JP2002310051A - Kinetic energy collecting apparatus - Google Patents

Kinetic energy collecting apparatus

Info

Publication number
JP2002310051A
JP2002310051A JP2001117643A JP2001117643A JP2002310051A JP 2002310051 A JP2002310051 A JP 2002310051A JP 2001117643 A JP2001117643 A JP 2001117643A JP 2001117643 A JP2001117643 A JP 2001117643A JP 2002310051 A JP2002310051 A JP 2002310051A
Authority
JP
Japan
Prior art keywords
bucket
fluid
kinetic energy
rotating body
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001117643A
Other languages
Japanese (ja)
Inventor
Seishiro Munehira
聖士郎 宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001117643A priority Critical patent/JP2002310051A/en
Publication of JP2002310051A publication Critical patent/JP2002310051A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an apparatus for collecting kinetic energy in wind power generation, hydroelectric power generation and the like at a low cost, reduce the weight of the apparatus, and facilitate transportation and installation of the apparatus. SOLUTION: In this collecting apparatus for converting kinetic energy of a fluid to rotary motion, the blade which receives the flow of the fluid on a rotator 2 and the periphery of a rotating shaft of the rotator to generate turning force is shaped as an air membrane structure and a combination of the air membrane and the membrane structure, and the rotator 2 is rotated by resistance difference between a bucket membrane 3 in the state of receiving resistance in the fluid on the periphery of the rotating shaft and a bucket membrane 3a and converted to shaft rotating power. In some method, turning force is produced by a spiral blade or a propeller blade-instead of the bucket membrane 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、自然の運動エネル
ギーである河川の水流、潮流、風力を有効エネルギーと
しての電気エネルギーに変換、又は直接動力源として
有効利用を促進するものであり、水力、風力、潮力発電
及び自然運動エネルギーを利用した動力源に関するもの
である。
The present invention relates to the conversion of natural kinetic energy, such as river water currents, tidal currents and wind power, into electrical energy as effective energy, or as a direct power source.
It promotes effective utilization, and relates to a power source using hydropower, wind power, tidal power generation, and natural kinetic energy.

【0002】[0002]

【従来の技術】従来,自然エネルギーを産業に利用する
方法は、 1 水力利用でダムを建設して エネルギー密度を高め
てから 発電する。 2 水力利用で巨大な水車と流路を用いて 発電 又は
灌漑ポンプ等の動力源とする。 3 高低差のある水源より配管で取水して 発電 又は
灌漑ポンプ等の動力源とする。 4 風力利用で巨大なプロペラ、支柱を建造して比較的
エネルギー密度の高い場所にて発電 又は灌漑ポンプ等
の動力源とする。 以上のように 発電設備がその出力に対して巨大であり
高コストとなり、また建造できる地理的要因も限られて
いた。また 自然の弱風、一般河川の水流などエネルギ
ー密度の低い運動エネルギーは設備コストと採算が合わ
ないため、殆んど利用されることがなかった。最近で
は、風力発電など 個人でも設置できる小型のセットが
普及するようなったが、エネルギーを実用的に使うには
機材のコストが高く、設置場所などにも制約があり実用
的ではなかった。
2. Description of the Related Art Conventionally, natural energy has been used in industry by: 1) constructing a dam using hydropower to increase the energy density and then generating electricity. 2 Power supply such as power generation or irrigation pumps using huge water turbines and flow passages using hydropower. 3. Water will be taken from a water source with a difference in elevation by pipes and used as a power source for power generation or irrigation pumps. 4. Build huge propellers and props by wind power and use them as power sources for power generation or irrigation pumps in places with relatively high energy density. As described above, the power generation facilities were huge and expensive, and the geographical factors that could be built were limited. In addition, kinetic energy with low energy density, such as natural breeze and general river water flow, was hardly used because it was not economically viable with equipment costs. Recently, small sets that can be installed by individuals, such as wind power generation, have become widespread. However, the cost of equipment is high for practical use of energy, and the installation location is limited, making it impractical.

【0003】[0003]

【発明が解決しようとする課題】解決しようとする問題
点は、自然の低密度運動エネルギーを産業上で利用可能
な運動エネルギーに変換する装置及び設備の設置及び製
作コストを下げることであり、 1 構造の単純化、軽量化で製作コストを低減し、製造
にかかるエネルギーを低減する 2 搬送、設置時にかさばらないよう 折りたたみ可能
な構造とし、搬送設置時に掛かるエネルギー、コスト、
時間、地理的制約を低減する。 3 回転体の設置、支持構造を簡略化して、搬送設置時
に掛かるコスト、時間、地理的制約を低減すると共に製
造コストも低減する。 以上の課題を解決することである。
The problem to be solved is to reduce the installation and manufacturing costs of equipment and equipment for converting natural low density kinetic energy into kinetic energy which can be used in industry. Reduces manufacturing costs by reducing structure simplicity and weight, and reduces energy required for manufacturing. 2 It has a foldable structure so that it is not bulky during transportation and installation.
Reduce time and geographical constraints. (3) The installation and support structure of the rotating body is simplified, so that the cost, time, and geographical restrictions required for transport installation are reduced, and the manufacturing cost is also reduced. It is to solve the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は、運動エネルギ
ーをより多く回収するために、流体の流れを受ける受動
体の有効面積を大きく 且つ回転体を低コストにて製
作、可般設置時には軽量コンパクトとなる構造にするた
めには、
SUMMARY OF THE INVENTION In order to recover more kinetic energy, the present invention has a large effective area of a passive body which receives a fluid flow, and a rotary body is manufactured at low cost. In order to make the structure compact,

【0005】図1,図3、図4,図5,図6,図7,図
8,図9にて示されるように 主要構造である回転体
2,13,16,20,24を気密性を持った膜の中に
気体又は液体あるいはその混合状態で圧力をかけ封じ込
めた気膜構造及び気膜構造と膜構造の組合せにて構成す
ることにより、 1 気膜構造の内部に気体、液体を充填して後、本来の
機能形状ができる為、材料の使用量は最小となり製造コ
ストを低減する事ができ、特に大型、量産時にその効果
を発揮できる。 2 内部に注入する気体、液体は、設置する現地にて用
意に調達、注入することができるため、搬送時は折りた
たんだ状態にてコンパクトで軽量で搬送にかかる時間
コスト、手間が低減できる。 3 内部に注入する気体、液体の比重又はその比率を選
択する事により、回転体2,13,16,20,24自
身の比重を調節する事が可能で、水中設置は水中浸漬状
態を調節可能であり、また空気中では水素、ヘリュウム
のように空気より軽い気体を注入する事で空気中に浮遊
させる事も可能となる。 4 微弱風力を回転運動に変換する場合回転体の慣性重
量が問題となるが、充填物を軽くする事で、回転体2,
13,16,20,24の慣性重量を小さくできる。 5 回転体2,13,16,20,24に必要な剛性は
流体の流れの抗力、及び自重による応力で、主に内部
充填圧力によって膜の引っ張り応力として伝達されるの
で、強度の必要な部分にはスチールベルト、ガラス繊維
等の複合材料を用い充填圧力を高める事で重量比強度及
び剛性を高くする事ができ、応力を分散させるため適宜
ワイヤー、リブ,気膜造形による骨構造などにて補強も
可能である。 6 回転体2,13,16,20,24の形状を、CA
D,CAM,CEA、三次元造型等のコンピューター技
術利用で気膜造形する事により、膜応力、流体力学にそ
った形状を計算設計する事ができる。 7 回転体2,13,16,20,24の充填流体の圧
力を調整する事で、膜強度を超えるような過負荷が生じ
る事を防ぎ、異常な高流速時は機器の安全の為充填圧力
を抜き去り、見かけの体積を減少させて、これに対処す
る事ができる。また充填圧力を自動制御する事もでき
る。
As shown in FIGS. 1, 3, 4, 5, 6, 7, 8, and 9, the rotating bodies 2, 13, 16, 20, and 24, which are main structures, are airtight. Gas and liquid or a mixture of them in a gaseous or liquid state or a mixture of gaseous and liquid structures. After filling, the original functional shape can be formed, so that the amount of material used is minimized and the manufacturing cost can be reduced, and the effect can be exerted especially in large-scale and mass production. 2. The gas and liquid to be injected inside can be easily procured and injected at the installation site.
Cost and labor can be reduced. 3 The specific gravity of the rotating bodies 2, 13, 16, 20, 24 can be adjusted by selecting the specific gravity of the gas or liquid to be injected into the interior, or the ratio thereof. In addition, it is also possible to float in the air by injecting a lighter gas such as hydrogen or helium in the air. 4 When converting weak wind into rotational motion, the inertial weight of the rotating body becomes a problem, but by reducing the filling, the rotating body 2,
The inertial weights of 13, 16, 20, and 24 can be reduced. 5. The rigidity required for the rotating bodies 2, 13, 16, 20, 24 is the drag of the fluid flow and the stress due to its own weight, which is mainly transmitted as the tensile stress of the membrane by the internal filling pressure. By increasing the filling pressure by using a composite material such as a steel belt or glass fiber, it is possible to increase the weight ratio strength and rigidity. To disperse the stress, appropriately use wires, ribs, bone structure by pneumatic molding, etc. Reinforcement is also possible. 6 Change the shape of the rotating bodies 2,13,16,20,24 to CA
By forming a film using a computer technology such as D, CAM, CEA, or three-dimensional molding, it is possible to calculate and design a shape in accordance with film stress and fluid dynamics. 7 By adjusting the pressure of the filling fluid of the rotating bodies 2, 13, 16, 20, and 24, it is possible to prevent an overload that exceeds the membrane strength from occurring. Can be dealt with by pulling out the and reducing the apparent volume. Also, the filling pressure can be automatically controlled.

【0006】図1,図6,図7,図8,図9にて示され
るように 翼形状を柔軟な膜でバケット膜3,3a、2
1,21aをバッケット形状に回転体の円周に回転方向
とバケット開口部を一致させ複数配することで、開口部
に流れ込もうとする流れには膜が押し広げられバケット
膜3,21はバケット形状となり大きな流れの抵抗とな
る。また反対側より流れ込出る場合はバケット膜3a、
21aが押し戻され回転体2,20,24の形状に押し
つぶされ流れの抵抗が小さくなる。その流れの抵抗の差
が回転体2,20,24の回転方向と一致する事によ
り、回転体2,20,24にトルクを生じる事となり、 1 単純な膜構造で、回転体2,20,24に簡単に造
作でき、かかるコストが低い。 2 流体の流速が低い場合でも、大きな抵抗差を生み出
すことが出来る。 3 流体の流れと垂直の軸回転力を発生させることが出
来、ケーシングが不用で構造が簡単になる。 6 バケット形状、材質所要性能を、CAD,CAM,
CEA、三次元造型等のコンピューター技術利用で適宜
ワイヤー、リブ,気膜造形による骨構造などにて補強も
可能で、翼の膜応力、流体力学にそった形状を計算設計
する事ができる
As shown in FIG. 1, FIG. 6, FIG. 7, FIG. 8, and FIG.
By arranging a plurality of buckets 1 and 21a in a bucket shape with the rotation direction and the bucket opening aligned with the circumference of the rotator, the membrane is pushed out in the flow that is going to flow into the opening, and the bucket membranes 3 and 21 It becomes a bucket shape and has a large flow resistance. When flowing out from the opposite side, the bucket membrane 3a,
21a is pushed back and crushed into the shape of the rotating bodies 2, 20, and 24, and the flow resistance is reduced. When the difference in the resistance of the flow coincides with the rotation direction of the rotating bodies 2, 20, and 24, torque is generated in the rotating bodies 2, 20, and 24. 1 With a simple membrane structure, the rotating bodies 2, 20, and 24 24 can be easily manufactured and the cost is low. 2 Even when the fluid velocity is low, a large resistance difference can be created. (3) An axial rotation force perpendicular to the flow of the fluid can be generated, and the casing is unnecessary and the structure is simplified. 6 Change the bucket shape and material required performance
By using computer technology such as CEA and three-dimensional molding, reinforcement can be appropriately made with wires, ribs, bone structure by pneumatic membrane molding, etc., and it is possible to calculate and design the shape according to membrane stress and fluid dynamics of the wing.

【0007】図3、図4,図5にて示されるように 翼
形状を螺旋状構造の螺旋翼14又はプロペラ翼形状の回
転翼15,17として、回転体円周上に配置すること
で、流体の流れによって 螺旋状構造又はプロペラ翼形
状は回転体に回転軸と垂直方向の抗力を発生し、回転体
13,16にトルクを生じる事となり、 1 回転体13,16と一体又は単純な気膜構造又は気
膜構造及び気膜構造と膜構造の組合せにて構成すること
で、回転体に簡単に造作でき、かかるコストが低い。 2 螺旋ピッチ、プロペラ翼傾斜角度により 回転数、
トルクを調節する事ができる。 3 流体の流れと並行の軸回転力を発生させることが出
来、ケーシングが不用で構造が簡単になる。 4 翼形状自身が変形しないので、高速回転が可能とな
る。 5 翼断面形状、翼長さ、螺旋翼形状について、CA
D,CAM,CEA、三次元造型等のコンピューター技
術等の利用で適宜ワイヤー、リブ,気膜造形による骨構
造などにて補強も可能で、翼応力、流体力学にそった形
状を計算設計する事ができる。 6 回転体13,16の充填流体の圧力を調整する事
で、膜強度を超えるような過負荷が生じる事を防ぎ、異
常な高作動流速時は機器の安全の為充填圧力を抜き去
り、見かけの体積を減少させて、これに対処する事がで
きる。また充填圧力を自動制御する事もできる
As shown in FIG. 3, FIG. 4 and FIG. 5, the wings are arranged on the rotating body circumference as spiral wings 14 having a helical structure or rotating wings 15 and 17 having a propeller wing shape. Due to the flow of the fluid, the spiral structure or the propeller blade shape generates a drag on the rotating body in a direction perpendicular to the rotation axis, and generates torque on the rotating bodies 13 and 16. By using a film structure or a film structure or a combination of a film structure and a film structure, a rotating body can be easily fabricated and the cost is low. 2 Rotational speed, depending on helical pitch and propeller blade inclination angle
The torque can be adjusted. (3) A shaft rotating force parallel to the flow of the fluid can be generated, and the casing is unnecessary and the structure is simplified. 4 High-speed rotation is possible because the wing shape itself does not deform. 5 Regarding the wing cross-sectional shape, wing length and spiral wing shape, CA
By using computer technology such as D, CAM, CEA, and three-dimensional molding, reinforcement with wires, ribs, bone structures by pneumatic membrane molding, etc. is possible, and calculation and design of shapes in accordance with wing stress and fluid dynamics. Can be. 6 Adjusting the pressure of the filling fluid in the rotating bodies 13 and 16 prevents overloading exceeding the membrane strength, and at abnormally high operating flow rates, removes the filling pressure for safety of the equipment and apparently This can be dealt with by reducing the volume. In addition, filling pressure can be automatically controlled

【0008】図3、図4,図5、図6,図7にて示され
るように 流体中における、回転体13,16位置の支
持を可撓線の回転伝導ワイヤー9、回転伝導線18の張
力にて保持し、可撓線を回転軸として動力伝達すること
で、 1 回転体13,16は自身の浮力で重力方向の位置を
保持できるため、流体の抗力のみ一方向より引っ張り支
持すれば良いので、ワイヤーロープ等で固定物に接合す
るだけで良く、設置に関する 架台、フレームなどが必
要ない。 2 引っ張り支持する可撓線を動力伝達軸として共用す
る事で、受動部である発電機等の設置位置の自由度を向
上させることができ、回転体の回転方向とロープの捩じ
れ方向を一致させることにで回転力と張力を効率よく伝
達する事ができ、入手が簡単でコストが低い。 3 支持が可撓線なので搬送時は巻き取る事ができ コ
ンパクトとなる。 4 可撓線一本で回転体の位置決め、回転動力伝達が可
能なので、複数の回転体13,20を直列配置が可能
で、受動部に複数回転体体の重合トルクを伝える事も可
能となる。 5 可撓線を複数本用い多方向より指示することで、三
次元的な位置決めも容易であり、可撓線にかかる張力を
分散する事も可能である。
As shown in FIGS. 3, 4, 5, 6, and 7, the positions of the rotating bodies 13 and 16 in the fluid are supported by the flexible conductive wires 9 and 18. By holding power with tension and transmitting power with the flexible wire as the rotation axis, 1 the rotating bodies 13 and 16 can hold the position in the direction of gravity by their own buoyancy, so if only the drag of the fluid is pulled and supported from one direction, Because it is good, it is only necessary to join it to a fixed object with a wire rope or the like, and there is no need for a stand or frame for installation. 2 By using the flexible wire that is supported by pulling as the power transmission shaft, the degree of freedom of the installation position of the generator, etc., which is the passive unit, can be improved, and the rotation direction of the rotating body and the twist direction of the rope are matched. In particular, the rotational force and the tension can be transmitted efficiently, and it is easy to obtain and the cost is low. 3. Since the support is a flexible wire, it can be rolled up during transport, making it compact. 4 Since the positioning of the rotating body and the transmission of rotational power are possible with one flexible wire, the plurality of rotating bodies 13 and 20 can be arranged in series, and the superposed torque of the plurality of rotating bodies can be transmitted to the passive unit. . 5. By using a plurality of flexible wires and instructing from multiple directions, three-dimensional positioning is easy, and the tension applied to the flexible wires can be dispersed.

【0009】図5,図6、図7にて示されるように 回
転軸と流体の流れが直交する場合、回転体16,20の
受ける抗力が軸芯と異なるため、可撓線である回転伝導
線18の張力方向が回転体の浮力とつり合う状態まで傾
斜する。これを補うために流速が大きくなれば浮力も大
きくなるようにし、また同時に回転軸の傾きを流れに垂
直に近づける作用をさせるために。回転軸に流れの向き
に自由に回転し流れの方向に向けるための垂直翼と回転
軸に曲げの力と浮力を与える水平翼の機能を安定翼22
に持たせることで、 1 回転軸の傾きを流れに垂直に近づけるよう作用し、
流体の抵抗を効率よく回転力に変換する。 2 流速に比例した浮力増加を行なうことで、回転体2
0が流される距離を少なくする 3 図1にて示されるように 回転体2に発電機1が内
蔵される場合、回転に対する反力を安定翼7の垂直翼に
て打消す。 4 図1にて示されるように 回転体2に発電機1が内
蔵される場合、電線ワイヤー8と張力バランスで、張力
の方向と安定翼7の垂直翼の角度を調整することで、流
れ方向と直交する位置を制御することが可能。 5 回転体2,20にかかる力の不均衡により、安定翼
7、22の水平翼の左右の角度を調整することで、回転
体の姿勢が不安定になるのを防ぐ。 6 安定翼7,22の垂直及び水平の角度を自動制御し
て、回転体2,20の位置、姿勢を自動制御する事も可
能である。 7 安定翼7,22の垂直及び水平の角度をV字翼にて
制御することも可能である。 以上のような手段を講じる
As shown in FIG. 5, FIG. 6, and FIG. 7, when the rotation axis and the flow of the fluid are perpendicular to each other, the drag received by the rotating bodies 16 and 20 is different from that of the axis, so that the rotational transmission is a flexible wire. The line 18 is inclined until the tension direction of the line 18 balances with the buoyancy of the rotating body. In order to compensate for this, the buoyancy increases as the flow velocity increases, and at the same time, the inclination of the rotation axis is made closer to the flow perpendicularly. The function of a vertical wing for freely rotating in the direction of flow on the rotation axis and directing it in the direction of flow and the function of a horizontal wing for imparting bending force and buoyancy to the rotation axis are provided by the stable wing 22.
By acting on, 1 acts to make the inclination of the rotation axis closer to the flow perpendicularly,
It efficiently converts the resistance of the fluid into rotational force. 2 By increasing the buoyancy in proportion to the flow velocity,
Reducing the distance over which 0 flows 3 As shown in FIG. 1, when the generator 1 is built in the rotating body 2, the reaction force against the rotation is canceled by the vertical wing of the stabilizing wing 7. 4 As shown in FIG. 1, when the generator 1 is built in the rotating body 2, the flow direction is adjusted by adjusting the direction of the tension and the angle of the vertical wing of the stabilizing wing 7 with the electric wire 8 and the tension balance. It is possible to control the position orthogonal to. 5 By adjusting the left and right angles of the horizontal wings of the stabilizers 7 and 22 due to the imbalance of the forces applied to the rotating bodies 2 and 20, the posture of the rotating bodies is prevented from becoming unstable. 6 It is also possible to automatically control the vertical and horizontal angles of the stabilizers 7 and 22 to automatically control the positions and postures of the rotating bodies 2 and 20. 7. The vertical and horizontal angles of the stabilizers 7, 22 can be controlled by V-shaped blades. Take the above measures

【0010】[0010]

【発明の実施の形態】利用形態の違いにより、その構造
特徴を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structural features of the present invention will be described according to the difference in the form of use.

【0011】1 図1に浮き輪バケット型の断面図と図
2に浮き輪バケット型の上面図を示し、これを説明す
る。自在に空気の注入、排出する空気栓を設けたビニー
ルシートの気膜構造でできた回転体2の円周上にビニー
ルシートのバケット膜3を複数形成して、その軸芯を取
り付けアルミのフランジ5を介して発電機1の入力軸に
接続する。発電機1のケース側を塩化ビニル板で出来た
フレーム6に固定し、そのフレーム6の一端に塩化ビニ
ル板の安定翼7を取り付け、他端より電線ワイヤー8を
フレーム6に固定し、プラスとマイナスの2線よりなる
電線ワイヤー8を川岸、橋桁等に固定する。これを利用
するときは 回転体2に空気を注入し、水流に浮かべ
る。水流に流された回転体2は電線ワイヤー8の張力と
つり合い 且つ水流と安定翼7の抵抗がつり合った所で
停止し、水流を受けたバケット膜3は膨らみ水流の抵抗
が大きくなり回転軸の反対側のバケット膜3aは水流に
押しつぶされ 水流の抵抗が小さくなって、回転軸のト
ルクが生じ、発電機の入力軸が回転を始め電力を発生す
る。発生した電力は電線ワイヤー8を通じて送られる。
また 利用しないときは回転体の空気を抜くことにより
回転体2を折りたたみ、コンパクトにする。水面状態に
より浮力を調節す場合は空気栓より水をバラスト水4と
して入れ浮力を調節する。ここで用いた気膜構造の回転
体2及びバケット膜3は必要な強度と柔軟性、対候性、
気密性が有れば、ゴム、ナイロン等 膜状にて柔軟性を
持つ材料であればよく、フレーム6及び安定翼7も必要
な剛性が確保できれば気膜構造を用いる事ができる。こ
の構造の特徴は 流れが緩やかで浅い河川での発電に適
し、設置も簡単なので移動キャンプ等の小電力、非常用
電源とするにも適する。また安定翼7により回転反力を
相殺する事により、水中より軸方向からの支持も可能な
のでブイ等の海洋潮流を利用する事もできる。
FIG. 1 is a sectional view of a floating ring bucket type, and FIG. 2 is a top view of the floating ring bucket type. A plurality of vinyl sheet bucket films 3 are formed on the circumference of a rotating body 2 made of a film structure of a vinyl sheet provided with an air plug for freely injecting and discharging air, and a plurality of shaft cores are attached thereto, and an aluminum flange is formed. 5 to the input shaft of the generator 1. The case side of the generator 1 is fixed to a frame 6 made of a polyvinyl chloride plate, a stabilizer 7 of the vinyl chloride plate is attached to one end of the frame 6, and an electric wire 8 is fixed to the frame 6 from the other end. An electric wire 8 composed of two negative wires is fixed to a riverbank, a bridge girder, or the like. When using this, air is injected into the rotating body 2 and floated in the water flow. The rotating body 2 that has flowed in the water flow stops at a point where the tension of the electric wire 8 is balanced and the resistance of the water flow and the stability wing 7 is balanced. The bucket membrane 3a on the opposite side is crushed by the water flow and the resistance of the water flow is reduced, so that the torque of the rotating shaft is generated, and the input shaft of the generator starts rotating and generates electric power. The generated electric power is sent through the electric wire 8.
When not in use, the rotating body 2 is folded down by bleeding the air to make it compact. When adjusting the buoyancy according to the state of the water surface, water is supplied as ballast water 4 from an air cock to adjust the buoyancy. The rotating body 2 and the bucket film 3 having the gas film structure used here have the necessary strength and flexibility, weatherability,
As long as the material has air tightness, a material having flexibility in the form of a film, such as rubber or nylon, may be used. The frame 6 and the stabilizing wings 7 can also use a gas film structure if required rigidity can be secured. The feature of this structure is that it is suitable for power generation in shallow rivers where the flow is gentle and easy to install, so it is also suitable as a small power and emergency power source for mobile camps. Further, by canceling the rotational reaction force by the stabilizing wings 7, it is possible to support from the axial direction rather than underwater, so that the marine current such as a buoy can be used.

【0012】2 図3に螺旋型の側面図を示し、これを
説明する。回転体13の円周部に螺旋翼14を設け、軸
芯先端部に回転伝導ワイヤー9を固着、他端を発電機1
の入力軸に継ぎ手10にて固着し、発電機1のケーシン
グを固定金具11で揺動自由に固定物12に支持させ
る。また 回転体13の沈み具合を回転体13に水を注
入して加減する。水流あるいは気流中に置かれた回転体
13は螺旋翼14より回転力を与えられて 回転伝導ワ
イヤー9を通じて発電機1の入力軸に伝導され発電す
る。この構造の特徴は 螺旋翼14形状が構造的に強度
があるため 流れが早く水深のある河川での発電、動力
源に適し、複数の回転体13を直列配置する事により大
トルクを得るにも適する。尚空気中で使用に当たって
は、吹流しのように取り付ける事で可能であり、内部に
軽量気体を充填することで空中浮遊も可能である。
2 FIG. 3 shows a spiral type side view, which will be described. A spiral wing 14 is provided on the circumference of the rotating body 13, the rotation conducting wire 9 is fixed to the tip of the shaft core, and the other end is connected to the generator 1.
And the casing of the generator 1 is swingably supported by the fixed object 12 by the fixing bracket 11. Water is injected into the rotating body 13 to adjust the degree of sinking of the rotating body 13. The rotating body 13 placed in the water stream or air stream is given a rotational force from the spiral blade 14 and is transmitted to the input shaft of the generator 1 through the rotation conducting wire 9 to generate power. The feature of this structure is that the spiral wing 14 shape is structurally strong, so it is suitable for power generation and power source in rivers with fast flowing water and deep water, and large torque can be obtained by arranging multiple rotating bodies 13 in series. Suitable. When used in the air, it can be mounted like a streamer, and can be suspended in the air by filling the inside with a lightweight gas.

【0013】3 図4に翼型の側面図を示し、これを説
明する回転体13円周部に回転翼15を設け、軸芯先端
部に回転伝導ワイヤー9を継ぎ手10で固着、他端を発
電機1の入力軸に固着し、発電機1のケーシングを固定
金具11で揺動自由に固定物12に支持させる。また
回転体13の沈み具合を回転体13に水を注入して加減
する。水流あるいは気流中に置かれた回転体13は回転
翼15より回転力を与えられ回転伝導ワイヤー9を通じ
て発電機1の入力軸に伝導され発電する。この構造の特
徴は 回転翼15形状が流れを受ける面積を大きくする
事が可能で 流れが遅く水深のある河川での発電、動力
源に適し、複数の回転体13を直列配置する事により大
トルクを得るにも適する。尚空気中で使用に当たって
は、吹流しのように取り付ける事で可能であり、内部に
軽量気体を充填することで空中浮遊も可能である。
FIG. 4 shows a side view of the airfoil. A rotary wing 15 is provided on the circumference of the rotary body 13 for explaining the airfoil. It is fixed to the input shaft of the generator 1, and the casing of the generator 1 is supported by the fixed object 12 so as to swing freely by the fixing bracket 11. Also
Water is injected into the rotating body 13 to adjust the degree of sinking of the rotating body 13. The rotating body 13 placed in the water current or the air current is given a rotational force from the rotary wings 15 and is transmitted to the input shaft of the generator 1 through the rotation conducting wire 9 to generate power. The feature of this structure is that it is possible to enlarge the area where the rotor 15 receives the flow. It is suitable for power generation and power source in the river where the flow is slow and deep, and large torque can be obtained by arranging multiple rotating bodies 13 in series. Also suitable for obtaining. When used in the air, it can be mounted like a streamer, and can be suspended in the air by filling the inside with a lightweight gas.

【0014】4 図5に浮遊風船翼型の側面図を示し、
これを説明する。空気中に浮遊するように軽量ガスを注
入した回転体16と回転翼17より 軽量な回転伝導線
18を介して発電機1の入力軸に固着する。回転体16
は風圧を受け横に流されると共に回転伝導線18に引っ
張られて斜めに傾き、斜め方向の風をうけ回転翼17は
回転トルクを生じる。このとき発電機1の入力軸と回転
伝導線18に曲がりを生じるので 極端な曲がりとなら
ないように継ぎ手19内面をラッパ状にして回転伝導線
18の負荷を少なくする。この構造の特徴は得られる動
力が小さいが構造が簡単であるため、装飾用に適し、ま
た回転体16を風向き方向に向け、軸を固定物に固定す
れば一般的なプロペラ型の風力発電と同様の動作をし、
より微弱風にての作動が可能である。
FIG. 5 shows a side view of a floating balloon wing type.
This will be described. The rotating body 16 into which light gas is injected so as to float in the air and the rotating wings 17 are fixed to the input shaft of the generator 1 via a rotating conductive wire 18 which is lighter. Rotating body 16
The wind is laterally swept by the wind pressure and is tilted obliquely by being pulled by the rotating conduction wire 18, and receives the wind in the oblique direction, and the rotating blade 17 generates a rotating torque. At this time, a bend occurs between the input shaft of the generator 1 and the rotary conductive line 18. Therefore, the load on the rotary conductive line 18 is reduced by forming the inner surface of the joint 19 into a trumpet shape so as not to bend extremely. The feature of this structure is that the obtained power is small but the structure is simple, so it is suitable for decoration, and if the rotating body 16 is oriented in the wind direction and the shaft is fixed to a fixed object, it can be used as a general propeller type wind power generation. Do the same thing,
Operation in weaker winds is possible.

【0015】5 図6に浮遊バケット型の側面図を示
し、これを説明する。気膜構造でできた回転体20の円
周上にバケット膜21を複数形成して、その軸芯を回転
伝導線18を介して継ぎ手19にて発電機1の入力軸に
接続する。回転体20の回転軸に回転自在に安定翼22
を取り付けて風向きに対して回転体20の姿勢を保持さ
せる。安定翼22は軽量な材料又は気膜構造で軽量気体
を充填し安定翼22自身に浮力を持たせても良い。風を
受けたバケット膜21は風を膨らみ気流の抵抗が大きく
なり回転軸の反対側のバケット膜21aは風に押しつぶ
され 気流の抵抗が小さくなって、回転軸のトルクが生
じる。この構造の特徴は、回転伝導線18を比較的長く
する事が可能で、森林作業など高い障害物が有っても高
所まで回転体を浮遊させて作動させることが可能であ
る。またこれを水中に設置する場合は回転体20に水を
注入して、水中に浮遊させて設置することも出来る。
FIG. 6 shows a side view of the floating bucket type, which will be described. A plurality of bucket films 21 are formed on the circumference of a rotating body 20 made of a gas film structure, and the shaft core is connected to an input shaft of the generator 1 by a joint 19 via a rotation conducting wire 18. Stable wings 22 rotatable about the rotation axis of the rotating body 20
To maintain the posture of the rotating body 20 with respect to the wind direction. The stabilizer 22 may be made of a lightweight material or a gas film structure and filled with a lightweight gas to give the stabilizer 22 itself buoyancy. The bucket film 21 that has received the wind swells the wind to increase the resistance to the airflow, and the bucket film 21a on the opposite side of the rotating shaft is crushed by the wind to reduce the resistance to the airflow, thereby generating torque on the rotating shaft. The feature of this structure is that the rotating conductive wire 18 can be made relatively long, and even if there is a high obstacle such as forestry work, the rotating body can be suspended and operated to a high place. When this is installed in water, it is also possible to inject water into the rotating body 20 and to float the same in the water.

【0016】6 図7に吊り下げバケット型の側面図を
示し、これを説明する。気膜構造でできた回転体20の
円周上にバケット膜21を複数形成して、その軸芯を回
転伝導線18を介して複数の回転体20直列接続し、継
ぎ手19にて発電機1の入力軸に接続する。風を受けた
バケット膜21は風を膨らみ気流の抵抗が大きくなり回
転軸の反対側のバケット膜21aは風に押しつぶされ
気流の抵抗が小さくなって、回転軸のトルクが生じ、個
々の回転体のトルクは重合して大きなトルクの発生が可
能となるこの構造の特徴は、吊り下げ型なので、充填気
体を軽くする必要がなく、橋桁のようなに空中構造物に
容易に設置可能である
6 FIG. 7 shows a side view of the hanging bucket type, which will be described. A plurality of bucket films 21 are formed on the circumference of a rotating body 20 made of a pneumatic film structure, and their axes are connected in series to a plurality of rotating bodies 20 via a rotation conducting wire 18. To the input shaft of The bucket film 21 that has received the wind swells the wind to increase the resistance to the airflow, and the bucket film 21a on the opposite side of the rotation axis is crushed by the wind.
The resistance of the air flow is reduced, the torque of the rotating shaft is generated, and the torque of the individual rotating bodies is superimposed, and a large torque can be generated.The feature of this structure is that it is a hanging type, so the filling gas needs to be lightened. And can be easily installed on aerial structures such as bridge girders

【0017】7 図8にバケット軸固定型の側面図を示
し、これを説明する。気膜構造でできた回転体20の円
周上にバケット膜21を複数形成して、その軸芯を発電
機1の入力軸に接続する。風を受けたバケット膜21は
風を膨らみ気流の抵抗が大きくなり回転軸の反対側のバ
ケット膜21aは風に押しつぶされ 気流の抵抗が小さ
くなって、回転軸のトルクが生じる。この構造の特徴
は、軸を固定するので、充填気体を軽くする必要がな
く、屋根の上、ビルの屋上に容易に設置でき、回転体2
0の姿勢も固定されてるため効率もよい。また 気膜構
造で作られた架台25を発電機1を位置、高さ調整する
事も可能で回転体20の姿勢も浮力に影響されないの
で、縦、横、斜めと自在である。
FIG. 8 shows a side view of the fixed bucket shaft type, which will be described. A plurality of bucket films 21 are formed on the circumference of a rotating body 20 having a film structure, and the axis of the bucket film 21 is connected to the input shaft of the generator 1. The bucket film 21 that has received the wind swells the wind to increase the resistance to the airflow, and the bucket film 21a on the opposite side of the rotating shaft is crushed by the wind to reduce the resistance to the airflow, thereby generating torque on the rotating shaft. The feature of this structure is that since the shaft is fixed, it is not necessary to lighten the filling gas, it can be easily installed on the roof or the roof of the building, and the rotating body 2
Since the posture of 0 is also fixed, efficiency is good. Also, the position and height of the generator 1 can be adjusted on the gantry 25 made of a pneumatic structure, and the attitude of the rotating body 20 is not affected by the buoyancy.

【0018】8 図9に円筒バケット軸固定型側面図と
図10に円筒バケット軸固定型上面図を示し、これを説
明する。気膜構造でできた円筒形の回転体24の外円周
上にバケット膜21を複数形成して、その軸芯を発電機
1の入力軸に接続する。風を受けたバケット膜21は風
を膨らみ気流の抵抗が大きくなり回転軸の反対側のバケ
ット膜21aは風に押しつぶされ 気流の抵抗が小さく
なって、回転軸のトルクが生じ、トルクの大きさによっ
ては回転フランジ22で剪断応力を補強する。この構造
の特徴は、円筒の長さを長くする事により、バケット膜
21の抗力を大きなトルクで得られ、充填気体を軽くす
る必要がなく、屋根の上、ビルの屋上に容易に設置で
き、回転体20の姿勢も固定されてるため効率もよい。
また、回転体24を横にして水流に下部をのみ浸漬さ
せ、回転体24外周部にコップのような構造を持たせる
ことで、回転体単体で水車の様に機能させることも可能
で、低揚水の水のくみ上げが可能となる。またこの時は
一部しか浸漬していないので、水車と同様に翼形状を板
状としても良い。以上のようにそれぞれの構造と特徴を
もち、各構造、機能の組合せ、構成材質により、さまざ
まな環境に合わせることが可能である。
8 FIG. 9 shows a side view of the fixed cylindrical bucket shaft type, and FIG. 10 shows a top view of the fixed cylindrical bucket shaft type. A plurality of bucket films 21 are formed on the outer circumference of a cylindrical rotating body 24 made of a gas film structure, and its axis is connected to the input shaft of the generator 1. The bucket film 21 that has received the wind swells the wind to increase the resistance of the airflow, and the bucket film 21a on the opposite side of the rotation axis is crushed by the wind, and the resistance of the airflow decreases. In some cases, the rotating flange 22 reinforces the shear stress. The feature of this structure is that by increasing the length of the cylinder, the resistance of the bucket membrane 21 can be obtained with a large torque, and it is not necessary to lighten the filling gas, and it can be easily installed on the roof or the roof of a building. Since the attitude of the rotating body 20 is also fixed, efficiency is high.
Also, by rotating the rotating body 24 sideways and immersing only the lower part in the water flow and providing a structure like a cup on the outer periphery of the rotating body 24, the rotating body alone can function as a water wheel, and the Pumping water can be pumped. At this time, since only a part is immersed, the wing shape may be a plate shape like the water turbine. As described above, each of the structures and features can be adapted to various environments depending on the structure, combination of functions, and constituent materials.

【0019】[0019]

【実施例】図1に浮き輪バケット型の断面図と図2に浮
き輪バケット型の上面図を示した形態で実施したとこ
ろ。回転体2の直径150mm、円周上のバケット膜3
開口部面積 約40mm平方を8枚、発電機1を模型用
DCモーター像速比15倍にて、水流1m/s程度にて
モーター出力端子より0.5W程度の発電が可能であっ
た。
FIG. 1 is a sectional view of a floating ring bucket type and FIG. 2 is a top view of a floating ring bucket type. 150 mm in diameter of the rotating body 2 and the bucket film 3 on the circumference
It was possible to generate about 0.5 W from the motor output terminal at a water flow of about 1 m / s with an opening area of about 40 mm square and eight generators 1 at a model DC motor image speed ratio of 15 times and a water flow of about 1 m / s.

【0020】[0020]

【発明の効果】以上説明したように、本発明の効果を以
下に列記する。
As described above, the effects of the present invention are listed below.

【0021】装置及び設備の製造コストの低減により 1 設備のコストが低減し、これにかかるエネルギーの
消費が少なくなる。 2 今までエネルギー密度が低いために利用されなかっ
た一般河川、灌漑水路の水流を容易に有効利用できるよ
うになる。 3 今までエネルギー密度が低いために利用されなかっ
た山岳、市街地、ビルの谷間などの風力を容易に有効利
用できるようになる。高層ビル風のような人工の地形要
因を統合して設計すれば、より高い効率で自然エネルギ
ーの有効利用が出来る。 4 今までエネルギー密度が低いために利用されなかっ
た海洋、沿岸等の潮流を容易に有効利用できるようにな
る。エネルギー密度が低い運動エネルギーはいたるとこ
ろに存在しており、コストが見合えばより多くの自然エ
ネルギーの利用が見込まれる。 5 灌漑ポンプの駆動のように、回転動力をそのまま利
用すれば利用効率もよくなり、発電設備も必要無くな
り、更にコストの低減が図れる。
(1) The cost of equipment is reduced by reducing the manufacturing cost of equipment and equipment, and the energy consumption for this is reduced. 2 Water flows from general rivers and irrigation canals that have not been used because of low energy density can be easily and effectively used. 3. Wind power in mountains, urban areas, building valleys, etc., which have not been used because of low energy density, can be easily and effectively used. By integrating artificial terrain factors such as high-rise buildings, the natural energy can be used more efficiently and efficiently. 4. Currents such as oceans and coasts that have not been used due to low energy density can be easily and effectively used. Kinetic energy with low energy density is ubiquitous, and if cost is justified, more natural energy can be used. 5 If the rotational power is used as it is, as in the case of driving an irrigation pump, the utilization efficiency will be improved, and no power generation equipment will be required, and the cost will be further reduced.

【0022】装置、設備の設置及び復元の容易性により 1 移動を伴う設置でキャンプなどでも、電源のない場
所での電源の確保が容易に出来る。 2 緊急災害時など電力、動力が利用不可能になったと
き、容易に設置して緊急電源、緊急動力とする事ができ
る。 3 搬送が困難なために設置する事ができなかった場所
でも設置が可能となり、深海中など人間が入る事もでき
ないところでも、沈下させるだけで利用が可能となる。 4 地形に人工的な建造物を作る必要がないので自然環
境を保護でき、環境が変化した場合も即座に撤去でき
る。 5 設置形態を 水中、海中にする事で景観にも影響を
与えない。 6 台風等の非常時には、即座に充填圧力を抜き去り、
設備の安全性を確保する事が容易である。
(1) Easy installation and restoration of equipment and facilities 1) Installation with movement allows easy power supply in places where there is no power supply, even in camps. 2. When power or power becomes unavailable, such as during an emergency disaster, it can be easily installed and used as an emergency power source or power source. (3) Installation is possible even in places where installation was not possible due to difficulty in transportation, and it is possible to use in places where humans cannot enter, such as in the deep sea, just by sinking. 4. The natural environment can be protected because there is no need to create artificial structures on the terrain, and even if the environment changes, it can be removed immediately. 5. The landscape is not affected by setting the installation form underwater or underwater. 6 In an emergency such as a typhoon, immediately release the filling pressure,
It is easy to ensure the safety of the equipment.

【0023】設備の軽量化により 1 設備が何らかの異常で破壊されても、硬く重い部品
がなく、破壊 故障による二次災害が防止できる。これ
により、人が集まる場所でも安全に設置が可能となる。 2 設備の移動及び携帯が容易である。 3 設備の製造にかかる原料が少なく、設備廃止時に排
出される廃棄物も減少する。
[0023] By reducing the weight of the equipment, 1 if the equipment is destroyed due to any abnormality, there are no hard and heavy parts and secondary disasters due to destruction failure can be prevented. As a result, it is possible to safely install the device even in a place where people gather. 2 Equipment is easy to move and carry. 3. There are few raw materials for the production of equipment and the amount of waste discharged when the equipment is abolished also decreases.

【0024】未利用時コンパクトな状態とすることで 1 移動を伴う設置でキャンプなどでも、電源のない所
での電源の確保が容易に出来る。 2 災害時に復旧に時間がかかる場合など、電池切れ心
配もなく、保存性も良く、LED発光ライト及び緊急ラ
ジオを聞く程度の物であれば折りたたんでポケットサイ
ズの物も製作可能である。 3 緊急用ラジオ、懐中電灯に予め組み込んでおき、災
害時等に使いやすくでき、さらに 専用電源となるので
電源回路が簡単になり小型化、低コスト化が可能とな
り、エネルギー利用効率が高くなる。 以上のように本発明の効果はさまざまな環境に対応で
き、装置、設備のコスト削減出来る。
The compact state when not in use makes it possible to easily secure a power supply in places where there is no power supply, even in camps, etc., by installation with movement. 2. When recovery takes time in the event of a disaster, there is no need to worry about running out of batteries and the storage is good. If it is just enough to listen to the LED light and emergency radio, it can be folded and made into a pocket-sized one. 3. It is built into emergency radios and flashlights in advance, making it easy to use in the event of a disaster, etc. In addition, since it is a dedicated power supply, the power supply circuit is simplified, miniaturization and cost reduction are possible, and energy use efficiency is increased. As described above, the effects of the present invention can be applied to various environments, and the cost of the apparatus and the equipment can be reduced.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】浮き輪バケット型の断面図FIG. 1 is a sectional view of a floating ring bucket type.

【図2】浮き輪バケット型の上面図FIG. 2 is a top view of a floating ring bucket type.

【図3】螺旋型の側面図FIG. 3 is a side view of a spiral type.

【図4】翼型の側面図FIG. 4 is a side view of an airfoil.

【図5】浮遊風船翼型の側面図FIG. 5 is a side view of a floating balloon airfoil.

【図6】浮遊バケット型の側面図FIG. 6 is a side view of a floating bucket type.

【図7】吊り下げバケット型の側面図FIG. 7 is a side view of a hanging bucket type.

【図8】バケット軸固定型の側面図FIG. 8 is a side view of a fixed bucket shaft type.

【図9】円筒バケット軸固定型の側面図FIG. 9 is a side view of a fixed cylindrical bucket shaft type.

【図10】円筒バケット軸固定型の上面図FIG. 10 is a top view of a cylindrical bucket shaft fixed type.

【符号の説明】[Explanation of symbols]

1 発電機 2 回転体 3 バケット膜 3a バケット膜 4 バラスト水 5 取り付けフランジ 6 フレーム 7 安定翼 8 電線ワイヤー 9 回転伝導ワイヤー 10 継ぎ手 11 固定金具 12 固定物 13 回転体 14 螺旋翼 15 回転翼 16 回転体 17 回転翼 18 回転伝導線 19 継ぎ手 20 回転体 21 バケット膜 21a バケット膜 22 安定翼 23 回転フランジ 24 回転体 25 架台 DESCRIPTION OF SYMBOLS 1 Generator 2 Rotating body 3 Bucket membrane 3a Bucket membrane 4 Ballast water 5 Mounting flange 6 Frame 7 Stabilizing wing 8 Electric wire 9 Rotation conducting wire 10 Joint 11 Fixture 12 Fixed object 13 Rotating body 14 Spiral wing 15 Rotating wing 16 Rotating body REFERENCE SIGNS LIST 17 rotating blade 18 rotating conduction wire 19 joint 20 rotating body 21 bucket film 21a bucket film 22 stabilizing blade 23 rotating flange 24 rotating body 25 mount

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F03D 1/06 F03D 1/06 Z 3/06 3/06 C F03G 7/00 F03G 7/00 B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F03D 1/06 F03D 1/06 Z 3/06 3/06 C F03G 7/00 F03G 7/00 B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】流体の運動エネルギーを回転運動に変換す
る収集装置において、回転体とその回転体回転軸円周上
に流体の流れを受けて回転力を発生する翼形状を気膜構
造及び気膜構造と膜構造の組合せとした、運動エネルギ
ー収集装置。
In a collecting apparatus for converting kinetic energy of a fluid into rotational motion, a rotator and a wing shape for generating a rotational force by receiving a flow of a fluid on the circumference of a rotary shaft of the rotator are formed into a film structure and an air fin. Kinetic energy collection device with a combination of membrane structure and membrane structure.
【請求項2】翼形状を柔軟な膜でバッケット形状に回転
体の円周に回転方向とバケット開口部を一致させ複数配
して、回転軸と垂直方向の流れを回転力とする、請求項
1の運動エネルギー収集装置。
2. The wing shape is made of a flexible film in the form of a bucket, and a plurality of buckets are arranged around the circumference of the rotor so that the rotation direction and the bucket opening are aligned with each other, and the flow in the direction perpendicular to the rotation axis is used as the rotation force. 1. Kinetic energy collection device.
【請求項3】翼形状を螺旋状構造又はプロペラ翼形状と
して、回転軸方向の流れを回転力とする、請求項1の運
動エネルギー収集装置。
3. The kinetic energy collecting apparatus according to claim 1, wherein the blade shape is a spiral structure or a propeller blade shape, and the flow in the rotation axis direction is a rotational force.
【請求項4】流体中における、回転体位置の支持を可撓
線の張力にて保持し、可撓線を回転軸として動力伝達す
る、請求項1の運動エネルギー収集装置。
4. The kinetic energy collecting apparatus according to claim 1, wherein the support of the position of the rotating body in the fluid is held by the tension of the flexible wire, and power is transmitted using the flexible wire as a rotation axis.
【請求項5】流体中における、回転体姿勢を 流体の発
生する抗力にて姿勢制御、保持を行なう安定翼を持つ、
請求項1の運動エネルギー収集装置。
5. A stable wing for controlling and maintaining a posture of a rotating body in a fluid by a drag generated by the fluid.
The kinetic energy collecting device according to claim 1.
JP2001117643A 2001-04-17 2001-04-17 Kinetic energy collecting apparatus Pending JP2002310051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117643A JP2002310051A (en) 2001-04-17 2001-04-17 Kinetic energy collecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117643A JP2002310051A (en) 2001-04-17 2001-04-17 Kinetic energy collecting apparatus

Publications (1)

Publication Number Publication Date
JP2002310051A true JP2002310051A (en) 2002-10-23

Family

ID=18968157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117643A Pending JP2002310051A (en) 2001-04-17 2001-04-17 Kinetic energy collecting apparatus

Country Status (1)

Country Link
JP (1) JP2002310051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2041428A1 (en) * 2006-07-07 2009-04-01 Jørgen Høgmoe A wave power apparatus and use of the apparatus as an emergency power genarator
JP2009539016A (en) * 2006-06-02 2009-11-12 セッポ・リューネネン Method and apparatus for converting wave energy into electricity by difference in flow resistance shape factor
KR101105063B1 (en) 2008-07-16 2012-01-13 애너달코 페트롤륨 코포레이션 Water Current Power Generation System
JP2020169607A (en) * 2019-04-04 2020-10-15 竹内 常雄 Power generation method for generating rotation in flow of gas, liquid and solid using irregularities, holes or small blades provided on surface of object to generate power
CN112096562A (en) * 2019-06-02 2020-12-18 胡宽 Axial blade wind driven generator fan

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539016A (en) * 2006-06-02 2009-11-12 セッポ・リューネネン Method and apparatus for converting wave energy into electricity by difference in flow resistance shape factor
US8206113B2 (en) 2006-06-02 2012-06-26 Ryynaenen Seppo Method and apparatus for converting marine wave energy by means of a difference in flow resistance form factors into electricity
EP2041428A1 (en) * 2006-07-07 2009-04-01 Jørgen Høgmoe A wave power apparatus and use of the apparatus as an emergency power genarator
EP2041428A4 (en) * 2006-07-07 2013-02-27 Joergen Hoegmoe A wave power apparatus and use of the apparatus as an emergency power genarator
KR101105063B1 (en) 2008-07-16 2012-01-13 애너달코 페트롤륨 코포레이션 Water Current Power Generation System
JP2020169607A (en) * 2019-04-04 2020-10-15 竹内 常雄 Power generation method for generating rotation in flow of gas, liquid and solid using irregularities, holes or small blades provided on surface of object to generate power
CN112096562A (en) * 2019-06-02 2020-12-18 胡宽 Axial blade wind driven generator fan

Similar Documents

Publication Publication Date Title
CN101218431B (en) Systems and methods for tethered turbines
US6734576B2 (en) Eolic marine electrical generator GEEM
EP2356333B1 (en) Integrated generator device for producing energy from zero-emission renewable alternative sources respecting and preserving the environment
JP4184803B2 (en) Gyro wave power generator and wave-dissipating device using the same
US11067055B2 (en) System for capturing the energy of fluid currents
ES2235929T3 (en) MARINE CURRENT CENTER.
US20030066934A1 (en) Method of utilization a flow energy and power installation for it
EP3399184A1 (en) Non-positive-displacement fluid machine
US11242840B2 (en) Ocean water power-generator
CN101657634A (en) Be used for from the energy-producing floating installation of current
JP2010531956A (en) Multipoint mooring and stabilization system and control method for submersible turbines using flow
WO2008009130A1 (en) Semi-submersible hydroelectric power plant
MX2011000263A (en) Systems and methods for tethered wind turbines.
US20120211988A1 (en) Submersible electric power generator system
CN103827477A (en) Power generation apparatus including a floating body, ship propelling apparatus, and foldable and windable wing included in the power generation apparatus
JP2014001689A (en) Power generation device utilizing water flow energy
WO2005050007A1 (en) Fluid and wind turbine for generating power
AU658878B2 (en) Wave energy converter
WO1994009272A1 (en) Combined wind and wave power generator
JP2002310051A (en) Kinetic energy collecting apparatus
JP2002332953A (en) Kinetic energy collecting device
US9546643B2 (en) Revolving overhead windmill
JP6063358B2 (en) Ocean current power generator
CN101680420A (en) System for generating electric power
TWI599717B (en) Ocean current power generation apparatus