JP2002310231A - Floating body mooring method by rotary body of floating body type damping device - Google Patents

Floating body mooring method by rotary body of floating body type damping device

Info

Publication number
JP2002310231A
JP2002310231A JP2001120014A JP2001120014A JP2002310231A JP 2002310231 A JP2002310231 A JP 2002310231A JP 2001120014 A JP2001120014 A JP 2001120014A JP 2001120014 A JP2001120014 A JP 2001120014A JP 2002310231 A JP2002310231 A JP 2002310231A
Authority
JP
Japan
Prior art keywords
floating body
floating
liquid tank
mooring
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001120014A
Other languages
Japanese (ja)
Inventor
Masanobu Hasebe
雅伸 長谷部
Takumi Oyama
巧 大山
Takeshi Nozu
剛 野津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2001120014A priority Critical patent/JP2002310231A/en
Publication of JP2002310231A publication Critical patent/JP2002310231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mooring method capable of realizing smooth movement in the vertical direction while providing spring effect for movement in the horizontal direction of a floating body in a liquid tank in a floating body type damping device. SOLUTION: This floating body mooring method is used for damping vibration of a structure on the floating body 12 or various equipment and devices by the liquid tank 11 and the floating body 12 floating in a liquid 13 inside the liquid tank. A support means 20 of the floating body 12 consists of a rollerlike rotary body 21 and a support shaft 22. The support shaft 20 is fixed and provided together with a spring member 24 in a plurality of sections in the liquid tank 11 so as to rotate vertically and freely. The rotary body 21 is brought into contact with a side face 12a of the floating body by the spring member 24 to moor the floating body 12 elastically in the liquid tank 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、構造物又は各種
装置及び機器等が受ける外部からの振動、または機械振
動などによる内部からの振動を、液槽とその内部の浮体
とによって低減する浮体式免振装置の回転体による浮体
係留方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floating type in which a liquid tank and a floating body inside the liquid tank reduce vibrations from the outside or internal vibrations caused by mechanical vibrations or the like, which are received by a structure or various devices and devices. The present invention relates to a method of mooring a floating body using a rotating body of a vibration isolator.

【0002】[0002]

【発明が解決しようとする課題】構造物に対する地震の
免震又は機械振動の防振として、図5に示すように、液
槽1の液体3に浮かべた浮体2を利用する方法がある。
この浮体式の免震又は防振(以下免振という)方法で
は、水平方向の短周期振動成分に対しては、理想的な免
振効果を発揮するが、地震や機械振動などに代表される
上下方向成分に対しては、全く効果が発揮されないこと
が既に知られている。
As shown in FIG. 5, there is a method of using a floating body 2 floating on a liquid 3 in a liquid tank 1, as a method of seismic isolation of a structure or vibration proof of mechanical vibration.
In this floating seismic isolation or vibration isolation (hereinafter referred to as vibration isolation) method, an ideal vibration isolation effect is exhibited for a short-period vibration component in the horizontal direction, but is represented by an earthquake, mechanical vibration, or the like. It is already known that no effect is exerted on the vertical component.

【0003】この上下方向成分に対する課題解決の1つ
の方法として、図6に示すように、浮体2の底部を空気
室4に形成し、その空気室4における空気の圧縮性を利
用して、上下方向の振動に対するバネ効果により振動の
低減を図ることが提案されている。
As one method of solving the problem with respect to the vertical component, as shown in FIG. 6, a bottom portion of a floating body 2 is formed in an air chamber 4 and the bottom of the floating body 2 is utilized by utilizing the compressibility of air in the air chamber 4. It has been proposed to reduce the vibration by a spring effect on the vibration in the direction.

【0004】しかし、このような方法では、浮体内に広
大なデッドスペ−スが生じ、また浮体2の安定性も低下
するので、その空気室4の内部を鎖線で示すに、仕切壁
5により幾つかの気密な空気室4a,4b,4nに区画
して安定性を図ったものもある。
However, in such a method, a large dead space is generated in the floating body, and the stability of the floating body 2 is also deteriorated. Some air-tight air chambers 4a, 4b, and 4n are partitioned to secure stability.

【0005】また空気室4を底部に設けた浮体2は、図
5の浮体2と比べて復元性能に難点があることから、本
発明者等は、そのような課題を図7に示す構成の採用に
より先に解決した。この新たな構成は、空気室4を液槽
1の両側に密閉して設け、その空気室4に液槽1の液体
3の一部が流出入するように、下部に設けた開口により
液槽内と互いに連通した点で、図6に示す従来構成と相
違する。
The floating body 2 provided with the air chamber 4 at the bottom has a difficulty in restoring performance as compared with the floating body 2 shown in FIG. 5, and the present inventors have solved such a problem in the structure shown in FIG. Resolved earlier by adoption. In this new configuration, the air chamber 4 is provided on both sides of the liquid tank 1 in a hermetically sealed manner, and the liquid chamber 1 is provided with an opening provided at a lower portion so that a part of the liquid 3 flows into and out of the liquid chamber 1. This is different from the conventional configuration shown in FIG. 6 in that it communicates with the inside.

【0006】このような構成では、開口により液槽1か
ら空気室4の内部に流入した液体3aは、空気室内の空
気圧により静止時には浮体設置部分に比べて液面が低い
位置で釣り合いを保ち、浮体2に対する上下方向の振動
は、空気の圧縮性によるバネ効果により低減する。また
浮体2には空気室がないので、図6の場合と同等の復元
性能を有する。
In such a configuration, the liquid 3a that has flowed into the air chamber 4 from the liquid tank 1 through the opening keeps a balance at a position where the liquid level is lower than that of the floating body installation portion at rest due to the air pressure in the air chamber. The vertical vibration with respect to the floating body 2 is reduced by a spring effect due to the compressibility of air. In addition, since the floating body 2 has no air chamber, it has the same restoration performance as the case of FIG.

【0007】さらにまた浮体底部に空気室を設ける場合
に比べて、浮体2の安定性が相対的に高く、万一、空気
室4の空気が外部に漏れたとしても、浮体設置部分の液
面が水平を保ちながら降下するため、浮体2が傾斜する
ことはないので安全性が高く、空気圧の調整などのメン
テナンス作業は浮体底部に空気室を設けた場合に比べて
はるかに容易となる、などの特徴を持つ。
Furthermore, the stability of the floating body 2 is relatively high as compared with the case where an air chamber is provided at the bottom of the floating body. Since the floating body 2 descends while maintaining the horizontal level, the floating body 2 does not incline, so safety is high, and maintenance work such as adjustment of air pressure is much easier than when an air chamber is provided at the bottom of the floating body. With the characteristics of

【0008】この新たな構成を含めて、全ての浮体式免
振装置では、浮体の水平方向の位置を保持する何らかの
係留方法が必要となる。最も簡単な係留方法として考え
られることは、バネや船舶用係留索(ナイロンロープな
ど)を用いて浮体2を液槽1に繋ぎ止めることである。
係留索では空気漏れによる液面低下など何らかの理由に
よって浮体が大きく変位する場合、係留索又はその固定
部分に過大な荷重が作用し破断するおそれがある。また
上下方向にも係留バネの効果が作用する可能性があり,
鉛直方向振動に対する免振効果が低下する可能性もある
等の課題を有する。
[0008] All floating-type vibration-isolating devices, including this new configuration, require some type of mooring method to maintain the horizontal position of the floating body. The simplest method of mooring is to anchor the floating body 2 to the liquid tank 1 using a spring or a mooring line for boats (such as a nylon rope).
If the mooring line is significantly displaced by the floating body for some reason such as a decrease in the liquid level due to air leakage, an excessive load may be applied to the mooring line or a fixed portion thereof, and the mooring line may be broken. The effect of the mooring spring may also act in the vertical direction,
There is a problem that the vibration isolation effect for vertical vibration may be reduced.

【0009】この発明は、上記係留索による浮体の係留
の課題を解決するために考えられたものであって、その
目的は、空気室の有無に関係なく係留が容易に行え、ま
た浮体の水平方向運動に対する係留効果を持ちつつ、鉛
直方向運動に対しては滑らかな新たな回転体による浮体
係留方法を提供することにある。
The present invention has been conceived in order to solve the problem of mooring of a floating body by the mooring line, and its object is to facilitate mooring regardless of the presence or absence of an air chamber. An object of the present invention is to provide a floating body mooring method using a new rotating body which has a mooring effect on directional movement and is smooth with respect to vertical movement.

【0010】上記目的によるこの発明は、液槽と、その
内部の液体に浮かべた浮体とにより、浮体上の構造物又
は各種機器や装置等の免振を行う浮体式免振装置におい
て、ローラー状の回転体と支持軸とからなる浮体の支持
手段を、液槽内の複数個所に支持軸を上下回転自在にバ
ネ部材と共に固定して設け、そのバネ部材により回転体
を浮体側面に当接して、浮体を液槽内に弾力的に係留し
てなる、というものである。
The present invention according to the above object is intended to provide a floating type vibration isolating device for performing vibration isolation of a structure on a floating body or various devices or devices by using a liquid tank and a floating body floating in a liquid in the liquid tank. The support means of the floating body consisting of the rotating body and the supporting shaft is provided by fixing the supporting shaft together with a spring member so as to be vertically rotatable at a plurality of positions in the liquid tank, and the spring body abuts the rotating body on the side surface of the floating body. The floating body is elastically moored in the liquid tank.

【0011】このような浮体の係留方法では、浮体側に
は固定部分が無いため,何らかの原因で浮体が大きく下
降するような場合でも、支持手段が破壊する心配は無
い。また浮体が水平方向に大きく変位する場合にも、回
転体をゴムなどの弾性に富んだ材質により形成しておけ
ば、安全性を確保することができる。
In such a method of mooring a floating body, since there is no fixed portion on the floating body side, even if the floating body descends greatly for some reason, there is no fear that the support means is broken. Further, even when the floating body is largely displaced in the horizontal direction, safety can be ensured by forming the rotating body from a material having high elasticity such as rubber.

【0012】さらに、回転体を用いることで鉛直方向に
は滑らかな構成となるため,上下振動に対する免震・防
振効果になんら影響を及ぼさず、支持個所を上下複数個
設けることで、水平方向だけではなく、回転方向にもバ
ネ効果を発揮させることが可能となる。
Further, since the rotating body is used, the structure becomes smooth in the vertical direction, so that it has no effect on the seismic isolation / vibration-proof effect against the vertical vibration. Not only that, the spring effect can be exerted in the rotation direction.

【0013】[0013]

【発明の実施の形態】図1は、この発明の1実施形態を
示すものであって、20は液槽11内の液体13に浮か
べた浮体12の支持手段で、ローラー状に形成した回転
体21と、その回転体21の中心の貫通孔に挿通した支
持軸22とからなる。なお、図では省略したが、浮体1
2の上面や内部に任意の構造物又は各種機器や装置等が
設置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention, wherein reference numeral 20 denotes a means for supporting a floating body 12 floating on a liquid 13 in a liquid tank 11, and a rotating body formed in a roller shape. 21 and a support shaft 22 inserted through a through hole at the center of the rotating body 21. Although not shown in the figure, the floating body 1
Arbitrary structures, various devices, devices, and the like are installed on the upper surface and inside of 2.

【0014】上記支持軸22の両端を金属製の座板23
の軸受部に挿通して、該座板23に回動自在に取付けて
あり、その座板23に挿通支持した軸端には、一端を座
板23に固定したねじりバネ24が嵌挿止着してある。
Both ends of the support shaft 22 are connected to a metal seat plate 23.
A torsion spring 24, one end of which is fixed to the seat plate 23, is fitted and fixed to the shaft end inserted through and supported by the seat plate 23. I have.

【0015】また支持軸22の長さは、液槽11と浮体
12との間の係留スペースによって定まるが、ねじりバ
ネ24による係留力を効率よく浮体12に作用させる必
要性から、浮体12の支持時に支持軸22が所定角度で
下向きに位置する長さに設定されている。
The length of the support shaft 22 is determined by the mooring space between the liquid tank 11 and the floating body 12. However, since the mooring force of the torsion spring 24 needs to be applied to the floating body 12 efficiently, the support of the floating body 12 is required. Sometimes, the length is set so that the support shaft 22 is located downward at a predetermined angle.

【0016】上記構成の支持手段20は、支持軸22が
上下方向に回動位置するように、座板23を液槽内壁1
1aに固定して液槽11の複数個所に設けられ、これに
より各個所の回転体21,21が、バネ圧により浮体側
面12a,12aに均等に当接されて支持し、浮体12
を液槽11内に弾力的に係留するようになる。
The support means 20 having the above-described structure is adapted to move the seat plate 23 so that the support shaft 22 is rotated vertically.
1a, and is provided at a plurality of locations of the liquid tank 11, whereby the rotating bodies 21 and 21 at each location are evenly contacted and supported by the floating body side faces 12a, 12a by spring pressure, and the floating body 12
Is elastically moored in the liquid tank 11.

【0017】以下は上記係留方法における係留力につい
て述べるもので、左右とも同一のものを使用すると仮定
して、浮体が右にΔX [m]微少変位した場合,左右の
係留装置の支持軸が液槽壁面となす角θ[rad]は次
のようになる。なお、式中下付のL、Rはそれぞれ左右
の係留手段における値を表す。 θL =θ0 +ΔθL =θ0 +ΔX /lsin θ0 1.1 θR =θ0 +ΔθR =θ0 −ΔX /lsin θ0 1.2 ここで、θ0 :支持軸の初期角度、 l:支持軸の長さ
である。
[0017] The following ones describing mooring force in the mooring process, the left and right both assuming use the same ones, if floating is Δ X [m] minute displacement to the right, the support shaft of the right and left mooring apparatus The angle θ [rad] formed with the wall surface of the liquid tank is as follows. In the formulas, the subscripts L and R represent the values of the left and right mooring means, respectively. θ L = θ 0 + Δθ L = θ 0 + Δ X / lsin θ 0 1.1 θ R = θ 0 + Δθ R = θ 0 -Δ X / lsin θ 0 1.2 Here, theta 0: initial angle of the support shaft , L: length of the support shaft.

【0018】この変位ΔX によってねじりバネに生ずる
反モーメントの大きさは以下のようになる。なお、M0
は浮体静止時のねじりバネ初期モーメントの大きさ[N
m]、kはねじりバネ定数[Nm/rad]である。 ML =M0 −kΔθL =M0 −kΔX /lsin θ0 (反時計廻り) 2.1 MR =M0 −kΔθR =M0 +kΔX /lsin θ0 (時計廻り) 2.2
The magnitude of the reaction moment generated in torsion spring by the displacement delta X is as follows. Note that M 0
Is the magnitude of the initial moment of the torsion spring when the floating body is stationary [N
m] and k are torsion spring constants [Nm / rad]. M L = M 0 -kΔθ L = M 0 -kΔ X / lsin θ 0 ( counterclockwise) 2.1 M R = M 0 -kΔθ R = M 0 + kΔ X / lsin θ 0 ( clockwise) 2.2

【0019】これより、係留手段が浮体を押す力は,左
右でそれぞれ次のようになる(右方向が正)。 FL =ML cosθL /l 3.1 FR =MR cosθR /l 3.2
Thus, the force by which the mooring means pushes the floating body is as follows on the left and right (positive in the right direction). F L = M L cosθ L / l 3.1 F R = M R cosθ R / l 3.2

【0020】浮体に作用する係留力は、F=FL +FR
で表される。式3.1に式1.1と式2.1、そして式
3.2に式1.2と式2.2をそれぞれ代入し、整理す
ると以下を得る。 F=−2(k−M0 tanθ0 )ΔX /l2 これよりねじりバネのバネ定数kの他にも、支持軸の長
さlや初期角度θ0 が係留力の強さに閑係することがわ
かる。
The mooring force acting on the floating body is F = F L + F R
It is represented by By substituting Equations 1.1 and 2.1 for Equation 3.1 and Equations 1.2 and 2.2 for Equation 3.2, respectively, the following is obtained. F = −2 (k−M 0 tan θ 0 ) Δ X / l 2 In addition to the spring constant k of the torsion spring, the length l of the support shaft and the initial angle θ 0 are not related to the strength of the mooring force. You can see that

【0021】図4は、浮体側面12aの上下複数箇所を
上記支持手段20により支持して係留した他の実施形態
を示すものである。このような係留では、水平方向だけ
ではなく、浮体のロッキング・ローリング動揺や偏荷重
に対する浮体の傾斜など(回転方向)にもバネ効果を発
揮させることが可能となる。
FIG. 4 shows another embodiment in which a plurality of upper and lower portions of the side surface 12a of the floating body are supported and moored by the supporting means 20. In such mooring, the spring effect can be exerted not only in the horizontal direction but also in the rocking / rolling motion of the floating body and the inclination (rotation direction) of the floating body against uneven load.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明に係わる浮体係留方法を採用した浮
体式免振装置の略示説明図である。
FIG. 1 is a schematic explanatory view of a floating type vibration isolation device employing a floating body mooring method according to the present invention.

【図2】 この発明の浮体係留方法に採用される支持手
段の斜視図である。
FIG. 2 is a perspective view of support means employed in the floating body mooring method of the present invention.

【図3】 支持手段の設置状態を示す説明図である。FIG. 3 is an explanatory view showing an installation state of a support means.

【図4】 この発明の他の実施形態の略示説明図であ
る。
FIG. 4 is a schematic explanatory view of another embodiment of the present invention.

【図5】 基本的な浮体式免振装置の説明図である。FIG. 5 is an explanatory view of a basic floating type vibration isolator.

【図6】 底部に空気室を備えた浮体により上下振動の
免振も可能となす従来の浮体式免振装置の説明図であ
る。
FIG. 6 is an explanatory view of a conventional floating-type vibration-isolating device in which a floating body having an air chamber at the bottom can also perform vertical vibration isolation.

【図7】 液槽側の空気室により上下振動の免振も可能
となした先に提案の浮体式免振装置の説明図である。
FIG. 7 is an explanatory view of a previously proposed floating type vibration isolating device in which vertical vibration can be isolated by an air chamber on the liquid tank side.

【符号の説明】[Explanation of symbols]

11 液槽 11a 液槽側面 12 浮体 12a 浮体側面 13 液体 20 支持手段 21 回転体 22 支持軸 23 座板 24 ねじりバネ DESCRIPTION OF SYMBOLS 11 Liquid tank 11a Liquid tank side surface 12 Floating body 12a Floating body side surface 13 Liquid 20 Support means 21 Rotating body 22 Support shaft 23 Seat plate 24 Torsion spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野津 剛 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 Fターム(参考) 3J048 AA02 AC04 BC02 BG02 BG06 DA04 EA38  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tsuyoshi Nozu 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Corporation F-term (reference) 3J048 AA02 AC04 BC02 BG02 BG06 DA04 EA38

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液槽と、その内部の液体に浮かべた浮体
とにより、浮体上の構造物又は各種機器や装置等の免振
を行う浮体式免振装置において、 ローラー状の回転体と支持軸とからなる浮体の支持手段
を、液槽内の複数個所に支持軸を上下回転自在にバネ部
材と共に固定して設け、そのバネ部材により回転体を浮
体側面に当接して、浮体を液槽内に弾力的に係留してな
ることを特徴とする浮体式免振装置の回転体による浮体
係留方法。
1. A floating type vibration isolator for isolating a structure on a floating body or various devices and devices by a liquid tank and a floating body floating in a liquid in the liquid tank. A supporting means for a floating body comprising a shaft is provided at a plurality of positions in the liquid tank by fixing the supporting shaft together with a spring member so as to be rotatable up and down, and the rotating body is brought into contact with the side surface of the floating body by the spring member, and the floating body is placed in the liquid tank. A floating body mooring method using a rotating body of a floating type vibration isolator characterized by being elastically moored within the body.
JP2001120014A 2001-04-18 2001-04-18 Floating body mooring method by rotary body of floating body type damping device Pending JP2002310231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001120014A JP2002310231A (en) 2001-04-18 2001-04-18 Floating body mooring method by rotary body of floating body type damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001120014A JP2002310231A (en) 2001-04-18 2001-04-18 Floating body mooring method by rotary body of floating body type damping device

Publications (1)

Publication Number Publication Date
JP2002310231A true JP2002310231A (en) 2002-10-23

Family

ID=18970133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001120014A Pending JP2002310231A (en) 2001-04-18 2001-04-18 Floating body mooring method by rotary body of floating body type damping device

Country Status (1)

Country Link
JP (1) JP2002310231A (en)

Similar Documents

Publication Publication Date Title
CN1060296C (en) Shock-proof device
JPH02579B2 (en)
JP2010007859A (en) Isolation platform
JP2003049408A (en) Steel support and bridge supporting device
JP2002310231A (en) Floating body mooring method by rotary body of floating body type damping device
JP4706958B2 (en) Seismic isolation structure
JP2020002529A (en) Polyhedral slide support device for structure
JP4292127B2 (en) Bridge bearing device
JP2003021192A (en) Elastically mooring method of float for floating vibration control device
JP2007247167A (en) Base isolation supporting device
JPH1161739A (en) Vibration isolation device for structure
JP4267236B2 (en) Seismic isolation device using hydraulic cylinder
JPH10110554A (en) Base isolation device of building or the like
JP2002013572A (en) Seismic isolator
JP2018084129A (en) Base isolation tool
JP2001130481A (en) Offshore structure
JP2002364706A (en) Base isolation device
JP3018288B2 (en) Sliding elastic bearing device for structures
SU1041650A1 (en) Resilient friction support
JP2767303B2 (en) Seismic isolation support device
JP4291503B2 (en) Vibration isolator
JP2002242990A (en) Floating type vertical base isolation method
JP4286318B1 (en) Bridge bearing device
JP3254919B2 (en) Three-dimensional seismic isolation device
JP2000303561A (en) Bounce stopper for vertical moving device and damper for construction