JP2002312986A - Optical recording medium, processor and processing method therefor - Google Patents

Optical recording medium, processor and processing method therefor

Info

Publication number
JP2002312986A
JP2002312986A JP2001118073A JP2001118073A JP2002312986A JP 2002312986 A JP2002312986 A JP 2002312986A JP 2001118073 A JP2001118073 A JP 2001118073A JP 2001118073 A JP2001118073 A JP 2001118073A JP 2002312986 A JP2002312986 A JP 2002312986A
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
crystal
current
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001118073A
Other languages
Japanese (ja)
Other versions
JP3830771B2 (en
Inventor
Tatsu Murashita
達 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001118073A priority Critical patent/JP3830771B2/en
Publication of JP2002312986A publication Critical patent/JP2002312986A/en
Application granted granted Critical
Publication of JP3830771B2 publication Critical patent/JP3830771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processor and a processing method for a terabit class rewritable (recordable) optical recording medium by which sufficiently strong regenerative signal light can be detected from a nanopit and information recording, reproduction and erasure can also be repeatedly performed. SOLUTION: This processing (recording, reproduction and erasure) device for an optical recording medium has a conductive probe (1) which faces the surface of a recording medium in contact with the surface of an optical recording medium (11) or in small space of a range in which a tunnel current is caused to flow and is acuminated so as to limit an injection area of current into a phase change recording medium within the area of a nanometer size, and is provided with a pulse power supply (9) which can apply a bias voltage pulsatively, that can cause a probe current (2) capable of heating up to a temperature at which the crystal condition of the phase change recording medium (4) is changed from a high resistance crystal to a low resistance crystal, and a probe current capable of heating up to a temperature at which the crystal condition of the phase change recording medium is changed from a low resistance crystal into a high resistance crystal to flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】近年のインターネット等の高
速・広域通信網による情報配信量の爆発的な増大や、コ
ンピュータソフトの規模や処理データ量の飛躍的増大な
どにより、これらの情報を記録する光記録装置の大容量
化が強く求められている。また、種々の電子機器の小型
化が進み、衛星や移動体(モバイル、ウェアラブル)通
信機器等への搭載も可能な小型軽量の大容量記憶装置の
ニーズが高まっている。これらを背景にして、要求され
る記録容量は短期間に桁違いに増大しており、1m
たり1550テラビット〔1平方インチ当り1テラ(1
12:T)ビット〕以上(テラビット級)の超高密度
の実現が切望されており、その利用範囲と市場規模は非
常に大きい(参考資料:光産業技術振興協会編、「光産
業ロードマップ」)。本発明は、このテラビット級の超
高記録面密度を有する再記録可能(リライタブル)な光
記録装置を実現する光記録媒体およびその処理装置なら
びに処理方法に関する。
BACKGROUND OF THE INVENTION Due to the recent explosive increase in the amount of information distributed by a high-speed and wide-area communication network such as the Internet, and the dramatic increase in the size of computer software and the amount of data processed, optical information for recording such information has been increased. There is a strong demand for large capacity recording devices. In addition, various electronic devices have been miniaturized, and there has been an increasing need for small and lightweight large-capacity storage devices that can be mounted on satellites, mobile (wearable) communication devices, and the like. These were the background, the required storage capacity is several orders of magnitude increase in the short term, 1 m 2 per 1550 terabits [per square inch 1 tera (1
0 12: T) bit] or more (are coveted ultra-high density of realization of terabit-class), the use range and the market size is very large (Reference: Light Industry and Technology Development Association, ed., "Light industry roadmap )). The present invention relates to an optical recording medium for realizing a rewritable (rewritable) optical recording device having an ultra-high recording surface density of the terabit class, a processing device thereof, and a processing method.

【0002】[0002]

【従来の技術】従来から、リライタブル記録装置として
は磁性記録材料の磁化方向の差異を記録単位とした磁気
記録方式が主に用いられている。これには記録媒体と信
号検出機構が一体化したハードディスクや、記録媒体を
信号検出機構と分離して持ち運べるフロッピディスクな
どがある。近年では、記録材料にレーザ光をレンズで集
光・照射し、そのとき生じる記録材料の光学特性の差異
を記録単位として記録・再生する光記録方式の発展が著
しい。光記録方式のリライタブル記録装置の例として
は、コンパクトディスク(CD)やデジタルビデオディ
スク(DVD)、あるいは光磁気ディスク(MOディス
ク)等があり、広く普及している。
2. Description of the Related Art Hitherto, as a rewritable recording apparatus, a magnetic recording system in which a difference in magnetization direction of a magnetic recording material is used as a recording unit has been mainly used. These include a hard disk in which a recording medium and a signal detection mechanism are integrated, and a floppy disk in which the recording medium can be carried separately from the signal detection mechanism. In recent years, there has been a remarkable development of an optical recording system in which laser light is condensed and irradiated onto a recording material by a lens, and the difference in optical characteristics of the recording material generated at that time is recorded / reproduced as a recording unit. Examples of the rewritable recording device of the optical recording system include a compact disk (CD), a digital video disk (DVD), and a magneto-optical disk (MO disk), which are widely used.

【0003】[0003]

【発明が解決しようとする課題】ところで、テラビット
級の記録面密度では記録単位(ピット)のサイズを25
ナノメートル(ナノメートル=10−9m)程度以下と
極めて小さくしなければならない(以下、本文ではこの
ようなナノメータサイズのピットをナノピットと呼
ぶ)。従来から使用されている磁気記録方式には長手磁
気記録方式と垂直磁気記録方式があるが、現在実用化し
ている長手磁気記録方式ではピットサイズがナノメート
ルレベルになると磁区の反転を保持できなくなる物理的
限界(超磁性限界)がある。これにより磁気記録方式の
記録面密度は100ギガ(10:G)ビット程度が上
限とされ、磁気記録方式によるテラビット級記録装置の
実用は困難である。さらに高い面記録密度が期待される
垂直磁化方式は長年研究が行われているが、まだ実用化
のめどは立っていない。
By the way, in the recording area density of the terabit class, the size of the recording unit (pit) is 25.
It has to be extremely small, on the order of nanometers (nanometers = 10 −9 m) or less (hereinafter, such pits of nanometer size are referred to as nanopits). Conventional magnetic recording methods include longitudinal magnetic recording and perpendicular magnetic recording, but with the currently practiced longitudinal magnetic recording, physical domain reversals cannot be maintained when the pit size reaches the nanometer level. There is a theoretical limit (supermagnetic limit). As a result, the recording surface density of the magnetic recording system is limited to about 100 gigabits (10 9 : G) bits, and it is difficult to practically use a terabit-class recording device using the magnetic recording system. It has been made more perpendicular magnetization scheme high surface recording density is expected for many years research, not standing still practical prospect.

【0004】一方、光記録方式では、現状のDVDやC
D等の光ディスクではレンズで絞ったレーザ光の回折限
界により光照射範囲を光の波長の半分(サブミクロンレ
ベル)以下にできないため面記録密度は10Gビット程
度が限界とされ、やはりナノピットを必要とするテラビ
ット級記録装置に適用することができない。そこで、ナ
ノピットを効率良く記録・再生する方法として、導電性
プローブの先端から媒体のナノメータ領域に電流を注入
し、この電流により媒体中で光を励起し、この光を検出
する方法(電流励起発光方式)が提案された。この方式
を用いたリライタブル記録装置の媒体としては、基板上
に、電流注入によって発光する層(発光層)と、さらに
その上に電流によって電気抵抗や光透過率が可逆的に相
変化する材料で形成した層(記録層)を積層したものが
用いられる。この方式では、プローブ電流を媒体内のナ
ノメータサイズの領域にほとんど損失せずに集中的に注
入できるためナノピットを高効率で形成できることと、
励起光がないので信号光検出のSN比が高められる利点
がある。しかし、従来のこの記録方式ではピットの形成
に結晶とアモルファスの間の相変化を用いていたため
に、アモルファスと結晶の間で相変化する場合の体積変
化を抑えるための構造や、アモルファス化に必要な高温
にした時に基板等に熱の影響が及ばないようにするため
の構造等が必要となる問題があった。
On the other hand, in the optical recording system, the current DVD and C
In optical discs such as D, the light irradiation range cannot be reduced to less than half the wavelength of light (submicron level) due to the diffraction limit of the laser beam focused by the lens, so the areal recording density is limited to about 10 Gbits, which also requires nanopits. It cannot be applied to a terabit-class recording device that performs Therefore, as a method for efficiently recording and reproducing nanopits, a method is known in which a current is injected into the nanometer region of a medium from the tip of a conductive probe, light is excited in the medium by the current, and this light is detected (current excitation light emission). Method) was proposed. As a medium for a rewritable recording device using this method, a layer (light emitting layer) which emits light by current injection on a substrate, and a material on which electric resistance and light transmittance reversibly change phase by current are further formed. What laminated | stacked the formed layer (recording layer) is used. In this method, the probe current can be intensively injected into the nanometer-sized area in the medium with little loss, so that nanopits can be formed with high efficiency.
Since there is no pumping light, there is an advantage that the SN ratio of signal light detection can be increased. However, in this conventional recording method, the phase change between the crystal and the amorphous was used for the formation of the pits. There has been a problem that a structure or the like is required to prevent the influence of heat on the substrate or the like when the temperature is raised to a very high temperature.

【0005】本発明の目的は、上記従来技術における問
題点を解消するものであって、ナノピットから十分な強
度の再生信号光を検出せしめると共に、情報の記録・再
生・消去を反復して行えるテラビット級のリライタブル
(再記録可能)な光記録媒体およびその記録・再生・消
去を行う処理装置ならびに処理方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and to detect a reproduction signal light of sufficient intensity from nano-pits and to perform terabit recording / reproducing / erasing of information repeatedly. An object of the present invention is to provide a rewritable (rewritable) optical recording medium of a class and a processing device and a processing method for recording, reproducing, and erasing the optical recording medium.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は特許請求の範囲に記載のような構成とする
ものである。すなわち、請求項1に記載のように、外部
から注入されるエネルギーによって光を発生する発光媒
体の上部に、光透過性があり、かつ外部から注入される
エネルギーによって電気伝導率が可逆的に変化する相変
化記録媒体を積層して構成された光記録媒体であって、
上記相変化記録媒体は、到達する最高温度の差によって
異なる電気抵抗を有する少なくとも2種類の結晶状態を
持つ相変化記録材料よりなる光記録媒体とするものであ
る。
Means for Solving the Problems In order to achieve the above object, the present invention is configured as described in the claims. That is, as described in claim 1, the upper part of the light emitting medium which generates light by the energy injected from the outside has a light transmitting property, and the electric conductivity changes reversibly by the energy injected from the outside. An optical recording medium configured by laminating a phase change recording medium,
The above-mentioned phase change recording medium is an optical recording medium made of a phase change recording material having at least two kinds of crystalline states having different electric resistances depending on a difference in the highest temperature reached.

【0007】また、請求項2に記載のように、請求項1
において、上記発光媒体は電流の注入により発光する直
接遷移型半導体もしくはこれらの材料を含む井戸構造を
有する光記録媒体とするものである。
[0007] Also, as described in claim 2, claim 1
Wherein the light emitting medium is a direct transition semiconductor which emits light by current injection or an optical recording medium having a well structure containing these materials.

【0008】また、請求項3に記載のように、請求項1
または請求項2において、上記相変化記録材料はゲルマ
ニウムとアンチモンとテルルを含む化合物よりなる光記
録媒体とするものである。
[0008] Also, as described in claim 3, claim 1
Alternatively, in the second aspect, the phase change recording material is an optical recording medium made of a compound containing germanium, antimony, and tellurium.

【0009】また、請求項4に記載のように、光記録媒
体の表面に接触し、もしくはトンネル電流が流れる範囲
の微小な間隔をおいて、上記光記録媒体の表面に対向
し、電流の上記相変化記録媒体への注入領域がナノメー
タサイズの領域内に限定されるように、先鋭化した導電
性プローブを有し、上記導電性プローブと上記光記録媒
体との間に、上記相変化記録媒体の結晶状態を高抵抗結
晶から低抵抗結晶へ変化させる温度まで加熱できるプロ
ーブ電流と、上記相変化記録媒体の結晶状態を低抵抗結
晶から高抵抗結晶へ変化させる温度まで加熱できるプロ
ーブ電流と、を流すことができるバイアス電圧をパルス
的に印加することが可能なパルス電源を備えた光記録媒
体の処理装置とするものである。
According to a fourth aspect of the present invention, there is provided an optical recording medium which contacts the surface of the optical recording medium or faces the surface of the optical recording medium at a small interval within a range in which a tunnel current flows. A sharpened conductive probe is provided so that an injection region into the phase change recording medium is limited to a region of nanometer size, and the phase change recording medium is provided between the conductive probe and the optical recording medium. A probe current that can be heated to a temperature at which the crystal state of the phase change recording medium changes from a high resistance crystal to a low resistance crystal, and a probe current that can be heated to a temperature at which the crystal state of the phase change recording medium changes from a low resistance crystal to a high resistance crystal. The present invention is an optical recording medium processing apparatus provided with a pulse power supply capable of applying a bias voltage that can be applied in a pulsed manner.

【0010】また、請求項5に記載のように、請求項4
において、上記光記録媒体中の発光媒体を励起して発光
を生じせしめる手段と、上記発光媒体からの発光を集光
する手段が、光ファイバもしくは光導波路の端面に透明
電極薄膜をコーティングした構造を有する光記録媒体の
処理装置とするものである。
[0010] Also, as described in claim 5, claim 4
In the above, the means for exciting the light emitting medium in the optical recording medium to generate light emission, and the means for condensing the light emitted from the light emitting medium have a structure in which an end face of an optical fiber or an optical waveguide is coated with a transparent electrode thin film. It is a processing device for an optical recording medium having the same.

【0011】また、請求項6に記載のように、光記録媒
体の表面に接触し、もしくはトンネル電流が流れる範囲
の微小な間隔をおいて、上記光記録媒体表面に対向し、
電流の上記相変化記録媒体への注入領域がナノメータサ
イズの領域内に限定されるように、先鋭化した導電性プ
ローブを有する光記録媒体の処理装置を用い、上記相変
化記録媒体の結晶状態を高い電気抵抗を持つ高抵抗結晶
とした光記録媒体の表面部から、記録信号に対応したプ
ローブ電流をパルス的に注入して、高抵抗結晶から低抵
抗結晶へ変化させる温度に加熱して記録信号に対応した
低抵抗結晶のナノピットよりなる記録ピットを形成する
光記録媒体の処理方法とするものである。
According to a sixth aspect of the present invention, the optical recording medium is in contact with the surface of the optical recording medium or opposed to the surface of the optical recording medium at a small interval within a range in which a tunnel current flows.
Using a processing apparatus for an optical recording medium having a sharpened conductive probe so that a region where current is injected into the phase change recording medium is limited to a nanometer-sized region, the crystal state of the phase change recording medium is changed. Probe current corresponding to the recording signal is injected in pulses from the surface of the optical recording medium, which is a high-resistance crystal with high electrical resistance, and heated to a temperature at which the high-resistance crystal changes to a low-resistance crystal. And a method for processing an optical recording medium for forming recording pits composed of nano-pits of a low-resistance crystal corresponding to.

【0012】また、請求項7に記載のように、光記録媒
体の表面に接触し、もしくはトンネル電流が流れる範囲
の微小な間隔をおいて、上記光記録媒体表面に対向し、
電流の上記相変化記録媒体への注入領域がナノメータサ
イズの領域内に限定されるように、先鋭化した導電性プ
ローブを有する光記録媒体の処理装置を用い、上記相変
化記録媒体に記録信号に対応した低抵抗結晶のナノピッ
トよりなる記録ピットを形成した光記録媒体の表面部か
ら、上記相変化記録媒体の低抵抗結晶が変化しない範囲
内のパワーを上記プローブから上記相変化記録媒体の記
録領域に注入し、該記録領域の下部に設けられている発
光媒体からの発光を検出することにより記録の再生を行
う光記録媒体の処理方法とするものである。
According to a seventh aspect of the present invention, the optical recording medium contacts the surface of the optical recording medium or faces the surface of the optical recording medium at a small interval within a range in which a tunnel current flows.
Using a processing device for an optical recording medium having a sharpened conductive probe so that a region where current is injected into the phase change recording medium is limited to a nanometer-sized region, a recording signal is applied to the phase change recording medium. From the surface of the optical recording medium on which the recording pits composed of the corresponding low-resistance crystal nano-pits are formed, the power within the range where the low-resistance crystal of the phase-change recording medium does not change from the probe to the recording area of the phase-change recording medium. And a method for processing an optical recording medium in which recording is reproduced by detecting light emission from a light emitting medium provided below the recording area.

【0013】また、請求項8に記載のように、光記録媒
体の表面に接触し、もしくはトンネル電流が流れる範囲
の微小な間隔をおいて、上記光記録媒体表面に対向し、
電流の上記相変化記録媒体への注入領域がナノメータサ
イズの領域内に限定されるように、先鋭化した導電性プ
ローブを有する光記録媒体の処理装置を用い、上記相変
化記録媒体の結晶状態を低抵抗結晶から高抵抗結晶へ変
化させる温度まで加熱できるプローブ電流を注入するこ
とにより、記録を消去する光記録媒体の処理方法とする
ものである。
According to another aspect of the present invention, the optical recording medium is in contact with the surface of the optical recording medium or opposed to the surface of the optical recording medium at a small interval within a range in which a tunnel current flows.
Using a processing apparatus for an optical recording medium having a sharpened conductive probe so that a region where current is injected into the phase change recording medium is limited to a nanometer-sized region, the crystal state of the phase change recording medium is changed. By injecting a probe current that can be heated to a temperature that changes from a low-resistance crystal to a high-resistance crystal, a method for processing an optical recording medium for erasing recording is performed.

【0014】本発明は、光記録媒体の微小領域へ電流を
供給する手段と、該電流の注入によって光を発生する発
光媒体に、電流の注入によって電気伝導率が可逆的に変
化する相変化記録媒体を積層した光記録媒体と、上記発
光媒体からの発光を検出する手段を備えた光記録装置に
おいて、上記相変化記録媒体として、溶融温度より低い
二つの最高到達温度によって電気抵抗が異なる少なくと
も2種類の結晶間の相変化を生じる材料を用い、その2
種類の結晶状態をピットの有無に対応させることによ
り、アモルファス化に必要な高温を用いることなく、体
積変化や耐熱性の問題の生じない、テラビット級のリラ
イタブルな光記録装置を実現するものである。本発明
は、上記した材料および構成を採用することにより、よ
り少ない電流注入で、情報データの光記録・再生・消去
を可能とするテラビット級のリライタブルな光記録・再
生・消去を実現することができる効果がある。
The present invention provides a means for supplying a current to a minute area of an optical recording medium, and a phase change recording in which the electric conductivity is reversibly changed by the injection of a current in a light emitting medium which generates light by the injection of the current. An optical recording medium comprising a stacked medium and an optical recording device having means for detecting light emission from the light emitting medium, wherein the phase change recording medium has at least two different electric resistances depending on two ultimate temperatures lower than a melting temperature. Using a material that causes a phase change between different types of crystals,
By making the types of crystal states correspond to the presence or absence of pits, it is possible to realize a terabit-class rewritable optical recording device that does not cause a change in volume or a problem of heat resistance without using a high temperature required for amorphization. . The present invention can realize terabit-class rewritable optical recording / reproducing / erasing that enables optical recording / reproducing / erasing of information data with less current injection by employing the above-described materials and configurations. There is an effect that can be done.

【0015】[0015]

【発明の実施の形態】本発明の光記録媒体に用いられる
相変化記録材料として、例えば、GeSb Te
(以下、単にGeSbTeと略記する)の温度履歴と
電気抵抗の関係を図1に模式的に示す。最初、基板上に
スパッタした直後のGeSbTe膜はアモルファス状態
にあり、これを使用前に、いったんT1(約150℃)
とT2(約350℃)の間の温度範囲(温度領域Aと呼
ぶ)に加熱した後、室温まで戻すと結晶Aの状態となる
(図1ではこの過程は省略してある)。結晶Aは数十k
Ω以上の高い電気抵抗を持つ。次に、A結晶をT2から
Tm(溶融温度:約600℃)の間の温度範囲(温度領
域Bと呼ぶ)に再加熱してから冷却すると結晶Bにな
る。結晶Bは数十Ωと低い電気抵抗を持つ。結晶Bを再
度温度範囲Aに過熱して冷却すると再度結晶Aになる。
このようにGeSbTeは経験した温度履歴により結晶
Aと結晶Bの間を相変化し、それに伴って電気抵抗が3
桁程度以上変化する。Tm以上の高温にしなければアモ
ルファスに戻ることはない。すなわち、GeSbTe膜
には、高抵抗の結晶Aと低抵抗の結晶Bが存在し、最高
温度の履歴によって結晶Aと結晶Bとの間を相変化する
ことを示すものである。
BEST MODE FOR CARRYING OUT THE INVENTION Used for an optical recording medium of the present invention
As a phase change recording material, for example, Ge2Sb 2Te
5(Hereinafter simply referred to as GeSbTe) temperature history and
FIG. 1 schematically shows the relationship between the electric resistances. First on the board
GeSbTe film immediately after sputtering is amorphous
Before use, once T1 (about 150 ℃)
Temperature range between T2 and T2 (about 350 ° C)
After heating the mixture to room temperature, the mixture returns to room temperature, and becomes the state of crystal A.
(This step is omitted in FIG. 1). Crystal A is dozens of k
Has a high electrical resistance of Ω or higher. Next, A crystal from T2
Tm (melting temperature: about 600 ° C)
Re-heated to region B)
You. Crystal B has a low electric resistance of several tens Ω. Crystal B
When it is heated to the temperature range A and cooled, it becomes the crystal A again.
As described above, GeSbTe is crystallized according to the temperature history experienced.
A changes phase between A and crystal B, and accordingly, the electric resistance becomes 3
It changes by more than an order of magnitude. Unless the temperature is higher than Tm
Never return to Rufus. That is, a GeSbTe film
Has a high-resistance crystal A and a low-resistance crystal B,
Phase change between crystal A and crystal B depending on temperature history
It shows that.

【0016】図1で示した特性を利用した本発明の基本
的な実施の形態を、図2を用いて説明する。ここで、1
は導電集光プローブ、2はプローブ電流(電子)、3は
表面保護層、4は相変化記録媒体(GeSbTe)、4
aは相変化記録媒体中の結晶Aの領域(初期状態)、4
bは相変化記録媒体中の結晶Bの領域(ナノピットと呼
ぶ)、5は発光媒体、6は電極(基板が絶縁性の場
合)、6′は電極(基板が導電性の場合)、7は基板、
8は光、9は正孔、10はパルス電源、11は光記録媒
体を示す。
A basic embodiment of the present invention utilizing the characteristics shown in FIG. 1 will be described with reference to FIG. Where 1
Is a conductive light collecting probe, 2 is a probe current (electrons), 3 is a surface protective layer, 4 is a phase change recording medium (GeSbTe), 4
a is a region of crystal A in the phase change recording medium (initial state);
b is a region of crystal B in the phase change recording medium (referred to as nano pits), 5 is a light emitting medium, 6 is an electrode (when the substrate is insulative), 6 'is an electrode (when the substrate is conductive), 7 is substrate,
Reference numeral 8 denotes light, 9 denotes holes, 10 denotes a pulse power supply, and 11 denotes an optical recording medium.

【0017】導電集光プローブ1は、例えば先端をピッ
トサイズ程度まで先鋭化した光ファイバの表面に透明導
電膜を被覆した構造とする。プローブ先端は、導電性と
透明性の両方を有し、相変化記録媒体4にトンネル電流
を注入すると同時に発光媒体5からの光を集光する。な
お、この実施の形態では電流注入と集光を同一プローブ
で行う場合について述べているが、電流注入は導電プロ
ーブで行い集光は探針とは別に設置した集光素子(例え
ばレンズや反射鏡)で行う構成も可能である。基板7の
上に電極6(絶縁性基板の場合のみ)と発光媒体5を積
層する。発光媒体5は電流の注入により発光する材料や
構造体であり、例えば直接遷移型半導体であるAlGa
As、GaN、InP等や、あるいはこれらの材料を含
んだ井戸構造体よりなる発光媒体5の上に相変化記録媒
体4を積層する。ここでは相変化記録材料としてGeS
bTeを用いた場合の例を示す。スパッタで成膜された
直後のGeSbTeはアモルファス状態となっている。
これを基板ごと、いったん温度領域Aに加熱して室温に
戻すと結晶Aになる。数十kΩ以上の高い電気抵抗を持
つ。これを初期状態とする。
The conductive light collecting probe 1 has a structure in which a transparent conductive film is coated on the surface of an optical fiber whose tip is sharpened to, for example, a pit size. The probe tip has both conductivity and transparency, and injects a tunnel current into the phase change recording medium 4 and collects light from the light emitting medium 5 at the same time. In this embodiment, the case where the current injection and the light collection are performed by the same probe is described. However, the current injection is performed by the conductive probe, and the light collection is performed by a light collection element (for example, a lens or a reflecting mirror) provided separately from the probe. ) Is also possible. The electrode 6 (only in the case of an insulating substrate) and the light emitting medium 5 are laminated on the substrate 7. The light-emitting medium 5 is a material or a structure that emits light when current is injected, for example, AlGa that is a direct transition semiconductor.
The phase-change recording medium 4 is laminated on a light-emitting medium 5 composed of As, GaN, InP, or the like, or a well structure containing these materials. Here, GeS is used as the phase change recording material.
An example in the case of using bTe is shown. GeSbTe immediately after being formed by sputtering is in an amorphous state.
Once this is heated together with the substrate to a temperature region A and returned to room temperature, it becomes a crystal A. It has a high electric resistance of several tens kΩ or more. This is an initial state.

【0018】図2は、本発明のテラビット級超高密度光
記録装置の構成の一例を示す模式図である。なお、ここ
では集光手段として透明で導電性のプローブを用いてプ
ローブから集光する実施の形態を示したが、電流注入プ
ローブとは別個に集光用のレンズや凹面鏡を設置した構
造であっても適用可能である。
FIG. 2 is a schematic diagram showing an example of the configuration of a terabit-class ultrahigh-density optical recording device according to the present invention. Although the embodiment in which a transparent and conductive probe is used as the light collecting means to collect light from the probe has been described here, a structure in which a focusing lens or a concave mirror is provided separately from the current injection probe is used. It is also applicable.

【0019】(1)記録 結晶Aの膜の媒体表面上でプローブを走査する。ピット
を形成すべき位置にプローブが来たら、プローブと媒体
表面との間に、GeSbTe膜が温度領域Bまで加熱さ
れるようなプローブ電流をパルス的に注入する。いった
ん、この温度を経験したGeSbTeは結晶Bとなって
室温に戻る。結晶BとなったGeSbTeは電気抵抗が
数十Ωまで著しく低下する。一方、光透過率は結晶Aと
ほとんど変わらない。この結晶Bの領域をピットとす
る。サイズはプローブ電流で制御可能であり直径10n
m程度まで小さくできる。この作業をプローブを移動し
ながら繰り返すことによりGeSbTe膜上に記録信号
に対応したナノピットが順次形成されてゆく。温度領域
BはGeSbTeの溶融温度(約600℃)より低いの
で、アモルファスを用いる光記録方式よりも少ないプロ
ーブ電流で記録できる。さらに、耐熱のための媒体構造
等も軽減できる利点がある。
(1) Recording A probe is scanned over the medium surface of the crystal A film. When the probe comes to the position where the pit is to be formed, a probe current such that the GeSbTe film is heated to the temperature region B is injected between the probe and the medium surface in a pulsed manner. Once the GeSbTe which has experienced this temperature becomes crystal B, it returns to room temperature. The electric resistance of GeSbTe which has become crystal B is significantly reduced to several tens Ω. On the other hand, the light transmittance is almost the same as that of the crystal A. The region of the crystal B is defined as a pit. Size can be controlled by probe current and diameter is 10n
m. By repeating this operation while moving the probe, nano-pits corresponding to the recording signal are sequentially formed on the GeSbTe film. Since the temperature region B is lower than the melting temperature of GeSbTe (about 600 ° C.), recording can be performed with a smaller probe current than in the optical recording method using amorphous. Further, there is an advantage that the medium structure for heat resistance can be reduced.

【0020】(2)再生、 次に、GeSbTeが温度領域Aに達しない程度のプロ
ーブ電流を媒体に注入する。ピット形成していない結晶
Aの上では電気抵抗が高いためプローブ電流が小さく、
発光は検出されない。一方、ピットを形成した結晶B上
では電気抵抗が小さいため大きなプローブ電流がGeS
bTe層を貫通して流れる。この電流はGeSbTe層
の下の発光媒体に流入し光が強く放出される。この光を
集光して検出する。発光強度はプローブ電流に比例す
る。結晶Aと結晶Bの抵抗の比は少なくとも3桁以上と
著しく大きいので、発光強度はピットの有無に対応して
大きく変化する。この発光強度の変化を読み取ることに
より記録を再生できる。集光は探針とは別個に設置され
たレンズや凹面鏡で集光することは可能であるが、透明
で導電性があるプローブを用いてそのプローブ先端で集
光する手段を用いた方が、光をより高感度で検出するこ
とができる。なお、発光媒体を電子閉じ込め構造にする
ことにより、注入した電流がプローブ直下の発光媒体の
狭い空間に局在するので、プローブによる集光効率を高
めることができる。
(2) Reproduction Next, a probe current that does not allow GeSbTe to reach the temperature range A is injected into the medium. On the crystal A where no pits are formed, the probe current is small due to the high electric resistance,
No luminescence is detected. On the other hand, on the crystal B on which the pits are formed, a large probe current is applied to GeS due to low electric resistance.
It flows through the bTe layer. This current flows into the luminescent medium below the GeSbTe layer, and light is strongly emitted. This light is collected and detected. The emission intensity is proportional to the probe current. Since the resistance ratio between the crystal A and the crystal B is as large as at least three digits or more, the light emission intensity changes greatly depending on the presence or absence of pits. The recording can be reproduced by reading the change in the light emission intensity. It is possible to collect light with a lens or concave mirror installed separately from the probe, but it is better to use a transparent and conductive probe and use a means to collect light at the tip of the probe, Light can be detected with higher sensitivity. When the light emitting medium has the electron confinement structure, the injected current is localized in a narrow space of the light emitting medium immediately below the probe, so that the efficiency of light collection by the probe can be increased.

【0021】(3)消去 結晶Bを再度温度領域Aまで電流加熱したのち室温まで
冷却すると結晶Aに相変化し結晶Bは消失する。これに
より、ナノピットすなわち記録データを消去できる。室
温では結晶Aと結晶Bのどちらの状態も安定なので、テ
ラビット光記録装置に必要なナノピットの記録、読み出
し(再生)、消去の動作が実現できる。
(3) Erasing After heating the crystal B again to the temperature range A and then cooling it to room temperature, the phase changes to the crystal A and the crystal B disappears. Thereby, the nanopits, that is, the recorded data can be erased. At room temperature, both the crystal A and the crystal B are stable, so that the nanopit recording, reading (reproducing), and erasing operations required for the terabit optical recording device can be realized.

【0022】[0022]

【発明の効果】本発明の光記録媒体およびその処理装置
ならびに処理方法によれば、アモルファス状態を利用す
る光記録装置に比べ、より小さなプローブ電流で安定し
て動作するテラビット級の超高密度のリライタブル光記
録装置を実現することが可能となる。
According to the optical recording medium, the processing apparatus and the processing method of the present invention, a terabit-class ultra-high-density terabit-class stably operated with a smaller probe current than an optical recording apparatus utilizing an amorphous state. A rewritable optical recording device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態で例示した相変化記録材料
であるGeSbTeの温度履歴と電気抵抗との関
係を示すグラフ。
FIG. 1 is a graph showing a relationship between a temperature history and electric resistance of Ge 2 Sb 2 Te 5 which is a phase change recording material exemplified in the embodiment of the present invention.

【図2】本発明の実施の形態で例示したテラビット級超
高密度光記録装置の構成を示す模式図。
FIG. 2 is a schematic diagram showing a configuration of a terabit-class ultra-high-density optical recording device exemplified in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…導電集光プローブ 2…プローブ電流(電子) 3…表面保護層 4…相変化記録媒体 4a…結晶Aの領域(初期状態) 4b…結晶Bの領域(ナノピット) 5…発光媒体 6…電極(基板が絶縁性の場合) 6′…電極(基板が導電性の場合) 7…基板 8…光 9…正孔 10…パルス電源 11…光記録媒体 DESCRIPTION OF SYMBOLS 1 ... Conduction condensing probe 2 ... Probe current (electron) 3 ... Surface protection layer 4 ... Phase change recording medium 4a ... Crystal A area (initial state) 4b ... Crystal B area (nanopit) 5 ... Light emitting medium 6 ... Electrode (When the substrate is insulative) 6 '... Electrode (When the substrate is conductive) 7 ... Substrate 8 ... Light 9 ... Hole 10 ... Pulse power supply 11 ... Optical recording medium

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】外部から注入されるエネルギーによって光
を発生する発光媒体の上部に、光透過性があり、かつ外
部から注入されるエネルギーによって電気伝導率が可逆
的に変化する相変化記録媒体を積層して構成された光記
録媒体であって、上記相変化記録媒体は、到達する最高
温度の差によって異なる電気抵抗を有する少なくとも2
種類の結晶状態を持つ相変化記録材料よりなることを特
徴とする光記録媒体。
1. A phase-change recording medium having a light-transmitting property and having an electric conductivity reversibly changed by externally injected energy is provided above a light-emitting medium which generates light by externally injected energy. An optical recording medium formed by lamination, wherein the phase-change recording medium has at least two electric resistances that differ according to a difference in maximum temperature reached.
An optical recording medium comprising a phase change recording material having various crystal states.
【請求項2】請求項1において、上記発光媒体は電流の
注入により発光する直接遷移型半導体もしくはこれらの
材料を含む井戸構造を有することを特徴とする光記録媒
体。
2. An optical recording medium according to claim 1, wherein said light emitting medium has a direct transition type semiconductor emitting light by current injection or a well structure containing these materials.
【請求項3】請求項1または請求項2において、上記相
変化記録材料はゲルマニウムとアンチモンとテルルを含
む化合物よりなることを特徴とする光記録媒体。
3. An optical recording medium according to claim 1, wherein said phase change recording material comprises a compound containing germanium, antimony and tellurium.
【請求項4】光記録媒体の表面に接触し、もしくはトン
ネル電流が流れる範囲の微小な間隔をおいて、上記光記
録媒体の表面に対向し、電流の上記相変化記録媒体への
注入領域がナノメータサイズの領域内に限定されるよう
に、先鋭化した導電性プローブを有し、上記導電性プロ
ーブと上記光記録媒体との間に、上記相変化記録媒体の
結晶状態を高抵抗結晶から低抵抗結晶へ変化させる温度
まで加熱できるプローブ電流と、上記相変化記録媒体の
結晶状態を低抵抗結晶から高抵抗結晶へ変化させる温度
まで加熱できるプローブ電流と、を流すことができるバ
イアス電圧をパルス的に印加することが可能なパルス電
源を備えたことを特徴とする光記録媒体の処理装置。
4. A region for injecting current into the phase-change recording medium, wherein the region is in contact with the surface of the optical recording medium or at a minute interval within a range in which a tunnel current flows, facing the surface of the optical recording medium. It has a sharpened conductive probe so as to be limited to the nanometer-sized region, and between the conductive probe and the optical recording medium, changes the crystal state of the phase-change recording medium from a high-resistance crystal to a low-resistance crystal. A bias voltage that allows a probe current that can be heated to a temperature at which the crystal state of the phase change recording medium is changed from a low-resistance crystal to a high-resistance crystal to a probe current that can be heated to a temperature at which the phase change recording medium changes to a high-resistance crystal to be pulse-like is applied. An optical recording medium processing apparatus, comprising: a pulse power supply that can be applied to an optical recording medium.
【請求項5】請求項4において、上記光記録媒体中の発
光媒体を励起して発光を生じせしめる手段と、上記発光
媒体からの発光を集光する手段が、光ファイバもしくは
光導波路の端面に透明電極薄膜をコーティングした構造
を有することを特徴とする光記録媒体の処理装置。
5. The optical recording medium according to claim 4, wherein the means for exciting the light emitting medium in the optical recording medium to generate light emission and the means for condensing light emitted from the light emitting medium are provided on an end face of an optical fiber or an optical waveguide. An optical recording medium processing apparatus having a structure coated with a transparent electrode thin film.
【請求項6】光記録媒体の表面に接触し、もしくはトン
ネル電流が流れる範囲の微小な間隔をおいて、上記光記
録媒体表面に対向し、電流の上記相変化記録媒体への注
入領域がナノメータサイズの領域内に限定されるよう
に、先鋭化した導電性プローブを有する光記録媒体の処
理装置を用い、上記相変化記録媒体の結晶状態を高い電
気抵抗を持つ高抵抗結晶とした光記録媒体の表面部か
ら、記録信号に対応したプローブ電流をパルス的に注入
して、高抵抗結晶から低抵抗結晶へ変化させる温度に加
熱して記録信号に対応した低抵抗結晶のナノピットより
なる記録ピットを形成することを特徴とする光記録媒体
の処理方法。
6. A region in which a current is injected into the phase change recording medium in contact with the surface of the optical recording medium or at a small interval in a range in which a tunnel current flows, and the current is injected into the phase change recording medium in a nanometer range. An optical recording medium in which the crystal state of the phase-change recording medium is a high-resistance crystal having a high electric resistance, using an optical recording medium processing apparatus having a sharpened conductive probe so as to be limited to the area of the size. A probe current corresponding to a recording signal is injected in a pulsed manner from the surface of the substrate, and heated to a temperature at which a high-resistance crystal changes to a low-resistance crystal to form a recording pit comprising nano-pits of a low-resistance crystal corresponding to the recording signal. A method for processing an optical recording medium, comprising:
【請求項7】光記録媒体の表面に接触し、もしくはトン
ネル電流が流れる範囲の微小な間隔をおいて、上記光記
録媒体表面に対向し、電流の上記相変化記録媒体への注
入領域がナノメータサイズの領域内に限定されるよう
に、先鋭化した導電性プローブを有する光記録媒体の処
理装置を用い、上記相変化記録媒体に記録信号に対応し
た低抵抗結晶のナノピットよりなる記録ピットを形成し
た光記録媒体の表面部から、上記相変化記録媒体の低抵
抗結晶が変化しない範囲内のパワーを上記プローブから
上記相変化記録媒体の記録領域に注入し、該記録領域の
下部に設けられている発光媒体からの発光を検出するこ
とにより記録の再生を行うことを特徴とする光記録媒体
の処理方法。
7. A region in which a current is injected into the phase-change recording medium in contact with the surface of the optical recording medium or at a minute interval in a range in which a tunnel current flows. Using a processing device for an optical recording medium having a sharpened conductive probe so as to be limited to the area of the size, a recording pit composed of nano-pits of a low-resistance crystal corresponding to a recording signal is formed on the phase-change recording medium. From the surface portion of the optical recording medium, a power within a range where the low-resistance crystal of the phase change recording medium does not change is injected from the probe into the recording region of the phase change recording medium, and provided below the recording region. A method for processing an optical recording medium, wherein recording and reproduction are performed by detecting light emission from an existing light emitting medium.
【請求項8】光記録媒体の表面に接触し、もしくはトン
ネル電流が流れる範囲の微小な間隔をおいて、上記光記
録媒体表面に対向し、電流の上記相変化記録媒体への注
入領域がナノメータサイズの領域内に限定されるよう
に、先鋭化した導電性プローブを有する光記録媒体の処
理装置を用い、上記相変化記録媒体の結晶状態を低抵抗
結晶から高抵抗結晶へ変化させる温度まで加熱できるプ
ローブ電流を注入することにより、記録を消去すること
を特徴とする光記録媒体の処理方法。
8. A phase in which current is injected into the phase-change recording medium in contact with the surface of the optical recording medium or at a minute interval within a range in which a tunnel current flows. Using a processing apparatus for an optical recording medium having a sharpened conductive probe so as to be limited to the area of the size, heating to a temperature at which the crystal state of the phase change recording medium changes from a low-resistance crystal to a high-resistance crystal. A method for processing an optical recording medium, wherein the recording is erased by injecting a probe current that can be used.
JP2001118073A 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof Expired - Fee Related JP3830771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118073A JP3830771B2 (en) 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001118073A JP3830771B2 (en) 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof

Publications (2)

Publication Number Publication Date
JP2002312986A true JP2002312986A (en) 2002-10-25
JP3830771B2 JP3830771B2 (en) 2006-10-11

Family

ID=18968520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118073A Expired - Fee Related JP3830771B2 (en) 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof

Country Status (1)

Country Link
JP (1) JP3830771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644887B1 (en) 2004-09-07 2006-11-15 엘지전자 주식회사 Heat Assisted Data Writing Apparatus for SPM Data Storage and Writing Method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644887B1 (en) 2004-09-07 2006-11-15 엘지전자 주식회사 Heat Assisted Data Writing Apparatus for SPM Data Storage and Writing Method thereof

Also Published As

Publication number Publication date
JP3830771B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US4773060A (en) Optical information recording device
JP2602608B2 (en) Optical data storage
JP2001101708A (en) Recording medium, recording device and recording method
JPH07320298A (en) Phase changing type optical disk
KR100399052B1 (en) Apparatus for recording and reproducing high-density information using multi-functional probe
WO2013014935A1 (en) Recording medium, optical information device and method for producing recording medium
JP3076412B2 (en) Optical information recording medium and optical information recording / reproducing method
US7057997B2 (en) Class of electron beam based data storage devices and methods of use thereof
JPH08212604A (en) Method and device for information recording and reproducing
JP3830771B2 (en) Optical recording medium, processing apparatus and processing method thereof
JP3842059B2 (en) Optical recording medium, processing apparatus and processing method thereof
CN1316455C (en) High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer
JP2005175202A (en) Recording element
JP2002063722A (en) Method for recording optical information and optical information recording medium
JP3792546B2 (en) Optical recording device
US7170771B2 (en) Method of reading a data bit including detecting conductivity of a volume of alloy exposed to an electron beam
JPH11144319A (en) Optical information recording medium and recording and reproducing method
JP2003257097A (en) Optical recording medium, processor and processing method therefor
Saito et al. Phase change materials for optical disc and display applications
JP4998224B2 (en) Optical information recording medium
JP4381540B2 (en) Reproduction method of optical recording medium
KR100763364B1 (en) phase change type optical disk
JP2537910B2 (en) Optical information recording / reproducing / erasing method
JP2004185737A (en) Near-field light probes and near-field light recording and reproducing device
JP2001155392A (en) Phase transition type recording medium and recording/ reproducing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees