 2 m
After obtaining a test piece of m, it is obtained by subjecting it to an extraction treatment with water for 24 hours and a drying treatment with a hot air drier. In the experimental example, the particle size of the cell forming material and the polymer compound was controlled to 100 to 250 μm by air classification, and in the comparative example, the particle size was not controlled. And about the obtained two test pieces, each physical property required for a foam by visual observation or using various measuring instruments, an extraction rate (%), a shrinkage rate (%), and a tensile strength (kg /
cm 2 ), C hardness (C), liquid permeation liquid velocity (sec / 10 cc (details will be described later)) and physical properties corresponding to the pressure loss before collecting the collected matter (carbon beads). ) Collection rate (%)
Was observed and measured respectively.

【0033】前記圧力損失については、図4に示す試験
装置50を使用して透液液速度(sec/10cc)を測定し
た。前記試験装置50は、基本的に内径5mmの円筒管
52と、該円筒管52内部に固定的に載置し得るφ5×
3mmの円柱形状物に加工されたフィルタ54とからな
り、これに上方から10ccのエタノールを通過させ、
通過に要した時間を測定するものである。この場合、圧
力損失が高い方が通過時間は長くなる。
With respect to the pressure loss, the liquid permeation speed (sec / 10 cc) was measured using a test apparatus 50 shown in FIG. The test apparatus 50 basically includes a cylindrical tube 52 having an inner diameter of 5 mm and a φ5 ×
It consists of a filter 54 processed into a 3 mm cylindrical shape, and 10 cc of ethanol is passed through it from above,
It measures the time required for passage. In this case, the higher the pressure loss, the longer the passage time.

【0034】[0034]

【表1】 [Table 1]

【0035】なお実験例および比較例で使用される各成
分および機器等は以下の通りである。 ・実験例および比較例に使用された物質および混合率 熱可塑性樹脂:汎用のポリオレフィン樹脂;15vol% 気泡形成材 :汎用の食塩;60vol% 高分子化合物:汎用のポリエチレングリコール;25vol% ・使用機器 押出機ラボプラストミル(東洋精機製)
The components and equipment used in the experimental examples and comparative examples are as follows. -Substances and mixing ratios used in Experimental Examples and Comparative Examples Thermoplastic resin: General-purpose polyolefin resin; 15 vol% Bubble-forming material: General-purpose salt; 60 vol% Polymer compound: General-purpose polyethylene glycol; 25 vol%-Equipment used Extrusion Kibo Lab Plast Mill (Toyo Seiki)

【0036】(結果)表1に示す如く、得られるフィルタ
の収縮率は、比較例で体積比で7%程度だったものが、
実験例では3%と改善され、引張強度について比較例を
1とした場合に1.3と約30%程度向上し、C硬度が
15が7と、より柔軟になったことが確認された。また
抽出率については比較例の95%が99%と大きな向上
が確認された。更に被捕集物の捕集率(50%→70%)
および浸液液速度(6sec→3.5sec)について
は、何れの数値も実験例に係るフィルタの方が良好であ
った。
(Results) As shown in Table 1, the contraction rate of the obtained filter was about 7% by volume in the comparative example.
In the experimental example, the tensile strength was improved to 3%, and the tensile strength was improved by about 30% to 1.3 when the comparative example was set to 1, and it was confirmed that the C hardness was 15 and 7 and became more flexible. As for the extraction ratio, a large improvement of 95% in the comparative example was confirmed to 99%. Furthermore, the collection rate of collected objects (50% → 70%)
Regarding the immersion liquid speed (6 sec.fwdarw.3.5 sec.), The filter according to the experimental example was better in all numerical values.

【0037】[0037]

【発明の効果】以上に説明した如く、本発明に係るフィ
ルタおよびその製造方法によれば、最終的に得られるフ
ィルタが達成すべき圧力損失および被捕集物の大きさ等
により決定される気泡径を気泡形成材等に分級を施し制
御することで、良好な流通性および被捕集物の捕集率等
を達成し得るフィルタを得ることができる。また前記気
泡形成材等が浮島構造を取らず抽出可能な状態となるよ
う制御することで、得られたフィルタに不純物として残
留する該気泡形成材等の量を低減することで、該発泡体
の収縮を抑制すると共に、連通度および強度を向上させ
たフィルタを得ることができる。
As described above, according to the filter and the method of manufacturing the same according to the present invention, air bubbles determined by the pressure loss to be achieved by the finally obtained filter, the size of the trapped object, etc. By classifying and controlling the diameter of the bubble-forming material or the like, it is possible to obtain a filter capable of achieving good flowability and a high collection rate of the trapped material. In addition, by controlling the bubble forming material or the like so as to be in an extractable state without taking a floating island structure, by reducing the amount of the bubble forming material or the like remaining as impurities in the obtained filter, A filter that suppresses shrinkage and improves communication and strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施例に係るフィルタを示す概
略斜視図である。
FIG. 1 is a schematic perspective view showing a filter according to a preferred embodiment of the present invention.

【図2】実施例に係るフィルタの製造方法を示す工程図
である。
FIG. 2 is a process chart showing a method for manufacturing a filter according to an example.

【図3】フィルタをなす発泡体の結晶構造的な内部構造
(図3(a))および実際の内部構造(図3(b))を示す概略
図である。
FIG. 3 shows the crystal structure of the foam of the filter
FIG. 3 (a) and a schematic diagram showing an actual internal structure (FIG. 3 (b)).

【図4】実験例に係る透液液速度を測定する試験装置の
概略図である。
FIG. 4 is a schematic diagram of a test apparatus for measuring a liquid permeation liquid velocity according to an experimental example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D019 AA01 AA03 BA13 BB07 BD01 CB06 4D056 AB17 AB20 AC22 DA01 4F074 AA16 AA32 AA65 AA71 AA74 AA76 AC13 AC14 AD04 CB03 DA02 DA03 DA12 DA13 DA24 DA43  ────────────────────────────────────────────────── ─── Continued on the front page F-term (reference) 4D019 AA01 AA03 BA13 BB07 BD01 CB06 4D056 AB17 AB20 AC22 DA01 4F074 AA16 AA32 AA65 AA71 AA74 AA76 AC13 AC14 AD04 CB03 DA02 DA03 DA12 DA13 DA24 DA43

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1種類の熱可塑性樹脂と、そ
の粒子寸法が分級により所定範囲に設定され、該熱可塑
性樹脂の熱溶融温度で熱的に安定で形状を維持し得る粒
状体からなる水溶解性気泡形成材と、その粒子寸法が分
級により該水溶性気泡形成材の粒子寸法と略同じ範囲に
設定され、滑材として作用する同じく粒状体からなる水
溶解性高分子化合物との加熱混合による成形体から、前
記水溶解性の気泡形成材および高分子化合物を水で抽出
除去することで、3次元連通気泡構造になっており、前
記粒子寸法の範囲は水溶解性物質の抽出除去率、得られ
るフィルタの連通率および強度を向上させ得る値に設定
されていることを特徴とするフィルタ。
1. A water comprising at least one kind of thermoplastic resin and a particle whose particle size is set within a predetermined range by classification, and which is thermally stable and can maintain its shape at the heat melting temperature of the thermoplastic resin. Heat-mixing of the soluble bubble-forming material and a water-soluble polymer compound having the same particle size as that of the water-soluble bubble-forming material whose particle size is set to be substantially the same as the particle size of the water-soluble bubble-forming material by classification. The water-soluble cell-forming material and the polymer compound are extracted and removed with water from the molded article according to the above, to form a three-dimensional communicating cell structure, and the particle size range is the extraction and removal rate of the water-soluble substance. A filter that is set to a value that can improve the communication rate and strength of the obtained filter.
【請求項2】 前記水溶解性の気泡形成材および高分子
化合物における粒子寸法の上限は、得られるフィルタが
捕集すべき被捕集物の大きさに依存する請求項1記載の
フィルタ。
2. The filter according to claim 1, wherein the upper limit of the particle size of the water-soluble bubble-forming material and the polymer compound depends on the size of an object to be collected by the obtained filter.
【請求項3】 前記水溶解性の気泡形成材および高分子
化合物における粒子寸法の下限は、得られるフィルタが
発現する圧力損失に依存する請求項1または2記載のフ
ィルタ。
3. The filter according to claim 1, wherein the lower limit of the particle size of the water-soluble bubble-forming material and the polymer compound depends on the pressure loss generated by the obtained filter.
【請求項4】 前記水溶解性気泡形成材は、無機物であ
る請求項1〜3の何れかに記載のフィルタ。
4. The filter according to claim 1, wherein the water-soluble bubble forming material is an inorganic substance.
【請求項5】 前記水溶解性気泡形成材は、トリメチロ
ールエタンである請求項1〜3の何れかに記載のフィル
タ。
5. The filter according to claim 1, wherein the water-soluble bubble forming material is trimethylolethane.
【請求項6】 前記水溶解性高分子化合物は、ポリエチ
レングリコールである請求項1〜5の何れかに記載のフ
ィルタ。
6. The filter according to claim 1, wherein the water-soluble polymer compound is polyethylene glycol.
【請求項7】 少なくとも1種類の熱可塑性樹脂と、そ
の粒子寸法が分級により所定範囲に設定され、該熱可塑
性樹脂の熱溶融温度で熱的に安定で形状を維持し得る粒
状体からなる水溶解性気泡形成材と、滑材として作用す
る水溶解性高分子化合物との加熱混合による成形体か
ら、前記水溶解性の気泡形成材および高分子化合物を水
で抽出除去することで、3次元連通気泡構造になってお
り、前記粒子寸法の範囲は水溶解性気泡形成材の抽出除
去率、得られるフィルタの連通率および強度を向上させ
得る値に設定されていることを特徴とするフィルタ。
7. Water comprising at least one kind of thermoplastic resin, and a granular material whose particle size is set within a predetermined range by classification, and which is thermally stable and can maintain its shape at the heat melting temperature of the thermoplastic resin. The water-soluble bubble-forming material and the polymer compound are extracted and removed with water from the molded body obtained by heating and mixing the soluble bubble-forming material and the water-soluble polymer compound acting as a lubricant, thereby providing a three-dimensional structure. A filter having an open-cell structure, wherein the range of the particle size is set to a value that can improve the extraction and removal rate of the water-soluble bubble-forming material, the open rate and the strength of the obtained filter.
【請求項8】 前記水溶解性の気泡形成材および高分子
化合物における粒子寸法の上限は、得られるフィルタが
捕集すべき被捕集物の大きさに依存する請求項7記載の
フィルタ。
8. The filter according to claim 7, wherein the upper limit of the particle size of the water-soluble bubble-forming material and the polymer compound depends on the size of an object to be collected by the obtained filter.
【請求項9】 前記水溶解性の気泡形成材および高分子
化合物における粒子寸法の下限は、得られるフィルタが
発現する圧力損失に依存する請求項7または8記載のフ
ィルタ。
9. The filter according to claim 7, wherein the lower limit of the particle size of the water-soluble bubble-forming material and the polymer compound depends on the pressure loss developed by the obtained filter.
【請求項10】 前記水溶解性気泡形成材は、無機物で
ある請求項7〜9の何れかに記載のフィルタ。
10. The filter according to claim 7, wherein the water-soluble bubble-forming material is an inorganic substance.
【請求項11】 前記水溶解性気泡形成材は、トリメチ
ロールエタンである請求項7〜9の何れかに記載のフィ
ルタ。
11. The filter according to claim 7, wherein the water-soluble bubble forming material is trimethylolethane.
【請求項12】 前記水溶解性高分子化合物は、ポリエ
チレングリコールである請求項7〜11の何れかに記載
のフィルタ。
12. The filter according to claim 7, wherein the water-soluble polymer compound is polyethylene glycol.
【請求項13】 少なくとも1種類の熱可塑性樹脂と、
その粒子寸法が分級により所定範囲に設定され、該熱可
塑性樹脂の熱溶融温度で熱的に安定で形状を維持し得る
粒状体からなる水溶解性気泡形成材と、その粒子寸法が
分級により該水溶性気泡形成材の粒子寸法と略同じ範囲
に設定され、滑材として作用する同じく粒状体からなる
水溶解性高分子化合物とを加熱状態下で混合し、 得られた混合物を所定形状に成形した後、 この成形体を水に接触させて前記水溶解性の気泡形成材
および高分子化合物を抽出除去することで3次元連通気
泡構造をなし、かつ水溶解性物質の抽出除去率、得られ
るフィルタの連通率および強度の向上が図られたフィル
タを製造するようにしたことを特徴とするフィルタの製
造方法。
13. At least one thermoplastic resin,
The particle size is set to a predetermined range by classification, a water-soluble bubble-forming material composed of a granular material that is thermally stable and can maintain its shape at the heat melting temperature of the thermoplastic resin, and the particle size is determined by classification. The particle size of the water-soluble bubble-forming material is set to be substantially the same as that of the water-soluble bubble-forming material. After that, the molded body is brought into contact with water to extract and remove the water-soluble bubble-forming material and the high molecular compound, thereby forming a three-dimensional communicating cell structure and obtaining an extraction and removal rate of a water-soluble substance. A method of manufacturing a filter, characterized in that a filter having an improved communication rate and strength is manufactured.
【請求項14】 前記水溶解性の気泡形成材および高分
子化合物の分級径が40μm以上の場合は篩い分級が、
40μm未満の場合はエアー分級が夫々使用される請求
項13記載のフィルタの製造方法。
14. When the classification diameter of the water-soluble bubble-forming material and the polymer compound is 40 μm or more, the sieving classification is performed,
14. The method for producing a filter according to claim 13, wherein air classification is used when the diameter is less than 40 µm.
【請求項15】 前記分級は、エアー分級によって行な
われる請求項13記載のフィルタの製造方法。
15. The method according to claim 13, wherein the classification is performed by air classification.
【請求項16】 前記水溶解性の気泡形成材および高分
子化合物の抽出除去に使用される水の温度は、15〜6
0℃である請求項13〜15の何れかに記載のフィルタ
の製造方法。
16. The temperature of water used for extraction and removal of the water-soluble bubble-forming material and the polymer compound is 15 to 6.
The method for producing a filter according to claim 13, wherein the temperature is 0 ° C. 17.
【請求項17】 少なくとも1種類の熱可塑性樹脂と、
その粒子寸法が分級により所定範囲に設定され、該熱可
塑性樹脂の熱溶融温度で熱的に安定で形状を維持し得る
粒状体からなる水溶解性気泡形成材と、滑材として作用
する水溶解性高分子化合物とを加熱状態下で混合し、 得られた混合物を所定形状に成形した後、 この成形体を水に接触させて前記水溶解性の気泡形成材
および高分子化合物を抽出除去することで3次元連通気
泡構造をなし、かつ水溶解性気泡形成材の抽出除去率、
得られるフィルタの連通率および強度の向上が図られた
フィルタを製造するようにしたことを特徴とするフィル
タの製造方法。
17. At least one thermoplastic resin,
The particle size is set to a predetermined range by classification, and a water-soluble bubble-forming material composed of a granular material that is thermally stable and can maintain a shape at the heat melting temperature of the thermoplastic resin, and a water-soluble material that acts as a lubricant. The resultant mixture is molded into a predetermined shape, and the molded body is brought into contact with water to extract and remove the water-soluble bubble-forming material and the polymeric compound. This makes it possible to form a three-dimensional communicating cell structure and extract and remove water-soluble cell forming material,
A method for manufacturing a filter, characterized in that a filter having an improved communication rate and strength is obtained.
【請求項18】 前記水溶解性気泡形成材の分級径が4
0μm以上の場合は篩い分級が、40μm未満の場合は
エアー分級が夫々使用される請求項17記載のフィルタ
の製造方法。
18. The classifying diameter of the water-soluble bubble forming material is 4
18. The method for producing a filter according to claim 17, wherein a sieve classification is used when it is 0 µm or more, and an air classification is used when it is less than 40 µm.
【請求項19】 前記分級は、エアー分級によって行な
われる請求項17記載のフィルタの製造方法。
19. The method according to claim 17, wherein the classification is performed by air classification.
【請求項20】 前記水溶解性の気泡形成材および高分
子化合物の抽出除去に使用される水の温度は、15〜6
0℃である請求項17〜19の何れかに記載のフィルタ
の製造方法。
20. The temperature of water used for extraction and removal of the water-soluble bubble-forming material and the polymer compound is 15 to 6;
The method for producing a filter according to any one of claims 17 to 19, wherein the temperature is 0 ° C.
JP2001134703A 2001-05-01 2001-05-01 Foamed body-used filter and its manufacturing method Pending JP2002326008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134703A JP2002326008A (en) 2001-05-01 2001-05-01 Foamed body-used filter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134703A JP2002326008A (en) 2001-05-01 2001-05-01 Foamed body-used filter and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002326008A true JP2002326008A (en) 2002-11-12

Family

ID=18982338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134703A Pending JP2002326008A (en) 2001-05-01 2001-05-01 Foamed body-used filter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002326008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344871A (en) * 2003-04-30 2004-12-09 Asahi Rubber:Kk Method for manufacturing porous filter
CN102512880A (en) * 2011-12-20 2012-06-27 天津利达丰科技有限公司 Manufacturing method of filter panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344871A (en) * 2003-04-30 2004-12-09 Asahi Rubber:Kk Method for manufacturing porous filter
JP4645792B2 (en) * 2003-04-30 2011-03-09 株式会社朝日ラバー Method for producing porous filter
CN102512880A (en) * 2011-12-20 2012-06-27 天津利达丰科技有限公司 Manufacturing method of filter panel
CN102512880B (en) * 2011-12-20 2014-11-05 天津利达丰科技有限公司 Manufacturing method of filter panel

Similar Documents

Publication Publication Date Title
DE102008064798B3 (en) Process for the production of granules based on expandable thermoplastic polymers
Park et al. Filamentary extrusion of microcellular polymers using a rapid decompressive element
CN105218851A (en) A kind of method preparing polymkeric substance hole-opening foaming material
CN102510874B (en) Process for producing porous stretched polytetrafluoroethylene film or tape having catalyst particles supported thereon, and filter for ozone removal
JP2001527474A (en) Sintered porous plastic product and method of manufacturing the same
CN103772902B (en) One has micro-nano co-continuous vesicular structure polyoxymethylene nano-porous thin film and preparation method thereof
CN103764883B (en) extrusion method
WO2000009309A1 (en) Method of extruding thermoplastic elastomer foam using water as a blowing agent
EP1503889B1 (en) Method for producing foamed polymer moulded bodies and foamed polymer moulded bodies
EP0609881B1 (en) Microporous polymer structures
CN105899285A (en) Production method for polytetrafluoroethylene porous film, production method for waterproof air-permeable member, and production method for air filter filtering medium
JPH07504447A (en) Acrylonitrile polymer compositions and products and their manufacturing methods
KR102540711B1 (en) Base for liquid filters
JP2002326008A (en) Foamed body-used filter and its manufacturing method
US20040245172A1 (en) Filtration membrane
US4411280A (en) Ventilated thermoplastic polymer foam filter rods
CN102517663B (en) Method for preparing microporous fibers by applying melt blowing and spinning of supercritical fluid
JP4381697B2 (en) Cosmetic sponge and method for producing the same
CA2277189C (en) Porous moulded bodies made of thermoplastic polymers
CN104812817A (en) Production method for porous body,three-dimensional mesh-like porous body,liquid filter,and liquid-absorbing sponge
CN1210117A (en) Production of composite material with stereospecific whisker strengthened polymer
US7795346B2 (en) Sintered porous high melt-flow index materials and methods of making same
JP3937310B2 (en) Filter using foam and manufacturing method thereof
JP2001302839A (en) Microporous body and method of producing the same
EP1025292B1 (en) Method for producing cellulosic shaped bodies