JP2002316019A - Method for removing halogen gas - Google Patents

Method for removing halogen gas

Info

Publication number
JP2002316019A
JP2002316019A JP2001124232A JP2001124232A JP2002316019A JP 2002316019 A JP2002316019 A JP 2002316019A JP 2001124232 A JP2001124232 A JP 2001124232A JP 2001124232 A JP2001124232 A JP 2001124232A JP 2002316019 A JP2002316019 A JP 2002316019A
Authority
JP
Japan
Prior art keywords
halogen
based gas
average
granules
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001124232A
Other languages
Japanese (ja)
Other versions
JP4620897B2 (en
Inventor
Yoshikatsu Kawabe
義勝 川辺
Hachiro Hirano
八朗 平野
Yoichi Mori
要一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Chemical Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Sanwa Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Sanwa Chemical Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001124232A priority Critical patent/JP4620897B2/en
Priority to AT01126470T priority patent/ATE320300T1/en
Priority to EP01126470A priority patent/EP1205230B1/en
Priority to US09/986,587 priority patent/US6685901B2/en
Priority to DE60117909T priority patent/DE60117909T2/en
Priority to ES01126470T priority patent/ES2260144T3/en
Publication of JP2002316019A publication Critical patent/JP2002316019A/en
Application granted granted Critical
Publication of JP4620897B2 publication Critical patent/JP4620897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing halogen gas which suppresses the firing of adsorbent, is high in treating ability of halogen gases and reduces the odor of the used adsorbent and the generation of solid waste. SOLUTION: Metals or metallic compounds of one kind or more selected from a group consisting of palladium, iron, nickel, cobalt, manganese and copper, and hydrogen carbonate of the averaged grain size of primary particles 10-500 μm are granulated, is brought into contact with the halogen gases and removes the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Cl2、Br2及び
2からなる群より選ばれる少なくとも一種を含有する
ハロゲン系ガス(以下、本ハロゲン系ガスという)の除
去方法に関し、例えば、ハロゲン系ガスを含有するドラ
イエッチング排ガス等からハロゲン系ガスを除去する方
法に関する。
The present invention relates to a method for removing a halogen-based gas containing at least one selected from the group consisting of Cl 2 , Br 2 and I 2 (hereinafter referred to as the present halogen-based gas). The present invention relates to a method for removing a halogen-based gas from a dry etching exhaust gas or the like containing a system gas.

【0002】[0002]

【従来の技術】従来より、本ハロゲン系ガスを含有する
ドライエッチング排ガスやCVD(化学気相蒸着)チャ
ンバーの排ガス等の処理方法として、設備の小型化及び
操作の簡便化のため、活性炭等の吸着剤を使用した乾式
による処理方法等が採用されている。しかし、ガス吸着
時の吸着熱による発火、使用済み吸着剤の臭気及び固形
廃棄物の発生等が問題であった。
2. Description of the Related Art Conventionally, as a method for treating dry etching exhaust gas containing the halogen-based gas or exhaust gas of a CVD (chemical vapor deposition) chamber, activated carbon or the like has been used for the purpose of miniaturizing equipment and simplifying operation. A dry treatment method using an adsorbent or the like is employed. However, there were problems such as ignition due to heat of adsorption during gas adsorption, odor of used adsorbent, generation of solid waste, and the like.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の問題
に鑑み、吸着剤の発火を抑制し、ハロゲン系ガスの処理
能力が高く、使用済み吸着剤の臭気及び固形廃棄物の発
生を低減した、ハロゲン系ガスの除去方法を提供する。
SUMMARY OF THE INVENTION In view of the above problems, the present invention suppresses ignition of an adsorbent, has a high processing capacity for halogen-based gas, and reduces the odor of used adsorbent and the generation of solid waste. And a method for removing a halogen-based gas.

【0004】[0004]

【課題を解決するための手段】本発明は、パラジウム、
鉄、ニッケル、コバルト、マンガン及び銅からなる群よ
り選ばれる一種以上の元素を含む物質(以下、本金属含
有物質という)及び、一次粒子の平均粒子径10〜50
0μmの炭酸水素塩の粉末を混合して造粒し、得られた
造粒物を、本ハロゲン系ガスに接触させてハロゲン系ガ
スを除去する、ハロゲン系ガスの除去方法を提供する。
The present invention provides palladium,
A substance containing one or more elements selected from the group consisting of iron, nickel, cobalt, manganese and copper (hereinafter referred to as the present metal-containing substance), and an average particle diameter of primary particles of 10 to 50
Provided is a method for removing a halogen-based gas, in which 0 μm bicarbonate powder is mixed and granulated, and the obtained granules are contacted with the halogen-based gas to remove the halogen-based gas.

【0005】[0005]

【発明の実施の形態】本発明において、炭酸水素塩とし
ては、炭酸水素ナトリウム、炭酸水素カリウム等が使用
できる。特に、大量かつ安価に入手できることから工業
的に適していることや、吸湿性が少なく、造粒物の製造
や保存にあたって使用しやすいことから、炭酸水素ナト
リウムが好ましい。一方、除去処理後の排ガス等へのナ
トリウムの混入を防ぎたい場合は炭酸水素カリウムが好
ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, sodium bicarbonate, potassium bicarbonate and the like can be used as bicarbonate. In particular, sodium bicarbonate is preferred because it is industrially suitable because it can be obtained in large quantities and at low cost, and because it has low hygroscopicity and is easy to use in producing and storing granules. On the other hand, when it is desired to prevent sodium from being mixed into the exhaust gas or the like after the removal treatment, potassium hydrogen carbonate is preferable.

【0006】本発明において、炭酸水素塩の粉末、及び
本金属含有物質は造粒物にする。造粒物は、炭酸水素塩
を70質量%以上含有することが好ましい。造粒物中に
おいて、炭酸水素塩が70質量%未満であると、ハロゲ
ン系ガス除去剤としてのガス処理容量が低下し、除去剤
充填層の入れ替え頻度が高くなるので好ましくない。炭
酸水素塩の含有量は、特に80質量%以上であることが
好ましい。ここで、本金属含有物質とは、金属単体でも
よく、又は、それらの金属化合物、又は混合物でもよ
い。
In the present invention, the bicarbonate powder and the metal-containing substance are formed into granules. The granulated material preferably contains 70% by mass or more of hydrogencarbonate. If the content of bicarbonate in the granulated product is less than 70% by mass, the gas treatment capacity as a halogen-based gas remover decreases, and the frequency of replacement of the remover-filled layer is undesirably increased. The content of bicarbonate is particularly preferably 80% by mass or more. Here, the present metal-containing substance may be a simple metal, or a metal compound or a mixture thereof.

【0007】本発明では、造粒物に本金属含有物質を含
有させることにより炭酸水素塩の反応性を向上させるこ
とができ、効果をより長く持続することができる。造粒
物中への本金属含有物質の含有方法としては、炭酸水素
塩に混合してから造粒する。造粒物中の本金属含有物質
の含有量は0.001〜10質量%が好ましい。含有量
が0.001質量%未満であると、造粒物の反応性向上
の効果が見られないため好ましくなく、10質量%超で
あると、それ以上反応性が向上せず、不必要に本金属含
有物質を使用することになる他、炭酸水素塩の含有量が
減少するためハロゲン系ガスの除去容量が低下するので
好ましくない。含有量は0.005〜5質量%が特に好
ましい。なお、造粒物中において、他に含まれる材料と
しては、炭酸水素塩以外の活性炭等の吸着剤、バインダ
ー等が挙げられる。
In the present invention, the reactivity of hydrogencarbonate can be improved by adding the present metal-containing substance to the granulated product, and the effect can be maintained for a longer time. As a method for including the present metal-containing substance in the granulated product, the granulated product is mixed with a hydrogen carbonate and then granulated. The content of the present metal-containing substance in the granulated product is preferably 0.001 to 10% by mass. When the content is less than 0.001% by mass, the effect of improving the reactivity of the granulated product is not obtained, and it is not preferable. When the content is more than 10% by mass, the reactivity is not further improved and unnecessarily. In addition to using the present metal-containing substance, the content of hydrogencarbonate decreases, and the capacity for removing halogen-based gas decreases, which is not preferable. The content is particularly preferably 0.005 to 5% by mass. In addition, as a material contained in the granulated material, an adsorbent other than bicarbonate, such as activated carbon, a binder, and the like are included.

【0008】本発明において、炭酸水素塩の粉末は、一
次粒子の平均粒子径が10〜500μmであるものを使
用する。一次粒子の平均粒子径が10μm未満である
と、流動性がよくなく、ハンドリング等の取扱いが難し
くなるので好ましくなく、また、平均粒子径が500μ
m超であると、技術的に造粒物の製造が困難であり、コ
スト的に高くなるので好ましくない。なお、一次粒子と
は炭酸水素塩の単結晶であり、平均粒子径とは重量基準
による平均粒子径である。
In the present invention, the bicarbonate powder having an average primary particle diameter of 10 to 500 μm is used. When the average particle diameter of the primary particles is less than 10 μm, the fluidity is poor, and handling such as handling becomes difficult.
If it is more than m, it is technically difficult to produce a granulated product and the cost becomes high, which is not preferable. The primary particles are a single crystal of hydrogen carbonate, and the average particle size is an average particle size on a weight basis.

【0009】本発明において、炭酸水素塩の粉末、及び
本金属含有物質の造粒物の平均粒子径は0.5〜20m
mである。造粒物の平均粒子径が0.5〜20mmであ
ることにより、ハロゲン系ガスの処理の際、従来から使
用されている充填塔等を使用できる。造粒物の平均粒子
径が0.5mm未満であると、ハロゲン系ガス又はそれ
を含有する被処理ガスが充填層等を通過する際の圧力損
失が高くなり、平均粒子径が20mmを超えると、被処
理ガスと造粒物との接触面積が低下し、排ガスの除去性
能を低下させる。造粒物の平均粒子径としては、特に
0.5〜10mmが好ましい。
In the present invention, the average particle diameter of the bicarbonate powder and the granulated product of the present metal-containing substance is 0.5 to 20 m.
m. When the average particle diameter of the granulated material is 0.5 to 20 mm, a conventionally used packed tower or the like can be used in treating a halogen-based gas. When the average particle diameter of the granulated material is less than 0.5 mm, the pressure loss when the halogen-based gas or the gas to be treated containing the same passes through a packed bed or the like increases, and when the average particle diameter exceeds 20 mm. In addition, the contact area between the gas to be treated and the granulated material is reduced, and the performance of removing the exhaust gas is reduced. The average particle size of the granulated product is particularly preferably 0.5 to 10 mm.

【0010】本発明では造粒物の平均粒子径は、以下の
方法により測定する。造粒物の粒子径に対応した範囲の
目開きの篩を重ねあわせ、最下部に底皿を設置し、上か
ら造粒物を注ぎ、振とう機で振とうさせた後、それぞれ
の標準篩上残渣の質量を測定し、各目開き値に対する篩
上残渣質量の累計を折れ線グラフに表し、篩上残渣質量
の累計が50%の時の粒子径を平均粒子径とする。上下
の篩の目開きの差は、造粒物の粒子径にもよるが、0.
5mmのピッチを使用することが好ましい。
In the present invention, the average particle size of the granulated product is measured by the following method. Laminate sieves with openings in the range corresponding to the particle size of the granulated material, install a bottom plate at the bottom, pour the granulated material from above, shake with a shaker, and then use each standard sieve. The mass of the upper residue is measured, and the total of the mass of the residue on the sieve with respect to each aperture value is shown in a line graph. The difference between the openings of the upper and lower sieves depends on the particle size of the granulated material, but is not less than 0.1%.
Preferably, a pitch of 5 mm is used.

【0011】本発明において、造粒物は、圧縮成形法、
転動式造粒法、撹拌式造粒法等の様々な方法により得こ
とができる。ここで、圧縮成形法は、工程が簡略なため
工業的に簡便であり、バインダーを使用しなくても造粒
物を得ることができること、また、硬度が高く壊れにく
く、ガス処理容量の大きな造粒物を得ることができるこ
とから特に好ましい。
In the present invention, the granulated product is obtained by a compression molding method,
It can be obtained by various methods such as a rolling granulation method and a stirring granulation method. Here, the compression molding method is industrially simple because the process is simple, and it is possible to obtain a granulated material without using a binder. It is particularly preferable because granules can be obtained.

【0012】造粒物を得る方法として、例えば、圧縮成
形機を使用し、乾式で成形した後、粗粉砕し、篩分ける
方法が挙げられる。また、水溶性のバインダーを使用し
て湿式の圧縮成形機で成形し、その後乾燥させる方法も
挙げられる。
As a method for obtaining granules, for example, there is a method in which a compression molding machine is used to dry-mold, then coarsely pulverized and sieved. Further, there is also a method in which a wet compression molding machine is used to form a water-soluble binder, followed by drying.

【0013】本発明において、炭酸水素塩の粉末、及び
本金属含有物質の造粒物は、ハロゲン系ガスを処理する
ために、充填層に充填されて使用される場合、強度が低
いと、粉化して充填層を通過する際の圧力損失が上昇す
ることがある。このため造粒物の強度は高くする。
In the present invention, when the bicarbonate powder and the granulated material of the present metal-containing substance are used by being filled in a packed bed to treat a halogen-based gas, if the strength is low, the And the pressure loss when passing through the packed bed may increase. For this reason, the strength of the granulated material is increased.

【0014】本発明における造粒物の強度評価方法とし
て、硬度が挙げられる。ここで、硬度とは、造粒物粒子
の1個を上方より垂直に荷重をかけて圧縮して破壊する
に必要な力のことである。
As a method for evaluating the strength of the granulated product in the present invention, hardness is mentioned. Here, the hardness is a force required to compress and break one of the granulated particles by applying a load vertically from above.

【0015】本発明での硬度の評価法は、平均粒子径に
応じて造粒物粒子を分級し、粒子径を揃えた粒子群につ
いて行う。例えば、平均粒子径1.5mm以上2.0m
m未満の造粒物については、目開き1.5mmの篩と目
開き2.0mmの篩を使用して篩分け、1.5mm篩上
かつ2.0mm篩下の粒子を20個採取し、各粒子の硬
度を測定してその平均値を粒子強度の評価基準として採
用する。
The method for evaluating hardness in the present invention is performed on particles having a uniform particle size by classifying the granulated particles according to the average particle size. For example, the average particle diameter is 1.5 mm or more and 2.0 m
For granules less than m, sieve using a sieve with a mesh of 1.5 mm and a sieve with a mesh of 2.0 mm, collecting 20 particles above and below 1.5 mm sieve, The hardness of each particle is measured, and the average value is adopted as an evaluation standard of the particle strength.

【0016】本発明の造粒物の硬度としては、平均粒子
径0.5mm以上1.0mm未満の造粒物の場合は粒子
径0.5mm以上1.0mm未満の造粒物の平均硬度が
1N以上であり、平均粒子径1.0mm以上1.5mm
未満の造粒物の場合は粒子径1.0mm以上1.5mm
未満の造粒物の平均硬度が4N以上であり、平均粒子径
1.5mm以上2.0mm未満の造粒物の場合は粒子径
1.5mm以上2.0mm未満の造粒物の平均硬度が1
0N以上であり、平均粒子径2.0mm以上20mmの
造粒物の場合は粒子径2.0mm以上の造粒物の平均硬
度が30N以上、であることが好ましい。
As for the hardness of the granulated product of the present invention, in the case of a granulated product having an average particle size of 0.5 mm or more and less than 1.0 mm, the average hardness of the granulated product having a particle size of 0.5 mm or more and less than 1.0 mm is determined. 1N or more, average particle size 1.0 mm or more and 1.5 mm
In the case of a granulated material of less than 1.0 mm or more and 1.5 mm in particle diameter
The average hardness of the granulated material having a particle diameter of less than 4N is not less than 4N, and the average hardness of the granulated material having a particle diameter of not less than 1.5mm and less than 2.0mm is 1.5mm or more and less than 2.0mm. 1
In the case of granules having an average particle diameter of 2.0 mm or more and 20 mm or more, the average hardness of the granules having a particle diameter of 2.0 mm or more is preferably 30 N or more.

【0017】本発明では、本ハロゲン系ガスを除去す
る。例えば、ハロゲン系ガスを含有するドライエッチン
グ排ガス等を処理して、該排ガス中のハロゲン系ガスを
除去する。その他にも、例えば、BCl3、CCl4、S
iCl4、HCl、COCl2、F2、SiF4、HF、C
OF2、NF3、WF6、ClF3及びHBr等のハロゲン
単体又はハロゲン化合物を含んでもよい。
In the present invention, the present halogen-based gas is removed. For example, a dry etching exhaust gas or the like containing a halogen-based gas is treated to remove the halogen-based gas in the exhaust gas. In addition, for example, BCl 3 , CCl 4 , S
iCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, C
It may contain a simple halogen or a halogen compound such as OF 2 , NF 3 , WF 6 , ClF 3 and HBr.

【0018】本発明における、被処理ガスの温度が0℃
〜100℃であると、効率的に除去処理できるので好ま
しい。被処理ガスの温度が0℃未満であると、反応速度
が低下するので好ましくない。また、100℃以下であ
れば、充填塔等の設備を高価な耐熱材料又は構造とする
必要がなく、操作及び設備等を簡略化できる。
In the present invention, the temperature of the gas to be treated is 0 ° C.
It is preferable that the temperature is in the range of 100 to 100 ° C. because the removal treatment can be performed efficiently. If the temperature of the gas to be treated is lower than 0 ° C., the reaction rate is undesirably reduced. When the temperature is 100 ° C. or lower, the equipment such as the packed tower does not need to be made of an expensive heat-resistant material or structure, and the operation and the equipment can be simplified.

【0019】本発明において、炭酸水素塩は、ハロゲン
単体又はハロゲン化合物と反応し、水溶性の塩を生成す
る。炭酸水素塩自身も水溶性であるために、排ガス中の
ハロゲン系ガスの除去に使用した後、本金属含有物質以
外のほとんどの造粒物を水に溶解できる。本金属含有物
質については、造粒物を水に溶解した後、濾過すること
により回収することができる。また、後述のように、例
えば、炭酸水素塩と活性炭を併用した場合、固形廃棄物
を減少できる。
In the present invention, the hydrogen carbonate reacts with a halogen alone or a halogen compound to form a water-soluble salt. Since the bicarbonate itself is water-soluble, most of the granules other than the present metal-containing substance can be dissolved in water after being used for removing halogen-based gas in exhaust gas. The present metal-containing substance can be recovered by dissolving the granulated substance in water and then filtering. Further, as described later, for example, when a bicarbonate and activated carbon are used in combination, solid waste can be reduced.

【0020】炭酸水素塩は、ハロゲン単体又はハロゲン
化合物と反応して水溶性の塩を生成するため、活性炭吸
着の場合のようにハロゲン単体又はハロゲン化合物が脱
離して、臭気を発生することがないため、充填層等の入
れ替え作業が容易にできる。また、炭酸水素塩自身に消
火性があるため発火の危険性がない。
Since hydrogen carbonate reacts with a simple halogen or a halogen compound to form a water-soluble salt, the simple halogen or the halogen compound is not desorbed and no odor is generated as in the case of activated carbon adsorption. Therefore, the work of replacing the packed layer and the like can be easily performed. In addition, there is no danger of ignition because the bicarbonate itself has a fire extinguishing property.

【0021】本発明においては、造粒物中に本金属含有
物質を加えることにより炭酸水素塩とハロゲンとの反応
性が向上し、同量の炭酸水素塩を使用した場合において
もより多量のハロゲン系ガスに使用できる。この機構に
ついては、明らかではないが、上記元素を含む物質がハ
ロゲン系ガス中に含有されるCl2、Br2又はI2と炭
酸水素塩が反応した際に生成する次亜ハロゲン酸塩の分
解を促進するためと推定される。通常、ハロゲン系ガス
中に含有されるCl2、Br2又はI2と炭酸水素塩が反
応したとき、下記反応式1に従い、次亜ハロゲン酸塩が
生成する。生成した次亜ハロゲン酸塩は、反応式2に従
い、分解してハロゲン化ナトリウムと酸素に分解するこ
とが知られている。しかし、この次亜ハロゲン酸塩が分
解せずに残留している場合は炭酸水素塩とハロゲンとの
反応が進みにくくなるものと考えられる。本発明の金属
又は金属化合物を混合することにより、この次亜ハロゲ
ン酸塩の分解反応を促進させ、ハロゲン系ガスの除去効
率が向上するものと考えられる。
In the present invention, by adding the present metal-containing substance to the granulated product, the reactivity between the bicarbonate and the halogen is improved, and even when the same amount of the bicarbonate is used, a larger amount of the halogen is used. Can be used for system gases. Although the mechanism is not clear, the decomposition of hypohalite generated when the substance containing the above element reacts with Cl 2 , Br 2 or I 2 contained in the halogen-based gas and the hydrogen carbonate. It is presumed to promote. Normally, when Cl 2 , Br 2 or I 2 contained in a halogen-based gas reacts with a hydrogen carbonate, a hypohalite is generated according to the following reaction formula 1. It is known that the generated hypohalite is decomposed into sodium halide and oxygen in accordance with the reaction formula 2. However, when the hypohalite remains without being decomposed, it is considered that the reaction between the hydrogen carbonate and the halogen hardly proceeds. It is considered that by mixing the metal or the metal compound of the present invention, the decomposition reaction of the hypohalite is promoted, and the efficiency of removing the halogen-based gas is improved.

【0022】 NaHCO3+X2→NaXO+CO2+HX・・・式1。 (X=Cl、Br、I) NaXO→NaX+1/2O2・・・式2。NaHCO 3 + X 2 → NaXO + CO 2 + HX Formula 1. (X = Cl, Br, I) NaXO → NaX + / O 2 ...

【0023】本発明において、前記造粒物を活性炭とと
もに充填塔等の容器に充填してハロゲン系ガスと接触さ
せて、ハロゲン系ガスを除去するのも好ましい。この方
法により、活性炭を単独使用した場合と比較して、ハロ
ゲン単体の除去量を増加できるのみでなく、活性炭から
の臭気の発生も低減できる。具体的には、炭酸水素塩と
活性炭を層状に充填塔等の容器に配置する等して使用す
る。
In the present invention, it is also preferable that the granulated material is packed in a vessel such as a packed tower together with activated carbon and brought into contact with a halogen-based gas to remove the halogen-based gas. This method not only can increase the removal amount of halogen alone, but also can reduce the generation of odor from activated carbon, as compared with the case where activated carbon is used alone. Specifically, the bicarbonate and the activated carbon are used in a layered manner in a container such as a packed tower.

【0024】[0024]

【実施例】以下の各例において、硬度及び平均粒子径の
測定は下記の方法により行った。硬度は、藤原製作所製
の木屋式デジタル硬度計KHT−20型を使用して測定
した。また、硬度は粒子の大きさにより異なるため篩分
けして粒子径を揃えた。
EXAMPLES In the following examples, the hardness and the average particle size were measured by the following methods. The hardness was measured using a Kiya type digital hardness meter KHT-20 manufactured by Fujiwara Seisakusho. Since the hardness varies depending on the size of the particles, the particles were sieved to make the particle diameter uniform.

【0025】平均粒子径は、以下の方法により測定し
た。粉末試料100gを、標準篩(内径:200mm、
金網ステンレス製)でそれぞれ目開き3.35mm、
2.80mm、2.36mm、2.00mm、1.70
mm、1.00mmのものを重ねあわせ、最下部に底皿
を設置した上に注ぎ、飯田製作所社製ロータップシェー
カー式振とう機(周波数60Hz、290回転/分、打
数165回/分)で10分間振とうさせた後、それぞれ
の標準篩上残渣の質量を測定し、各目開き値に対する篩
上残渣質量の累計を折れ線グラフに表し、篩上残渣質量
の累計が50%の時の粒子径を平均粒子径とした。
The average particle size was measured by the following method. 100 g of a powder sample was weighed with a standard sieve (inner diameter: 200 mm,
Wire mesh stainless steel) with aperture of 3.35mm,
2.80 mm, 2.36 mm, 2.00 mm, 1.70
mm, 1.00 mm, put on the bottom plate at the bottom and pour it on, using a low tap shaker type shaker made by Iida Seisakusho (frequency: 60 Hz, 290 rotations / min, 165 strokes / min) After shaking for 10 minutes, the mass of each standard sieve residue was measured, and the total of the sieve residue mass with respect to each aperture value was shown in a line graph. The particles when the total sieve residue mass was 50% The diameter was taken as the average particle diameter.

【0026】[例1]一次粒子の平均粒子径が91μmの
食品添加物用炭酸水素ナトリウムの粉末(旭硝子社製)
299.97kgに酸化パラジウム0.03kgを混合
し、ロールプレス式圧縮成形機(ターボ工業社製、商品
名:ローラーコンパクターWP型、ロール外径230m
m、ロール長80mm)を使用して線圧36.8kN/
cmで圧縮成形し、フレーク状の炭酸水素ナトリウムの
粉末の成形体を得た。得られたフレーク状の成形体をフ
レークブレーカーで粗砕し、ロータリー式整粒機のメッ
シュを4.75mmに設定して全通させた後、回転篩機
(ターボ工業社製、商品名:ターボスクリーナーTS
型)を使用して、粒子径4.0mm以上の粒子と粒子径
1.0mm以下の粒子を除去し、平均粒子径が2.3m
mの炭酸水素ナトリウムの粉末の造粒物を得た。
[Example 1] Powder of sodium bicarbonate for food additives having an average primary particle diameter of 91 µm (manufactured by Asahi Glass Co., Ltd.)
299.97 kg and 0.03 kg of palladium oxide were mixed, and a roll press-type compression molding machine (trade name: roller compactor WP type, manufactured by Turbo Kogyo Co., Ltd., roll outer diameter 230 m)
m, roll length 80 mm) using a linear pressure of 36.8 kN /
cm and compression molded to obtain a flake-like molded product of sodium bicarbonate powder. The obtained flake-shaped compact was crushed with a flake breaker, and the mesh of a rotary sizing machine was set to 4.75 mm to allow the whole to pass through. Then, a rotary sieving machine (Turbo Kogyo Co., trade name: turbo Screener TS
Using a mold) to remove particles having a particle diameter of 4.0 mm or more and particles having a particle diameter of 1.0 mm or less, so that the average particle diameter is 2.3 m.
m of sodium bicarbonate powder was obtained.

【0027】また、前述の硬度測定法によって、造粒物
の粒子強度を測定した。すなわち得られた平均粒子径
2.3mmの造粒物を0.5mm、1.0mm、1.5
mm、2.0mm、2.5mmの目開きの篩で篩分け、
各粒度の硬度を20個測定し平均値を求めたところ、
0.5〜1.0mmの間の粒子の平均硬度が3N、1.
0〜1.5mmが11N、1.5〜2.0mmが18
N、2.0mm以上が58Nであった。
The particle strength of the granulated product was measured by the hardness measurement method described above. That is, the obtained granules having an average particle diameter of 2.3 mm were squeezed into 0.5 mm, 1.0 mm, 1.5 mm
mm, 2.0 mm, sieved with a 2.5 mm mesh sieve,
When the hardness of each particle size was measured 20 and the average value was obtained,
The average hardness of the particles between 0.5-1.0 mm is 3N;
11N for 0-1.5mm, 18 for 1.5-2.0mm
N, 2.0 mm or more was 58N.

【0028】次に、底面が通気性焼結板で内径300m
m、長さ1300mmのフッ素樹脂ライニング付きステ
ンレス鋼製の充填容器に、充填物として前記造粒物を3
0kg充填した。被処理ガスとして、標準状態での組成
比がBCl3:20体積%、Cl2:60体積%、アルゴ
ン:20体積%のガスを流量200cm3/分、温度2
5℃、常圧下で、上記充填容器の底部から注入した。充
填容器の上部から流出したガスを分析したところ、BC
3は検出されず、Cl2濃度は0.1体積ppm以下で
あった。
Next, the bottom is made of an air-permeable sintered plate with an inner diameter of 300 m.
m, 1300 mm long, in a stainless steel filled container with a fluororesin lining
0 kg was charged. As a gas to be treated, a gas having a composition ratio of BCl 3 : 20% by volume, Cl 2 : 60% by volume, and argon: 20% by volume in a standard state at a flow rate of 200 cm 3 / min.
The mixture was poured from the bottom of the filled container at 5 ° C. under normal pressure. When the gas flowing out from the top of the filling container was analyzed, BC
l 3 is not detected, Cl 2 concentration was at most 0.1 vol ppm.

【0029】処理開始から362時間経過後に流出ガス
中のCl2濃度が0.1体積ppmを超えて上昇し始め
た。充填物を取り出したところ、造粒物粒子の粉化や臭
気の発生はなかった。また、この充填物を水に溶解した
ところほとんど溶解し、固形廃棄物を削減できた。さら
に溶解液を濾過することにより高価な酸化パラジウムを
回収できた。
After a lapse of 362 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise above 0.1 ppm by volume. When the filler was taken out, there was no powdering of the granulated particles or generation of odor. Further, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced. Further, expensive palladium oxide could be recovered by filtering the solution.

【0030】[例2]例1において炭酸水素ナトリウムを
299.7kgとし、酸化パラジウム0.03kgを酸
化ニッケル0.3kgに変えた以外は、例1と同様にし
て試験した。例1と同様にして、流出ガスを分析したと
ころ、BCl3は検出されず、Cl2濃度は0.1体積p
pm以下であった。
Example 2 A test was conducted in the same manner as in Example 1 except that 299.7 kg of sodium hydrogencarbonate was used and 0.03 kg of palladium oxide was changed to 0.3 kg of nickel oxide. When the effluent gas was analyzed in the same manner as in Example 1, no BCl 3 was detected, and the Cl 2 concentration was 0.1 volume p.
pm or less.

【0031】処理開始から356時間経過後に流出ガス
中のCl2濃度が0.1体積ppmを超えて上昇し始め
た。充填物を取り出したところ、造粒物粒子の粉化や臭
気の発生はなかった。また、この充填物を水に溶解した
ところほとんど溶解し、固形廃棄物を削減できた。さら
に溶解液を濾過することにより酸化ニッケルを回収でき
た。
After a lapse of 356 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise above 0.1 ppm by volume. When the filler was taken out, there was no powdering of the granulated particles or generation of odor. Further, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced. Further, nickel oxide could be recovered by filtering the solution.

【0032】[例3]例1において炭酸水素ナトリウムと
金属酸化物の配合量を297kg、3kgに変えた以外
は、例1と同様にして試験した。金属酸化物について
は、酸化鉄、酸化コバルト、二酸化マンガン、酸化銅に
ついて試験した。例1と同様にして、流出ガスを分析し
たところ、いずれのガスについてもBCl3は検出され
ず、Cl2濃度は0.1体積ppm以下であった。
Example 3 A test was conducted in the same manner as in Example 1 except that the amounts of sodium hydrogencarbonate and metal oxide were changed to 297 kg and 3 kg. As for metal oxides, iron oxide, cobalt oxide, manganese dioxide, and copper oxide were tested. When the outflow gas was analyzed in the same manner as in Example 1, no BCl 3 was detected in any of the gases, and the Cl 2 concentration was 0.1 ppm by volume or less.

【0033】処理開始から、酸化鉄については351時
間経過後に、酸化コバルトについては349時間経過後
に、二酸化マンガンについては355時間経過後に、酸
化銅については352時間経過後に、流出ガス中のCl
2濃度が0.1体積ppmを超えて上昇し始めた。充填
物を取り出したところ、造粒物粒子の粉化や臭気の発生
はなかった。また、この充填物を水に溶解したところほ
とんど溶解し、固形廃棄物を削減できた。さらに溶解液
を濾過することによりいずれの金属酸化物についても回
収できた。
From the start of the treatment, after 351 hours of iron oxide, 349 hours of cobalt oxide, 355 hours of manganese dioxide, 352 hours of copper oxide, Cl
2 The concentration began to rise above 0.1 ppm by volume. When the filler was taken out, there was no powdering of the granulated particles or generation of odor. Further, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced. Further, any metal oxide could be recovered by filtering the solution.

【0034】[例4(比較例)]例1の造粒物を炭酸水素
ナトリウムのみに変えた以外は、例1と同様にして試験
した。例1と同様にして、流出ガスを分析したところ、
BCl3は検出されず、Cl2濃度は0.1体積ppm以
下であった。
Example 4 (Comparative Example) A test was conducted in the same manner as in Example 1 except that the granulated product of Example 1 was changed to only sodium bicarbonate. When the effluent gas was analyzed in the same manner as in Example 1,
No BCl 3 was detected and the Cl 2 concentration was less than 0.1 ppm by volume.

【0035】処理開始から309時間経過後に流出ガス
中のCl2濃度が0.1体積ppmを超えて上昇し始め
た。充填物を取り出したところ、造粒物粒子の粉化や臭
気の発生はなかった。また、この充填物を水に溶解した
ところほとんど溶解し、固形廃棄物を削減できた。
After a lapse of 309 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise above 0.1 ppm by volume. When the filler was taken out, there was no powdering of the granulated particles or generation of odor. Further, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced.

【0036】[例5]例1と同様にして得た炭酸水素ナト
リウムの粉末と酸化パラジウムの混合物の造粒物20k
gと活性炭20kgとを、例1と同様にして、同じ充填
容器に充填した。被処理ガスとして、標準状態での組成
比がBCl3:20体積%、CCl4:0.6体積%、C
2:41.1体積%、SiCl4:0.6体積%、HC
l:4.8体積%、COCl2:0.6体積%、F2
2.7体積%、SiF4:0.6体積%、HF:4.8
体積%、COF2:0.6体積%、NF3:0.8体積
%、WF6:0.6体積%、ClF3:0.6体積%、H
Br:4.8体積%、アルゴン:20.0体積%のガス
を使用した以外は、例1と同様にして、流出ガスを分析
したところ、Cl2濃度は0.1体積ppm以下で、そ
の他アルゴン以外のBCl3、CCl4、SiCl4、H
Cl、COCl2、F2、SiF4、HF、COF2、NF
3、WF6、ClF3、HBr等は検出されなかった。
Example 5 A granulated product of a mixture of sodium bicarbonate powder and palladium oxide obtained in the same manner as in Example 1 (20 k)
g and 20 kg of activated carbon were filled in the same filling container in the same manner as in Example 1. As the gas to be treated, the composition ratio in the standard state is BCl 3 : 20 vol%, CCl 4 : 0.6 vol%, C
l 2 : 41.1% by volume, SiCl 4 : 0.6% by volume, HC
1: 4.8% by volume, COCl 2 : 0.6% by volume, F 2 :
2.7 vol%, SiF 4: 0.6 by volume%, HF: 4.8
Vol%, COF 2: 0.6 vol%, NF 3: 0.8 by volume%, WF 6: 0.6 by volume%, ClF 3: 0.6 by volume%, H
Br: 4.8 vol%, argon: except for using 20.0% by volume of the gas, in the same manner as in Example 1, was analyzed effluent gas, Cl 2 concentration below 0.1 vol ppm, other BCl 3 , CCl 4 , SiCl 4 , H other than argon
Cl, COCl 2 , F 2 , SiF 4 , HF, COF 2 , NF
3 , WF 6 , ClF 3 , HBr, etc. were not detected.

【0037】処理開始から300時間経過後に流出ガス
中のCl2濃度が0.1体積ppmを超えて上昇し始め
た。充填物を取り出したところ、造粒物粒子の粉化や臭
気の発生はなかった。また、この充填物の内、造粒物を
水に溶解したところ90質量%以上溶解した。
After a lapse of 300 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, there was no powdering of the granulated particles or generation of odor. When the granulated material was dissolved in water, 90% by mass or more was dissolved.

【0038】[例6(比較例)]例5において造粒物を炭
酸水素ナトリウムのみに変えた以外は、例5と同様に試
験した。例5と同様にして、流出ガスを分析したとこ
ろ、Cl2濃度は0.1体積ppm以下で、その他アル
ゴン以外のBCl3、CCl4、SiCl4、HCl、C
OCl2、F2、SiF4、HF、COF2、NF3、W
6、ClF3、HBr等は検出されなかった。
Example 6 (Comparative Example) A test was conducted in the same manner as in Example 5 except that the granulated product was changed to only sodium bicarbonate. When the effluent gas was analyzed in the same manner as in Example 5, the Cl 2 concentration was 0.1 vol ppm or less, and BCl 3 , CCl 4 , SiCl 4 , HCl, C
OCl 2 , F 2 , SiF 4 , HF, COF 2 , NF 3 , W
F 6 , ClF 3 , HBr, etc. were not detected.

【0039】処理開始から270時間経過後に流出ガス
中のCl2濃度が0.1体積ppmを超えて上昇し始め
た。充填物を取り出したところ、造粒物粒子の粉化や臭
気の発生はなかった。また、この充填物の内、造粒物を
水に溶解したところ90質量%以上溶解した。
After a lapse of 270 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise beyond 0.1 ppm by volume. When the filler was taken out, there was no powdering of the granulated particles or generation of odor. When the granulated material was dissolved in water, 90% by mass or more was dissolved.

【0040】[0040]

【発明の効果】本発明により、ハロゲン単体又はハロゲ
ン化合物を吸着することのできる除去剤として、使用時
に粉化せず、除去能力がより高く、臭気の発生が少ない
造粒物が得られる。また、本発明の造粒物は、従来の活
性炭を使用する充填塔等にそのまま適用できる。
Industrial Applicability According to the present invention, as a remover capable of adsorbing a halogen alone or a halogen compound, a granulated product which is not powdered at the time of use, has a higher removal ability, and generates less odor can be obtained. Further, the granulated product of the present invention can be applied as it is to a conventional packed tower using activated carbon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 八朗 東京都千代田区有楽町一丁目12番1号 旭 硝子株式会社内 (72)発明者 森 要一 福岡県北九州市戸畑区牧山5丁目1番1号 旭硝子株式会社内 Fターム(参考) 4D002 AA18 AA19 AA21 AA22 AA23 AA24 AA25 BA03 BA04 CA07 DA02 DA03 DA11 DA16 DA21 DA22 DA23 DA24 DA25 DA41 EA06 EA07 GA01 GB08 GB12 GB20 HA01 4D048 AA11 AB03 BA14X BA28X BA31X BA35X BA36X BA37X BA38X BA41Y BA45X BB01 EA04 4G066 AA26B AA26D AA27B AA27D AA28B AA28D AA43B BA09 BA20 BA35 CA31 CA32 DA02 FA02 FA26 FA37  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Hachiro Hirano, Inventor Asahi Glass Co., Ltd. 1-12-1 Yurakucho, Chiyoda-ku, Tokyo No. Asahi Glass Co., Ltd. F term (reference) 4D002 AA18 AA19 AA21 AA22 AA23 AA24 AA25 BA03 BA04 CA07 DA02 DA03 DA11 DA16 DA21 DA22 DA23 DA24 DA25 DA41 EA06 EA07 GA01 GB08 GB12 GB20 HA01 4D048 AA11 AB03 BA35X BAX BAX BAX BAX BAX BB01 EA04 4G066 AA26B AA26D AA27B AA27D AA28B AA28D AA43B BA09 BA20 BA35 CA31 CA32 DA02 FA02 FA26 FA37

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】パラジウム、鉄、ニッケル、コバルト、マ
ンガン及び銅からなる群より選ばれる一種以上の元素を
含む物質及び、一次粒子の平均粒子径10〜500μm
の炭酸水素塩の粉末を混合して造粒し、得られた造粒物
を、Cl2、Br2及びI2からなる群より選ばれる少な
くとも一種を含有するハロゲン系ガスに接触させてハロ
ゲン系ガスを除去する、ハロゲン系ガスの除去方法。
1. A substance containing at least one element selected from the group consisting of palladium, iron, nickel, cobalt, manganese and copper, and an average particle diameter of primary particles of 10 to 500 μm.
The mixture is granulated by mixing the bicarbonate powder of the above, and the obtained granule is brought into contact with a halogen-based gas containing at least one selected from the group consisting of Cl 2 , Br 2 and I 2 to form a halogen-based gas. A method for removing a halogen-based gas that removes a gas.
【請求項2】前記造粒物が平均粒子径0.5〜20mm
であって、下記で規定される平均硬度を有する請求項1
に記載のハロゲン系ガスの除去方法。 平均粒子径0.5mm以上1.0mm未満の造粒物の場
合は粒子径0.5mm以上1.0mm未満の造粒物の平
均硬度が1N以上であり、 平均粒子径1.0mm以上1.5mm未満の造粒物の場
合は粒子径1.0mm以上1.5mm未満の造粒物の平
均硬度が4N以上であり、 平均粒子径1.5mm以上2.0mm未満の造粒物の場
合は粒子径1.5mm以上2.0mm未満の造粒物の平
均硬度が10N以上であり、 平均粒子径2.0mm以上20mmの造粒物の場合は粒
子径2.0mm以上の造粒物の平均硬度が30N以上で
ある。
2. The granulated product according to claim 1, wherein the average particle size is 0.5 to 20 mm.
And having an average hardness defined below.
3. The method for removing a halogen-based gas described in 1. above. In the case of granules having an average particle size of 0.5 mm or more and less than 1.0 mm, the average hardness of the granules having a particle size of 0.5 mm or more and less than 1.0 mm is 1 N or more, and the average particle size is 1.0 mm or more. In the case of granules having a particle size of less than 5 mm, the average hardness of the granules having a particle size of 1.0 mm or more and less than 1.5 mm is 4 N or more, and in the case of a granule having an average particle size of 1.5 mm or more and less than 2.0 mm, The average hardness of the granules having a particle diameter of 1.5 mm or more and less than 2.0 mm is 10 N or more, and in the case of the granules having an average particle diameter of 2.0 mm or more and 20 mm, the average of the granules having a particle diameter of 2.0 mm or more is average. Hardness is 30N or more.
【請求項3】前記炭酸水素塩が炭酸水素ナトリウムであ
る請求項1又は2に記載のハロゲン系ガスの除去方法。
3. The method according to claim 1, wherein the hydrogen carbonate is sodium hydrogen carbonate.
【請求項4】前記造粒物が炭酸水素ナトリウムを70質
量%以上含有する請求項3に記載のハロゲン系ガスの除
去方法。
4. The method according to claim 3, wherein the granulated material contains 70% by mass or more of sodium hydrogen carbonate.
【請求項5】前記造粒物を活性炭とともに容器に充填し
て前記ハロゲン系ガスと接触させてハロゲン系ガスを除
去する請求項1〜5のいずれかに記載のハロゲン系ガス
の除去方法。
5. The method for removing a halogen-based gas according to claim 1, wherein said granulated material is filled in a container together with activated carbon and brought into contact with said halogen-based gas to remove said halogen-based gas.
JP2001124232A 2000-11-10 2001-04-23 Halogen gas removal method Expired - Fee Related JP4620897B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001124232A JP4620897B2 (en) 2001-04-23 2001-04-23 Halogen gas removal method
AT01126470T ATE320300T1 (en) 2000-11-10 2001-11-09 METHOD FOR REMOVAL OF A HALOGEN CONTAINING GAS
EP01126470A EP1205230B1 (en) 2000-11-10 2001-11-09 Method for removing a halogen-containing gas
US09/986,587 US6685901B2 (en) 2000-11-10 2001-11-09 Method for removing a halogen series gas
DE60117909T DE60117909T2 (en) 2000-11-10 2001-11-09 Process for removing a gas of the halogen (compound) group
ES01126470T ES2260144T3 (en) 2000-11-10 2001-11-09 METHOD TO ELIMINATE A GAS FROM THE HALOGEN SERIES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124232A JP4620897B2 (en) 2001-04-23 2001-04-23 Halogen gas removal method

Publications (2)

Publication Number Publication Date
JP2002316019A true JP2002316019A (en) 2002-10-29
JP4620897B2 JP4620897B2 (en) 2011-01-26

Family

ID=18973651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124232A Expired - Fee Related JP4620897B2 (en) 2000-11-10 2001-04-23 Halogen gas removal method

Country Status (1)

Country Link
JP (1) JP4620897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138850A1 (en) * 2020-12-25 2022-06-30 昭和電工株式会社 Chlorine gas decomposition catalyst, exhaust gas treatment device, and method for decomposing chlorine gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237324A (en) * 1991-12-11 1993-09-17 Japan Pionics Co Ltd Method for purifying harmful gas
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237324A (en) * 1991-12-11 1993-09-17 Japan Pionics Co Ltd Method for purifying harmful gas
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138850A1 (en) * 2020-12-25 2022-06-30 昭和電工株式会社 Chlorine gas decomposition catalyst, exhaust gas treatment device, and method for decomposing chlorine gas

Also Published As

Publication number Publication date
JP4620897B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4111137B2 (en) Halogen gas removal method
JP4952250B2 (en) Halogen gas removal method and halogen gas removal agent
US7976808B2 (en) Method for removing halogen series gas and agent for removing halogen series gas
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
US5417948A (en) Process for cleaning harmful gas
US6685901B2 (en) Method for removing a halogen series gas
JP2002316019A (en) Method for removing halogen gas
JP4755364B2 (en) How to remove halogens and halides
JP2001017831A (en) Treating agent for halogen gas
JP5217819B2 (en) Halogen gas removal agent and halogen gas removal method
JP4711550B2 (en) How to remove halogen gas
JP5008801B2 (en) Halogen gas removal method
JP4843635B2 (en) Method for producing carbonyl fluoride with reduced hydrogen fluoride content
JP2002143640A (en) Method for removing halogen-containing gas
JP2011062697A (en) Method for removing halogen gas
JP4767422B2 (en) Purification method and production method of octafluoropropane and use thereof
JP4288042B2 (en) Special gas removal detoxifier and special gas removal method
JP3302137B2 (en) How to purify harmful gases
JPH07275646A (en) Harmful gas purifying agent
JP2004305355A (en) Gas-mask and toxic gas disposing method
JP2006282487A (en) Metal fluoride deoxidizer, method for producing the same, and method for producing gas with hydrogen fluoride concentration reduced
JPS63270310A (en) Production of sodium fluoride pellet
JPH1190180A (en) Method for detoxifying nitrogen trifluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees