JP2002310787A - Sunshine sensor - Google Patents

Sunshine sensor

Info

Publication number
JP2002310787A
JP2002310787A JP2001108806A JP2001108806A JP2002310787A JP 2002310787 A JP2002310787 A JP 2002310787A JP 2001108806 A JP2001108806 A JP 2001108806A JP 2001108806 A JP2001108806 A JP 2001108806A JP 2002310787 A JP2002310787 A JP 2002310787A
Authority
JP
Japan
Prior art keywords
lens
light receiving
sensor
light
receiving lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001108806A
Other languages
Japanese (ja)
Other versions
JP4945030B2 (en
Inventor
Yasushi Tanida
安 谷田
Ryutaro Owada
竜太郎 大和田
Toshihiro Oikawa
俊広 及川
Takuya Kushimoto
琢也 久志本
Masanori Ono
雅典 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2001108806A priority Critical patent/JP4945030B2/en
Publication of JP2002310787A publication Critical patent/JP2002310787A/en
Application granted granted Critical
Publication of JP4945030B2 publication Critical patent/JP4945030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sunshine sensor which can solve the problem that, when the conventional sunshine sensor is attached to a dashboard, sunlight is reflected by the light receiving lens of the sensor and reaches the eyes of a crew and, when the surface of the lens is roughened, the measurement accuracy of he sensor drops and the appropriate control of an air conditioner becomes difficult. SOLUTION: This sunshine sensor is composed of a measuring module composed of a plurality of photoreceptor elements 2a-3d, and a light receiving lens 3 covering the elements 2a-2d; and a semispherical reflection preventing lens 4 which coaxially covers the lens 3 at an appropriate interval and has a fixed thickness, and the external surface of which is subjected to diffusion treatment 4b. Consequently, the surface of the sensor 1 can be roughened without exerting any influence upon the substantial measurement accuracy of the sensor 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用に設けられ
た空調装置を制御するときなどに用いられる日照センサ
に関するものであり、詳細には、太陽の仰角を測定し、
例えば、車窓からの直射光が車内に射し込み乗員が暑さ
を感じると判断されるときには、空調装置の出力を上げ
るなど、一層に緻密な制御を行わせるために用いられる
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sunshine sensor used for controlling an air conditioner provided for a vehicle, and more particularly, to measuring an elevation angle of the sun.
For example, when it is determined that direct light from the vehicle window radiates into the vehicle and the occupant feels heat, the occupant is used to perform more precise control such as increasing the output of the air conditioner.

【0002】[0002]

【従来の技術】従来のこの種の日照センサ90の構成の
例を示すものが図5および図6であり、この日照センサ
90は4個が正方形に配置された受光素子91(a〜
d)と、この受光素子91(a〜d)を覆う略半球状と
した受光レンズ92とから構成されている。
2. Description of the Related Art FIGS. 5 and 6 show an example of the configuration of a conventional sunshine sensor 90 of this type. The sunshine sensor 90 has four light receiving elements 91 (a to 91a) arranged in a square.
d) and a substantially hemispherical light receiving lens 92 covering the light receiving elements 91 (a to d).

【0003】このときに、前記受光レンズ92は、図中
に矢印Hで示す前方の水平方向からの光が入射するとき
には、受光素子91b(および受光素子91d)の後端
に光が到達するように形成されており、このようにする
ことで、この状態においては受光レンズ92に入射した
光のほとんどが受光素子91bに達するものとなる。
At this time, when light from the front in the horizontal direction indicated by arrow H in the drawing enters the light receiving lens 92, the light reaches the rear end of the light receiving element 91b (and the light receiving element 91d). By doing so, in this state, most of the light incident on the light receiving lens 92 reaches the light receiving element 91b.

【0004】そして、太陽の仰角が次第に増加していく
と、受光素子91aに配布される光量も次第に増え、仰
角が90゜に達すると、受光素子91bと受光素子91
aとには同じ光量が配布されるものとなる。従って、受
光素子91aの出力を受光素子91bの出力で除すれ
ば、得られる結果は略太陽の仰角に略 比例するものと
なり、即ち、太陽の仰角が測定できるものとなる。尚、
前記日照センサ90の車両への装着に当たってはダッシ
ュボード上など車室内で且つ太陽光を受けやすい場所が
選択されることが多い。
When the elevation angle of the sun gradually increases, the amount of light distributed to the light receiving element 91a also gradually increases. When the elevation angle reaches 90 °, the light receiving element 91b and the light receiving element 91a are increased.
The same light amount is distributed to a. Therefore, if the output of the light receiving element 91a is divided by the output of the light receiving element 91b, the obtained result is substantially proportional to the elevation angle of the sun, that is, the elevation angle of the sun can be measured. still,
When mounting the sunshine sensor 90 on a vehicle, a place that is easily received by sunlight, such as on a dashboard, is often selected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
た従来の構成の日照センサ90においては、前記受光レ
ンズ92が滑面で構成されているものであるので、太陽
光の受光レンズ92の面で反射する光が運転者などの視
界に達して、例えば幻惑感を生じさせたり、或いは、注
意力が散漫となるなど運転操作を阻害する問題点を生じ
ている。
However, in the above-described conventional sunshine sensor 90, since the light receiving lens 92 is formed of a smooth surface, the sunlight is reflected by the surface of the light receiving lens 92. Such light may reach the field of view of the driver or the like, causing a dazzling sensation or disturbing the driving operation, such as distraction.

【0006】この問題の解決のためには、前記受光レン
ズ92の表面にシボ加工など粗面処理を行い、反射光を
拡散させる手段が提案されているが、この場合には、太
陽の仰角に応じて前記受光レンズ92が各受光素子91
に適宜な割合として光を配布する性能も低下して太陽仰
角の測定が不正確となり、空調装置の制御精度が低下し
て乗員の快適性が損なわれるものとなり、適切な解決手
段とはならない。
In order to solve this problem, a means has been proposed in which the surface of the light-receiving lens 92 is subjected to a roughening treatment such as graining to diffuse the reflected light. Accordingly, the light receiving lens 92 is
In addition, the performance of distributing light as an appropriate ratio also decreases, so that the measurement of the solar elevation angle becomes inaccurate, the control accuracy of the air conditioner decreases, and the comfort of the occupants is impaired, which is not an appropriate solution.

【0007】[0007]

【課題を解決するための手段】本発明は前記した従来の
課題を解決するための具体的手段として、所定の配列と
された複数の受光素子と該受光素子を覆う受光レンズと
から成る測定モジュールと、前記測定モジュールの前記
受光レンズと同芯とし、この測定モジュールを適宜の間
隙をもって覆う一定肉厚の半球状とし且つ外面に拡散処
理が施された反射防止レンズとから成ることを特徴とす
る日照センサを提供することで、太陽仰角の測定精度を
損なうことなく乗員に対する受光レンズによる反射光も
低減させて課題を解決するものである。
According to the present invention, there is provided a measuring module comprising a plurality of light receiving elements arranged in a predetermined array and a light receiving lens covering the light receiving elements. And an anti-reflection lens that is coaxial with the light-receiving lens of the measurement module, has a constant thickness, is hemispherical and covers the measurement module with an appropriate gap, and has an outer surface subjected to diffusion processing. By providing a sunshine sensor, the problem is solved by reducing the light reflected by the light receiving lens to the occupant without impairing the measurement accuracy of the sun elevation angle.

【0008】[0008]

【発明の実施の形態】つぎに、本発明を図に示す実施形
態に基づいて詳細に説明する。図1および図2に符号1
で示すものは本発明に係る日照センサであり、この日照
センサ1は太陽の仰角、車両に対する方位角を測定し、
一層に車内状況に合わせた空調装置の制御を行うために
車両に取付けられるものである点は従来例のものと同様
である。
Next, the present invention will be described in detail based on an embodiment shown in the drawings. 1 and FIG.
Is a sunshine sensor according to the present invention, the sunshine sensor 1 measures the elevation angle of the sun, the azimuth angle to the vehicle,
It is the same as the conventional example in that the air conditioner is mounted on the vehicle to further control the air conditioner according to the situation inside the vehicle.

【0009】また、上記太陽の仰角、方位角を測定する
ための構成としては、例えば4個など複数の受光素子2
(a〜d)と、これら受光素子2(a〜d)を覆う1個
の略半球状の受光レンズ3とを基本とするが、前記受光
レンズ3は、例えばメニスカスレンズ状などとしても良
いものである。尚、ここでの説明は従来例と同様に4個
の受光素子2(a〜d)と、1個の略半球状の受光レン
ズ3とから成るものとして行う。
As a configuration for measuring the elevation angle and azimuth angle of the sun, a plurality of light receiving elements 2 such as four
(Ad) and one substantially hemispherical light-receiving lens 3 that covers these light-receiving elements 2 (ad). The light-receiving lens 3 may be, for example, a meniscus lens. It is. Note that the description here is made of four light receiving elements 2 (a to d) and one substantially hemispherical light receiving lens 3 as in the conventional example.

【0010】ここで、本発明では上記受光素子2(a〜
d)と受光レンズ3とに加えて、この受光レンズ3を略
半球状に覆う反射防止レンズ4を設け、この反射防止レ
ンズ4の外表面である凸球面4aにシボ加工などの粗面
処理4bを行うことで、乗員に対する幻惑の発生を防止
すると共に、粗面処理4bを行ったことによる測定精度
の低下を防ぐものとしている。
Here, in the present invention, the light receiving elements 2 (a to
In addition to d) and the light-receiving lens 3, an anti-reflection lens 4 is provided to cover the light-receiving lens 3 in a substantially hemispherical shape. Is performed, the illusion to the occupant is prevented from occurring, and a decrease in measurement accuracy due to the rough surface treatment 4b is prevented.

【0011】前記反射防止レンズ4は、前記受光レンズ
3と同等、若しくは、より高い屈折率を有する樹脂部材
など透明部材を使用して形成されるものであり、前記受
光レンズ3が半球状である場合には、反射防止レンズ4
の凸球面4aも前記受光レンズ3と同じ位置に中心Pを
有する同芯の半球状とされている。
The anti-reflection lens 4 is formed using a transparent member such as a resin member having a refractive index equal to or higher than that of the light receiving lens 3, and the light receiving lens 3 is hemispherical. In the case, the anti-reflection lens 4
The convex spherical surface 4a is also a concentric hemisphere having a center P at the same position as the light receiving lens 3.

【0012】また、前記反射防止レンズ4は内面が凹球
面4cとされ、この凹球面4cも前記凸球面4aと同じ
位置に中心Pを有するものとされ、従って、反射防止レ
ンズ4は一定の肉厚tを有する中空のドーム状となり、
前記受光レンズ3との間には、一定間隔を有する空気層
5が存在するものとなっている。
The antireflection lens 4 has a concave spherical surface 4c on the inner surface, and the concave spherical surface 4c also has a center P at the same position as the convex spherical surface 4a. It becomes a hollow dome shape with thickness t,
An air layer 5 having a certain interval exists between the light receiving lens 3 and the light receiving lens 3.

【0013】図3は、前記反射防止レンズ4の作用を示
す図であり、前記反射防止レンズ4の凸球面4aには、
上記にも説明したように粗面処理4bが施されているの
で、例えば仰角90゜の方向Tから、この反射防止レン
ズ4に入射する太陽光(平行光線)は上記粗面処理4b
により拡散が行われるものとなる。
FIG. 3 is a diagram showing the operation of the anti-reflection lens 4. The convex spherical surface 4a of the anti-reflection lens 4 has
Since the rough surface processing 4b has been performed as described above, sunlight (parallel rays) incident on the antireflection lens 4 from, for example, a direction T at an elevation angle of 90 ° is subjected to the rough surface processing 4b.
Will cause diffusion.

【0014】尚、前記粗面処理4bは施される強さによ
り、透過する光の拡散の度合い(拡散角)は様々に変化
するものであるが、ここでは、上記の拡散の度合いは、
光の進行方向に対して正規分布で光量が拡散し、光量が
60.6%に低下する偏角をもって拡散角とするガウス
拡散が行われ、そして、この実施形態では拡散角は防幻
作用として必要充分な機能が得られるガウス拡散20゜
であるとして説明を行う。
The degree of diffusion of the transmitted light (diffusion angle) varies depending on the strength of the rough surface treatment 4b. Here, the degree of diffusion is as follows.
Gaussian diffusion is performed in which the light amount is diffused in a normal distribution with respect to the traveling direction of the light, and the diffusion angle is a diffusion angle with a declination at which the light amount is reduced to 60.6%. The description will be made on the assumption that the Gaussian diffusion is 20 ° which can provide a necessary and sufficient function.

【0015】以上の構成としたことで、前記した仰角9
0゜の方向Tから反射防止レンズ4に入射する太陽光
は、前記凸球面4aに施された粗面処理4bにより、ガ
ウス拡散角20゜として拡散され、この状態で出射面で
ある凹球面4cに達するものとなる。
With the above configuration, the elevation angle 9
The sunlight incident on the anti-reflection lens 4 from the direction T of 0 ° is diffused as a Gaussian diffusion angle of 20 ° by the rough surface treatment 4b applied to the convex spherical surface 4a. Will be reached.

【0016】そして、前記凹球面4cに達した光は、こ
の凹球面4cにより方向Tからの偏角が大きい角度の光
ほど強く屈折が行われて、凹球面4c内部の空気層5中
に放射される。但し、このときに前記反射防止レンズ4
が形成された部材の臨界角以上に前記粗面処理4bによ
り偏角を与えられた光は、凹球面4cと空気層5との境
界面で反射防止レンズ4内に向かう内面反射が行われる
ものとなる。
The light that has reached the concave spherical surface 4c is refracted more strongly by the concave spherical surface 4c as the angle of deviation from the direction T is larger, and radiates into the air layer 5 inside the concave spherical surface 4c. Is done. However, at this time, the anti-reflection lens 4
The light which is deflected by the rough surface treatment 4b to be equal to or larger than the critical angle of the member on which the surface is formed is subjected to internal reflection toward the inside of the antireflection lens 4 at the boundary surface between the concave spherical surface 4c and the air layer 5. Becomes

【0017】以上の作用により、前記受光レンズ3に到
達する光は、前記粗面処理4bにより、例えばガウス拡
散20゜として拡散が行われた光の内の、拡散角が狭い
範囲のものに限定されるものとなり、これにより、軽微
な粗面処理4bが行われている場合の状態と同じ結果が
得られ、即ち、太陽仰角を測定するときの精度の低下が
減じられるものとなる。
Due to the above operation, the light reaching the light receiving lens 3 is limited to the light having a narrow diffusion angle in the light diffused by the rough surface treatment 4b, for example, as Gaussian diffusion 20 °. As a result, the same result as in the case where the slight rough surface treatment 4b is performed is obtained, that is, a decrease in accuracy when measuring the solar elevation angle is reduced.

【0018】ここで、前記受光レンズ3の球面半径r1
と、反射防止レンズ4の球面半径r2との関係に対して
説明を行えば、上記の説明からも明らかなように、前記
反射防止レンズ4の球面半径r2が大きいほど、受光レ
ンズ3には狭い拡散角の光、言い換えれば平行光線に近
い光が入射するものとなり、測定精度の低下は少ないも
のとすることが可能となる。
Here, the spherical radius r1 of the light receiving lens 3
The relationship between the anti-reflection lens 4 and the spherical radius r2 will be described. As is clear from the above description, the larger the spherical radius r2 of the anti-reflection lens 4 is, the narrower the light receiving lens 3 is. Light having a divergence angle, in other words, light close to a parallel ray, is incident, and it is possible to reduce the decrease in measurement accuracy.

【0019】従って、前記粗面処理4bに強度のものが
要求されるときには、(反射防止レンズ4の球面半径r
2>>受光レンズ3の球面半径r1)として構成すれば
良く、同様に粗面処理4bが軽微である場合には、反射
防止レンズ4の球面半径r2は小さくすることが可能で
ある。
Therefore, when a strong surface is required for the rough surface treatment 4b, it is required that (the spherical radius r
2 >> The spherical radius r1) of the light receiving lens 3 may be used. Similarly, when the rough surface treatment 4b is slight, the spherical radius r2 of the antireflection lens 4 can be reduced.

【0020】ちなみに、本発明者のこの発明を成すため
の試作、検討の結果では、粗面処理4bの施される強度
が、ガウス拡散20゜相当の場合には、反射防止レンズ
4の球面半径r2は、受光レンズ3の球面半径r1の
2.5倍以上で好結果を得られるものであることが確認
された。
Incidentally, according to the results of trial manufacture and examination by the inventor of the present invention to realize the present invention, when the strength of the rough surface treatment 4b is equivalent to Gaussian diffusion of 20 °, the spherical radius of the antireflection lens 4 is reduced. It was confirmed that good results can be obtained when r2 is at least 2.5 times the spherical radius r1 of the light receiving lens 3.

【0021】図4は、本発明による反射防止レンズ4を
設けたときの仰角測定特性Sを、従来例で説明した受光
レンズに直接に粗面処理を行ったときの仰角測定特性Q
との比較で示すものであり、グラフは、仰角が変化した
ときの受光素子2bと受光素子2a(従来例においては
受光素子91bと受光素子91a)との出力比で示して
ある。尚、両者に施された粗面処理は何れも同じガウス
拡散20゜相当の強度である。
FIG. 4 shows an elevation angle measurement characteristic S when the antireflection lens 4 according to the present invention is provided, and an elevation angle measurement characteristic Q when the rough surface processing is directly performed on the light receiving lens described in the conventional example.
The graph shows the output ratio between the light receiving element 2b and the light receiving element 2a (the light receiving element 91b and the light receiving element 91a in the conventional example) when the elevation angle changes. Note that the rough surface treatments applied to both have the same Gaussian diffusion intensity of 20 °.

【0022】図からも明らかなように受光レンズに直接
に粗面処理を行ったときの仰角測定特性Qでは、太陽仰
角が0゜から90゜まで変化したときの出力比が略0.
6:1であったのに対し、反射防止レンズ4を設けたと
きの仰角測定特性Sでは略0.4:1まで、言い換えれ
ば、1.5倍から2.5倍へと出力比が向上し、仰角角
度あたりの変化量が増えている。
As is clear from the figure, the elevation angle measurement characteristic Q when the light receiving lens is directly roughened has an output ratio of about 0.5 when the sun elevation angle changes from 0 ° to 90 °.
In contrast to 6: 1, the output ratio is improved to about 0.4: 1 in the elevation angle measurement characteristic S when the antireflection lens 4 is provided, in other words, from 1.5 times to 2.5 times. And the amount of change per elevation angle is increasing.

【0023】ここで、上記の仰角測定特性Sについて考
察してみると、上記の出力比0.4:1の数値は、受光
素子2(a〜d)と受光レンズ3とのみによる仰角測定
特性で得られる数値と極めて近似するものであり、しか
も、仰角0゜から90゜に至る途中の角度における数値
も極めて良く一致している。
Considering the elevation angle measurement characteristic S, the numerical value of the output ratio 0.4: 1 is the elevation angle measurement characteristic by only the light receiving elements 2 (a to d) and the light receiving lens 3. Is very similar to the numerical value obtained by the above equation, and the numerical value at the halfway angle from the elevation angle of 0 ° to 90 ° also agrees very well.

【0024】このことは、本発明により、新たに反射防
止レンズ4を設け、その外表面(凸球面4a)に粗面処
理4bを施す構成としたことで、太陽仰角の測定精度に
実質的な低下を及ぼすことなく、日照センサ1の外表面
に粗面処理を施すことを可能とするものであり、これに
より、従来は相反する要素であった測定精度と防幻性能
とを共に向上させるものとなる。
This is because the antireflection lens 4 is newly provided according to the present invention, and the outer surface (convex spherical surface 4a) of the antireflection lens 4 is roughened 4b. It is possible to apply a rough surface treatment to the outer surface of the sunshine sensor 1 without lowering it, thereby improving both measurement accuracy and anti-glare performance, which were conventionally contradictory factors. Becomes

【0025】[0025]

【発明の効果】以上に説明したように本発明により、所
定の配列とされた複数の受光素子と該受光素子を覆う受
光レンズとから成る測定モジュールと、前記測定モジュ
ールの前記受光レンズと同芯とし、この測定モジュール
を適宜の間隙をもって覆う一定肉厚の半球状とし且つ外
面に拡散処理が施された反射防止レンズとから成る日照
センサとしたことで、実質的な測定精度に影響を与える
ことなく、粗面処理が可能なものとして、運転者に幻惑
感などを生じないものとし、この種の日照センサの性能
向上に極めて優れた効果を奏するものである。
As described above, according to the present invention, a measuring module comprising a plurality of light receiving elements arranged in a predetermined arrangement and a light receiving lens covering the light receiving element, and a coaxial with the light receiving lens of the measuring module The measurement module is made of a sunshine sensor composed of a hemispherical lens having a constant thickness, which is covered with an appropriate gap, and an anti-reflection lens whose outer surface is subjected to diffusion treatment, thereby substantially affecting measurement accuracy. In addition, it is possible to perform a rough surface treatment so that the driver does not have a sense of dazzling or the like, and to achieve an extremely excellent effect in improving the performance of this type of sunshine sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る日照センサの実施形態を示す平
面図である。
FIG. 1 is a plan view showing an embodiment of a sunshine sensor according to the present invention.

【図2】 図1のA−A線に沿う断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】 本発明に係る日照センサの作用を要部で示す
説明図である。
FIG. 3 is an explanatory diagram showing the operation of the sunshine sensor according to the present invention in a main part.

【図4】 本発明に係る日照センサの仰角測定特性を従
来例との比較で示すグラフである。
FIG. 4 is a graph showing elevation angle measurement characteristics of the sunshine sensor according to the present invention in comparison with a conventional example.

【図5】 従来例を示す平面図である。FIG. 5 is a plan view showing a conventional example.

【図6】 図5のB−B線に沿う断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 5;

【符号の説明】[Explanation of symbols]

1……日照センサ 2(a〜d)……受光素子 3……受光レンズ 4……反射防止レンズ 4a……凸球面 4b……粗面処理 4c……凹球面 DESCRIPTION OF SYMBOLS 1 ... Sunshine sensor 2 (ad) ... Light receiving element 3 ... Light receiving lens 4 ... Anti-reflection lens 4a ... Convex spherical surface 4b ... Rough surface treatment 4c ... Concave spherical surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 及川 俊広 東京都目黒区中目黒2丁目9番13号 スタ ンレー電気株式会社内 (72)発明者 久志本 琢也 東京都目黒区中目黒2丁目9番13号 スタ ンレー電気株式会社内 (72)発明者 大野 雅典 東京都目黒区中目黒2丁目9番13号 スタ ンレー電気株式会社内 Fターム(参考) 2G065 AA03 AA15 AA17 AB04 BA01 BA34 BB05 BB06 DA20  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshihiro Oikawa 2-9-13-1 Nakameguro, Meguro-ku, Tokyo Inside Stanley Electric Co., Ltd. (72) Inventor Takuya Kushimoto 2-9-1-13 Nakameguro, Meguro-ku, Tokyo No. Within Stanley Electric Co., Ltd. (72) Inventor Masanori Ohno 2-9-13 Nakameguro, Meguro-ku, Tokyo F-term within Stanley Electric Co., Ltd. 2G065 AA03 AA15 AA17 AB04 BA01 BA34 BB05 BB06 DA20

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の配列とされた複数の受光素子と該
受光素子を覆う受光レンズとから成る測定モジュール
と、前記測定モジュールの前記受光レンズと同芯とし、
この測定モジュールを適宜の間隙をもって覆う一定肉厚
の半球状とし且つ外面に拡散処理が施された反射防止レ
ンズとから成ることを特徴とする日照センサ。
A measuring module comprising: a plurality of light receiving elements arranged in a predetermined arrangement; and a light receiving lens covering the light receiving element;
An insolation sensor comprising an anti-reflection lens having a hemispherical shape having a constant thickness and covering the measuring module with an appropriate gap, and having an outer surface subjected to a diffusion treatment.
JP2001108806A 2001-04-06 2001-04-06 Sunshine sensor Expired - Fee Related JP4945030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108806A JP4945030B2 (en) 2001-04-06 2001-04-06 Sunshine sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108806A JP4945030B2 (en) 2001-04-06 2001-04-06 Sunshine sensor

Publications (2)

Publication Number Publication Date
JP2002310787A true JP2002310787A (en) 2002-10-23
JP4945030B2 JP4945030B2 (en) 2012-06-06

Family

ID=18960878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108806A Expired - Fee Related JP4945030B2 (en) 2001-04-06 2001-04-06 Sunshine sensor

Country Status (1)

Country Link
JP (1) JP4945030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859438A (en) * 2020-10-30 2021-05-28 达运精密工业股份有限公司 Backlight module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109190A (en) * 1989-09-21 1991-05-09 Chubu Electric Power Co Inc Electric tricycle and its rear-wheel suspension device
JPH0438532A (en) * 1990-06-04 1992-02-07 Fujitsu Ltd Data checking system for parity generation using table
JPH07103820A (en) * 1993-09-30 1995-04-21 Nippondenso Co Ltd Insolation sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109190A (en) * 1989-09-21 1991-05-09 Chubu Electric Power Co Inc Electric tricycle and its rear-wheel suspension device
JPH0438532A (en) * 1990-06-04 1992-02-07 Fujitsu Ltd Data checking system for parity generation using table
JPH07103820A (en) * 1993-09-30 1995-04-21 Nippondenso Co Ltd Insolation sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859438A (en) * 2020-10-30 2021-05-28 达运精密工业股份有限公司 Backlight module
CN112859438B (en) * 2020-10-30 2023-03-17 达运精密工业股份有限公司 Backlight module

Also Published As

Publication number Publication date
JP4945030B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US7235765B2 (en) Solar sensor including reflective element to transform the angular response
JPH02112735A (en) Optical sensor
EP3480570A1 (en) Pyranometer and photometric device
JP3268888B2 (en) Light intensity detector
US20190186988A1 (en) Pyranometer and photometric device
JPH07333055A (en) Photodetector
US5065015A (en) Solar radiation sensor for use in an automatic air conditioner
JP3424071B2 (en) Solar radiation sensor
JP2002310787A (en) Sunshine sensor
US5278425A (en) Lens system for moisture sensor device
JP2827763B2 (en) Solar radiation sensor for automotive air conditioner
JP3218558B2 (en) Sunlight sensor
KR101604087B1 (en) Optical System for Head Up Display
JP4641358B2 (en) Sunshine sensor
KR101141827B1 (en) Optic sensor for automobile
JP2785619B2 (en) Solar radiation sensor for automotive air conditioner
CN219037976U (en) Sunlight sensor with direction recognition capability
JPH09311070A (en) Pyrheliometer for vehicle
JP2002296107A (en) Sunshine sensor
CN210775894U (en) Rainfall sensor body and integrated sensor formed by same
JPH10301024A (en) Infrared optical system
JP7099872B2 (en) Illuminance sensor for auto light
JPH0677525A (en) Solar radiation sensor
JP2003023166A (en) Solar radiation sensor
JP3114368B2 (en) Solar radiation sensor for vehicle air conditioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4945030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees