JP2002323043A - Linear motion bearing mechanism and manufacturing method therefor - Google Patents

Linear motion bearing mechanism and manufacturing method therefor

Info

Publication number
JP2002323043A
JP2002323043A JP2001124973A JP2001124973A JP2002323043A JP 2002323043 A JP2002323043 A JP 2002323043A JP 2001124973 A JP2001124973 A JP 2001124973A JP 2001124973 A JP2001124973 A JP 2001124973A JP 2002323043 A JP2002323043 A JP 2002323043A
Authority
JP
Japan
Prior art keywords
outer cylinder
shaft
retainer
groove
bearing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001124973A
Other languages
Japanese (ja)
Inventor
Takaki Okawara
恭樹 大川原
Fumihiko Ozaki
文彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hephaist Seiko Co Ltd
Original Assignee
Hephaist Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hephaist Seiko Co Ltd filed Critical Hephaist Seiko Co Ltd
Priority to JP2001124973A priority Critical patent/JP2002323043A/en
Publication of JP2002323043A publication Critical patent/JP2002323043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bearings For Parts Moving Linearly (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a linear motion bearing mechanism and a manufacturing method therefor that enables a mass production by plastic forming mainly. SOLUTION: The mechanism has a shaft 11, an outer cylinder 12, a number of steel balls 13 that exist between the shaft 11 and the outer cylinder 12 and a retainer 14 holding these steel balls 13. In the shaft 11, straight grooves 19 are formed at every regular angle (90 degrees) in the axial direction on the circumference surface of a groove formation part 11a. The depth d of the straight grooves is to be 6 to 14% of the diameter D of the steel ball 13. On the other hand, a recessed part 21 is formed of straight parallel ribs 20, 20 as a rolling groove for the steel balls 13 in the retainer 14, and the retainer 14 is fitted and held to a regular position, in the through-hole 15 of the outer cylinder 12. This depth d is to be 6 to 14% of the diameter D of the steel ball 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に塑性加工によ
り製造可能とし、大量生産を可能とした、直動軸受機構
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motion bearing mechanism which can be manufactured mainly by plastic working and can be mass-produced, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来から多数の転動体(鋼球)を保持器
(リテーナ)に転動自在に保持して、軸に沿って直線的
に移動するようにした、直動軸受機構1が製品化されて
いる。かかる前記直動軸受機構1は、転動溝2を形成し
た軸3と、鋼球4を保持したリテーナ5を装着した外筒
6と、外筒6の内径側に形成された転動溝2´とから構
成されている(図6参照)。前記リテーナ5には、多数
の鋼球4を保持して走行させるために無限軌道溝(図示
省略)が形成され、この無限軌道溝のうち、一方の直線
部をスリット状に露出させて、軸3に形成した転動溝2
に鋼球4を接触転動させて、外筒6と軸3とを、周方向
には回転しないようにして、軸方向に相対移動できるよ
うになっている。
2. Description of the Related Art Conventionally, a linear motion bearing mechanism 1 in which a large number of rolling elements (steel balls) are rotatably held by a retainer (retainer) so as to move linearly along an axis. Has been The linear motion bearing mechanism 1 includes a shaft 3 having a rolling groove 2, an outer cylinder 6 provided with a retainer 5 holding a steel ball 4, and a rolling groove 2 formed on the inner diameter side of the outer cylinder 6. (See FIG. 6). An endless track groove (not shown) is formed in the retainer 5 for holding and running a large number of steel balls 4, and one straight portion of the endless track groove is exposed in a slit shape to form a shaft. Rolling groove 2 formed in 3
The steel ball 4 is contacted and rolled so that the outer cylinder 6 and the shaft 3 do not rotate in the circumferential direction, and can be relatively moved in the axial direction.

【0003】[0003]

【発明が解決しようとする課題】この場合、鋼球4と軸
3の転動溝2および外筒6の転動溝2´とは、深さが例
えば転動体直径の35〜40%程で、前記鋼球4と略9
0度の範囲で接触するように溝幅を持たせてあり、この
ための双方の転動溝2、2´を形成するには研削加工が
必要で手間がかかるので、大量生産は困難であり、製造
コストの上昇は避けられなかった。また、軸3に外筒6
を装着する際、軸3の転動溝2とリテーナ5における無
限軌道溝と合わせるとき、リテーナ5から鋼球4の脱落
のおそれもあった。本発明は以上のような課題を克服す
るために提案されたものであって、主に塑性加工により
製造可能とし、大量生産の容易な、直動軸受機構および
その製造方法を提供することを目的とする。
In this case, the steel ball 4 and the rolling groove 2 of the shaft 3 and the rolling groove 2 'of the outer cylinder 6 have a depth of, for example, about 35 to 40% of the rolling element diameter. , The steel ball 4 and approximately 9
Since the groove width is provided so as to make contact within a range of 0 degrees, forming the two rolling grooves 2 and 2 'for this requires grinding and is troublesome, so mass production is difficult. However, an increase in manufacturing costs was inevitable. The outer cylinder 6 is attached to the shaft 3.
At the time of mounting, when the rolling groove 2 of the shaft 3 is matched with the endless track groove of the retainer 5, the steel ball 4 may fall off from the retainer 5. SUMMARY OF THE INVENTION The present invention has been proposed to overcome the above problems, and has as its object to provide a linear motion bearing mechanism and a method of manufacturing the linear motion bearing mechanism, which can be manufactured mainly by plastic working and can be easily mass-produced. And

【0004】[0004]

【課題を解決するための手段】前記した課題を解決する
ために、本発明では、請求項1において、軸、外筒、軸
と外筒の間に介在する多数の転動体と、この転動体を保
持するリテーナによって構成される直動軸受機構であっ
て、前記外筒は、リテーナを介して軸を挿通する挿通孔
内壁面に、リテーナを定位置に嵌入保持すると共に、転
動体の転動溝としての直線平行リブを形成する一方、軸
側に、前記直線平行リブに対向して直線溝を形成した直
動軸受機構を開示する。また本発明では、請求項2にお
いて、前記直線平行リブにおける転動溝としての深さ
を、転動体の径の6〜14%とした直動軸受機構を開示
する。また本発明では、請求項3において、前記軸側の
直線溝の深さを、転動体の径の6〜14%とした直動軸
受機構を開示する。また本発明では、請求項4におい
て、前記外筒の転動溝の形成を、素材から内外面研削、
塑性加工、熱処理を行って形成する直動軸受機構の製造
方法を開示する。さらに本発明では、請求項5におい
て、前記軸の直線溝を、素材から外面研削、塑性加工、
熱処理を経て形成する直動軸受機構の製造方法を開示す
る。
In order to solve the above-mentioned problems, according to the present invention, in claim 1, a shaft, an outer cylinder, a plurality of rolling elements interposed between the shaft and the outer cylinder, and the rolling elements A linear motion bearing mechanism comprising a retainer for holding the retainer at a fixed position on an inner wall surface of an insertion hole through which the shaft is inserted via the retainer, and a rolling element for rolling. A linear motion bearing mechanism is disclosed in which a linear parallel rib as a groove is formed, and a linear groove is formed on the shaft side so as to face the linear parallel rib. Also, in the present invention, a linear motion bearing mechanism is disclosed in claim 2, wherein the depth of the linear parallel rib as a rolling groove is 6 to 14% of the diameter of the rolling element. According to the present invention, a linear motion bearing mechanism is disclosed in claim 3 in which the depth of the linear groove on the shaft side is 6 to 14% of the diameter of the rolling element. According to the present invention, in claim 4, the rolling groove of the outer cylinder is formed by grinding the inner and outer surfaces from a material.
A method for manufacturing a linear motion bearing mechanism formed by performing plastic working and heat treatment is disclosed. Further, in the present invention, in claim 5, the straight groove of the shaft is formed by external grinding, plastic working,
A method of manufacturing a linear motion bearing mechanism formed through heat treatment is disclosed.

【0005】請求項1によれば、外筒に、転動体を保持
したリテーナを装着する際、直線平行リブに、リテーナ
における軌道溝を合わせて装入して、リテーナ両端に止
め具を圧入すれば、外筒にリテーナをがたつくことなく
組み付けることができる。
According to the first aspect of the invention, when the retainer holding the rolling element is mounted on the outer cylinder, the linear parallel rib is fitted with the raceway groove of the retainer, and the stopper is pressed into both ends of the retainer. In this case, the retainer can be assembled to the outer cylinder without rattling.

【0006】請求項2によれば、塑性加工の前行程とし
て外径研削工程を入れることにより寸法形状が一定に揃
い、また外筒の直線平行リブにおける溝の深さを、転動
体の径の6〜14%としたので、塑性加工後の寸法精度
も高く保つことができ、熱処理後の変形も少ないので工
程を簡略化できる。
According to the second aspect of the present invention, the outer diameter grinding step is performed as a pre-process of the plastic working, whereby the dimensions and the shape are made uniform. Since it is 6 to 14%, the dimensional accuracy after plastic working can be kept high, and the deformation after heat treatment is small, so that the process can be simplified.

【0007】請求項3によれば、塑性加工の前行程とし
て外径研削工程を入れることにより寸法形状が一定に揃
い、また軸側の直線溝の深さを、転動体の径の6〜14
%としたので、塑性加工後の寸法精度も高く保つことが
でき、熱処理後の変形も少ないので工程を簡略化でき
る。
According to the third aspect of the present invention, the outer diameter grinding step is carried out as a pre-process of the plastic working, whereby the dimensions and shapes are made uniform, and the depth of the linear groove on the shaft side is adjusted to 6 to 14 times the diameter of the rolling element.
%, The dimensional accuracy after plastic working can be kept high, and the deformation after heat treatment is small, so that the process can be simplified.

【0008】請求項4によれば、外筒を、内外面の寸法
加工、塑性加工を施し、熱処理によって形成することが
でき、製造工程を簡略化することができ、大量生産が可
能である。
According to the fourth aspect, the outer cylinder can be formed by subjecting the inner and outer surfaces to dimensional processing and plastic processing, and formed by heat treatment, so that the manufacturing process can be simplified and mass production is possible.

【0009】請求項5によれば、軸を、軸端部の寸法加
工をし、次いで溝形成部の外面研削の後に、塑性加工を
し、そして熱処理によって形成することができ、大量生
産が可能である。
According to the fifth aspect, the shaft can be formed by dimensional processing of the shaft end portion, then, after the outer surface grinding of the groove forming portion, plastic forming and heat treatment, and mass production is possible. It is.

【0010】[0010]

【発明の実施の態様】次に、本発明にかかる直動軸受機
構およびその製造方法の一つの実施の態様を示し、添付
の図面に基づいて説明する。図1に直動軸受機構10を
示し、この直動軸受機構10は、軸11、外筒12、軸
11と外筒12の間に介在する多数の転動体、すなわち
鋼球13と、この鋼球13を保持するリテーナ14とに
よって実質的に構成している。前記軸11は、両端側
に、外筒12を装着した溝形成部11aに比較して細径
の支持部11bと、さらに一方の支持部11b先端に他
の機構部品を取り付ける部品取付部11cとに加工され
ている。前記外筒12は、リテーナ14を介して軸11
を挿通する挿通孔15を有し、一端側にフランジ部16
を一体的に設けている。また前記外筒12両端側には、
リテーナ14が外筒12内側から外れないように止め輪
17が止め付けられている。前記リテーナ14は円筒部
材で、内径は、軸11の外径より大であり、外径は外筒
12の内径に比較して小としている。また前記リテーナ
14には、多数の鋼球13を転動自在に保持するための
無限軌道溝18を外周に4つ、円周方向に等角度(90
°)毎に形成している(図2参照)。かかる無限軌道溝
18は、一対の直線部18aと旋回部18bとからなっ
ている。前記直線部18aのうちの一つは、リテーナ1
4の円筒壁面に貫通しており、転動走行する鋼球13
が、支持すべき軸部材に当接する負荷領域Lとしてい
る。
Next, one embodiment of a linear motion bearing mechanism and a method of manufacturing the same according to the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a direct-acting bearing mechanism 10. The direct-acting bearing mechanism 10 includes a shaft 11, an outer cylinder 12, a number of rolling elements interposed between the shaft 11 and the outer cylinder 12, that is, steel balls 13, It is substantially constituted by a retainer 14 for holding the ball 13. The shaft 11 has, at both ends, a support portion 11b having a smaller diameter than the groove forming portion 11a in which the outer cylinder 12 is mounted, and a component mounting portion 11c for attaching another mechanical component to the tip of one of the support portions 11b. Has been processed. The outer cylinder 12 is connected to a shaft 11 via a retainer 14.
Has a through hole 15 through which a flange 16
Are provided integrally. Also, on both ends of the outer cylinder 12,
A retaining ring 17 is fixed so that the retainer 14 does not come off from the inside of the outer cylinder 12. The retainer 14 is a cylindrical member. The inner diameter is larger than the outer diameter of the shaft 11, and the outer diameter is smaller than the inner diameter of the outer cylinder 12. The retainer 14 has four endless track grooves 18 on its outer periphery for holding a large number of steel balls 13 in a freely rolling manner, and is equiangular (90 in circumferential direction).
°) (see FIG. 2). The endless track groove 18 includes a pair of straight portions 18a and a turning portion 18b. One of the straight portions 18a is a retainer 1
4 is a steel ball that penetrates through the cylindrical wall surface and that runs while rolling.
However, the load region L contacts the shaft member to be supported.

【0011】次に前記軸11において、溝形成部11a
の外周表面に、直線溝19は、軸方向に等角度(90
度)毎、形成されている(図1参照)。かかる直線溝1
9の深さdとして、鋼球13の径Dの6〜14%として
いる。一方、前記外筒12の挿通孔15には、リテーナ
14を定位置に嵌入保持すると共に、リテーナ14にお
ける鋼球13の転動溝としての直線平行リブ20,20
を形成している(図3参照)。
Next, in the shaft 11, a groove forming portion 11a
The straight groove 19 is formed at an equal angle (90
Each degree is formed (see FIG. 1). Such a straight groove 1
The depth d of 9 is 6 to 14% of the diameter D of the steel ball 13. On the other hand, the retainer 14 is fitted and held in a fixed position in the insertion hole 15 of the outer cylinder 12, and the linear parallel ribs 20, 20 as rolling grooves of the steel balls 13 in the retainer 14 are provided.
(See FIG. 3).

【0012】そして、前記外筒12の挿通孔15におい
て、図4に示すように直線平行リブ20,20は、リブ
20,20間に、適宜な深さの凹面部21を、鋼球13
の転動溝として加工されている。かかるリブ20,20
間の凹面部21の深さdは、鋼球13の径Dの6〜14
%に相当している。なお、前記外筒12は、フランジ部
16を一体的に形成したものであるが、フランジ部を有
していないものも勿論、可能である。
In the insertion hole 15 of the outer cylinder 12, as shown in FIG. 4, the linear parallel ribs 20, 20 have a concave portion 21 having an appropriate depth between the ribs 20, 20 and a steel ball 13.
It is machined as a rolling groove. Such ribs 20, 20
The depth d of the concave portion 21 is 6 to 14 of the diameter D of the steel ball 13.
%. In addition, the outer cylinder 12 has the flange portion 16 formed integrally, but of course, the outer cylinder 12 having no flange portion is also possible.

【0013】次に、以上のような直動軸受機構10にお
ける軸11と外筒12の製造工程について概略説明す
る。軸11は、素材から1.溝形成部11a、支持部1
1b、部品取付部11cの加工、2.溝形成部11aの
外面研削、3.引き抜き、4.熱処理(浸炭焼き入れま
たは高周波焼き入れ、焼き戻し)を経て形成するように
している。
Next, the manufacturing process of the shaft 11 and the outer cylinder 12 in the linear motion bearing mechanism 10 as described above will be schematically described. The shaft 11 is made of 1. Groove forming portion 11a, support portion 1
1b, processing of the component mounting portion 11c; 2. outer surface grinding of the groove forming portion 11a; 3. Pull out. It is formed through heat treatment (carburizing quenching or induction quenching, tempering).

【0014】一方、外筒12は、素材から1.内外面研
削、2.冷間鍛造、3.熱処理(浸炭焼き入れ、焼き戻
し)を行って形成するようにしている。
On the other hand, the outer cylinder 12 is made of 1.. 1. Internal and external grinding 2. cold forging; The heat treatment (carburizing quenching, tempering) is performed to form.

【0015】以上のような直動軸受機構10において、
外筒12に、先ず、リテーナ14を装入する際、外筒1
2側の直線平行リブ20,20に、リテーナ14におけ
る無限軌道溝18の直線部18aのうちの負荷領域Lを
合わせる。そして、リテーナ14を無限軌道溝18のう
ちの旋回部18bを残した状態まで装入し、ここで前記
旋回部18bを介して鋼球13を無限軌道溝18に入れ
る。このようにして前記リテーナ14を装着して、リテ
ーナ14両端に止め輪17を圧入すれば、外筒12にリ
テーナ14をがたつくことなく組み付けることができ
る。
In the linear motion bearing mechanism 10 as described above,
First, when loading the retainer 14 into the outer cylinder 12, the outer cylinder 1
The load region L of the linear portion 18a of the endless track groove 18 in the retainer 14 is matched with the two parallel ribs 20 on the two sides. Then, the retainer 14 is inserted until the turning portion 18b of the endless track groove 18 is left, and the steel ball 13 is put into the endless track groove 18 via the turning portion 18b. If the retainer 14 is mounted in this manner and the retaining rings 17 are pressed into both ends of the retainer 14, the retainer 14 can be assembled to the outer cylinder 12 without rattling.

【0016】前記軸11側の溝形成部11aにおける直
線溝19や、外筒12の挿通孔15における直線平行リ
ブ20,20の深さdの凹面部21は、鋼球13の径D
の6〜14%としたので、より走行抵抗の少ない、円滑
な動きを得ることができる。
The straight groove 19 in the groove forming portion 11a on the shaft 11 side and the concave portion 21 having a depth d of the straight parallel ribs 20 and 20 in the insertion hole 15 of the outer cylinder 12 are formed with a diameter D of the steel ball 13.
Therefore, a smooth movement with less running resistance can be obtained.

【0017】また、軸11側の溝形成部11aにおける
直線溝19の深さdは鋼球13の径Dの6〜14%と微
細な溝であり、しかも、前工程の研削加工で外径寸法を
一定になるように揃えているので、塑性加工による加工
量が少なく、従って、その後の熱処理による変形も少な
い。
The depth d of the linear groove 19 in the groove forming portion 11a on the shaft 11 side is a fine groove of 6 to 14% of the diameter D of the steel ball 13, and the outer diameter is reduced by the grinding in the previous step. Since the dimensions are set to be constant, the amount of processing by plastic working is small, and therefore, the deformation by subsequent heat treatment is also small.

【0018】一方、外筒12においても、挿通孔15に
おける直線平行リブ20,20の深さは、鋼球13の径
Dの6〜14%であるにすぎず、しかも、前工程の研削
加工で内外径の寸法が一定になるように揃えているの
で、塑性加工による加工量が少なく、従って、その後の
熱処理による変形も少ない。このように工程を簡略化す
ることができるので大量生産が容易であり、従って製造
コストの抑制が可能となる。なお、軸11の直線溝1
9、外筒12の直線平行リブ20,20における転動溝
である凹面部21の加工は、精度を確保する目的で、必
要に応じて、最終的にはラップ加工を追加することもで
きる。
On the other hand, in the outer cylinder 12 as well, the depth of the straight parallel ribs 20, 20 in the insertion hole 15 is only 6 to 14% of the diameter D of the steel ball 13, and the grinding process in the previous step Since the dimensions of the inner and outer diameters are made uniform, the amount of processing by plastic working is small, and therefore, the deformation by subsequent heat treatment is also small. Since the steps can be simplified in this way, mass production is easy, and therefore, production costs can be suppressed. The straight groove 1 of the shaft 11
9. The processing of the concave surface portion 21 which is a rolling groove in the linear parallel ribs 20 and 20 of the outer cylinder 12 may finally add a lapping process, if necessary, for the purpose of ensuring accuracy.

【0019】[0019]

【発明の効果】本発明によれば、走行抵抗を抑えて、よ
り円滑な動きを得ることができる。また、軸側の直線溝
や、外筒の挿通孔における直線平行リブの形成深さは、
転動体の径の6〜14%であるにすぎず、これまでの、
転動体との接触角度を大きく取った溝(研削加工によ
る、転動体直径の35〜40%の深さの溝)のような手
間のかかる加工は不要であり、塑性加工によって製造す
ることができ、大量生産に向く。従って、製造コストの
抑制が可能となる。
According to the present invention, a smoother movement can be obtained while suppressing running resistance. In addition, the formation depth of the straight groove on the shaft side and the straight parallel rib in the insertion hole of the outer cylinder is
It is only 6-14% of the diameter of the rolling element.
Elaborate processing such as a groove having a large contact angle with the rolling element (a groove having a depth of 35 to 40% of the diameter of the rolling element by grinding) is unnecessary, and can be manufactured by plastic processing. Suitable for mass production. Therefore, the production cost can be reduced.

【0020】[0020]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる直動軸受機構の一つの実施の形
態を示す、一部を破断して示した側面図である。
FIG. 1 is a side view, partially broken away, showing one embodiment of a linear motion bearing mechanism according to the present invention.

【図2】図1に示す直動軸受機構における外筒とリテー
ナとの組み込み構成図である。
FIG. 2 is a configuration diagram of an assembly of an outer cylinder and a retainer in the linear motion bearing mechanism shown in FIG. 1;

【図3】図2に示す外筒の正面図である。FIG. 3 is a front view of the outer cylinder shown in FIG. 2;

【図4】図3に示す外筒における挿通孔の拡大図であ
る。
FIG. 4 is an enlarged view of an insertion hole in the outer cylinder shown in FIG.

【図5】リテーナにおける鋼球と外筒、軸との接触状態
を示した要部断面説明図である。
FIG. 5 is an explanatory sectional view of a main part showing a contact state between a steel ball, an outer cylinder and a shaft in a retainer.

【図6】従来の直動軸受機構における転動体と転動溝と
の接触関係を説明するための説明図である。
FIG. 6 is an explanatory diagram for explaining a contact relationship between a rolling element and a rolling groove in a conventional linear motion bearing mechanism.

【符号の説明】[Explanation of symbols]

1 直動軸受機構 2、2´ 転動溝 3 軸 4 鋼球 5 リテーナ 6 外筒 10 直動軸受機構 11 軸 11a 溝形成部 11b 支持部 11c 部品取付部 12 外筒 13 鋼球 14 リテーナ 15 挿通孔 16 フランジ部 17 止め輪 19 直線溝 18 無限軌道溝 18a 直線部 18b 旋回部 20 直線平行リブ 21 凹面部 REFERENCE SIGNS LIST 1 linear bearing mechanism 2, 2 ′ rolling groove 3 shaft 4 steel ball 5 retainer 6 outer cylinder 10 linear bearing mechanism 11 shaft 11 a groove forming portion 11 b support portion 11 c component mounting portion 12 outer cylinder 13 steel ball 14 retainer 15 insertion Hole 16 Flange part 17 Retaining ring 19 Straight groove 18 Endless track groove 18a Straight part 18b Revolving part 20 Straight parallel rib 21 Concave part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軸、外筒、軸と外筒の間に介在する多
数の転動体と、この転動体を保持するリテーナによって
構成される直動軸受機構であって、前記外筒は、リテー
ナを介して軸を挿通する挿通孔内壁面に、リテーナを定
位置に嵌入保持すると共に、転動体の転動溝としての直
線平行リブを形成する一方、軸側に、前記直線平行リブ
に対向して直線溝を形成したことを特徴とする直動軸受
機構。
1. A linear motion bearing mechanism comprising a shaft, an outer cylinder, a number of rolling elements interposed between the shaft and the outer cylinder, and a retainer holding the rolling elements, wherein the outer cylinder is a retainer. On the inner wall surface of the insertion hole through which the shaft is inserted, a retainer is fitted and held at a fixed position, and a linear parallel rib as a rolling groove of a rolling element is formed. A linear motion bearing mechanism characterized in that a straight groove is formed.
【請求項2】 前記直線平行リブにおける転動溝とし
ての深さを、転動体の径の6〜14%としたことを特徴
とする請求項1記載の直動軸受機構。
2. The linear motion bearing mechanism according to claim 1, wherein a depth of the linear parallel rib as a rolling groove is 6 to 14% of a diameter of the rolling element.
【請求項3】 前記軸側の直線溝の深さを、転動体の
径の6〜14%としたことを特徴とする請求項1記載の
直動軸受機構。
3. The linear motion bearing mechanism according to claim 1, wherein the depth of the linear groove on the shaft side is 6 to 14% of the diameter of the rolling element.
【請求項4】 前記外筒の転動溝の形成を、素材から
内外面研削、塑性加工、熱処理を行って形成することを
特徴とする請求項1〜3記載の直動軸受機構の製造方
法。
4. The method according to claim 1, wherein the rolling grooves of the outer cylinder are formed by performing inner and outer surface grinding, plastic working, and heat treatment from a material. .
【請求項5】 前記軸の直線溝を、素材から外面研
削、塑性加工、熱処理を経て形成することを特徴とする
請求項1〜3記載の直動軸受機構の製造方法。
5. The method according to claim 1, wherein the linear groove of the shaft is formed from a material through external grinding, plastic working, and heat treatment.
JP2001124973A 2001-04-23 2001-04-23 Linear motion bearing mechanism and manufacturing method therefor Pending JP2002323043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001124973A JP2002323043A (en) 2001-04-23 2001-04-23 Linear motion bearing mechanism and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124973A JP2002323043A (en) 2001-04-23 2001-04-23 Linear motion bearing mechanism and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002323043A true JP2002323043A (en) 2002-11-08

Family

ID=18974266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124973A Pending JP2002323043A (en) 2001-04-23 2001-04-23 Linear motion bearing mechanism and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002323043A (en)

Similar Documents

Publication Publication Date Title
CN110319115B (en) Slewing bearing
WO2009084362A1 (en) Roller bearing retainer, needle roller bearing, and method of producing roller bearing retainer
US20050196083A1 (en) Spherical plain bearing
JP2006220221A (en) Rolling bearing, bearing unit
JP4527912B2 (en) Roller with cage
JP2019211084A (en) Hub unit bearing and manufacturing method thereof, and automobile and manufacturing method thereof
JP2009014078A (en) Needle roller bearing and crankshaft supporting structure
US4964742A (en) Ball bearing
KR20160031965A (en) Hub unit manufacturing apparatus
JP2002323043A (en) Linear motion bearing mechanism and manufacturing method therefor
JP2008232278A (en) Roller bearing
US11105373B2 (en) Method for non-cutting manufacturing of a bearing ring for a rolling bearing and rolling bearing comprising the bearing ring
JP3552243B2 (en) Linear ball bearing
JPH01299317A (en) Roller bearing for engine
JP2009008215A (en) Double-row roller bearing
JP6511816B2 (en) Manufacturing method of split type bearing ring
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same
JP2004116718A (en) Shell type roller bearing
JP2012013210A5 (en)
JP2008082434A (en) Thrust roller bearing
JP2012228696A (en) Shaft member of rolling bearing device for wheel and method for producing the same
JPH0536091Y2 (en)
JP2009036329A (en) Method for incorporating needle roller bearing into rotary shaft
JP2001208100A (en) One way clutch and pulley unit provided with one way clutch
JP2008082536A (en) Toroidal type cvt(continuously variable transmission)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040721