JP2002316268A - Method for estimating nugget diameter in resistance welding - Google Patents

Method for estimating nugget diameter in resistance welding

Info

Publication number
JP2002316268A
JP2002316268A JP2001119638A JP2001119638A JP2002316268A JP 2002316268 A JP2002316268 A JP 2002316268A JP 2001119638 A JP2001119638 A JP 2001119638A JP 2001119638 A JP2001119638 A JP 2001119638A JP 2002316268 A JP2002316268 A JP 2002316268A
Authority
JP
Japan
Prior art keywords
regression line
displacement
regression
slope
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001119638A
Other languages
Japanese (ja)
Other versions
JP3603808B2 (en
Inventor
Shinichi Watanabe
晋一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001119638A priority Critical patent/JP3603808B2/en
Publication of JP2002316268A publication Critical patent/JP2002316268A/en
Application granted granted Critical
Publication of JP3603808B2 publication Critical patent/JP3603808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating the nugget diameter during the welding with high accuracy. SOLUTION: A regression line, an intersection of the line of the inclination 0 with the regression line of maximum inclination (imaginary saturation point), the imaginary saturation time T1 to the imaginary saturation point, and the displacement h between electrodes from the imaginary saturation point to the hold release are obtained from the displacement between electrodes from the hold start to the hold release as an approximation shown in the formula (1). Then, multiple regression formula shown in (2) is obtained from the imaginary saturation time T1, the inclination θ1 of the regression line of maximum inclination, the intercept HT0 of the regression line of maximum inclination of the time axis 0, and the coefficients a, b and c in the formula (1). T1, θ1, HT0, a, b, and c are obtained from the displacement between the electrodes during the welding, and the nugget diameter y is calculated from the formula (2). h=a×T<2> +b×T+c...(1), and y=r0+r1×a+r2×b+r3×c+r4×T1+r5×θ1+r6×HT0...(2), where r0 to r6 are partial regression coefficients.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スポット溶接に代
表される抵抗溶接において、溶接後に形成されるナゲッ
ト径の推定方法に関する。
The present invention relates to a method for estimating the diameter of a nugget formed after welding in resistance welding represented by spot welding.

【0002】[0002]

【従来の技術】従来から抵抗溶接、特にスポット溶接に
おける品質管理、品質向上を目的とするナゲット径の推
定方法としては、溶接電流通電中(ナゲット生成過程)
における溶接部材の熱膨張を利用した様々な方法が開発
されている。
2. Description of the Related Art Conventionally, as a method of estimating a nugget diameter for the purpose of quality control and quality improvement in resistance welding, particularly spot welding, a method of estimating a nugget diameter while a welding current is flowing (a nugget generation process)
Various methods utilizing the thermal expansion of a welding member have been developed.

【0003】なかでも、特開2000−79482号公
報に開示された技術では、溶接中における電極間変位量
からナゲット形を推定することができる非常に有用な発
明である。
[0003] In particular, the technique disclosed in Japanese Patent Application Laid-Open No. 2000-79482 is a very useful invention capable of estimating a nugget shape from the displacement between electrodes during welding.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
報に記載の技術では、通電開始から電極間変位量が飽和
するまでの間の変位量しか用いていないため、溶接ガン
の打角の傾きが大きくなったり、あるいは板隙が大きい
被溶接部材を溶接した場合などには、実際のナゲット径
と推定値とが一致しなくなるといった問題がある。
However, in the technology described in the above publication, only the displacement from the start of energization to the saturation of the displacement between the electrodes is used, so that the inclination of the strike angle of the welding gun is large. When the welded member having a large gap is welded, or the like, the actual nugget diameter does not match the estimated value.

【0005】そこで、本発明の目的は、スポット溶接に
代表される抵抗溶接において、形成されるナゲット径を
極めて正確に推定することが可能なナゲット径の推定方
法を提供することである。
Accordingly, an object of the present invention is to provide a method for estimating a nugget diameter which can extremely accurately estimate a formed nugget diameter in resistance welding represented by spot welding.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、下記す
る手段により達成される。
The object of the present invention is achieved by the following means.

【0007】(1)溶接ガンによる被溶接部材のホール
ド開始からホールド解除までの間における電極間変位量
を測定し、ホールド開始から変位量が飽和した点までの
回帰直線を求め、当該回帰直線と、前記飽和した点と接
する傾き0の直線との交点を求め、前記交点から前記ホ
ールド解除までの間の変位量からこの間の変位量を近似
する近似式を求め、前記通電開始から前記交点までの時
間、前記回帰直線の傾き、前記回帰直線の切片の値、お
よび前記近似式から、重回帰式を作成し、当該重回帰式
によりナゲット径を算出することを特徴とする抵抗溶接
におけるナゲット径の推定方法。
(1) The displacement between the electrodes from the start of holding of the workpiece to be welded by the welding gun to the release of the hold is measured, and a regression line from the start of holding to the point where the displacement is saturated is determined. An intersection between the saturated point and a straight line having a slope of 0 that comes into contact is obtained, and an approximate expression that approximates the amount of displacement from the amount of displacement from the intersection to the release of the hold is obtained. From the time, the slope of the regression line, the value of the intercept of the regression line, and the approximate expression, a multiple regression equation is created, and the nugget diameter in resistance welding is calculated by calculating the nugget diameter by the multiple regression equation. Estimation method.

【0008】(2)溶接ガンによる被溶接部材のホール
ド開始からホールド解除までの間に計測された電極間変
位量から、一定時間間隔ごとに、横軸を時間軸T、縦軸
を変位量hとしたときの回帰直線を求める段階と、当該
回帰直線の傾きが0となった時点で、当該傾き0の回帰
直線と、それまでに求めた回帰直線のうち傾きが最大の
回帰直線との交点を求める段階と、当該交点の前記時間
軸T上における通電開始からの時間を仮想飽和時間T1
として求める段階と、前記交点から前記ホールド解除ま
での間における前記電極間変位量hを時間Tの関数とし
て表す下記(1)式に示される近似式を求める段階と、
前記仮想飽和時間T1、前記傾き最大の回帰直線の傾き
θ1、時間軸0における傾き最大の回帰直線の切片の値
HT0、および(1)式における係数a、b、cを用い
て下記(2)式に示す重回帰式を求める段階と、を有
し、溶接中に測定される電極間変位量から得られる仮想
飽和時間T1、傾き最大の回帰直線の傾きθ1、時間軸
0における傾き最大の回帰直線の切片の値HT0、およ
び(1)式に示される近似式の各係数a、b、cから、
(2)式に示される前記重回帰式を用いて、溶接中にお
けるナゲット径yを算出することを特徴とする抵抗溶接
におけるナゲット径の推定方法。
(2) From the displacement between the electrodes measured from the start of the hold of the member to be welded by the welding gun to the release of the hold, the horizontal axis is the time axis T and the vertical axis is the displacement h at regular time intervals. And the point where the slope of the regression line becomes 0, and the intersection of the regression line having the slope of 0 and the regression line having the largest slope among the regression lines obtained so far. And the time from the start of energization on the time axis T at the intersection is defined as a virtual saturation time T1.
And a step of obtaining an approximate expression shown in the following expression (1) that represents the inter-electrode displacement amount h from the intersection to the hold release as a function of time T:
Using the virtual saturation time T1, the slope θ1 of the maximum slope regression line, the intercept HT0 of the maximum slope regression line on the time axis 0, and the coefficients a, b, and c in the equation (1), the following (2) Calculating the multiple regression equation shown in the equation, the virtual saturation time T1 obtained from the displacement between the electrodes measured during welding, the slope θ1 of the regression line having the maximum slope, and the regression of the maximum slope on the time axis 0. From the value HT0 of the intercept of the straight line and the coefficients a, b, and c of the approximate expression shown in Expression (1),
A method for estimating a nugget diameter in resistance welding, comprising calculating a nugget diameter y during welding using the multiple regression equation shown in equation (2).

【0009】 h=a×T2+b×T+c …(1) y=r0+r1×a+r2×b+r3×c+r4×T1+r5×θ1 +r6×HT0 …(2) ただし、(2)式中、yはナゲット径、r0〜r6は偏
回帰係数である。
H = a × T2 + b × T + c (1) y = r0 + r1 × a + r2 × b + r3 × c + r4 × T1 + r5 × θ1 + r6 × HT0 (2) where y is a nugget diameter and r0 to r6. Is the partial regression coefficient.

【0010】[0010]

【発明の効果】本発明によれば、請求項ごとに以下のよ
うな効果を奏する。
According to the present invention, the following effects can be obtained for each claim.

【0011】請求項1記載の本発明によれば、溶接中に
電極間変位量を測定して、測定した変位量から回帰直線
を求め、この回帰直線と飽和点を通る傾き0の直線との
交点を求め、さらに交点からホールド解除までの電極間
変位量を近似する式を求めて、交点に達するまでの時
間、回帰直線の傾き、回帰直線の切片、および近似式に
基づいて重回帰式を立て、この重回帰式によりナゲット
径を算出することにより、通電開始から飽和点までのデ
ータに加えて、通電終了後の収縮域における電極間変位
量をあらわす近似式を用いて重回帰式を立てたことで、
電極チップの打角や隙間などの影響による推定誤差を少
なくし、高精度でナゲット径を推定することができる。
According to the first aspect of the present invention, the displacement between the electrodes is measured during welding, and a regression line is obtained from the measured displacement. Find the intersection, and then calculate an equation that approximates the amount of displacement between the electrodes from the intersection to the hold release, and calculate the multiple regression equation based on the time to reach the intersection, the slope of the regression line, the intercept of the regression line, and the approximate expression. By calculating the nugget diameter using this multiple regression equation, in addition to the data from the start of energization to the saturation point, a multiple regression equation was established using an approximate equation that represents the displacement between the electrodes in the contraction region after the end of energization. By that
It is possible to reduce the estimation error due to the influence of the hitting angle and the gap of the electrode tip, and to estimate the nugget diameter with high accuracy.

【0012】請求項2記載の本発明によれば、溶接中に
電極間変位量を測定して、測定した変位量から一定時間
間隔ごとに回帰直線を求め、回帰直線の傾きが0のとき
の直線と、傾き最大の回帰直線との交点を仮想飽和点と
して、この仮想飽和点に達するまでの時間を仮想飽和時
間として求め、さらに、仮想飽和点からホールド解除ま
での間の電極間変位量を近似する2次多項近似式を求め
て、傾き最大の回帰直線の傾き、切片の値、仮想飽和時
間、および近似式の係数に基づき重回帰式を立てて、こ
の重回帰式によりナゲット径を算出することにより、通
電開始から飽和点までのデータに加えて、通電終了後の
収縮域における電極間変位量をあらわす近似式を用いて
重回帰式を立てたことで、電極チップの打角や隙間など
の影響によらず、高精度でナゲット径を推定することが
できる。
According to the present invention, the displacement between the electrodes is measured during welding, and a regression line is obtained at regular time intervals from the measured displacement. The intersection between the straight line and the regression line with the maximum slope is defined as the virtual saturation point, the time required to reach the virtual saturation point is determined as the virtual saturation time, and the displacement between the electrodes from the virtual saturation point to the hold release is calculated. Calculate the approximate quadratic polynomial approximation, set a multiple regression equation based on the slope of the maximum regression line, intercept value, virtual saturation time, and the coefficient of the approximation equation, and calculate the nugget diameter using this multiple regression equation. In addition to the data from the start of energization to the saturation point, a multiple regression equation was established using an approximate expression that represents the amount of displacement between electrodes in the contraction region after the end of energization. Regardless of the influence of It is possible to estimate the nugget diameter accuracy.

【0013】[0013]

【発明の実施の形態】以下、添付した図面を参照して、
本発明の一実施の形態を説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
An embodiment of the present invention will be described.

【0014】《装置構成》図1は、本発明にかかるスポ
ット溶接を実行する溶接装置の概略構成を示すブロック
図である。
<Apparatus Configuration> FIG. 1 is a block diagram showing a schematic configuration of a welding apparatus for performing spot welding according to the present invention.

【0015】たとえば複数の板材などを重ね合わせた溶
接部材10は、その上下方向から溶接ガン11に取り付
けられた電極チップ12a,12bによって挟持、圧接
される。
For example, a welding member 10 in which a plurality of plate members or the like are overlapped is sandwiched and pressed by electrode tips 12a and 12b attached to a welding gun 11 from above and below.

【0016】電極チップ12aおよび12bはその一
方、ここでは12aが図示上下に可動自在であり、サー
ボモータなどから構成される閉圧装置18によって昇降
され、この電極チップ12aの昇降動作によって溶接部
材10を所定の圧力で圧接する。
On the other hand, the electrode tips 12a and 12b, on the other hand, are movable up and down in the figure, and are raised and lowered by a pressure closing device 18 composed of a servomotor or the like. At a predetermined pressure.

【0017】そして、電極チップ12aおよび12bに
は、溶接部材10を圧接した状態で電源回路15から両
電極チップ12a,12bに溶接電流が供給される。
A welding current is supplied from the power supply circuit 15 to the electrode tips 12a and 12b while the welding member 10 is pressed against the electrode tips 12a and 12b.

【0018】この溶接電流の電流量や通電時間(溶接時
間)は、中央演算装置20の指令に基づいて動作する電
流制御回路16によって制御される。
The current amount of the welding current and the conduction time (welding time) are controlled by a current control circuit 16 which operates based on a command from the central processing unit 20.

【0019】電極チップ12aの位置は、たとえばエン
コーダなどからなる電極位置検出装置19によって検出
される。
The position of the electrode tip 12a is detected by an electrode position detecting device 19 composed of, for example, an encoder.

【0020】この電極位置検出装置19によって溶接中
における電極チップ12aの微少な上下動が検出され、
これが固定された電極チップ12bとの間における溶接
中の熱膨張による電極間変位量として測定される。測定
された電極間変位量は記憶回路26に記憶され、後述す
るナゲット径の推定や制御に用いられる。
The electrode position detecting device 19 detects a slight vertical movement of the electrode tip 12a during welding.
This is measured as a displacement between electrodes due to thermal expansion during welding with the fixed electrode tip 12b. The measured inter-electrode displacement is stored in the storage circuit 26, and is used for estimating and controlling a nugget diameter described later.

【0021】なお、この記憶回路26には、溶接を行う
ときの溶接条件、および後述するようにして求められる
重回帰式なども記憶されている。
The storage circuit 26 also stores welding conditions for performing welding, a multiple regression equation obtained as described later, and the like.

【0022】閉圧装置18の動作は、中央演算装置20
の指令に基づいて動作する閉圧制御回路22によって制
御される。
The operation of the closing device 18 is controlled by a central processing unit 20.
Is controlled by the closing pressure control circuit 22 which operates based on the command of

【0023】また、電極位置検出装置19で検出された
電極チップ12aの変位量は、電極位置検出回路24を
介し閉圧装置18の位置制御のため、閉圧制御回路22
にフィードバックされて、電極チップ12a,12bに
よる加圧力の制御にも用いられている。
The displacement of the electrode tip 12a detected by the electrode position detecting device 19 is controlled by the closing pressure control circuit 22 for controlling the position of the pressure closing device 18 via the electrode position detecting circuit 24.
And is also used for controlling the pressing force by the electrode tips 12a and 12b.

【0024】中央演算装置20は、電極位置検出装置1
9によって検出された電極チップ12aの位置情報から
電極間変位量を求め、後述するように、求めた電極間変
位量を元にして、ナゲット径を推定し、さらに、その推
定結果に基づいて溶接中における通電電流量や通電時間
といった通電条件の変更などを行う。
The central processing unit 20 includes the electrode position detecting device 1
9 to determine the inter-electrode displacement from the position information of the electrode tip 12a detected by step 9, as described later, estimating the nugget diameter based on the obtained inter-electrode displacement, and further performing welding based on the estimation result. The energizing conditions such as the amount of energizing current and the energizing time during the operation are changed.

【0025】また、中央演算装置20には、図示しない
ディスプレイなどが設けられておりナゲット径の推定結
果や通電条件を表示する。
The central processing unit 20 is provided with a display (not shown) and the like, and displays a result of estimating a nugget diameter and energizing conditions.

【0026】なお、図1に示した溶接装置は、あくまで
も本実施形態を説明するために溶接装置の概略構成を説
明するためのものであり、実際の溶接装置にあっては、
たとえば作業者が手持ちするものやロボットのエンドエ
フェクタとして使用するものなど様々であるが、基本的
な構成は上述したものと同様であり、本発明は上述した
ような溶接装置に限定して用いられるものではなく、様
々な溶接装置に適用できるものである。
The welding device shown in FIG. 1 is only for explaining the schematic configuration of the welding device for the purpose of describing the present embodiment, and in an actual welding device,
For example, there are various types such as those held by an operator and those used as an end effector of a robot, but the basic configuration is the same as that described above, and the present invention is limited to the welding apparatus as described above. Instead, it can be applied to various welding devices.

【0027】《ナゲット径の推定》以上のように構成さ
れた装置によって行われる抵抗溶接におけるナゲット径
の推定方法について詳細に説明する。
<< Estimation of Nugget Diameter >> A method of estimating a nugget diameter in resistance welding performed by the apparatus configured as described above will be described in detail.

【0028】図2はナゲット径の推定方法の手順を示す
フローチャートであり、図3はこの方法を説明するため
の電極間変位量のモデルを示す概略図である。
FIG. 2 is a flowchart showing a procedure of a method for estimating a nugget diameter, and FIG. 3 is a schematic view showing a model of a displacement between electrodes for explaining this method.

【0029】上記装置による溶接動作は、まず、溶接ガ
ン11によって溶接部材10を所定の圧力によりホール
ドするとともに、電極チップ12a,12bに、あらか
じめ決められた通電条件により通電を開始する。
In the welding operation by the above-mentioned apparatus, first, the welding member 10 is held by the welding gun 11 at a predetermined pressure, and energization of the electrode tips 12a and 12b is started under predetermined energizing conditions.

【0030】ホールドおよび通電開始と同時に電極チッ
プ12aの位置測定を開始し、その位置変化量から電極
チップ12aと12bとの間隔の変化量、すなわち、電
極間変位量を測定する。
The measurement of the position of the electrode tip 12a is started simultaneously with the start of the hold and the energization, and the amount of change in the interval between the electrode tips 12a and 12b, that is, the amount of displacement between the electrodes, is measured from the amount of change in the position.

【0031】このとき、測定頻度は、連続的に、または
0.5msec、あるいは1〜5msec程度のごく僅
かな時間間隔ごとにサンプリングして記憶する(S
2)。
At this time, the measurement frequency is sampled and stored continuously or at very short time intervals of about 0.5 msec or 1 to 5 msec (S
2).

【0032】なお、サンプリング間隔はこのような時間
間隔に限定されるものではなく、後述する回帰直線の算
出時間間隔に合わせて適宜設定するとよい。
It should be noted that the sampling interval is not limited to such a time interval, and may be set as appropriate in accordance with a regression line calculation time interval described later.

【0033】測定した電極間変位量から、一定の時間間
隔twidthごとに回帰直線を求め、求めた回帰直線
の傾きと切片を記憶する(S3)。
From the measured inter-electrode displacement, a regression line is obtained at regular time intervals twidth, and the slope and intercept of the obtained regression line are stored (S3).

【0034】ここで求める回帰直線は、横軸を時間軸
T、縦軸を変位量hとした2次元における直線である
(図3参照)。また、回帰直線の切片とは、回帰直線の
時間軸上0の切片である。また、回帰直線の傾きθ1
は、熱膨張速度dh/dtを表すものである。
The regression line determined here is a two-dimensional line with the horizontal axis representing the time axis T and the vertical axis representing the displacement h (see FIG. 3). In addition, the intercept of the regression line is an intercept of 0 on the time axis of the regression line. Also, the slope θ1 of the regression line
Represents the thermal expansion rate dh / dt.

【0035】これにより得られる回帰直線は、h=θ1
×T+HT0となる。ここで、式中、hは変位量、Tは
時間、θ1は傾き、HT0は切片の値である。
The regression line obtained by this is h = θ1
× T + HT0. Here, in the equation, h is the displacement amount, T is time, θ1 is the slope, and HT0 is the value of the intercept.

【0036】なお、前記時間間隔twidthは、実験
の結果、後述する重回帰式を求めるために、好ましくは
50〜120msec程度、より好ましくは60〜10
0msec、さらには60msec程度がよい。
The time interval width is preferably about 50 to 120 msec, more preferably about 60 to 10 msec, in order to obtain a multiple regression equation to be described later.
0 msec, more preferably about 60 msec.

【0037】ここで回帰直線を一定時間間隔ごとに算出
しているのは、得られた回帰直線の傾きから時々刻々と
変化する熱膨脹の飽和点を知るためで、得られた回帰直
線の傾きが0となった時点で熱膨張が飽和したと判断し
ている。
Here, the reason why the regression line is calculated at regular time intervals is to know the saturation point of the thermal expansion that changes every moment from the obtained slope of the regression line. It is determined that the thermal expansion has become saturated when the value becomes zero.

【0038】そして、得られた回帰直線の傾きが0とな
った時点で(S4)、その回帰直線とその時点までに得
られている回帰直線のうち傾きが最大となっている回帰
直線との交点を求め、さらに、この交点の時間軸上での
値を求める。ここで、この交点を仮想飽和点と称する。
Then, when the slope of the obtained regression line becomes 0 (S4), the regression line and the regression line having the largest slope among the regression lines obtained up to that point are determined. An intersection is obtained, and a value of this intersection on the time axis is obtained. Here, this intersection is called a virtual saturation point.

【0039】そして、時間軸上での通電開始から交点ま
での到達時間(仮想飽和時間T1)、傾き最大の回帰直
線の傾きθ1、切片の値HT0を求める(図3参照)
(S6)。
The arrival time (virtual saturation time T1) from the start of energization to the intersection on the time axis, the slope θ1 of the regression line having the largest slope, and the value HT0 of the intercept are obtained (see FIG. 3).
(S6).

【0040】その後さらに変位量のサンプリングを上記
と同じ条件でホールドが解除(溶接終了)されるまで行
う(S7、S8)。
Thereafter, sampling of the displacement is further performed under the same conditions as above until the hold is released (end of welding) (S7, S8).

【0041】そして、前記交点からホールド解除までの
間の変位量から、この間の変位量の値を近似する下記
(1)式に示す2次多項近似式を求める(S9)。
Then, from the displacement from the intersection to the release of the hold, a second-order polynomial approximation expressed by the following equation (1) is obtained which approximates the value of the displacement during this time (S9).

【0042】h=a×T2+b×T+c …(1) なお(1)式において、hは変位量、Tは時間である。H = a × T2 + b × T + c (1) In the equation (1), h is the displacement and T is the time.

【0043】続いて、仮想飽和時間T1、傾き最大の回
帰直線の傾きθ1、切片の値HT0、および(1)式に
おける各係数a、b、cを用いた下記(2)式に示す重
回帰式を求める(S10)。
Subsequently, the multiple regression shown in the following equation (2) using the virtual saturation time T1, the slope θ1 of the regression line having the largest slope, the intercept value HT0, and the coefficients a, b, and c in the equation (1). An equation is obtained (S10).

【0044】 y=r0+r1×a+r2×b+r3×c+r4×T1+r5×θ1 +r6×HT0 …(2) ただし、(2)式中、yはナゲット径であり、r0〜r
6は偏回帰係数である。なお、この重回帰式における偏
回帰係数r0〜r6は、通常の数学的手法と数々の実験
結果などから得られる値で、溶接する溶接部材の厚さや
電極チップの径、あるいは通電条件などにより異なる。
Y = r0 + r1 × a + r2 × b + r3 × c + r4 × T1 + r5 × θ1 + r6 × HT0 (2) where y is a nugget diameter and r0 to r
6 is a partial regression coefficient. Note that the partial regression coefficients r0 to r6 in this multiple regression equation are values obtained from ordinary mathematical methods and numerous experimental results, and vary depending on the thickness of the welding member to be welded, the diameter of the electrode tip, or energizing conditions. .

【0045】以上の手順により実際に溶接を行った複数
のサンプルから重回帰式を求めることになる。このよう
にして求めた重回帰式は、あらかじめ記憶回路26に記
憶しておく。
A multiple regression equation is obtained from a plurality of samples that have been actually welded by the above procedure. The multiple regression equation thus obtained is stored in the storage circuit 26 in advance.

【0046】そして、溶接時においては、上記ステップ
S1からS9までの手順と同様にして、溶接を行いなが
ら電極間変位量を測定するとともに、仮想飽和時間T
1、傾き最大の回帰直線の傾きθ1、切片の値HT0、
および(1)式における各係数a、b、cを求め、これ
らの値を前記の各手順により求めておいた(2)式で示
される重回帰式に入れて、ナゲット径を算出する。
At the time of welding, the displacement between the electrodes is measured while performing the welding, and the virtual saturation time T is set in the same manner as in steps S1 to S9.
1, the slope θ1 of the regression line having the largest slope, the value HT0 of the intercept,
Then, the coefficients a, b, and c in the equation (1) are obtained, and these values are entered into the multiple regression equation shown in the equation (2), which has been obtained by the above-described procedures, to calculate the nugget diameter.

【0047】次に、実際に溶接を行い、そのときのナゲ
ット径の実測値と推定値との比較結果について説明す
る。
Next, a description will be given of the result of comparison between the actually measured value and the estimated value of the nugget diameter at the time of actually performing welding.

【0048】被溶接部材は、板厚1.6mmの冷延鋼板
を2枚用いて、重回帰式を求めるために、図4に示すよ
うに、2枚の冷延鋼板51および52を張り合わせて、
被溶接部材の間にスペーサ53を入れて、隙間S=2m
m、間隔K=20mmとなる板隙を設定したものと、板
隙を設定しないもの(スペーサ無し)、および打角0〜
10度の間で様々に変えてスポット溶接を行い、前述し
た手順により(2)式で示される重回帰式を作成した。
As a member to be welded, two cold-rolled steel sheets having a thickness of 1.6 mm are used, and two cold-rolled steel sheets 51 and 52 are laminated as shown in FIG. ,
A spacer 53 is inserted between the members to be welded, and a gap S = 2 m
m, a gap having a spacing of K = 20 mm, a gap having no gap (without a spacer), and a striking angle of 0 to 0
Spot welding was performed with various changes between 10 degrees, and the multiple regression equation represented by the equation (2) was created by the procedure described above.

【0049】そして、上記と同じ板材を用いて、板隙有
と板隙無のそれぞれについて、打角0(打角無)と10
度(打角有)のサンプルを溶接し、このときのナゲット
径の実測値と、本発明による推定値(実施例)、および
特開2000−79482に開示された技術による推定
値(比較例)を比較した。
Using the same plate material as described above, the hitting angles 0 (no hitting angle) and 10
The sample of the degree (having a striking angle) was welded, and the actual measured value of the nugget diameter at this time, the estimated value according to the present invention (Example), and the estimated value according to the technique disclosed in JP-A-2000-79482 (Comparative Example) Were compared.

【0050】溶接サンプルは、(1)板隙無・打角無、
(2)板隙無・打角有、(3)板隙有・打角無、(4)
板隙有・打角有の4個であり、各サンプルの溶接条件
は、溶接電流は、(1)が7.5kA、(2)が8.3
kA、(3)が7.8kA、(4)が7.3kAであ
る。通電時間はすべてアップスロープ3サイクル、本通
電14サイクルである。加圧力はすべて3528N(3
60kgf)である。
The welding samples were (1) no gap, no hitting angle,
(2) No gap and hit angle, (3) No gap and hit angle, (4)
The welding conditions for each sample were 7.5 kA for (1) and 8.3 for (2).
kA, (3) is 7.8 kA, and (4) is 7.3 kA. The energization time is 3 cycles of up slope and 14 cycles of main energization. The applied pressure is 3528N (3
60 kgf).

【0051】図5は、各サンプルの変位量を示す図面で
あり、図6は、各サンプルのナゲット径の実測値、本発
明による推定値(実施例)、および特開2000−79
482に開示された技術による推定値(比較例)を示す
図表である。なお、図5において変位量は、エンコーダ
のパルス数で示し、1パルス1.22μmである。ま
た、図6において「残差」とは実測値―推定値である。
FIG. 5 is a drawing showing the amount of displacement of each sample, and FIG. 6 is a diagram showing measured values of the nugget diameter of each sample, estimated values according to the present invention (Example), and JP-A-2000-79.
482 is a chart showing estimated values (comparative examples) by the technique disclosed in 482. In FIG. 5, the displacement is represented by the number of pulses of the encoder, and is 1.22 μm per pulse. In FIG. 6, “residual” is an actual measured value−estimated value.

【0052】図5からわかるように、板隙の有無、およ
び打角の有無により、電極間変位量の変化傾向が異な
る。特に、飽和点に達するまでの傾向が大きく異なって
いる。一方、飽和点以降の部分(これを収縮域と称す
る)では、どれもほぼ同じような収縮傾向を示してい
る。本発明では、この収縮域の傾向を2次多項近似式に
より表し、その係数を重回帰式に取り入れることで、ナ
ゲットの推定精度をあげているものである。
As can be seen from FIG. 5, the change tendency of the inter-electrode displacement varies depending on the presence or absence of the gap and the presence or absence of the striking angle. In particular, the tendency until reaching the saturation point is greatly different. On the other hand, the portion after the saturation point (this is referred to as a contraction region) shows almost the same contraction tendency. In the present invention, the tendency of the contraction region is represented by a second-order polynomial approximation formula, and its coefficient is incorporated into a multiple regression formula, thereby increasing the nugget estimation accuracy.

【0053】その結果は、図6から明らかなように、板
隙の有無や打角の有無によらず、いずれのサンプルでも
本発明による実施例の方が、比較例よりも残差が少な
く、ナゲット径の推定精度が高いことがわかる。
As is clear from FIG. 6, regardless of the presence or absence of a plate gap and the presence or absence of a hitting angle, the results of the examples according to the present invention are smaller than those of the comparative examples, regardless of the presence or absence of the gap. It can be seen that the estimation accuracy of the nugget diameter is high.

【0054】以上のように本実施の形態によれば、板隙
の有無や打角によらず、高精度でナゲット径を推定する
ことが可能となる。
As described above, according to the present embodiment, it is possible to estimate the nugget diameter with high accuracy irrespective of the presence or absence of a plate gap and the hitting angle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 スポット溶接装置の概略構成を示すブロック
図である。
FIG. 1 is a block diagram showing a schematic configuration of a spot welding apparatus.

【図2】 ナゲット径の推定方法の手順を示すフローチ
ャートである。
FIG. 2 is a flowchart illustrating a procedure of a method for estimating a nugget diameter.

【図3】 電極間変位量のモデルを示す概略図である。FIG. 3 is a schematic diagram showing a model of a displacement between electrodes.

【図4】 サンプルの測定を説明するための図面であ
る。
FIG. 4 is a drawing for explaining measurement of a sample.

【図5】 電極間変位量を示す図面である。FIG. 5 is a diagram showing a displacement between electrodes.

【図6】 ナゲット径の推定値と実測値を比較した図面
である。
FIG. 6 is a drawing comparing an estimated value and a measured value of a nugget diameter.

【符号の説明】[Explanation of symbols]

10…溶接部材、 11…溶接ガン、 12a,12b…電極チップ、 20…中央演算装置、 26…記憶回路。 DESCRIPTION OF SYMBOLS 10 ... welding member, 11 ... welding gun, 12a, 12b ... electrode chip, 20 ... central processing unit, 26 ... memory circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶接ガンによる被溶接部材のホールド開
始からホールド解除までの間における電極間変位量を測
定し、 ホールド開始から変位量が飽和した点までの回帰直線を
求め、 当該回帰直線と、前記飽和した点と接する傾き0の直線
との交点を求め、 前記交点から前記ホールド解除までの間の変位量からこ
の間の変位量を近似する近似式を求め、 前記通電開始から前記交点までの時間、前記回帰直線の
傾き、前記回帰直線の切片の値、および前記近似式か
ら、重回帰式を作成し、 当該重回帰式によりナゲット径を算出することを特徴と
する抵抗溶接におけるナゲット径の推定方法。
An inter-electrode displacement between a start of holding of a workpiece to be welded by a welding gun and a release of the hold is measured, and a regression line from the start of holding to a point where the amount of displacement is saturated is obtained. Obtain an intersection of the saturated point and a straight line having a slope of 0, which is in contact with, and obtain an approximate expression that approximates the amount of displacement from the amount of displacement from the point of intersection to the release of the hold, and the time from the start of energization to the point of intersection. Estimating the nugget diameter in resistance welding, wherein a multiple regression equation is created from the slope of the regression line, the value of the intercept of the regression line, and the approximation equation, and the nugget diameter is calculated by the multiple regression equation. Method.
【請求項2】 溶接ガンによる被溶接部材のホールド開
始からホールド解除までの間に計測された電極間変位量
から、 一定時間間隔ごとに、横軸を時間軸T、縦軸を変位量h
としたときの回帰直線を求める段階と、 当該回帰直線の傾きが0となった時点で、当該傾き0の
回帰直線と、それまでに求めた回帰直線のうち傾きが最
大の回帰直線との交点を求める段階と、 当該交点の前記時間軸T上における通電開始からの時間
を仮想飽和時間T1として求める段階と、 前記交点から前記ホールド解除までの間における前記電
極間変位量hを時間Tの関数として表される下記(1)
式の近似式を求める段階と、 前記仮想飽和時間T1、前記傾き最大の回帰直線の傾き
θ1、時間軸0における傾き最大の回帰直線の切片の値
HT0、および(1)式における係数a、b、cを用い
て下記(2)式に示す重回帰式を求める段階と、を有
し、 溶接中に測定される電極間変位量から得られる仮想飽和
時間T1、傾き最大の回帰直線の傾きθ1、時間軸0に
おける傾き最大の回帰直線の切片の値HT0、および
(1)式に示される近似式の各係数a、b、cから、
(2)式に示された前記重回帰式を用いて、溶接中にお
けるナゲット径yを算出することを特徴とする抵抗溶接
におけるナゲット径の推定方法。 h=a×T2+b×T+c …(1) y=r0+r1×a+r2×b+r3×c+r4×T1+r5×θ1 +r6×HT0 …(2) (ただし、(2)式中、yはナゲット径、r0〜r6は
偏回帰係数である。)
2. A horizontal axis represents a time axis T and a vertical axis represents a displacement amount h at predetermined time intervals based on an inter-electrode displacement amount measured from a start of holding of a member to be welded by a welding gun to a release of the hold.
The step of obtaining a regression line when the regression line becomes zero. When the slope of the regression line becomes zero, the intersection of the regression line having the slope of zero and the regression line having the largest slope among the regression lines obtained so far. Determining the time from the start of energization of the intersection on the time axis T as a virtual saturation time T1; and calculating the inter-electrode displacement h from the intersection to the hold release as a function of time T. The following (1) expressed as
Obtaining an approximate expression of the expression; the virtual saturation time T1, the inclination θ1 of the regression line having the maximum inclination, the value HT0 of the intercept of the regression line having the maximum inclination on the time axis 0, and the coefficients a and b in the expression (1). , C to find a multiple regression equation shown in the following equation (2), a virtual saturation time T1 obtained from the displacement between the electrodes measured during welding, and a slope θ1 of the maximum slope of the regression line. From the value HT0 of the intercept of the regression line having the maximum slope on the time axis 0, and the coefficients a, b, and c of the approximate expression shown in the equation (1),
(2) A method for estimating a nugget diameter in resistance welding, wherein a nugget diameter y during welding is calculated using the multiple regression equation shown in equation (2). h = a.times.T2 + b.times.T + c (1) y = r0 + r1.times.a + r2.times.b + r3.times.c + r4.times.T1 + r5.times.1 + r6.times.HT0 (2) (where, y is a nugget diameter and r0 to r6 are polarized It is a regression coefficient.)
JP2001119638A 2001-04-18 2001-04-18 Estimation method of nugget diameter in resistance welding Expired - Lifetime JP3603808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119638A JP3603808B2 (en) 2001-04-18 2001-04-18 Estimation method of nugget diameter in resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119638A JP3603808B2 (en) 2001-04-18 2001-04-18 Estimation method of nugget diameter in resistance welding

Publications (2)

Publication Number Publication Date
JP2002316268A true JP2002316268A (en) 2002-10-29
JP3603808B2 JP3603808B2 (en) 2004-12-22

Family

ID=18969823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119638A Expired - Lifetime JP3603808B2 (en) 2001-04-18 2001-04-18 Estimation method of nugget diameter in resistance welding

Country Status (1)

Country Link
JP (1) JP3603808B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245210A (en) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd Welding quality discriminating apparatus and method
JP2009236775A (en) * 2008-03-27 2009-10-15 Aisin Seiki Co Ltd Object detector, vehicle opening/closing control system using the object detector, and method for detecting rising edge of envelope curve
JP2017068310A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method of predicting nugget diameter of resistance spot welding, computer program, and computer-readable recording medium having recorded the program
CN110210127A (en) * 2019-05-31 2019-09-06 山东大学 Welding condition and welding bead molding parameter correlation model method for building up and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302390B (en) * 2012-03-15 2015-10-28 中国钢铁股份有限公司 The resistance spot welding process of the nugget shrinkage cavity defect of dual-phase steel plate can be eliminated
JP7182522B2 (en) * 2019-06-27 2022-12-02 Dmg森精機株式会社 detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245210A (en) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd Welding quality discriminating apparatus and method
JP2009236775A (en) * 2008-03-27 2009-10-15 Aisin Seiki Co Ltd Object detector, vehicle opening/closing control system using the object detector, and method for detecting rising edge of envelope curve
JP2017068310A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method of predicting nugget diameter of resistance spot welding, computer program, and computer-readable recording medium having recorded the program
CN110210127A (en) * 2019-05-31 2019-09-06 山东大学 Welding condition and welding bead molding parameter correlation model method for building up and system

Also Published As

Publication number Publication date
JP3603808B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JP4233584B2 (en) Spot welding robot positioning method
JP3588668B2 (en) Estimation method of nugget diameter in spot welding
CA2215762C (en) Method of controlling welding conditions of a resistance welder
WO1990015686A1 (en) Profile control method for welding line
JP3603808B2 (en) Estimation method of nugget diameter in resistance welding
JP2016203246A (en) Spot welding quality diagnosis system
JP4880021B2 (en) Welding workpiece position detection method
KR101447955B1 (en) Method or evaluating welding quality of spot welding and record media recorded program for implement thereof
JP4880020B2 (en) Welding workpiece position detection method using movable electrode
JP3709807B2 (en) Welding state determination method and apparatus
KR100741562B1 (en) The Control Method of a Robot Tracking Positions for a Arc-welding Seam
JP3651276B2 (en) Method for estimating nugget diameter in resistance welding and control method for resistance welding
JP3337448B2 (en) Positioning method of spot welding gun
WO2004108339A1 (en) Spot welding method, spot welding machine and spot welding robot
JP3651310B2 (en) Welding robot controller
JP4854860B2 (en) Welding line scanning determination device and scanning control device
JPH11768A (en) Spot welding controller
JP2006095572A (en) Resistance welding control method
JP2009056480A (en) Spot welding method using spot welding gun
JP2001105153A (en) Robot for spot welding
JP3598792B2 (en) Chip wear amount detection method and spot jig for spot welding gun
JP3359012B2 (en) Spot welding robot
JP2806767B2 (en) Pressure setting method and apparatus in resistance welding machine
JP5055797B2 (en) Welding quality judgment device and welding quality judgment method
JP2005334903A (en) Resistance welding control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121008