JP2002317735A - Fuel injection nozzle - Google Patents

Fuel injection nozzle

Info

Publication number
JP2002317735A
JP2002317735A JP2001124306A JP2001124306A JP2002317735A JP 2002317735 A JP2002317735 A JP 2002317735A JP 2001124306 A JP2001124306 A JP 2001124306A JP 2001124306 A JP2001124306 A JP 2001124306A JP 2002317735 A JP2002317735 A JP 2002317735A
Authority
JP
Japan
Prior art keywords
valve
valve seat
needle
fuel injection
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001124306A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yoda
稔之 依田
Masaaki Kato
正明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001124306A priority Critical patent/JP2002317735A/en
Priority to DE2002117872 priority patent/DE10217872A1/en
Publication of JP2002317735A publication Critical patent/JP2002317735A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems in arranging a secondary sliding shaft part on a valve part 14 side of a needle 3 for preventing the eccentricity of a valve seat 7 and the valve part 14, wherein the increase of the sliding resistance is caused even when the eccentricity is not generated, and the strong sliding of the secondary sliding shaft part is caused when the eccentricity is generated, to result in defective sliding. SOLUTION: The valve part 14 is composed of an upper truncated conical part 16 and a lower conical tip part 17, an expanding angle of the truncated conical part 16 is smaller than an expanding angle of the valve seat 7, and the difference therebetween is 4 deg. or less. When the valve part 14 is separated from the valve seat 7, and the eccentricity is generated, the unbalance in pressure is generated in a fuel passage formed by a clearance between the truncated conical part 16 and the valve seat 7. The fuel hardly flows at an eccentric side, and the fuel easily flows at an anti-eccentric side, whereby the pressure in the fuel passage at the eccentric side is relatively increased, and the aligning force for the valve part 14 is generated to automatically align the valve part 14 to a shaft center of the valve seat 7. As a result, the eccentricity can be prevented without increasing the sliding resistance and the defective sliding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関に高圧燃
料を噴射する燃料噴射ノズルに関するものであり、特に
ノズルボディ内で軸方向へ往復動するニードルの調芯に
関する技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection nozzle for injecting high-pressure fuel into an internal combustion engine, and more particularly to a technique for centering a needle that reciprocates in an axial direction in a nozzle body.

【0002】[0002]

【従来の技術】ニードルの弁部とノズルボディの弁座に
偏芯が生じると、環状燃料通路(ニードルとノズルボデ
ィの環状隙間)に不均衡が生じる。すると、その下流側
に噴孔が複数ある場合では、各噴孔ごとの噴射量に偏り
が生じ、噴霧形状が各噴孔間で異なってしまう。この問
題は、特にノズルボディの弁座に複数の噴孔が穿設され
ているVCOノズルにおいて顕著に発生する。
2. Description of the Related Art When an eccentricity occurs between a valve portion of a needle and a valve seat of a nozzle body, an imbalance occurs in an annular fuel passage (an annular gap between the needle and the nozzle body). Then, when there are a plurality of injection holes on the downstream side, the injection amount of each injection hole is biased, and the spray shape differs between the injection holes. This problem particularly occurs in a VCO nozzle having a plurality of injection holes formed in a valve seat of a nozzle body.

【0003】ニードルの弁部とノズルボディの弁座の偏
芯は、主に下記の要因によって発生する。 ニードルとノズルボディの加工公差によって発生す
る。即ち、ニードルの摺動軸部と弁部の同軸度の公差
や、ノズルボディの摺動孔と弁座の同軸度の公差によっ
て偏芯が発生する。 ニードルの摺動軸部とノズルボディの摺動孔における
クリアランスによって、ニードルに傾きが生じ、偏芯が
発生する。このの偏芯は、摺動部(摺動軸部と摺動孔
とが摺動する部分)から弁部までの距離が長いと、傾き
が増幅されて偏芯度合が大きくなる。また、の偏芯
は、組付けトルク(リテーニングナットの締め付け、内
燃機関への取り付け)による摺動孔の径拡大変形、内燃
機関の熱による熱膨張や熱変形による摺動孔の径拡大に
よって上記クリアランスが大きくなり、偏芯度合が大き
くなる場合がある。
The eccentricity between the valve portion of the needle and the valve seat of the nozzle body is mainly caused by the following factors. It is caused by machining tolerance between the needle and the nozzle body. That is, eccentricity occurs due to the tolerance of coaxiality between the sliding shaft portion of the needle and the valve portion and the tolerance of coaxiality between the sliding hole of the nozzle body and the valve seat. Due to the clearance between the sliding shaft of the needle and the sliding hole of the nozzle body, the needle is tilted and eccentricity occurs. If the distance from the sliding portion (the portion where the sliding shaft portion and the sliding hole slide) to the valve portion is long, the eccentricity of the eccentricity is amplified and the eccentricity is increased. In addition, the eccentricity is caused by the expansion of the diameter of the sliding hole due to the assembling torque (tightening of the retaining nut, attachment to the internal combustion engine), thermal expansion due to the heat of the internal combustion engine, and expansion of the diameter of the sliding hole due to thermal deformation. In some cases, the clearance increases and the degree of eccentricity increases.

【0004】また、ノズルボディに対してニードルを傾
斜させる力は、下記の要因によって発生する。 ニードルを閉弁方向へ付勢する付勢力の偏芯(プレッ
シャーピンとニードルバルブの当接面との平面度の公差
や、振れ等)によって、ニードルを傾斜させる力が発生
する。 蓄圧式燃料噴射装置に適用された場合、ノズルボディ
内の燃料溜り部には常時高圧力が加わっている。上記摺
動部のクリアランスによってニードルが傾斜する状態で
は、クリアランスにも円周方向の不均衡が発生し、その
不均衡部分に高圧燃料が加わるため、その圧力がニード
ルに側方荷重を発生させてニードルを傾斜させる。
[0004] The force for inclining the needle with respect to the nozzle body is generated by the following factors. Eccentricity of the urging force for urging the needle in the valve closing direction (tolerance of flatness between the pressure pin and the contact surface of the needle valve, runout, etc.) generates a force for inclining the needle. When applied to a pressure accumulating fuel injection device, a high pressure is constantly applied to a fuel reservoir in a nozzle body. In a state where the needle is inclined by the clearance of the sliding portion, a circumferential imbalance also occurs in the clearance, and high pressure fuel is applied to the unbalanced portion, and the pressure generates a side load on the needle. Tilt the needle.

【0005】ニードルの傾きを抑える技術として、例え
ば特開平4−252861号公報、特開平4−3116
74号公報、特開平4−342869号公報等に示され
るように、ニードルの弁部側にも第2の摺動軸部を設け
る技術が知られている。
[0005] As a technique for suppressing the inclination of the needle, for example, Japanese Patent Application Laid-Open Nos. Hei 4-252861 and Hei 4-3116
As disclosed in Japanese Patent Application Laid-Open No. 74-342869 and Japanese Patent Application Laid-Open No. 4-342869, there is known a technique in which a second sliding shaft is provided also on the valve side of a needle.

【0006】[0006]

【発明が解決しようとする課題】上記の公報に開示され
るように、ニードルの弁部側に第2の摺動軸部を設ける
と、弁部と弁座が偏芯しない場合であっても摺動抵抗が
増えてしまう。そして、弁部と弁座に偏芯が発生した場
合は、その偏芯を抑制するために第2の摺動軸部が強く
摺動することになるため、ニードルの摺動不良を招き、
燃料噴射ノズルが故障する要因になってしまう。
As disclosed in the above publication, if the second sliding shaft is provided on the valve side of the needle, even if the valve and the valve seat are not eccentric. The sliding resistance increases. When eccentricity occurs between the valve portion and the valve seat, the second sliding shaft portion strongly slides in order to suppress the eccentricity, thereby causing poor sliding of the needle,
This causes a failure of the fuel injection nozzle.

【0007】[0007]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、ニードルの摺動抵抗の増大や、摺
動不良を招くことなく、ニードルの弁部をバルブボディ
の弁座に自動調芯することのできる燃料噴射ノズルの提
供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to increase the sliding resistance of a needle and to prevent poor sliding of the needle by adjusting the valve portion of the needle to the valve of the valve body. Another object of the present invention is to provide a fuel injection nozzle capable of self-centering on a seat.

【0008】[0008]

【課題を解決するための手段】〔請求項1の手段〕燃料
噴射ノズルに設けられた油圧調芯部が、ノズルボディと
ニードルとの間に供給された高圧燃料の圧力によって、
弁部を弁座の軸芯に自動調芯する。 すなわち、ニード
ルとノズルボディの加工公差によって弁部と弁座にずれ
が生じる場合であっても、ガイド孔とニードルとの間に
供給された高圧燃料の圧力によって、弁部が弁座の軸芯
に自動調芯される。また、ニードルの摺動軸部とガイド
孔とのクリアランスによって、ニードルに傾きが生じ易
い状態であっても、ガイド孔とニードルとの間に供給さ
れた高圧燃料の圧力によって、弁部が弁座の軸芯に自動
調芯される。
[Means for Solving the Problems] [Claim 1] A hydraulic alignment section provided in a fuel injection nozzle is operated by a pressure of high-pressure fuel supplied between a nozzle body and a needle.
The valve part is automatically aligned with the axis of the valve seat. That is, even when the valve portion and the valve seat are misaligned due to the processing tolerance of the needle and the nozzle body, the valve portion is moved to the axial center of the valve seat by the pressure of the high-pressure fuel supplied between the guide hole and the needle. Is automatically aligned. Further, even in a state in which the needle is liable to be inclined due to the clearance between the sliding shaft portion of the needle and the guide hole, the valve portion is moved by the pressure of the high-pressure fuel supplied between the guide hole and the needle. Is automatically aligned with the axis of

【0009】このように、ニードルの摺動抵抗の増大
や、摺動不良を招くことなく、ニードルの弁部とノズル
ボディの弁座の偏芯の発生が防がれるとともに、各噴孔
ごとの噴射量に偏りが発生せず、各噴孔における噴射量
のバラツキや燃料噴霧形状のバラツキを抑制できる。
As described above, the occurrence of eccentricity between the valve portion of the needle and the valve seat of the nozzle body can be prevented without increasing the sliding resistance of the needle and causing poor sliding. Unevenness in the injection amount does not occur, and variations in the injection amount and in the fuel spray shape in each injection hole can be suppressed.

【0010】〔請求項2の手段〕油圧調芯部をニードル
に形成しても良い。すなわち、ニードルの形状を変更す
ることで、油圧調芯部を設けても良い。
[Means of Claim 2] The hydraulic alignment portion may be formed in a needle. That is, the hydraulic alignment portion may be provided by changing the shape of the needle.

【0011】〔請求項3の手段〕ニードル側に設けられ
る油圧調芯部を、ノズルボディとの間に円環状の微小隙
間を形成する円錐台部として設けても良い。
According to a third aspect of the present invention, the hydraulic alignment portion provided on the needle side may be provided as a truncated conical portion forming an annular minute clearance with the nozzle body.

【0012】〔請求項4の手段〕円錐台部を弁部の上側
に設け、弁部が弁座に着座した状態でも、弁座との間に
環状の微小隙間を形成するように設けても良い。
According to a fourth aspect of the present invention, the truncated cone portion is provided above the valve portion, and the valve portion may be provided so as to form an annular minute gap between the valve portion and the valve seat. good.

【0013】〔請求項5の手段〕弁座の上部に形成され
たボディ側円錐台部と、弁部の上部に形成されたニード
ル側円錐台部とから油圧調芯部を構成し、弁部が弁座に
着座した状態でも、ボディ側円錐台部とニードル側円錐
台部との間に環状の微小隙間を形成するように設けても
良い。
[0013] According to a fifth aspect of the present invention, a hydraulic centering portion is constituted by a body-side truncated cone portion formed above the valve seat and a needle-side truncated cone portion formed above the valve portion. May be provided so as to form an annular minute gap between the body-side frustoconical portion and the needle-side frustoconical portion even when seated on the valve seat.

【0014】〔請求項6の手段〕シャフトを弁部に近づ
くに従って大径化することによって油圧調芯部を設け、
弁部側においてガイド孔との間に環状の微小隙間を形成
しても良い。
According to a sixth aspect of the present invention, a hydraulic centering portion is provided by increasing the diameter of the shaft as it approaches the valve portion.
An annular minute gap may be formed between the valve portion and the guide hole.

【0015】〔請求項7の手段〕シャフトを軸方向に弾
性変形可能に設けても良い。このように設けることによ
って、ニードルの摺動軸部とガイド孔とのクリアランス
によって、ニードルの摺動軸部に傾きが生じる場合であ
っても、油圧調芯部が受ける径方向の力によってシャフ
トが弾性変形して、弁部が弁座の軸芯に自動調芯され
る。
[Means of Claim 7] The shaft may be provided so as to be elastically deformable in the axial direction. With this arrangement, even when the sliding shaft of the needle is tilted due to the clearance between the sliding shaft of the needle and the guide hole, the shaft is subjected to the radial force received by the hydraulic alignment unit, so that the shaft is tilted. The valve portion is elastically deformed, and the valve portion is automatically aligned with the axis of the valve seat.

【0016】〔請求項8の手段〕ガイド孔とニードルの
摺動軸部との軸方向の摺動距離を短く設けても良い。こ
のように設けることによって、蓄圧式燃料噴射装置に適
用された場合、摺動部のクリアランスに発生する側方荷
重が小さくなり、ニードルを傾斜させる力が低減する。
このため、弁部を弁座の軸芯に自動調芯する力が相対的
に強まり、弁部と弁座の偏芯をより小さくできる。
[Embodiment 8] The sliding distance in the axial direction between the guide hole and the sliding shaft portion of the needle may be provided short. With this provision, when applied to a pressure accumulating fuel injection device, the lateral load generated in the clearance of the sliding portion is reduced, and the force for inclining the needle is reduced.
Therefore, the force for automatically aligning the valve portion with the axis of the valve seat is relatively increased, and the eccentricity between the valve portion and the valve seat can be further reduced.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を、複数の実
施例を用いて説明する。 〔第1実施例〕図1〜図3は第1実施例を示すもので、
図1は燃料噴射ノズル1の断面図である。本実施例の燃
料噴射ノズル1は、ディーゼルエンジンの気筒内に高圧
燃料を噴射するもので、図1に示すように、ノズルボデ
ィ2とニードル3とで構成され、図示しないノズルホル
ダに組付けられてエンジンに取り付けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described using a plurality of examples. [First Embodiment] FIGS. 1 to 3 show a first embodiment.
FIG. 1 is a sectional view of the fuel injection nozzle 1. The fuel injection nozzle 1 according to the present embodiment injects high-pressure fuel into a cylinder of a diesel engine. As shown in FIG. 1, the fuel injection nozzle 1 includes a nozzle body 2 and a needle 3 and is mounted on a nozzle holder (not shown). Attached to the engine.

【0018】ノズルボディ2には、ニードル3を嵌挿す
るガイド孔4と、このガイド孔4の途中に設けられる燃
料溜5と、この燃料溜5に通じる燃料導入路6と、高圧
燃料を噴射するための複数の噴孔8とが形成されてい
る。ガイド孔4は、ノズルボディ2の上端面からノズル
ボディ2の下端部まで一定の内径で穿設され、ノズルボ
ディ2の上端面に開口する開口周縁部に面取りが施され
ている。このガイド孔4の下端部には、円錐状の弁座7
が形成されており、その弁座7の下流側には複数の噴孔
8が穿設されている。
The nozzle body 2 has a guide hole 4 into which the needle 3 is inserted, a fuel reservoir 5 provided in the middle of the guide hole 4, a fuel introduction passage 6 leading to the fuel reservoir 5, and high-pressure fuel injection. And a plurality of injection holes 8 are formed. The guide hole 4 is formed with a constant inner diameter from the upper end surface of the nozzle body 2 to the lower end portion of the nozzle body 2, and an opening peripheral portion opening on the upper end surface of the nozzle body 2 is chamfered. The lower end of the guide hole 4 has a conical valve seat 7.
A plurality of injection holes 8 are formed on the downstream side of the valve seat 7.

【0019】燃料溜5は、ガイド孔4の内径を全周に亘
って拡大して形成され、ガイド孔4に嵌挿されるニード
ル3の外周に環状の空間を形成している。以下、この燃
料溜5より上側のガイド孔4を摺動孔9と呼ぶ。燃料導
入路6は、ノズルホルダに供給された高圧燃料を燃料溜
5へ導く通路であり、ノズルボディ2の上端面から燃料
溜5まで穿設されている。噴孔8は、弁座7の下流側の
上面に入口が開口して、ノズルボディ2の下端部を形成
する円錐壁10を貫通して設けられ、出口が円錐壁10
の外周面に開口している。なお、複数の噴孔8は、軸芯
に対して均等に燃料を噴射するように形成されている。
The fuel reservoir 5 is formed by enlarging the inner diameter of the guide hole 4 over the entire circumference, and forms an annular space on the outer periphery of the needle 3 inserted into the guide hole 4. Hereinafter, the guide hole 4 above the fuel reservoir 5 is referred to as a sliding hole 9. The fuel introduction passage 6 is a passage for guiding the high-pressure fuel supplied to the nozzle holder to the fuel reservoir 5, and is formed from the upper end surface of the nozzle body 2 to the fuel reservoir 5. The injection hole 8 has an inlet opening at the upper surface on the downstream side of the valve seat 7 and is provided through a conical wall 10 forming the lower end of the nozzle body 2.
Is open on the outer peripheral surface of the. The plurality of injection holes 8 are formed so as to inject fuel evenly with respect to the axis.

【0020】ニードル3は、ノズルボディ2の摺動孔9
に数μmのクリアランスで挿通される摺動軸部11と、
この摺動軸部11の下部に形成される受圧面12と、こ
の受圧面12より下方へ伸びる小径軸状のシャフト13
と、ガイド孔4の下端部に形成された弁座7に着座およ
び離脱して噴孔8を開閉する円錐形状の弁部14とから
構成され、摺動軸部11が燃料溜5と低圧側との間をシ
ールしながらガイド孔4の内部で軸方向へ往復動可能に
設けられている。
The needle 3 is provided with a sliding hole 9 of the nozzle body 2.
A sliding shaft portion 11 inserted with a clearance of several μm through
A pressure receiving surface 12 formed below the sliding shaft portion 11, and a small diameter shaft-shaped shaft 13 extending below the pressure receiving surface 12.
And a conical valve portion 14 that sits on and separates from a valve seat 7 formed at the lower end of the guide hole 4 to open and close the injection hole 8. The sliding shaft portion 11 is connected to the fuel reservoir 5 and the low pressure side. Are provided so as to be able to reciprocate in the axial direction inside the guide hole 4 while sealing between them.

【0021】受圧面12は、摺動軸部11の下端からテ
ーパ状に縮径して設けられ、燃料溜5に面して配置され
る。シャフト13は、摺動軸部11より外径が小さく、
燃料溜5より下側のガイド孔4に挿通され、ガイド孔4
との間に燃料通路15を形成している。
The pressure receiving surface 12 is provided to have a tapered diameter from the lower end of the sliding shaft portion 11 and is arranged facing the fuel reservoir 5. The outer diameter of the shaft 13 is smaller than that of the sliding shaft 11,
The guide hole 4 is inserted below the fuel reservoir 5 and
And a fuel passage 15 is formed between them.

【0022】ニードル3先端の弁部14は、図2に示さ
れるように、上側の円錐台部16と下側の円錐先端部1
7とから構成され、その境界部にシート線18が形成さ
れる。円錐台部16の広がり角度は、弁座7の広がり角
度より小さいものであるが、その差は4°以下に設けら
れている。同様に、円錐先端部17の広がり角度は、弁
座7の広がり角度より大きいものであり、その差は2°
以下に設けられている。つまり、弁部14が弁座7に着
座する際は、弁部14のシート線18が弁座7に当接し
て燃料通路15と噴孔8との連通を遮断するものであ
り、弁部14が弁座7から離座する際は、弁部14のシ
ート線18が弁座7から離れて、燃料通路15と噴孔8
とが連通され、高圧燃料が噴孔8から噴射される。な
お、円錐台部16の大径端には、小径のシャフト13よ
りも径の大きい大径シャフト19が設けられている。
As shown in FIG. 2, the valve portion 14 at the tip of the needle 3 has an upper frustoconical portion 16 and a lower conical tip portion 1.
7, and a sheet line 18 is formed at the boundary. The spread angle of the truncated conical portion 16 is smaller than the spread angle of the valve seat 7, but the difference is set to 4 ° or less. Similarly, the divergence angle of the conical tip 17 is larger than the divergence angle of the valve seat 7, and the difference is 2 °.
It is provided below. That is, when the valve portion 14 is seated on the valve seat 7, the seat wire 18 of the valve portion 14 abuts on the valve seat 7 to cut off the communication between the fuel passage 15 and the injection hole 8. When the valve separates from the valve seat 7, the seat line 18 of the valve portion 14 separates from the valve seat 7, and the fuel passage 15 and the injection hole 8
And high-pressure fuel is injected from the injection hole 8. A large-diameter shaft 19 having a larger diameter than the small-diameter shaft 13 is provided at the large-diameter end of the truncated cone 16.

【0023】円錐台部16は油圧調芯部に相当するもの
であり、周囲の弁座7との間に円環状の微小隙間を形成
し、ガイド孔4とニードル3との間に供給された高圧燃
料の圧力によって、弁部14を弁座7の軸芯に自動調芯
させる。この自動調芯を図3を参照して説明する。弁部
14が弁座7から離座し、弁部14が弁座7に対して偏
芯が生じるような場合は、円錐台部16と弁座7との隙
間によって形成された燃料通路に圧力の不均衡が生じ
る。偏芯側の燃料通路は、燃料が流れ難く、反偏芯側は
燃料が流れ易いので、相対的に偏芯側の燃料通路の圧力
が高くなり、弁部14を調芯する力が生じ、弁部14が
弁座7の軸芯に自動調芯される。なお、弁部14に生じ
る力によって弁部14が容易に調芯されるように、安全
性を確保した上でシャフト13をできるだけ小径化し、
シャフト13が弾性変形するように設けられている。
The truncated conical portion 16 corresponds to a hydraulic alignment portion, forms an annular minute gap with the surrounding valve seat 7, and is supplied between the guide hole 4 and the needle 3. The valve part 14 is automatically centered on the axis of the valve seat 7 by the pressure of the high-pressure fuel. This automatic alignment will be described with reference to FIG. When the valve portion 14 is separated from the valve seat 7 and the valve portion 14 is eccentric with respect to the valve seat 7, the pressure in the fuel passage formed by the gap between the frustoconical portion 16 and the valve seat 7 is increased. Imbalance occurs. In the fuel path on the eccentric side, the fuel is difficult to flow, and the fuel is easy to flow on the anti-eccentric side. Therefore, the pressure in the fuel path on the eccentric side relatively increases, and a force for aligning the valve portion 14 is generated. The valve section 14 is automatically aligned with the axis of the valve seat 7. The shaft 13 is made as small as possible while ensuring safety so that the valve portion 14 is easily aligned by the force generated in the valve portion 14.
The shaft 13 is provided so as to be elastically deformed.

【0024】次に、燃料噴射ノズル1の作動を説明す
る。図示しない燃料ポンプより圧送された高圧燃料が燃
料導入路6を介して燃料溜5に蓄えられ、燃料溜5の燃
料圧力(受圧面12に加わる力)がニードル3の閉弁圧
力よりも大きくなると、ニードル3が押し上げられ、ガ
イド孔4内を所定のリフト量だけリフトする。すると、
弁部14のシート線18が弁座7から離れて、燃料通路
15と噴孔8とが連通され、高圧燃料が複数の噴孔8か
らエンジンの気筒内へ噴射される。その後、受圧面12
に加わる燃料圧力がニードル3の閉弁圧力より小さくな
ると、ニードル3がガイド孔4内を下降してシート線1
8が弁座7に当接し、燃料通路15と噴孔8との連通が
遮断され、噴孔8からの燃料噴射を停止する。
Next, the operation of the fuel injection nozzle 1 will be described. High-pressure fuel pumped from a fuel pump (not shown) is stored in the fuel reservoir 5 via the fuel introduction path 6, and when the fuel pressure of the fuel reservoir 5 (the force applied to the pressure receiving surface 12) becomes higher than the valve closing pressure of the needle 3. Then, the needle 3 is pushed up to lift the inside of the guide hole 4 by a predetermined lift amount. Then
The seat line 18 of the valve section 14 is separated from the valve seat 7, the fuel passage 15 and the injection hole 8 communicate with each other, and high-pressure fuel is injected from the plurality of injection holes 8 into the cylinder of the engine. Then, the pressure receiving surface 12
When the fuel pressure applied to the needle 3 becomes smaller than the valve closing pressure of the needle 3, the needle 3 descends in the guide hole 4 and
8 comes into contact with the valve seat 7, the communication between the fuel passage 15 and the injection hole 8 is cut off, and the fuel injection from the injection hole 8 is stopped.

【0025】(実施例の効果)本実施例の燃料噴射ノズ
ル1は、図示しないリテーニングナット等によってノズ
ルホルダに締め付け固定されるため、その締め付けトル
クがノズルボディ2に加わると、組付け前に比較して摺
動孔9の両端側が特に径拡大する。また、エンジンの熱
による膨張や変形によっても摺動孔9が径拡大する。こ
の結果、ニードル3の摺動軸部11とノズルボディ2の
摺動孔9のクリアランスが大きくなり、ニードル3に傾
きが生じ易く、弁部14と弁座7に偏芯が発生し易い状
況になる。また、ニードル3の摺動軸部11と弁部14
の同軸度の公差や、ノズルボディ2の摺動孔9と弁座7
の同軸度の公差によっても、弁部14と弁座7に偏芯が
発生する場合がある。
(Effects of the Embodiment) The fuel injection nozzle 1 of the present embodiment is fastened and fixed to the nozzle holder by a retaining nut (not shown) or the like. In comparison, both ends of the sliding hole 9 are particularly enlarged in diameter. In addition, the diameter of the sliding hole 9 also increases due to expansion or deformation due to heat of the engine. As a result, the clearance between the sliding shaft portion 11 of the needle 3 and the sliding hole 9 of the nozzle body 2 becomes large, the needle 3 tends to be inclined, and the valve portion 14 and the valve seat 7 tend to be eccentric. Become. Further, the sliding shaft portion 11 of the needle 3 and the valve portion 14
Of the concentricity of the nozzle body 2, the sliding hole 9 of the nozzle body 2 and the valve seat 7
The eccentricity may occur between the valve section 14 and the valve seat 7 depending on the tolerance of the coaxiality.

【0026】これに対し、本実施例では、弁部14に一
体に設けた円錐台部16(油圧調芯部)が、ノズルボデ
ィ2とニードル3との間に供給された高圧燃料の圧力に
よって、弁部14を弁座7の軸芯に自動調芯する。すな
わち、ニードル3とノズルボディ2の加工公差によって
弁部14と弁座7にずれが生じる場合であっても、ガイ
ド孔4とニードル3との間に供給された高圧燃料の圧力
による径方向作用力にて、弁部14が弁座7の軸芯に自
動調芯される。また、ニードル3の摺動軸部11とガイ
ド孔4とのクリアランスによって、ニードル3に傾きが
生じ易い状態であっても、ガイド孔4とニードル3との
間に供給された高圧燃料の圧力によって、弁部14が弁
座7の軸芯に自動調芯される。このように、ニードル3
の摺動抵抗の増大や、摺動不良を招くことなく、ニード
ル3の弁部14とノズルボディ2の弁座7の偏芯を防ぐ
ことができるとともに、各噴孔8ごとの噴射量に偏りが
発生せず、各噴孔8における噴射量のバラツキや燃料噴
霧形状のバラツキを抑制できる。
On the other hand, in this embodiment, the frustoconical portion 16 (hydraulic alignment portion) provided integrally with the valve portion 14 is controlled by the pressure of the high-pressure fuel supplied between the nozzle body 2 and the needle 3. , The valve portion 14 is automatically aligned with the axis of the valve seat 7. That is, even when the valve portion 14 and the valve seat 7 are displaced due to the processing tolerance between the needle 3 and the nozzle body 2, the radial action due to the pressure of the high-pressure fuel supplied between the guide hole 4 and the needle 3. By the force, the valve portion 14 is automatically aligned with the axis of the valve seat 7. In addition, even if the needle 3 is easily inclined due to the clearance between the sliding shaft portion 11 of the needle 3 and the guide hole 4, the pressure of the high-pressure fuel supplied between the guide hole 4 and the needle 3 causes the needle 3 to tilt. The valve section 14 is automatically aligned with the axis of the valve seat 7. Thus, the needle 3
The eccentricity of the valve portion 14 of the needle 3 and the valve seat 7 of the nozzle body 2 can be prevented without increasing the sliding resistance and poor sliding, and the injection amount of each injection hole 8 is uneven. Does not occur, and it is possible to suppress a variation in the injection amount and a variation in the fuel spray shape in each injection hole 8.

【0027】〔第2実施例〕図4は第2実施例を示すも
のであり、燃料噴射ノズル1の要部断面図を示すもので
ある。この第2実施例の燃料噴射ノズル1は、弁座7の
上部にボディ側円錐台部21を形成し、弁部14の上部
にニードル側円錐台部22を形成したものであり、ニー
ドル側円錐台部22の広がり角度は、ボディ側円錐台部
21の広がり角度より小さいものであるが、その差は2
°以下に設けられている。つまり、弁部14が弁座7に
着座している場合であっても、ボディ側円錐台部21と
ニードル側円錐台部22との間に環状の微小隙間が形成
されるように設けられている。
[Second Embodiment] FIG. 4 shows a second embodiment, and is a sectional view of a main part of a fuel injection nozzle 1. As shown in FIG. The fuel injection nozzle 1 of the second embodiment has a body-side truncated cone portion 21 formed above the valve seat 7 and a needle-side truncated cone portion 22 formed above the valve portion 14. The spread angle of the base portion 22 is smaller than the spread angle of the body-side truncated cone portion 21, but the difference is 2
° or less. In other words, even when the valve portion 14 is seated on the valve seat 7, an annular minute gap is provided between the body-side truncated cone portion 21 and the needle-side truncated cone portion 22. I have.

【0028】このように設けることにより、ボディ側円
錐台部21とニードル側円錐台部22との間に供給され
た高圧燃料の圧力によって、弁部14を弁座7の軸芯に
自動調芯させることができる。つまり、弁部14が弁座
7から離座し、弁部14が弁座7に対して偏芯が生じる
ような場合は、ボディ側円錐台部21とニードル側円錐
台部22との隙間によって形成された燃料通路に圧力の
不均衡が生じる。偏芯側の燃料通路は、燃料が流れ難
く、反偏芯側は燃料が流れ易いので、相対的に偏芯側の
燃料通路の圧力が高くなり、弁部14を調芯する力が生
じ、弁部14が弁座7の軸芯に自動調芯される。なお、
この第2実施例では、第1実施例と組み合わせた例を示
したが、第2実施例のみ採用しても良い。また、第1実
施例と組み合わせる場合は、ノズルボディ2と円錐台部
16の間に形成される隙間の角度と、ノズルボディ2と
ニードル側円錐台部22の間に形成される隙間の角度
は、同じでも良いし、異なっていても良い。
With this arrangement, the valve portion 14 is automatically centered on the axis of the valve seat 7 by the pressure of the high-pressure fuel supplied between the body-side truncated cone portion 21 and the needle-side truncated cone portion 22. Can be done. That is, when the valve portion 14 is separated from the valve seat 7 and the valve portion 14 is eccentric with respect to the valve seat 7, the gap between the body-side truncated cone portion 21 and the needle-side truncated cone portion 22 causes a gap. A pressure imbalance occurs in the formed fuel passage. In the fuel path on the eccentric side, the fuel is difficult to flow, and the fuel is easy to flow on the anti-eccentric side. Therefore, the pressure in the fuel path on the eccentric side relatively increases, and a force for aligning the valve portion 14 is generated. The valve section 14 is automatically aligned with the axis of the valve seat 7. In addition,
In the second embodiment, an example in which the second embodiment is combined with the first embodiment is shown, but only the second embodiment may be adopted. When combined with the first embodiment, the angle of the gap formed between the nozzle body 2 and the truncated cone 16 and the angle of the gap formed between the nozzle body 2 and the needle-side truncated cone 22 are , May be the same or different.

【0029】〔第3実施例〕図5は第3実施例を示すも
のであり、燃料噴射ノズル1の断面図である。この第3
実施例の燃料噴射ノズル1は、シャフト13を下側に向
けて大径化することでシャフト13の下側に油圧調芯部
を形成したものであり、このように設けることによっ
て、シャフト13の下側の大径部31とガイド孔4との
間に環状の微小隙間が形成される。なお、シャフト13
の下側端部31aの径(大径部31の最大径)は、ノズ
ルボディ2との間に形成される環状の燃料通路が燃料圧
力の降下を招かないように設定される。
[Third Embodiment] FIG. 5 shows a third embodiment, and is a sectional view of the fuel injection nozzle 1. As shown in FIG. This third
In the fuel injection nozzle 1 of the embodiment, the diameter of the shaft 13 is increased toward the lower side to form a hydraulic alignment portion on the lower side of the shaft 13. An annular minute gap is formed between the lower large-diameter portion 31 and the guide hole 4. The shaft 13
The diameter of the lower end portion 31a (the maximum diameter of the large diameter portion 31) is set so that the annular fuel passage formed between the nozzle body 2 and the nozzle body 2 does not cause a decrease in fuel pressure.

【0030】このように設けることにより、シャフト1
3の下側の大径部31とガイド孔4の下側との間に供給
された高圧燃料の圧力によって、弁部14を弁座7の軸
芯に自動調芯させることができる。つまり、弁部14が
弁座7から離座し、弁部14が弁座7に対して偏芯が生
じるような場合は、シャフト13下側の大径部31とガ
イド孔4下側との隙間によって形成された燃料通路に圧
力の不均衡が生じる。偏芯側の燃料通路は、燃料が流れ
難く、反偏芯側は燃料が流れ易いので、相対的に偏芯側
の燃料通路の圧力が高くなり、弁部14を調芯する力が
生じ、弁部14が弁座7の軸芯に自動調芯される。な
お、この第3実施例でも、第1実施例と組み合わせた例
を示したが、第3実施例のみ採用しても良い。また、第
2実施例と組み合わせても良い。さらに、第1、第2実
施例と組み合わせても良い。
By providing such a shaft, the shaft 1
The valve portion 14 can be automatically centered on the axis of the valve seat 7 by the pressure of the high-pressure fuel supplied between the lower large-diameter portion 31 and the lower side of the guide hole 4. That is, when the valve portion 14 is separated from the valve seat 7 and the valve portion 14 is eccentric with respect to the valve seat 7, the large diameter portion 31 on the lower side of the shaft 13 and the lower side of the guide hole 4 Pressure imbalance occurs in the fuel passage formed by the gap. In the fuel path on the eccentric side, the fuel is difficult to flow, and the fuel is easy to flow on the anti-eccentric side. Therefore, the pressure in the fuel path on the eccentric side relatively increases, and a force for aligning the valve portion 14 is generated. The valve section 14 is automatically aligned with the axis of the valve seat 7. In the third embodiment, an example in which the third embodiment is combined with the first embodiment is shown, but only the third embodiment may be adopted. Further, it may be combined with the second embodiment. Further, it may be combined with the first and second embodiments.

【0031】〔第4実施例〕図6は第4実施例を示すも
のであり、燃料噴射ノズル1の断面図である。上記第1
〜第3実施例では、摺動孔9と摺動軸部11とのクリア
ランスを許容し、そのクリアランスでニードル3を傾斜
させることで弁部14を弁座7の軸芯に調芯させること
を前提としていた。しかるに、この第4実施例の燃料噴
射ノズル1は、ガイド孔4と摺動軸部11との軸方向の
摺動距離を短く設けることによって、摺動部のクリアラ
ンスに高圧燃料によって発生する側方荷重を小さくし、
ニードル3を傾斜させる力を低減するものである。この
ように設けることにより、弁部14を弁座7の軸芯に自
動調芯する力が相対的に強まり、弁部14と弁座7の偏
芯をより小さくできる。具体的に、この第4実施例で
は、ガイド孔4の上側に大径孔41を形成し、摺動孔9
の軸長を短縮したものである。
Fourth Embodiment FIG. 6 shows a fourth embodiment, and is a sectional view of the fuel injection nozzle 1. As shown in FIG. The first
In the third to third embodiments, the clearance between the sliding hole 9 and the sliding shaft portion 11 is allowed, and the needle 3 is inclined by the clearance to align the valve portion 14 with the axis of the valve seat 7. Was assumed. However, the fuel injection nozzle 1 of the fourth embodiment is provided with a short sliding distance in the axial direction between the guide hole 4 and the sliding shaft portion 11 so that the lateral clearance generated by the high-pressure fuel is provided in the clearance of the sliding portion. Reduce the load,
This is to reduce the force for inclining the needle 3. With such provision, the force for automatically aligning the valve portion 14 with the axis of the valve seat 7 is relatively increased, and the eccentricity between the valve portion 14 and the valve seat 7 can be further reduced. Specifically, in the fourth embodiment, a large-diameter hole 41 is formed above the guide hole 4 and the sliding hole 9 is formed.
Is reduced in axial length.

【0032】〔第5実施例〕図7は第5実施例を示すも
のであり、燃料噴射ノズル1の断面図である。この第5
実施例は、摺動孔9と摺動軸部11の双方の軸方向寸法
を短くし、第4実施例と同様の効果を得るものである。
[Fifth Embodiment] FIG. 7 shows a fifth embodiment and is a sectional view of the fuel injection nozzle 1. As shown in FIG. This fifth
In the embodiment, the axial dimension of both the sliding hole 9 and the sliding shaft portion 11 is shortened, and the same effect as in the fourth embodiment is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃料噴射ノズルの断面図である(第1実施
例)。
FIG. 1 is a sectional view of a fuel injection nozzle (first embodiment).

【図2】燃料噴射ノズルの要部断面図である(第1実施
例)。
FIG. 2 is a sectional view of a main part of a fuel injection nozzle (first embodiment).

【図3】偏芯状態を示す燃料噴射ノズルの要部断面図で
ある(第1実施例)。
FIG. 3 is a sectional view of a main part of a fuel injection nozzle showing an eccentric state (first embodiment).

【図4】燃料噴射ノズルの要部断面図である(第2実施
例)。
FIG. 4 is a sectional view of a main part of a fuel injection nozzle (second embodiment).

【図5】燃料噴射ノズルの断面図である(第3実施
例)。
FIG. 5 is a sectional view of a fuel injection nozzle (third embodiment).

【図6】燃料噴射ノズルの断面図である(第4実施
例)。
FIG. 6 is a sectional view of a fuel injection nozzle (fourth embodiment).

【図7】燃料噴射ノズルの断面図である(第5実施
例)。
FIG. 7 is a sectional view of a fuel injection nozzle (fifth embodiment).

【符号の説明】[Explanation of symbols]

1 燃料噴射ノズル 2 ノズルボディ 3 ニードル 4 ガイド孔 7 弁座 8 噴孔 9 摺動孔 11 摺動軸部 13 シャフト 14 弁部 16 円錐台部(第1実施例の油圧調芯部) 21 ボディ側円錐台部(第2実施例の油圧調芯部) 22 ニードル側円錐台部(第2実施例の油圧調芯部) 31 大径部(第3実施例の油圧調芯部) DESCRIPTION OF SYMBOLS 1 Fuel injection nozzle 2 Nozzle body 3 Needle 4 Guide hole 7 Valve seat 8 Injection hole 9 Sliding hole 11 Sliding shaft part 13 Shaft 14 Valve part 16 Conical part (Hydraulic alignment part of the first embodiment) 21 Body side Frustoconical part (hydraulic alignment part of the second embodiment) 22 Needle-side truncated cone part (hydraulic alignment part of the second embodiment) 31 Large diameter part (hydraulic alignment part of the third embodiment)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】上端面から下端部まで穿設されたガイド
孔、このガイド孔の下端部に形成された弁座、この弁座
の下流側において開口する複数の噴孔を有するノズルボ
ディと、 反噴孔側の前記ガイド孔に摺動自在に挿通される摺動軸
部、前記弁座に着座および離脱して前記噴孔を開閉する
弁部、前記摺動軸部と前記弁部を繋ぐシャフトを有する
ニードルとを備え、 前記弁座から前記弁部が離れて前記噴孔が開かれると、
前記ガイド孔と前記ニードルとの間に供給された高圧燃
料が前記噴孔から噴射される燃料噴射ノズルであって、 この燃料噴射ノズルは、前記ノズルボディと前記ニード
ルとの間に供給された高圧燃料の圧力によって、前記弁
部を前記弁座の軸芯に自動調芯させる油圧調芯部を備え
ることを特徴とする燃料噴射ノズル。
1. A nozzle body having a guide hole formed from an upper end surface to a lower end portion, a valve seat formed at a lower end portion of the guide hole, and a plurality of injection holes opened downstream of the valve seat. A sliding shaft portion slidably inserted into the guide hole on the side opposite to the injection hole, a valve portion that sits on and separates from the valve seat to open and close the injection hole, and connects the sliding shaft portion to the valve portion. A needle having a shaft, when the valve portion is separated from the valve seat and the injection hole is opened,
A fuel injection nozzle for injecting high-pressure fuel supplied between the guide hole and the needle from the injection hole, the fuel injection nozzle comprising a high-pressure fuel supplied between the nozzle body and the needle; A fuel injection nozzle, comprising: a hydraulic alignment portion for automatically aligning the valve portion with the axis of the valve seat by fuel pressure.
【請求項2】請求項1の燃料噴射ノズルにおいて、 前記油圧調芯部は、前記ニードルに形成されたことを特
徴とする燃料噴射ノズル。
2. The fuel injection nozzle according to claim 1, wherein the hydraulic alignment portion is formed on the needle.
【請求項3】請求項1または請求項2の燃料噴射ノズル
において、 前記油圧調芯部は、前記ノズルボディとの間に円環状の
微小隙間を形成する円錐台部であることを特徴とする燃
料噴射ノズル。
3. The fuel injection nozzle according to claim 1, wherein the hydraulic alignment portion is a truncated cone that forms an annular minute gap with the nozzle body. Fuel injection nozzle.
【請求項4】請求項3の燃料噴射ノズルにおいて、 前記円錐台部は、前記弁部の上側に設けられ、前記弁部
が前記弁座に着座した状態でも、前記弁座との間に環状
の微小隙間を形成することを特徴とする燃料噴射ノズ
ル。
4. The fuel injection nozzle according to claim 3, wherein the truncated cone portion is provided above the valve portion, and is annular between the valve portion and the valve seat even when the valve portion is seated on the valve seat. A fuel injection nozzle characterized by forming a minute gap.
【請求項5】請求項1の燃料噴射ノズルにおいて、 前記油圧調芯部は、前記弁座の上部に形成されたボディ
側円錐台部と、前記弁部の上部に形成されたニードル側
円錐台部とからなり、 前記弁部が前記弁座に着座した状態でも、前記ボディ側
円錐台部と前記ニードル側円錐台部との間に環状の微小
隙間を形成することを特徴とする燃料噴射ノズル。
5. The fuel injection nozzle according to claim 1, wherein the hydraulic alignment portion includes a body-side truncated cone formed above the valve seat and a needle-side truncated cone formed above the valve portion. A fuel injection nozzle, wherein an annular minute gap is formed between the body-side truncated cone portion and the needle-side truncated cone portion even when the valve portion is seated on the valve seat. .
【請求項6】請求項2の燃料噴射ノズルにおいて、 前記油圧調芯部は、前記シャフトを前記弁部に近づくに
従って大径化することによって設けられ、前記弁部側に
おいて前記ガイド孔との間に環状の微小隙間を形成する
ことを特徴とする燃料噴射ノズル。
6. The fuel injection nozzle according to claim 2, wherein the hydraulic alignment portion is provided by increasing the diameter of the shaft as it approaches the valve portion, and between the shaft and the guide hole on the valve portion side. A fuel injection nozzle characterized in that an annular minute gap is formed in the fuel injection nozzle.
【請求項7】請求項1ないし請求項6のいずれかの燃料
噴射ノズルにおいて、 前記シャフトは、軸方向に弾性変形可能に設けられたこ
とを特徴とする燃料噴射ノズル。
7. The fuel injection nozzle according to claim 1, wherein the shaft is provided so as to be elastically deformable in an axial direction.
【請求項8】請求項1ないし請求項7のいずれかの燃料
噴射ノズルにおいて、 前記ガイド孔と前記摺動軸部との軸方向の摺動距離が短
く設けられたことを特徴とする燃料噴射ノズル。
8. The fuel injection nozzle according to claim 1, wherein an axial sliding distance between the guide hole and the sliding shaft portion is short. nozzle.
JP2001124306A 2001-04-23 2001-04-23 Fuel injection nozzle Pending JP2002317735A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001124306A JP2002317735A (en) 2001-04-23 2001-04-23 Fuel injection nozzle
DE2002117872 DE10217872A1 (en) 2001-04-23 2002-04-22 fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124306A JP2002317735A (en) 2001-04-23 2001-04-23 Fuel injection nozzle

Publications (1)

Publication Number Publication Date
JP2002317735A true JP2002317735A (en) 2002-10-31

Family

ID=18973714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124306A Pending JP2002317735A (en) 2001-04-23 2001-04-23 Fuel injection nozzle

Country Status (2)

Country Link
JP (1) JP2002317735A (en)
DE (1) DE10217872A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570174A1 (en) * 2002-12-04 2005-09-07 Robert Bosch Gmbh Fuel-injection valve
WO2013111306A1 (en) * 2012-01-26 2013-08-01 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570174A1 (en) * 2002-12-04 2005-09-07 Robert Bosch Gmbh Fuel-injection valve
WO2013111306A1 (en) * 2012-01-26 2013-08-01 トヨタ自動車株式会社 Control device for internal combustion engine
JPWO2013111306A1 (en) * 2012-01-26 2015-05-11 トヨタ自動車株式会社 Control device for internal combustion engine
US9624862B2 (en) 2012-01-26 2017-04-18 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Also Published As

Publication number Publication date
DE10217872A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
JP2004502075A (en) Fuel injection valve for internal combustion engine
US7635098B2 (en) Fuel injection device inhibiting abrasion
US5718386A (en) Fuel injection valve for internal combustion engines
JP4638618B2 (en) Common rail injector
JP2006307794A (en) Assembling method for fuel injection valve
CN101529080B (en) Injector for injecting fuel into combustion chambers of internal combustion engines
JPH04232375A (en) Fuel injection nozzle for internal combustion engine
JP2005299641A (en) Fuel injection nozzle
JPH10500466A (en) Fuel injection valve for internal combustion engine
JP2009275646A (en) Fuel injection nozzle
JP4288004B2 (en) Pressure valve
JP2002317735A (en) Fuel injection nozzle
US6431842B1 (en) Fuel injection pump
JP2001107826A (en) Fuel injection nozzle for cylinder injection type internal combustion engine
WO2020145112A1 (en) Fuel injection valve
JP2002322969A (en) Fuel injection device
US6216964B1 (en) Fuel injector
JP2004518076A (en) Apparatus for high pressure fuel supply of internal combustion engines
JP6645663B2 (en) Control valve assembly
JPH1172063A (en) Fuel injection valve
CN107636298B (en) Common rail fuel injector
JP2007297962A (en) Fuel injection nozzle
JP2002535537A (en) Fuel injection valve for internal combustion engine
JPH10281041A (en) Fuel injection valve
JP5353731B2 (en) Injection nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081105

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081205