JP2002315731A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus

Info

Publication number
JP2002315731A
JP2002315731A JP2001122213A JP2001122213A JP2002315731A JP 2002315731 A JP2002315731 A JP 2002315731A JP 2001122213 A JP2001122213 A JP 2001122213A JP 2001122213 A JP2001122213 A JP 2001122213A JP 2002315731 A JP2002315731 A JP 2002315731A
Authority
JP
Japan
Prior art keywords
image
coil
reception
sensitivity
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001122213A
Other languages
Japanese (ja)
Other versions
JP4047553B2 (en
JP2002315731A5 (en
Inventor
Masahiro Takizawa
将宏 瀧澤
Tetsuhiko Takahashi
哲彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2001122213A priority Critical patent/JP4047553B2/en
Priority to EP02703889A priority patent/EP1371327A4/en
Priority to EP09014853A priority patent/EP2159590A1/en
Priority to US10/468,963 priority patent/US6876201B2/en
Priority to PCT/JP2002/001653 priority patent/WO2002065907A1/en
Publication of JP2002315731A publication Critical patent/JP2002315731A/en
Publication of JP2002315731A5 publication Critical patent/JP2002315731A5/ja
Application granted granted Critical
Publication of JP4047553B2 publication Critical patent/JP4047553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an image with no luminous point artifact in a high speed photographing method (a parallel imaging method) in which in a region where high speed photographing on the heart, etc., is required, a signal obtained by using especially, a plurality of receiving coils and by thinning phase encodes in each receiving coil is developed by using sensitivity distribution of the receiving coil by means of matrix operation in relation to an MRI apparatus. SOLUTION: A mask for dividing a back ground (a low signal) region and a subject region of the image by using a sensitivity image on the whole test region is prepared and based on this mask, an operation for turning removal is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体中の水素や
燐等からの核磁気共鳴(以下、「NMR」という)信号を
測定し、核の密度分布や緩和時間分布等を映像化する核
磁気共鳴撮影(MRI)装置に関し、心臓等の高速撮影が
要求される領域において、特に複数のRF受信コイルを用
い、各RF受信コイルにて位相エンコードを間引いて取得
した信号をRF受信コイルの感度分布を用いて行列演算に
より展開する撮影方法(以下、パラレルイメージング
法)において、アーチファクトの無い画像を得ることを
可能としたMRI装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures a nuclear magnetic resonance (hereinafter, referred to as "NMR") signal from hydrogen, phosphorus, or the like in a subject, and visualizes a nuclear density distribution, a relaxation time distribution, and the like. Regarding a nuclear magnetic resonance imaging (MRI) device, in a region where high-speed imaging such as a heart is required, a signal obtained by thinning out phase encoding in each RF receiving coil, particularly using a plurality of RF receiving coils, is used for the RF receiving coil. The present invention relates to an MRI apparatus capable of obtaining an image free from artifacts in an imaging method (hereinafter, parallel imaging method) developed by matrix operation using a sensitivity distribution.

【0002】[0002]

【従来の技術】MRIでは、位相エンコード量を変えなが
らシーケンスを繰り返し実行し、1枚の画像再構成に必
要なエコー信号を取得する。そのため、画像の取得時間
は繰り返し回数が大きく影響する。高速撮影を行う場
合、一般的には、1回の繰り返し内に複数のエコー信号
を発生させるマルチエコータイプのシーケンスを用いた
り、繰り返しの時間間隔を数〜数十msにまで短縮したシ
ーケンスを用いる。しかし、マルチエコータイプのシー
ケンスでは、画像のコントラストが低下したり、画像歪
みの原因となることがある。これは、画像のコントラス
トに寄与するエコー時間がマルチエコータイプのシーケ
ンスでは各エコー信号で異なるため、コントラストの低
下を招く。また、エコー時間が異なるため、各エコー信
号間での位相変化が異なると、画像歪みとなって画像に
現れる。
2. Description of the Related Art In MRI, a sequence is repeatedly executed while changing an amount of phase encoding, and an echo signal necessary for reconstructing one image is acquired. Therefore, the number of repetitions greatly affects the image acquisition time. When performing high-speed imaging, generally, a multi-echo type sequence that generates a plurality of echo signals within one repetition or a sequence in which the repetition time interval is reduced to several to several tens of ms is used. . However, in a multi-echo type sequence, the contrast of an image may be reduced or image distortion may be caused. This causes a decrease in contrast because the echo time contributing to the contrast of the image is different for each echo signal in the multi-echo type sequence. In addition, since the echo times are different, if the phase change between the echo signals is different, image distortion appears in the image.

【0003】また、心臓領域(冠状動脈撮影など)を撮
影する場合、より高速に画像を取得する必要があり、パ
ラレルイメージング法と呼ばれる高速撮影方法も提案さ
れている。パラレルイメージング法は、マルチプルRF受
信コイルを用いて、位相エンコードを等間隔に間引いた
シーケンスを実行し、繰り返し回数を低減して撮影時間
を短縮する。通常、位相エンコードを等間隔に間引いて
計測を行うと、画像には折り返しが発生するが、各RF受
信コイルの感度分布をもとに行列演算を行うことで画像
を展開し、折り返しを除去する。一般的にパラレルイメ
ージング法では、撮影に用いたRF受信コイルの数分だけ
撮影時間を短縮できる。
[0003] Further, when imaging a heart region (such as coronary artery imaging), it is necessary to acquire an image at a higher speed, and a high-speed imaging method called a parallel imaging method has been proposed. In the parallel imaging method, a sequence in which phase encoding is thinned out at equal intervals is executed using multiple RF receiving coils, and the number of repetitions is reduced to shorten the imaging time. Normally, when measurement is performed with the phase encoding thinned out at equal intervals, aliasing occurs in the image, but the image is developed by performing a matrix operation based on the sensitivity distribution of each RF receiving coil, and aliasing is removed. . In general, in the parallel imaging method, the imaging time can be reduced by several minutes of the RF receiving coil used for the imaging.

【0004】[0004]

【発明が解決しようとする課題】パラレルイメージング
法では、マルチエコータイプのシーケンスを用いなくと
も、撮影時間を短縮することができるため、コントラス
トの低下や画像歪みの影響を減らすことができる。しか
しながら、マルチプルRF受信コイルの配置や感度分布の
形状により結果の画像が大きく変化する。特に、背景等
の低信号領域を含んだまま行列演算を行うと、ノイズの
影響で折り返しの展開時に誤差が大きくなり、画像中に
輝点のアーチファクトが発生することがある。また、各
RF受信コイルの感度分布を精度良く算出するために、比
較的感度分布の均一な全身用ボディコイルで計測した画
像を用いて感度分布を算出するのが望ましいが、装置に
よっては全身用のボディコイルが無かったり、受信チャ
ンネル数が少ないために同時に画像を取得できない問題
が有る。
In the parallel imaging method, the photographing time can be shortened without using a multi-echo type sequence, so that the effects of contrast reduction and image distortion can be reduced. However, the resulting image greatly changes depending on the arrangement of the multiple RF receiving coils and the shape of the sensitivity distribution. In particular, if a matrix operation is performed while including a low signal area such as a background, an error becomes large at the time of folding development due to the influence of noise, and an artifact of a luminescent spot may occur in an image. Also, each
To accurately calculate the sensitivity distribution of the RF receiver coil, it is desirable to calculate the sensitivity distribution using images measured with a body coil for the whole body with a relatively uniform sensitivity distribution. However, there is a problem that images cannot be obtained at the same time because there are no channels or the number of reception channels is small.

【0005】そこで、本発明の目的は、行列演算時の計
算誤差を抑え、輝点アーチファクトの発生を無くし、ま
た全身用ボディコイルの無い装置、或いはチャンネル数
の少ない装置でもパラレルイメージングを可能とするこ
とにある。あるいは、全身用ボディコイルを有する装置
でも、装置構成及び信号処理フローを簡潔にすることに
ある。
Accordingly, an object of the present invention is to suppress a calculation error at the time of matrix calculation, eliminate the occurrence of bright spot artifacts, and enable parallel imaging even in a device without a body coil for the whole body or a device with a small number of channels. It is in. Alternatively, even in an apparatus having a body coil for the whole body, the object is to simplify the apparatus configuration and the signal processing flow.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は少なくとも2個のRF受信コイルを備え、前
記RF受信コイルで受信する核磁気共鳴信号の計測を計測
空間のエンコードステップを間引くよう計測して各RF受
信コイル毎に画像を取得し、前記RF受信コイルの受信感
度分布を用いて各画像の折り返し除去の演算を行なうと
共に前記各画像を結合して1枚の画像を得る制御手段を
有する磁気共鳴イメージング装置において、前記制御手
段は、前記受信感度分布において非画像領域と画像領域
を分けたマスクを作成し、前記マスクを用いて演算を行
なうものであり、前記制御手段は、前記RF受信コイルを
含む全体領域の受信感度分布において非画像領域と画像
領域を分けたマスクを作成し、各RF受信コイル毎の受信
感度分布と前記マスクを用いて演算を行なってもよい。
また、前記受信感度分布における非画像領域は低信号領
域であってもよいし、前記RF受信コイルを含む全体領域
の受信感度分布は前記複数のRF受信コイルの信号から演
算にて求めてもよく、さらに前記複数のRF受信コイルの
受信領域を含む受信領域を持つ第2のRF受信コイルを備
え、前記制御手段は前記第2のRF受信コイルにより全体
領域の受信感度分布を得てもよい。
In order to achieve the above object, the present invention comprises at least two RF receiving coils, and comprises the steps of: encoding a nuclear magnetic resonance signal received by the RF receiving coils; An image is obtained for each RF receiving coil by measuring so as to thin out, and the calculation of the aliasing removal of each image is performed using the reception sensitivity distribution of the RF receiving coil, and the images are combined to obtain one image. In the magnetic resonance imaging apparatus having a control unit, the control unit creates a mask in which a non-image area and an image area are separated in the reception sensitivity distribution, and performs an operation using the mask. In the receiving sensitivity distribution of the entire area including the RF receiving coil, a mask is created in which a non-image area and an image area are separated, and the receiving sensitivity distribution and the mask for each RF receiving coil The calculation may be performed using the above.
Further, the non-image area in the reception sensitivity distribution may be a low signal area, or the reception sensitivity distribution of the entire area including the RF reception coil may be obtained by calculation from signals of the plurality of RF reception coils. The apparatus may further include a second RF reception coil having a reception area including reception areas of the plurality of RF reception coils, and the control unit may obtain a reception sensitivity distribution of the entire area by the second RF reception coil.

【0007】また、少なくとも2個のRF受信コイルを備
え、前記RF受信コイルで受信する核磁気共鳴信号の計測
を計測空間のエンコードステップを間引くよう計測して
各RF受信コイル毎に感度画像及び形態画像を取得し、前
記RF受信コイルの感度画像に基づく感度分布から各形態
画像の折り返し除去の演算を行なうと共に前記各形態画
像を結合して1枚の形態画像を得る制御手段を有する磁
気共鳴イメージング装置において、前記制御手段は、各
RF受信コイルで取得した感度画像を結合した全体感度画
像を作成し、前記全体感度画像を用いて各RF受信コイル
の感度分布を算出し、前記全体感度画像を用いて画像の
非画像領域と画像領域を分けるマスクを作成し、前記マ
スクに基づいて演算を行なうものである。
[0007] Further, at least two RF receiving coils are provided, and the measurement of the nuclear magnetic resonance signal received by the RF receiving coils is performed so as to thin out the encoding step in the measurement space. A magnetic resonance imaging apparatus having a control unit for acquiring an image, performing an operation of removing aliasing of each morphological image from a sensitivity distribution based on a sensitivity image of the RF receiving coil, and combining the morphological images to obtain one morphological image; In the apparatus, the control means includes:
Create an overall sensitivity image by combining the sensitivity images obtained by the RF receiving coil, calculate the sensitivity distribution of each RF receiving coil using the overall sensitivity image, and use the overall sensitivity image as a non-image area and image of the image. A mask for dividing a region is created, and an operation is performed based on the mask.

【0008】さらに、計測領域全体を受信する第1のRF
受信コイルと、前記計測領域を少なくとも2つ以上分割
した領域を受信する複数の第2のRF受信コイルを備え、
前記各第2のRF受信コイルで受信する核磁気共鳴信号の
計測を計測空間のエンコードステップを間引くよう計測
して前記第2のRF受信コイル毎に感度画像及び形態画像
を取得し、前記第1のRF受信コイルによる感度画像及び
前記第2のRF受信コイルによる感度画像から求めた感度
分布から前記形態画像の折り返し除去の演算を行なうと
共に前記各形態画像を結合して1枚の形態画像を得る制
御手段を有する磁気共鳴イメージング装置において、前
記制御手段は、前記受信感度分布において非画像領域と
画像領域を分けたマスクを作成し、前記マスクを用いて
演算を行なうものである。
Further, a first RF for receiving the entire measurement area
Receiving coil, comprising a plurality of second RF receiving coil to receive an area divided into at least two or more of the measurement area,
The measurement of the nuclear magnetic resonance signal received by each of the second RF receiving coils is measured so as to thin out the encoding step of the measurement space to obtain a sensitivity image and a morphological image for each of the second RF receiving coils, and the first A fold-removal operation of the morphological image is calculated from the sensitivity distribution obtained from the sensitivity image obtained by the RF receiving coil and the sensitivity image obtained by the second RF receiving coil, and the morphological images are combined to obtain one morphological image. In the magnetic resonance imaging apparatus having a control unit, the control unit creates a mask in which a non-image area and an image area are divided in the reception sensitivity distribution, and performs an operation using the mask.

【0009】[0009]

【発明の実施の形態】以下、本発明の核磁気共鳴イメー
ジング装置について、図面を参照して詳述する。図4は
典型的な核磁気共鳴イメージング装置の構成である。被
検体401の周囲に静磁場を発生する磁石402と、該空間に
傾斜磁場を発生する傾斜磁場コイル403と、この領域に
高周波磁場を発生するRFコイル404と被検体401が発生す
るMR信号を検出するRFプローブ405がある。傾斜磁場コ
イル403は、X、Y、Zの3方向の傾斜磁場コイルで構成さ
れ、傾斜磁場電源409からの信号に応じてそれぞれ傾斜
磁場を発生する。RFコイル404はRF送信部410の信号に応
じて高周波磁場を発生する。RFプローブ405の信号は、
信号検出部406で検出され、信号処理部407で信号処理さ
れ、また計算により画像信号に変換される。画像は表示
部408で表示される。傾斜磁場電源409、RF送信部410、
信号検出部406は制御部411で制御され、制御のタイムチ
ャートは一般にパルスシーケンスと呼ばれている。ベッ
ド412は被検体が横たわるためのものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a nuclear magnetic resonance imaging apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 4 shows the configuration of a typical nuclear magnetic resonance imaging apparatus. A magnet 402 that generates a static magnetic field around the subject 401, a gradient coil 403 that generates a gradient magnetic field in the space, an RF coil 404 that generates a high-frequency magnetic field in this region, and an MR signal generated by the subject 401. There is an RF probe 405 to detect. The gradient magnetic field coil 403 is composed of gradient magnetic field coils in three directions of X, Y, and Z, and generates a gradient magnetic field in accordance with a signal from the gradient magnetic field power supply 409. The RF coil 404 generates a high-frequency magnetic field according to a signal from the RF transmission unit 410. The signal of the RF probe 405 is
The signal is detected by the signal detection unit 406, processed by the signal processing unit 407, and converted into an image signal by calculation. The image is displayed on the display unit 408. Gradient magnetic field power supply 409, RF transmitter 410,
The signal detection unit 406 is controlled by the control unit 411, and the control time chart is generally called a pulse sequence. The bed 412 is for the subject to lie down.

【0010】現在MRIの撮影対象は、臨床で普及してい
るものとしては、被検体の主たる構成物質、プロトンで
ある。プロトン密度の空間分布や、励起状態の緩和現象
の空間分布を画像化することで、人体頭部、腹部、四肢
等の形態または、機能を2次元もしくは3次元的に撮影す
る。
At present, the subject of MRI imaging is proton, which is a main constituent of the subject, which is widely used clinically. By imaging the spatial distribution of the proton density and the spatial distribution of the relaxation phenomenon of the excited state, the form or function of the human head, abdomen, limbs, etc. is two-dimensionally or three-dimensionally photographed.

【0011】RFコイル405の例として、複数の受信コイ
ルを用いた「マルチプルRFコイル」もしくは「フェーズ
ドアレイコイル」と呼ばれる技術が用いられている。マ
ルチプルRFコイルとは、相対的に高感度な小型RF受信コ
イルを複数個並べて、各コイルで取得した信号を合成す
ることより、RF受信コイルの高い感度を保ったまま視野
を拡大し、高感度化を図る受信専用RFコイルである。水
平磁場頭部用マルチプルRFコイルとしては、Array Head
Coil for Improved Functional MRI(Christoph Leussl
er), 1996 ISMRM abstruct p.249がある。また、水平磁
場頭部用QDマルチプルRFコイルとしては、Helmet and C
ylindrical Shaped CP Array Coils forBrain Imaging:
A Comparison of Signal-to-Noise Characteristics
(H.A.Stark, E.M.Haacke), 1996 ISMRM abstract p.141
2がある。水平磁場腹部用QDマルチプルRFコイルとして
は、Four Channel Wrap-Around Coil with Inductive D
ecoupler for 1.5T Body Imaging(T.Takahashi et.al),
1995 ISMRM abstruct p.1418がある。
As an example of the RF coil 405, a technique called "multiple RF coil" or "phased array coil" using a plurality of receiving coils is used. Multiple RF coils are a series of small RF receiver coils with relatively high sensitivity, and the signals acquired by each coil are combined to expand the field of view while maintaining the high sensitivity of the RF receiver coil. This is a receiving-only RF coil that is being developed. Array Head as multiple RF coil for horizontal magnetic field head
Coil for Improved Functional MRI (Christoph Leussl
er), 1996 ISMRM abstruct p.249. In addition, Helmet and C
ylindrical Shaped CP Array Coils for Brain Imaging:
A Comparison of Signal-to-Noise Characteristics
(HAStark, EMHaacke), 1996 ISMRM abstract p.141
There are two. Four Channel Wrap-Around Coil with Inductive D
ecoupler for 1.5T Body Imaging (T.Takahashi et.al),
There is a 1995 ISMRM abstruct p.1418.

【0012】マルチプルRFコイルの信号検出部の一部を
図3に示す。図3では、4個のRF受信コイル405が、それ
ぞれプリアンプ302に接続されて一つのマルチプルコイ
ル301を構成する。信号検出部406は、4個のAD変換・直
交検波回路303が並列してなり、前記各プリアンプの出
力が接続されている。信号処理部407は、各信号をフー
リエ変換、バックプロジェクション法、ウエーブレット
変換などにより、それぞれのRF受信コイル405で検出し
たMRI画像を求め、これらの画像信号を合成する演算304
からなる。
FIG. 3 shows a part of the signal detecting section of the multiple RF coil. In FIG. 3, four RF receiving coils 405 are respectively connected to a preamplifier 302 to form one multiple coil 301. The signal detection unit 406 includes four A / D conversion / quadrature detection circuits 303 connected in parallel, and the outputs of the respective preamplifiers are connected. The signal processing unit 407 obtains MRI images detected by the respective RF receiving coils 405 by Fourier transform, back projection method, wavelet transform, etc., for each signal, and performs an operation 304 for combining these image signals.
Consists of

【0013】次に、撮影方法を説明する。図6は一般的
なグラディエントエコーシーケンスである。601は高周
波パルス、602はスライス選択傾斜磁場パルス、603は位
相エンコード傾斜磁場パルス、604は読み出し傾斜磁場
パルス、605はサンプリングウインド、606はエコー信
号、607は繰り返し時間(高周波パルス601の照射間隔)
である。MRIでは、各繰り返し時間607毎に位相エンコー
ド傾斜磁場パルス603の量を変え、異なる位相エンコー
ドを与え、それぞれの位相エンコードで得られるエコー
信号606を検出する。この操作を位相エンコードの数だ
け繰り返し、画像取得時間608で1枚の画像再構成に必要
なエコー信号を取得する。位相エンコードの数は通常1
枚の画像あたり64、128、256、512等の値が選ばれる。
各エコー信号は通常128、256、512、1024個のサンプリ
ングデータからなる時系列信号として得られる。これら
のデータを2次元フーリエ変換して1枚のMR画像を作成す
る。
Next, a photographing method will be described. FIG. 6 shows a general gradient echo sequence. 601 is a high frequency pulse, 602 is a slice selection gradient magnetic field pulse, 603 is a phase encoding gradient magnetic field pulse, 604 is a read gradient magnetic field pulse, 605 is a sampling window, 606 is an echo signal, and 607 is a repetition time (irradiation interval of the high frequency pulse 601).
It is. In MRI, the amount of the phase encoding gradient magnetic field pulse 603 is changed for each repetition time 607, different phase encodings are applied, and an echo signal 606 obtained by each phase encoding is detected. This operation is repeated by the number of phase encodings, and an echo signal necessary for reconstructing one image is acquired at an image acquisition time 608. The number of phase encodes is usually 1
Values such as 64, 128, 256, 512 are selected per image.
Each echo signal is usually obtained as a time-series signal composed of 128, 256, 512, and 1024 pieces of sampling data. These data are subjected to two-dimensional Fourier transform to create one MR image.

【0014】マルチプルRF受信コイルを用いた高速撮影
であるパラレルイメージング法の場合、位相エンコード
ステップ間隔を一定の割合で間引いて撮影の繰り返し回
数を減らす。この間引き率を一般的に倍速数と呼ぶ。例
えば、位相エンコードステップを2倍に間引く場合、倍
速数は2である。以下、パラレルイメージング法の原理
を、図2を用いて説明する。通常撮影の場合、図2(a)に
示すように各位相エンコード量で取得した信号202nを配
置し画像1枚分のデータ201を形成し、これをフーリエ
変換することで図2(c)示すような画像を得る。次に、パ
ラレルイメージング法において、例えば位相エンコード
ステップ間隔を2倍にし、データを間引いた場合、図2
(b)に示すように、1ラインおきにデータ204mを計測し、
205mの位置に相当するデータは計測しない。このとき、
計測したデータ204mの量は通常撮影と比べ半分になるの
で、マトリクスを半分にして画像を作成するが、図2(d)
のような折り返しの発生した画像が得られる。図2にお
いては、y方向を位相エンコード方向としており、この
折り返しは、位相エンコード方向の画像が折り返して発
生する。つまり、図2(c)に示すような画像207内の被検
体206の、上側領域2071内の被検体画像2061と下側領域2
072内の被検体画像2062が重なり、図2(d)に示すような
折り返しの有る画像208となる。このようにして発生し
た信号折り返しは、SENSEと呼ばれる信号処理法で除去
する(SENSE:Sensitivity Encoding for FastMRI(Klaas
P.Pruessmann et.al), Magnetic Resonance in Medici
ne 42: 952-962 (1999)参照)。
In the case of the parallel imaging method, which is high-speed imaging using a multiple RF receiving coil, the number of repetitions of imaging is reduced by thinning out the phase encoding step interval at a fixed rate. This thinning rate is generally called a double speed number. For example, when thinning out the phase encoding step by a factor of two, the double speed number is two. Hereinafter, the principle of the parallel imaging method will be described with reference to FIG. In the case of normal shooting, as shown in FIG. 2 (a), the signals 202n acquired with the respective phase encoding amounts are arranged to form data 201 for one image, and this is subjected to Fourier transform to obtain the data shown in FIG. 2 (c). To get such an image. Next, in the parallel imaging method, for example, when the phase encoding step interval is doubled and the data is thinned, FIG.
As shown in (b), data 204m is measured every other line,
Data corresponding to the 205m position is not measured. At this time,
Since the amount of measured data 204m is halved compared to normal shooting, the image is created by halving the matrix, but Fig. 2 (d)
Thus, an image in which aliasing has occurred is obtained. In FIG. 2, the y direction is defined as the phase encoding direction, and this aliasing occurs when an image in the phase encoding direction is aliased. That is, the subject image 2061 in the upper region 2071 and the lower region 2 of the subject 206 in the image 207 as shown in FIG.
The subject images 2062 in the 072 overlap and become an image 208 having a fold as shown in FIG. The signal aliasing generated in this way is removed by a signal processing method called SENSE (SENSE: Sensitivity Encoding for FastMRI (Klaas
P. Pruessmann et.al), Magnetic Resonance in Medici
ne 42: 952-962 (1999)).

【0015】以下、折り返し除去について説明する。x,
y方向の画像マトリクスをそれぞれX,Yとした場合、画像
内の座標(x,y)(x:1≦x≦X, y:1≦y≦Y)における画素値
をsi(x,y)とする(ここで、iはコイル番号であり、2≦i
≦Nである)。図2(d)の場合では、位相エンコードステッ
プを2倍に間引いているので、間引き後の画像の位相エ
ンコード方向のマトリクスは、Y'≡Y/2となる。図2(d)
の画像の座標を(x,y')(1≦y'≦Y')としたとき、その画
素値s'(x,y')208は、元画像207の2領域2071、2072が重
なって、
Hereinafter, aliasing removal will be described. x,
Assuming that the image matrix in the y direction is X and Y, respectively, the pixel value at coordinates (x, y) (x: 1 ≦ x ≦ X, y: 1 ≦ y ≦ Y) in the image is s i (x, y (Where i is the coil number and 2 ≦ i
≤ N). In the case of FIG. 2D, since the phase encoding step is thinned out twice, the matrix in the phase encoding direction of the thinned image is Y′≡Y / 2. Fig. 2 (d)
When the coordinates of the image are (x, y ') (1 ≦ y ′ ≦ Y ′), the pixel value s ′ (x, y ′) 208 is obtained by overlapping the two regions 2071 and 2072 of the original image 207. ,

【0016】[0016]

【数1】 となる。ここでaは定数を表す。次に、RF受信コイルの
感度分布と画像について述べる。i番目のRF受信コイル
の2次元的な感度分布を、ci(x,y)とすると、受信した信
号si (x,y)は、受信コイルの感度分布ci(x,y)と被検体
のプロトン密度分布p(x,y)との積、
(Equation 1) Becomes Here, a represents a constant. Next, the sensitivity distribution and the image of the RF receiving coil will be described. Assuming that the two-dimensional sensitivity distribution of the i-th RF receiving coil is c i (x, y), the received signal s i (x, y) is the receiving coil sensitivity distribution c i (x, y). Product of the proton density distribution p (x, y) of the subject,

【0017】[0017]

【数2】 で表される。(2)式を用いると、(1)式は、(Equation 2) It is represented by Using equation (2), equation (1) becomes

【0018】[0018]

【数3】 と書ける。ここで、簡単のため、(Equation 3) I can write Here, for simplicity,

【0019】[0019]

【数4】 とおくと、(3)式は、(Equation 4) In other words, equation (3) is

【0020】[0020]

【数5】 となる。これは、N行2列の行列として表すことができ、(Equation 5) Becomes This can be represented as an N-by-2 matrix,

【0021】[0021]

【数6】 となる。これより、コイルの感度分布Cijが分かれば、
逆行列を計算することで、被検体のプロトン密度分布Pj
が分かる。
(Equation 6) Becomes From this, if the sensitivity distribution C ij of the coil is known,
By calculating the inverse matrix, the proton density distribution P j of the subject is obtained.
I understand.

【0022】同様に、N個のコイルを用いて、M倍速で撮
影を行った場合は、Y'≡Y/M、1≦y'≦Y'として、
Similarly, when photographing is performed at M times speed using N coils, Y'≡Y / M, 1 ≦ y ′ ≦ Y ′,

【0023】[0023]

【数7】 となる。ここでbは定数を表す。逆行列演算によって折
り返しを除去する事から、パラレルイメージング法のコ
イル数と倍速数との関係は、数学的にN≧Mである。
(Equation 7) Becomes Here, b represents a constant. Since the aliasing is removed by the inverse matrix operation, the relationship between the number of coils and the double speed in the parallel imaging method is mathematically N ≧ M.

【0024】通常、パラレルイメージング法では、各RF
受信コイルの感度分布Cijを前計測等で予め計測するな
どして取得する。しかしながら、感度分布Cijを直接算
出する事は難しく、一般的には比較的感度分布の均一な
全身用ボディコイルの画像を用いて、各RF受信コイルで
取得した画像をそれぞれ除算し、近似的なコイルの感度
分布を求めて行列演算を行う。
Usually, in the parallel imaging method, each RF
The sensitivity distribution C ij of the receiving coil is obtained by, for example, pre-measurement or the like measured in advance. However, it is difficult to directly calculate the sensitivity distribution C ij , and in general, an image obtained by each RF receiving coil is divided by using an image of a body coil for a whole body having a relatively uniform sensitivity distribution, and an approximate Matrix operation is performed by finding the sensitivity distribution of the coil.

【0025】図7に一般的なパラレルイメージング法の
処理を示す。図では1つの全身用ボディコイルと、3つの
マルチプルRF受信コイルの構成である。まず、全身用ボ
ディコイルで取得した感度画像701と、各RF受信コイル
で取得した感度画像7021〜7023を用いて、感度分布算出
処理7041〜7043を行い、各RF受信コイルの感度分布7051
〜7053を得る。感度分布算出処理704としては、全身用
ボディコイルの画像をsc(x,y)として、例えば、
FIG. 7 shows a process of a general parallel imaging method. The figure shows a configuration of one body coil for the whole body and three multiple RF receiving coils. First, sensitivity distribution calculation processing 7041 to 7043 is performed using the sensitivity image 701 acquired by the body coil for the whole body and the sensitivity images 7021 to 7023 acquired by each RF reception coil, and the sensitivity distribution 7051 of each RF reception coil is performed.
Get ~ 7053. As the sensitivity distribution calculation processing 704, the image of the body coil for the whole body as s c (x, y), for example,

【0026】[0026]

【数8】 がある。このようにして算出した感度分布7051〜7053
と、各RF受信コイルで取得した折り返しの有る本計測画
像7031〜7033を用いて、行列作成処理706により行列を
作成後、逆行列演算処理707によって折り返しを除去し
た画像708を得る。次に、本発明の第1の実施形態を図
1,図5により説明する。従来の一般的なパラレルイメー
ジング法では、背景等の低信号領域に関しては何ら考慮
されていないものであるが、本実施形態では低信号領域
を考慮した構成となっている。つまり、全身用ボディコ
イルの画像を用いて、マスク作成のステップ101によ
り、マスク102を作成し、マスクの処理を行うステップ1
03により精度を向上した処理後のマスク104を作成し、
マスクを用いた行列作成処理105を行うよう構成した。
ここで、マスク処理について説明する。図5では3倍速の
場合であり、画像501は通常画像(図5(b))の3領域5041、
5042、5043が重なった結果である(ここで、Y'≡Y/3、1
≦y'≦Y'である)。図5(a)中に、2箇所の注目点A(xA,
y'A) 502、B(xB, y'B)503を設ける。このとき、A、B点
の画素値は、それぞれ、図の5021〜5023、5031〜5033の
領域が重なっている事から、
(Equation 8) There is. Sensitivity distributions 7051 to 7053 calculated in this way
Then, a matrix is created by the matrix creation processing 706 using the main measurement images 7031 to 7033 having the aliases acquired by the respective RF receiving coils, and an image 708 from which aliasing has been removed by the inverse matrix calculation processing 707 is obtained. Next, a first embodiment of the present invention will be described.
This will be described with reference to FIG. In the conventional general parallel imaging method, a low signal area such as a background is not considered at all, but the present embodiment has a configuration in which a low signal area is considered. In other words, using the image of the body coil for the whole body, a mask 102 is created in Step 101 of mask creation, and Step 1 of performing mask processing is performed.
03 Create a post-processing mask 104 with improved accuracy,
It is configured to perform a matrix creation process 105 using a mask.
Here, the mask processing will be described. FIG. 5 shows the case of 3 × speed, and the image 501 has three regions 5041 of the normal image (FIG. 5 (b)),
This is the result of 5042 and 5043 overlapping (where Y'≡Y / 3, 1
≦ y ′ ≦ Y ′). In FIG. 5 (a), two points of interest A (x A ,
y ′ A ) 502 and B (x B , y ′ B ) 503 are provided. At this time, since the pixel values of points A and B are overlapped with the regions 5021 to 5023 and 5031 to 5033 in the figure,

【0027】[0027]

【数9】 となる。ここでdは定数を表す。しかし、5021は、被検
体の無い背景部分の信号であり、これを用いて行列演算
を行うと、逆行列演算時に行列が発散して、結果画像に
輝点のアーチファクトを生じる場合が有った。そこで、
このような背景の影響を無くすため、図5(c)に示すよう
なマスクm(x,y)102を用いる。図1中のマスク作成処理10
1としては、全身用ボディコイルの感度画像701に対し
て、例えば閾値を設けて図5(c)に示すような画素値が
閾値以下の画素を背景領域506、画素値が閾値以上の画
素を被検体領域505とする。また、閾値設定方法とし
て、例えば画像内の最大画素値の1/10程度を閾値とした
り、図5(d)に示すようなような画像内の画素値ヒストグ
ラム507を作成し、ノイズの分布を求めて閾値508を設定
する事もできる。次に、マスク作成101により、例えば
被検体領域505の値を1に、背景領域506の値を0にしたマ
スク102を得る。そして、得られたマスク102に対して、
さらにマスクの精度を向上させるため、マスクの処理10
3を行なう。そして、マスク処理103によって得られた処
理後のマスク104を用いて行列作成処理105を行なう。こ
れにより背景領域を除いて行列演算できるため、輝点ア
ーチファクトの発生をなくすことができる。
(Equation 9) Becomes Here, d represents a constant. However, 5021 is a signal of the background portion without the subject, and when performing a matrix operation using this, the matrix diverges at the time of the inverse matrix operation, and there was a case where an artifact of a bright spot occurred in the resulting image. . Therefore,
In order to eliminate such an influence of the background, a mask m (x, y) 102 as shown in FIG. 5C is used. Mask creation processing 10 in FIG. 1
As 1, for example, a threshold is provided for the sensitivity image 701 of the body coil for the whole body, and a pixel whose pixel value is equal to or less than the threshold as shown in FIG. This is referred to as a subject area 505. As a threshold setting method, for example, a threshold is set to about 1/10 of the maximum pixel value in the image, or a pixel value histogram 507 in the image as shown in FIG. The threshold 508 can be set accordingly. Next, a mask 102 in which, for example, the value of the subject region 505 is set to 1 and the value of the background region 506 is set to 0 by mask creation 101 is obtained. Then, for the obtained mask 102,
Mask processing 10 to further improve mask accuracy
Do 3 Then, a matrix creation process 105 is performed using the mask 104 after the process obtained by the mask process 103. As a result, the matrix operation can be performed excluding the background area, and thus the occurrence of bright spot artifacts can be eliminated.

【0028】ここで、マスク処理103としては、例えば
被検体内部に構造が存在する場合はその領域の信号をそ
のまま使用するためマスク領域を内挿により埋めたり、
本来計算に入れない領域に誤って取られた孤立点を除去
する処理等を行なう。また、マスクを用いた行列作成処
理105では、行列の要素に背景領域を含まないように、
各要素を0にする判別処理を行なう。例えば、
Here, as the mask processing 103, for example, when a structure exists inside the object, the mask area is filled by interpolation to use the signal of that area as it is,
For example, a process for removing an isolated point erroneously taken in an area that cannot be originally calculated is performed. Also, in the matrix creation processing 105 using a mask, so that the background element is not included in the elements of the matrix,
A discriminating process for setting each element to 0 is performed. For example,

【0029】[0029]

【数10】 で表される。また、背景領域を0とした場合、画像が不
自然となるような場合は、行列の要素を所定の定数にし
て処理してもよい。例えば
(Equation 10) It is represented by When the background area is set to 0 and the image becomes unnatural, the processing may be performed with the elements of the matrix set to predetermined constants. For example

【0030】[0030]

【数11】 で表される。ここで、Const.は任意の定数を示す。さら
に、行列作成処理105内で(10)式に示すような各要素を0
にする判別処理を用いることは、感度分布とマスクとの
積、
[Equation 11] It is represented by Here, Const. Indicates an arbitrary constant. Further, each element as shown in the equation (10) is set to 0 in the matrix creation processing 105.
Is used, the product of the sensitivity distribution and the mask,

【0031】[0031]

【数12】 とすることであり、判別処理を無くし処理を簡略化でき
る。(10)式のように行列要素の一部を"0"とすること
は、行列のマトリクスサイズを縮小することと等価であ
る。すなわち、「各画素毎に折り返しの状況を調べ、必
要十分な行列サイズを決定し、必要十分な演算を行う」
ことになる。この結果、従来と比べ、不要なノイズの混
入が無くなり、画質が向上する。又、演算時間が短縮す
るメリットも有る。
(Equation 12) Thus, the determination process can be eliminated and the process can be simplified. Making some of the matrix elements "0" as in equation (10) is equivalent to reducing the matrix size of the matrix. That is, "check the state of aliasing for each pixel, determine the necessary and sufficient matrix size, and perform the necessary and sufficient calculation"
Will be. As a result, unnecessary noise is prevented from being mixed as compared with the related art, and the image quality is improved. There is also an advantage that the calculation time is shortened.

【0032】なお、行列作成処理105では処理後のマス
ク104を用いて演算したが、マスク102を用いて演算する
こともできる。これにより処理フローを簡略化すること
ができる。また、マスク102は背景領域と被検体領域に
分けて説明したが、背景領域とは被検体領域外の背景の
みならず被検体領域中に存在する低信号領域(例えば、
空隙等)も含む。
Although the matrix creation processing 105 is performed using the mask 104 after the processing, the calculation can be performed using the mask 102. Thereby, the processing flow can be simplified. Further, the mask 102 has been described as being divided into a background region and a subject region. However, the background region is not only a background outside the subject region but also a low signal region existing in the subject region (for example,
Voids).

【0033】次に、本発明の第2の実施形態を図8を用い
て説明する。この場合では、全身用ボディコイルの画像
がない場合である。この場合、各RF受信コイルの感度分
布を算出するために必要な全身用ボディコイルの画像
は、信号結合処理801により作成する。801の具体的な処
理として、例えば、各RF受信コイルで取得した画像s
i(x,y)と、si(x,y)にローパスフィルタを施した画像をw
i(x,y)とするとき、合成後の擬似的なボディコイル画像
s'c(x,y)は、
Next, a second embodiment of the present invention will be described with reference to FIG. In this case, there is no image of the body coil for the whole body. In this case, the image of the body coil for the whole body necessary for calculating the sensitivity distribution of each RF receiving coil is created by the signal combining process 801. As a specific process of 801, for example, an image s acquired by each RF receiving coil
i (x, y) and s i (x, y) with low-pass filtered image
When i (x, y), the pseudo body coil image after synthesis
s' c (x, y) is

【0034】[0034]

【数13】 で求まる(ここで、*は複素共役、||は絶対値を表
す)。しかし、マルチプルRF受信コイルの有感度領域は
通常のコイルと比較して狭いので、この様に合成した擬
似的なボディコイルの画像には、シェーディングの影響
が大きい場合がある。そこで、合成した擬似的なボディ
コイルの画像に感度補正処理802を施し、シェーディン
グの無い擬似画像803を作成して、パラレルイメージン
グ法の処理を行う。なお、感度補正処理802としては、
例えば、画像からシェーディングを算出し補正する方法
(特開平7-222724号公報)を用いる。
(Equation 13) (Where * is the complex conjugate and || is the absolute value). However, since the sensitive region of the multiple RF receiving coil is narrower than that of a normal coil, the effect of shading may be large on an image of a pseudo body coil synthesized in this manner. Therefore, the sensitivity correction processing 802 is performed on the synthesized pseudo body coil image to generate a pseudo image 803 without shading, and the processing of the parallel imaging method is performed. In addition, as the sensitivity correction processing 802,
For example, a method of calculating and correcting shading from an image (JP-A-7-222724) is used.

【0035】このように、全身用ボディコイルの信号を
合成することで、例えば全身用ボディコイルが無い、或
いは取りつけ不可能な装置や、使用可能なコイルのチャ
ンネル数が少ない装置でも、パラレルイメージング法が
可能となる。また、全身用ボディコイルを有する装置に
おいても、マルチプルRF受信コイルの信号のみの処理と
なるため、装置構成やソフトウエア構成、データフロー
が簡略化できる点である。例えば、ハンバーガー型オー
プンMRIでは、照射コイルの感度が比較的低いため、照
射コイルでの受信ができない場合がある。又、物理的に
受信できても、パラレルイメージング法のためだけに受
信用部品を付けると、MRI装置のコストアップになる。
しかし、本実施例を適用すると、このようなデメリット
を克服できる。感度分布の演算は、マルチスライス撮影
や三次元撮影にも適用できる。マルチスライスではスラ
イス毎に(13)式を計算する。三次元撮影でも、スライス
毎に(13)式を計算する。
As described above, by synthesizing the signals of the body coil for the whole body, the parallel imaging method can be performed even in an apparatus having no or no body coil for the whole body or an apparatus having a small number of usable coil channels. Becomes possible. Further, even in a device having a body coil for the whole body, since only the signal of the multiple RF receiving coil is processed, the device configuration, software configuration, and data flow can be simplified. For example, in a hamburger-type open MRI, reception by the irradiation coil may not be performed because the sensitivity of the irradiation coil is relatively low. Further, even if it can be physically received, if a receiving component is added only for the parallel imaging method, the cost of the MRI apparatus will increase.
However, by applying this embodiment, such disadvantages can be overcome. The calculation of the sensitivity distribution can be applied to multi-slice imaging and three-dimensional imaging. In multi-slice, equation (13) is calculated for each slice. Even in three-dimensional imaging, equation (13) is calculated for each slice.

【0036】本発明は、以上の実施例で開示された内容
にとどまらず、本発明の趣旨を踏まえた上で各種形態を
取り得る。本実施例では、3つのマルチプルRF受信コイ
ルを用いたパラレルイメージング法の例を示したが、RF
受信コイルの数Nは2以上の任意数を使用可能である。ま
た、倍速数M=2,3の例を示したが、倍速数はM≦Nの範囲
内で選択可能である。さらに、本発明ではグラディエン
トエコーシーケンスについて記載したが、パラレルイメ
ージング法では、シーケンスの形状には依存しない。例
えば、SEシーケンス、FSEシーケンス、EPIシーケンス、
スパイラルシーケンス、SSFPシーケンスなどに適用でき
る。また、三次元計測に本発明を適用する場合は、位相
エンコード方向だけでなく、スライスエンコード方向に
データを間引いて高速化することもできる。或いは、位
相エンコード方向、スライス方向を組み合わせてデータ
を間引き、高速化することもできる。更に、本アルゴリ
ズムを適用して心臓イメージングを行うと、輝点アーチ
ファクトの無い画像が高時間分解能で取得できる。
The present invention is not limited to the contents disclosed in the above embodiments, but can take various forms in consideration of the gist of the present invention. In this embodiment, an example of the parallel imaging method using three multiple RF receiving coils has been described.
The number N of the receiving coils can be an arbitrary number of 2 or more. Also, the example of the multiple speed number M = 2,3 has been described, but the multiple speed number can be selected within the range of M ≦ N. Further, in the present invention, the gradient echo sequence has been described, but the parallel imaging method does not depend on the shape of the sequence. For example, SE sequence, FSE sequence, EPI sequence,
Applicable to spiral sequences, SSFP sequences, etc. Further, when the present invention is applied to three-dimensional measurement, data can be thinned out not only in the phase encoding direction but also in the slice encoding direction to increase the speed. Alternatively, data can be thinned out by combining the phase encoding direction and the slice direction to increase the speed. Further, when cardiac imaging is performed by applying the present algorithm, an image without bright spot artifacts can be acquired with high temporal resolution.

【0037】[0037]

【発明の効果】本発明は以上のように構成されたので、
パラレルイメージング法で輝点アーチファクトを無くす
事ができる。また、全身用ボディコイルが無い装置でも
パラレルイメージング法が可能となる。さらに、全身用
ボディコイルを有する装置においても、マルチプルRF受
信コイルの信号のみでパラレルイメージング法が可能と
なるため、使用チャンネル数を低減でき、装置構成や処
理・データフローを簡略化できる。
The present invention has been configured as described above.
The bright spot artifact can be eliminated by the parallel imaging method. In addition, a parallel imaging method can be performed even in an apparatus having no body coil for the whole body. Further, even in a device having a body coil for the whole body, the parallel imaging method can be performed only by the signal of the multiple RF receiving coil, so that the number of channels used can be reduced, and the device configuration and the processing / data flow can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態における信号処理を説明
する図。
FIG. 1 is a diagram illustrating signal processing according to a first embodiment of the present invention.

【図2】パラレルイメージング法の画像の折り返しを説
明する図。
FIG. 2 is a diagram illustrating the folding of an image by the parallel imaging method.

【図3】本発明が適用されるRFコイルの受信部を示す
図。
FIG. 3 is a diagram showing a receiving unit of an RF coil to which the present invention is applied.

【図4】本発明が適用されるMRI装置の全体構成を示す
図。
FIG. 4 is a diagram showing an overall configuration of an MRI apparatus to which the present invention is applied.

【図5】本発明における画像の折り返しを説明する図。FIG. 5 is a view for explaining image folding in the present invention.

【図6】一般的なグラディエントエコーのシーケンスを
説明する図。
FIG. 6 is a view for explaining a general gradient echo sequence.

【図7】従来のパラレルイメージング法の処理を説明す
る図。
FIG. 7 is a diagram illustrating processing of a conventional parallel imaging method.

【図8】本発明の第2の実施形態における信号処理を説明
する図。
FIG. 8 is a view for explaining signal processing according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

601 高周波パルス、602 スライス選択傾斜磁場、603
位相エンコード傾斜磁場パルス、604 読み出し傾斜
磁場パルス、605 データサンプルウインド、606 エコ
ー信号、607 繰り返し時間間隔、608 画像取得時間、
401 被検体、402 磁石、403 傾斜磁場コイル、404
RFコイル、405 RFプローブ、406 信号検出部、407
信号処理部、408 表示部、409 傾斜磁場電源、410 R
F送信部、411 制御部、412 ベッド
601 high frequency pulse, 602 slice selection gradient magnetic field, 603
Phase encoding gradient magnetic field pulse, 604 read gradient magnetic field pulse, 605 data sample window, 606 echo signal, 607 repetition time interval, 608 image acquisition time,
401 subject, 402 magnet, 403 gradient coil, 404
RF coil, 405 RF probe, 406 signal detector, 407
Signal processing unit, 408 display unit, 409 gradient power supply, 410 R
F transmission unit, 411 control unit, 412 bed

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 24/04 520C Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G01N 24/04 520C

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2個のRF受信コイルを備え、
前記RF受信コイルで受信する核磁気共鳴信号の計測を
計測空間のエンコードステップを間引くよう計測して各
RF受信コイル毎に画像を取得し、前記RF受信コイル
の受信感度分布を用いて各画像の折り返し除去の演算を
行なうと共に前記各画像を結合して1枚の画像を得る制
御手段を有する磁気共鳴イメージング装置において、 前記制御手段は、前記受信感度分布において非画像領域
と画像領域を分けたマスクを作成し、前記マスクを用い
て演算を行なうことを特徴とする磁気共鳴イメージング
装置。
Claims 1. At least two RF receiving coils,
The measurement of the nuclear magnetic resonance signal received by the RF reception coil is measured so as to thin out the encoding step of the measurement space, an image is obtained for each RF reception coil, and the reception sensitivity distribution of the RF reception coil is used to obtain an image. In a magnetic resonance imaging apparatus having control means for performing aliasing removal calculation and combining the images to obtain one image, the control means includes a mask which separates a non-image area and an image area in the reception sensitivity distribution. And performing a calculation using the mask.
【請求項2】 前記制御手段は、前記RF受信コイルを
含む全体領域の受信感度分布において非画像領域と画像
領域を分けたマスクを作成し、各RF受信コイル毎の受
信感度分布と前記マスクを用いて演算を行なうことを特
徴とする請求項1記載の磁気共鳴イメージング装置。
2. The control unit creates a mask in which a non-image area and an image area are separated in a reception sensitivity distribution of an entire area including the RF reception coil, and generates the reception sensitivity distribution and the mask for each RF reception coil. 2. The magnetic resonance imaging apparatus according to claim 1, wherein the calculation is performed using the magnetic resonance imaging apparatus.
【請求項3】 前記制御手段は、前記受信感度分布にお
ける非画像領域は低信号領域であることを特徴とする請
求項1または2記載の磁気共鳴イメージング装置。
3. The magnetic resonance imaging apparatus according to claim 1, wherein the non-image area in the reception sensitivity distribution is a low signal area.
【請求項4】 前記制御手段は、前記RF受信コイルを
含む全体領域の受信感度分布は前記複数のRF受信コイ
ルの信号から演算にて求めることを特徴とする請求項2
記載の磁気共鳴イメージング装置。
4. The control unit according to claim 2, wherein the receiving sensitivity distribution of the entire area including the RF receiving coil is calculated from the signals of the plurality of RF receiving coils.
The magnetic resonance imaging apparatus according to claim 1.
【請求項5】 前記複数のRF受信コイルの受信領域を
含む受信領域を持つ第2のRF受信コイルを備え、前記
制御手段は前記第2のRF受信コイルにより全体領域の
受信感度分布を得ることを特徴とする請求項2記載の磁
気共鳴イメージング装置。
A second RF reception coil having a reception area including a reception area of the plurality of RF reception coils, wherein the control unit obtains a reception sensitivity distribution of the entire area by the second RF reception coil. 3. The magnetic resonance imaging apparatus according to claim 2, wherein:
【請求項6】 少なくとも2個のRF受信コイルを備え、
前記RF受信コイルで受信する核磁気共鳴信号の計測を
計測空間のエンコードステップを間引くよう計測して各
RF受信コイル毎に感度画像及び形態画像を取得し、前
記RF受信コイルの感度画像に基づく感度分布から各形
態画像の折り返し除去の演算を行なうと共に前記各形態
画像を結合して1枚の形態画像を得る制御手段を有する
磁気共鳴イメージング装置において、 前記制御手段は、各RF受信コイルで取得した感度画像
を結合した全体感度画像を作成し、前記全体感度画像を
用いて各RF受信コイルの感度分布を算出し、前記全体
感度画像を用いて画像の非画像領域と画像領域を分ける
マスクを作成し、前記マスクに基づいて演算を行なうこ
とを特徴とする磁気共鳴イメージング装置。
6. At least two RF receiving coils,
The measurement of the nuclear magnetic resonance signal received by the RF receiving coil is performed such that the encoding step in the measurement space is thinned out to obtain a sensitivity image and a morphological image for each RF receiving coil, and the sensitivity based on the sensitivity image of the RF receiving coil is obtained. In a magnetic resonance imaging apparatus having a control unit for performing an operation of removing aliasing of each morphological image from the distribution and combining the morphological images to obtain one morphological image, the control unit obtains a morphological image with each RF receiving coil. A sensitivity image is created by combining the sensitivity images, a sensitivity distribution of each RF receiving coil is calculated using the sensitivity image, and a mask for separating a non-image area and an image area of the image is created using the sensitivity image. And performing an operation based on the mask.
【請求項7】 計測領域全体を受信する第1のRF受信コ
イルと、前記計測領域を少なくとも2つ以上分割した領
域を受信する複数の第2のRF受信コイルを備え、前記
各第2のRF受信コイルで受信する核磁気共鳴信号の計
測を計測空間のエンコードステップを間引くよう計測し
て前記第2のRF受信コイル毎に感度画像及び形態画像
を取得し、前記第1のRF受信コイルによる感度画像及
び前記第2のRF受信コイルによる感度画像から求めた
感度分布から前記形態画像の折り返し除去の演算を行な
うと共に前記各形態画像を結合して1枚の形態画像を得
る制御手段を有する磁気共鳴イメージング装置におい
て、 前記制御手段は、前記受信感度分布において非画像領域
と画像領域を分けたマスクを作成し、前記マスクを用い
て演算を行なうことを特徴とする磁気共鳴イメージング
装置。
7. A first RF receiving coil for receiving an entire measurement area, and a plurality of second RF receiving coils for receiving at least two divided areas of the measurement area, wherein each of the second RF reception coils is provided. The measurement of the nuclear magnetic resonance signal received by the reception coil is measured so as to thin out the encoding step of the measurement space, a sensitivity image and a morphological image are obtained for each of the second RF reception coils, and the sensitivity by the first RF reception coil is obtained. A magnetic resonance apparatus comprising: a control unit for performing an operation for removing aliasing of the morphological image from an image and a sensitivity distribution obtained from the sensitivity image by the second RF receiving coil, and combining the morphological images to obtain one morphological image. In the imaging apparatus, the control unit creates a mask that divides a non-image area and an image area in the reception sensitivity distribution, and performs an operation using the mask. Magnetic resonance imaging apparatus.
JP2001122213A 2001-02-23 2001-04-20 Magnetic resonance imaging system Expired - Fee Related JP4047553B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001122213A JP4047553B2 (en) 2001-04-20 2001-04-20 Magnetic resonance imaging system
EP02703889A EP1371327A4 (en) 2001-02-23 2002-02-25 Magnetic resonance imaging apparatus and method
EP09014853A EP2159590A1 (en) 2001-02-23 2002-02-25 Magnetic resonance imaging apparatus and method
US10/468,963 US6876201B2 (en) 2001-02-23 2002-02-25 Magnetic resonance imaging apparatus and method
PCT/JP2002/001653 WO2002065907A1 (en) 2001-02-23 2002-02-25 Magnetic resonance imaging apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122213A JP4047553B2 (en) 2001-04-20 2001-04-20 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2002315731A true JP2002315731A (en) 2002-10-29
JP2002315731A5 JP2002315731A5 (en) 2005-09-22
JP4047553B2 JP4047553B2 (en) 2008-02-13

Family

ID=18971956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122213A Expired - Fee Related JP4047553B2 (en) 2001-02-23 2001-04-20 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4047553B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202047A (en) * 2002-12-26 2004-07-22 Ge Medical Systems Global Technology Co Llc Receiving coil for mri, and mri system
WO2004093682A1 (en) * 2003-04-24 2004-11-04 Hitachi Medical Corporation Magnetic resonance imaging method and apparatus
JP2005111276A (en) * 2003-10-09 2005-04-28 Ge Medical Systems Global Technology Co Llc Image quality improvement for sense with low signal region
JP2006021023A (en) * 2004-06-11 2006-01-26 Hitachi Medical Corp Magnetic resonance diagnostic system
JP2006130285A (en) * 2004-10-08 2006-05-25 Hitachi Medical Corp Magnetic resonance imaging apparatus
WO2006109550A1 (en) * 2005-03-30 2006-10-19 Hitachi Medical Corporation Magnetic resonance imaging device and method
JP2008006117A (en) * 2006-06-30 2008-01-17 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2008099717A (en) * 2006-10-17 2008-05-01 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2009022319A (en) * 2007-07-17 2009-02-05 Hitachi Medical Corp Magnetic resonance imaging device
JP2009511232A (en) * 2005-10-18 2009-03-19 ターシオップ テクノロジーズ リミテッド ライアビリティ カンパニー Method and apparatus for high gain nuclear magnetic resonance imaging
US7877129B2 (en) 2001-09-13 2011-01-25 Hitachi Medical Corporation Magnetic resonance imaging apparatus and RF reception coil apparatus
JP2011031025A (en) * 2009-07-10 2011-02-17 Toshiba Corp Magnetic resonance imaging device, image processor, and image processing method
JP2013516248A (en) * 2010-01-05 2013-05-13 ナショナル ヘルス リサーチ インスティテューツ Magnetic resonance imaging system
KR20130069494A (en) * 2011-12-16 2013-06-26 지멘스 악티엔게젤샤프트 Method to create an mr image of an examination subject with a magnetic resonance system, as well as a corresponding magnetic resonance system
JP2014236987A (en) * 2013-06-10 2014-12-18 株式会社東芝 Magnetic resonance imaging apparatus
JP2017056092A (en) * 2015-09-18 2017-03-23 株式会社日立製作所 Device and method for magnetic resonance imaging

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877129B2 (en) 2001-09-13 2011-01-25 Hitachi Medical Corporation Magnetic resonance imaging apparatus and RF reception coil apparatus
JP2004202047A (en) * 2002-12-26 2004-07-22 Ge Medical Systems Global Technology Co Llc Receiving coil for mri, and mri system
WO2004093682A1 (en) * 2003-04-24 2004-11-04 Hitachi Medical Corporation Magnetic resonance imaging method and apparatus
JP2005111276A (en) * 2003-10-09 2005-04-28 Ge Medical Systems Global Technology Co Llc Image quality improvement for sense with low signal region
JP2006021023A (en) * 2004-06-11 2006-01-26 Hitachi Medical Corp Magnetic resonance diagnostic system
JP4698231B2 (en) * 2004-06-11 2011-06-08 株式会社日立メディコ Magnetic resonance diagnostic equipment
JP2006130285A (en) * 2004-10-08 2006-05-25 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP4679158B2 (en) * 2004-10-08 2011-04-27 株式会社日立メディコ Magnetic resonance imaging system
WO2006109550A1 (en) * 2005-03-30 2006-10-19 Hitachi Medical Corporation Magnetic resonance imaging device and method
JP2009511232A (en) * 2005-10-18 2009-03-19 ターシオップ テクノロジーズ リミテッド ライアビリティ カンパニー Method and apparatus for high gain nuclear magnetic resonance imaging
JP2008006117A (en) * 2006-06-30 2008-01-17 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2008099717A (en) * 2006-10-17 2008-05-01 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2009022319A (en) * 2007-07-17 2009-02-05 Hitachi Medical Corp Magnetic resonance imaging device
JP2011031025A (en) * 2009-07-10 2011-02-17 Toshiba Corp Magnetic resonance imaging device, image processor, and image processing method
JP2013516248A (en) * 2010-01-05 2013-05-13 ナショナル ヘルス リサーチ インスティテューツ Magnetic resonance imaging system
KR20130069494A (en) * 2011-12-16 2013-06-26 지멘스 악티엔게젤샤프트 Method to create an mr image of an examination subject with a magnetic resonance system, as well as a corresponding magnetic resonance system
KR101683689B1 (en) 2011-12-16 2016-12-07 지멘스 악티엔게젤샤프트 Method to create an mr image of an examination subject with a magnetic resonance system, as well as a corresponding magnetic resonance system
JP2014236987A (en) * 2013-06-10 2014-12-18 株式会社東芝 Magnetic resonance imaging apparatus
WO2014199997A1 (en) * 2013-06-10 2014-12-18 株式会社東芝 Magnetic resonance imaging device
US10365344B2 (en) 2013-06-10 2019-07-30 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus
US10534060B2 (en) 2013-06-10 2020-01-14 Toshiba Medical Systems Corporation Parallel MRI with spatially misregistered signal
JP2017056092A (en) * 2015-09-18 2017-03-23 株式会社日立製作所 Device and method for magnetic resonance imaging

Also Published As

Publication number Publication date
JP4047553B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
CN106569159B (en) Fast pushforward motion correction for MR imaging
EP1830198B1 (en) Data correction apparatus and method
US8073522B2 (en) Method and magnetic resonance apparatus for dynamic magnetic resonance imaging
JP3952247B2 (en) Nuclear magnetic resonance imaging system
CN105308469B (en) A kind of MR imaging method, MR equipment and relevant data carrier
JP4152381B2 (en) Magnetic resonance imaging system
EP1371327A1 (en) Magnetic resonance imaging apparatus and method
US8155419B2 (en) MRI acquisition using sense and highly undersampled fourier space sampling
JP4047553B2 (en) Magnetic resonance imaging system
JP4118108B2 (en) Improved method of sensitivity encoding MRI collection
EP1372110B1 (en) Method and system for image reconstruction
JP4679158B2 (en) Magnetic resonance imaging system
JP5536358B2 (en) Magnetic resonance imaging apparatus and sensitivity correction method
US9316711B2 (en) System and method for accelerated magnetic resonance imaging using spectral sensitivity
JP4975614B2 (en) Magnetic resonance imaging apparatus and method
US7706855B1 (en) System and method for MR data acquisition with uniform fat suppression
JP4980662B2 (en) Magnetic resonance imaging system
US10228434B2 (en) Multi-shot echo planar imaging using reordered segments and RF excitation pulse phase and slice profiles matched across interleaves
JP3983792B2 (en) Nuclear magnetic resonance imaging system
JP4675936B2 (en) Nuclear magnetic resonance imaging system
CN111164444B (en) Dixon-type water/fat separation MR imaging with improved fat displacement correction
JP3952310B2 (en) Nuclear magnetic resonance imaging system
US11474178B2 (en) Method for generating a magnetic resonance image
WO2018001759A1 (en) Diffusion weighted mr imaging using multi-shot epi with motion detection and modified sense reconstruction
JP4817381B2 (en) Magnetic resonance imaging system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4047553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees