JP2002332953A - Kinetic energy collecting device - Google Patents

Kinetic energy collecting device

Info

Publication number
JP2002332953A
JP2002332953A JP2001138379A JP2001138379A JP2002332953A JP 2002332953 A JP2002332953 A JP 2002332953A JP 2001138379 A JP2001138379 A JP 2001138379A JP 2001138379 A JP2001138379 A JP 2001138379A JP 2002332953 A JP2002332953 A JP 2002332953A
Authority
JP
Japan
Prior art keywords
rotating
fluid
shape
film
kinetic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001138379A
Other languages
Japanese (ja)
Inventor
Seishiro Munehira
聖士郎 宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001138379A priority Critical patent/JP2002332953A/en
Publication of JP2002332953A publication Critical patent/JP2002332953A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture the facilities for collecting the kinetic energy at low cost, to reduce weight, and to easily transport and install the facilities for wind power generation, hydraulic power generation, and the like. SOLUTION: This collecting device for converting the kinetic energy of fluid into rotation is composed of the combination of a structure wherein a rotating film 2 keeps the self-shape by the flow of fluid like a streamer, a constitution that a blade function generating the torque by receiving the flow of fluid is composed of a film, or the film and a reinforcing wire, the formation of the blade shape out of a material having rigidity, and the spiral shape of a rotating body itself or an internal partition of the rotating body, whereby the retention of the functional shape and the torque can be achieved by the flow of fluid to be applied as the power of the power generation and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、自然の運動エネル
ギーである河川の水流、潮流、風力を有効エネルギーと
しての電気エネルギーに変換、又は直接動力源として
有効利用を促進するものであり、水力、風力、潮力発電
及び自然運動エネルギーを利用した動力源に関するもの
である。
The present invention relates to the conversion of natural kinetic energy, such as river water currents, tidal currents and wind power, into electrical energy as effective energy, or as a direct power source.
It promotes effective utilization, and relates to a power source using hydropower, wind power, tidal power generation, and natural kinetic energy.

【0002】[0002]

【従来の技術】従来,自然エネルギーを産業に利用する
方法は、 1 水力利用でダムを建設して エネルギー密度を高め
てから 発電する。 2 水力利用で巨大な水車と流路を用いて 発電 又は
灌漑ポンプ等の動力源とする。 3 高低差のある水源より配管で取水して 発電 又は
灌漑ポンプ等の動力源とする。 4 風力利用で巨大なプロペラ、支柱を建造して比較的
エネルギー密度の高い場所にて発電 又は灌漑ポンプ等
の動力源とする。以上のように 発電設備がその出力に
対して巨大であり高コストとなり、また建造できる地理
的要因も限られていた。また 自然の弱風、一般河川の
水流などエネルギー密度の低い運動エネルギーは設備コ
ストと採算が合わないため、殆んど利用されることがな
かった。最近では、風力発電など 個人でも設置できる
小型のセットが普及するようなったが、エネルギーを実
用的に使うには機材のコストが高く、設置場所などにも
制約があり実用的ではなかった。
2. Description of the Related Art Conventionally, natural energy has been used in industry by: 1) constructing a dam using hydropower to increase the energy density and then generating electricity. 2 Power supply such as power generation or irrigation pumps using huge water turbines and flow passages using hydropower. 3. Water will be taken from a water source with a difference in elevation by pipes and used as a power source for power generation or irrigation pumps. 4. Build huge propellers and props by wind power and use them as power sources for power generation or irrigation pumps in places with relatively high energy density. As described above, the power generation facilities were huge and expensive, and the geographical factors that could be built were limited. In addition, kinetic energy with low energy density, such as natural breeze and general river water flow, was hardly used because it was not economically viable with equipment costs. Recently, small sets that can be installed by individuals, such as wind power generation, have become widespread. However, the cost of equipment is high for practical use of energy, and the installation location is limited, making it impractical.

【0003】[0003]

【発明が解決しようとする課題】解決しようとする問題
点は、自然の低密度運動エネルギーを産業上で利用可能
な運動エネルギーに変換する装置及び設備の設置及び製
作コストを下げることであり、 1 構造の単純化、軽量化で製作コストを低減し、製造
にかかるエネルギーを低減する 2 搬送、設置時にかさばらないよう 折りたたみ可能
な構造とし、搬送設置時に掛かるエネルギー、コスト、
時間、地理的制約を低減する。 3 回転体の設置、支持構造を簡略化して、搬送設置時
に掛かるコスト、時間、地理的制約を低減すると共に製
造コストも低減する。以上の課題を解決することであ
る。
The problem to be solved is to reduce the installation and manufacturing costs of equipment and equipment for converting natural low density kinetic energy into kinetic energy which can be used in industry. Reduces manufacturing costs by reducing structure simplicity and weight, and reduces energy required for manufacturing. 2 It has a foldable structure so that it is not bulky during transportation and installation.
Reduce time and geographical constraints. (3) The installation and support structure of the rotating body is simplified, so that the cost, time, and geographical restrictions required for transport installation are reduced, and the manufacturing cost is also reduced. It is to solve the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は、運動エネルギ
ーをより多く回収するために、流体の流れを受ける受動
体である回転体の有効面積を大きく 且つ回転体を低コ
ストにて製作、可般設置時には軽量コンパクトとなる構
造にするために、
SUMMARY OF THE INVENTION According to the present invention, in order to recover more kinetic energy, the effective area of a rotating body which is a passive body receiving a fluid flow is increased and the rotating body can be manufactured at low cost. In order to make the structure light and compact at the time of general installation,

【0005】図1,図3、図5,図7、図12,図14
にて示されるように 流体の流れ方向より徐々に開口面
積が減少又は同面積形状の回転膜2に流体が流れ込むこ
とにより、回転膜2は流体の抗力によりテーパー状ある
いは円筒状に膨らんで、回転体の形状を保持する構造を
持つことにより、 1 流体の流れを受けたときに、本来の機能形状ができ
る為、材料の使用量は最小となり製造コストを低減する
事ができ、特に大型、量産時にその効果を発揮できる。 2 搬送、収納時は折りたたんだ状態にてコンパクト、
軽量で搬送にかかる時間コスト、手間が低減できる。 3 流体の比重,粘度等の物性及び作動流速により 回
転膜2の形状、膜材質の強度、比重を適宜選択すること
で適応が簡単に出来る。 4 微弱風力を回転運動に変換する場合、回転体の慣性
重量が問題となるが、回転膜2は単純に膜なので材質を
選択することで慣性重量を小さくできる。 5 回転膜2に必要な強度は 主に流体の流れの抗力に
よる応力で、主に膜の引っ張り応力として伝達されるの
で、強度の必要な部分にはスチールベルト、ワイヤー、
ケブラー繊維、ガラス繊維等の複合材料を用い、流体の
圧力による形状保持の困難な個所は骨構造などにて補
強、剛性を持たすことでも可能である。 6 回転膜2の形状を、翼機能よりの回転力、抗力と合
わせてCAD,CAM,CEA、三次元造型等のコンピ
ューター技術利用で膜造形する事により、膜応力、流体
力学にそった形状を計算設計する事ができ、複雑な形状
でも平面に展開してつなぎ合わせることで容易に製作で
きる。 7 回転膜2の膜強度を超えるような過負荷が生じる場
合、一部の強度を低くする、又は弾性体で構成すること
で、異常な力がかかった場合、一部の破損又は弾性変形
にて見かけの面積を減少させて、これに対処する事がで
きる。
FIGS. 1, 3, 5, 5, 7, 12, and 14
As shown by, when the opening area gradually decreases from the flow direction of the fluid or when the fluid flows into the rotating film 2 having the same area, the rotating film 2 expands in a tapered or cylindrical shape due to the drag force of the fluid, and rotates. By having a structure that keeps the shape of the body, 1 When receiving the flow of fluid, the original functional shape can be made, so the amount of material used is minimized and the manufacturing cost can be reduced, especially large size, mass production Sometimes that effect can be demonstrated. 2 Compact when folded for transportation and storage.
It is lightweight and can reduce time cost and labor required for transportation. 3. The adaptation can be easily performed by appropriately selecting the shape of the rotating membrane 2, the strength of the membrane material, and the specific gravity according to the physical properties such as the specific gravity and the viscosity of the fluid and the operating flow rate. 4. When converting weak wind into rotational motion, the inertial weight of the rotating body is a problem. However, since the rotating membrane 2 is a simple membrane, the inertial weight can be reduced by selecting a material. 5 The strength required for the rotating membrane 2 is mainly the stress caused by the drag of the fluid flow, and is mainly transmitted as the tensile stress of the membrane. Therefore, the steel belt, wire,
It is also possible to use a composite material such as Kevlar fiber, glass fiber, or the like, and use a bone structure or the like to reinforce and provide rigidity at a portion where the shape is difficult to maintain by the pressure of fluid. 6 The shape of the rotating membrane 2 is formed by using computer technology such as CAD, CAM, CEA, and three-dimensional molding together with the rotational force and drag from the wing function, so that the shape conforming to the membrane stress and fluid dynamics can be obtained. Calculations can be designed, and even complex shapes can be easily manufactured by connecting them to a flat surface. 7 When an overload that exceeds the film strength of the rotating film 2 occurs, a part of the strength is reduced or an elastic body is used. This can be dealt with by reducing the apparent area.

【0006】図1、図5にて示されるように 回転力を
得る為の翼機能を、膜又は膜と補強線により構成するこ
とにより、 1 膜構造のみにより、回転膜2,及び回転膜翼3を一
体にて設計し、部分を展開後継ぎ合わせることで簡単に
造作でき、かかるコストが低い。 2 回転膜2に必要な強度は 主に流体の流れの抗力に
よる応力で、主に膜の引っ張り応力として伝達されるの
で、強度の必要な部分にはスチールベルト、ワイヤー、
ケブラー繊維、ガラス繊維等の複合材料を用い、流体の
圧力による形状保持の困難な個所は骨構造などにて補
強、剛性を持たすことも可能である。 3 回転膜2の形状を、翼機能よりの回転力、抗力と合
わせてCAD,CAM,CEA、三次元造型等のコンピ
ューター技術利用で膜造形する事により、膜応力、流体
力学にそった形状を計算設計する事ができ、複雑な形状
でも平面に展開してつなぎ合わせることで容易に製作で
きる。 4 回転膜2の膜強度を超えるような過負荷が生じる場
合、一部の強度を低くする 又は弾性体で構成すること
で、異常な力がかかった場合、一部の破損又は弾性変形
にて見かけの面積を減少させて、これに対処する事がで
きる 5 翼形状、ピッチ角、翼枚数と材質所要性能を、CA
D,CAM,CEA等のコンピューター技術利用で強度
の必要な部分にはスチールベルト、ワイヤー、ケブラー
繊維、ガラス繊維等の複合材料を用いての補強も可能
で、翼の膜応力、流体力学にそった形状を計算設計する
事ができる
As shown in FIGS. 1 and 5, the wing function for obtaining the rotational force is constituted by a membrane or a membrane and a reinforcing wire. 3 can be easily designed by integrally designing and joining the parts after development, and the cost is low. 2 The strength required for the rotating membrane 2 is mainly the stress caused by the drag of the fluid flow, and is transmitted mainly as the tensile stress of the membrane. Therefore, the steel belt, wire,
It is also possible to use a composite material such as Kevlar fiber or glass fiber, and to strengthen and have rigidity at a portion where the shape cannot be easily maintained by the pressure of the fluid by using a bone structure or the like. 3 The shape of the rotating membrane 2 is formed by using computer technology such as CAD, CAM, CEA, and three-dimensional modeling together with the rotational force and drag force from the wing function, so that the shape conforming to the membrane stress and fluid dynamics can be obtained. Calculations can be designed, and even complex shapes can be easily manufactured by connecting them to a flat surface. 4 When an overload that exceeds the film strength of the rotating film 2 occurs, a part of the strength is reduced or an elastic body is used. The apparent area can be reduced and this can be dealt with. 5 The blade shape, pitch angle, number of blades and material required
The use of computer technology such as D, CAM, CEA, etc., can be reinforced using composite materials such as steel belts, wires, Kevlar fibers, and glass fibers in areas where strength is required. Shape can be calculated and designed

【0007】図3にて示されるように 翼機能を、剛性
の有る材料にて翼形状を形成したものにて回転力を得る
ことにより、 1 固定翼7は回転膜2のケーシング効果により、開口
部より進入した流体は、通路断面積を徐々に減少させら
れ流速が上がることとなり、動力変換効率の高い固定翼
7を効率よく運転することが出来る。 2 固定翼7より固定軸8を介して動力伝達が可能なの
で張力線4によじれの力がかからない構造とすることが
出来る。 3 翼形状自身が変形しないので、高速回転及び高効率
が可能となる。 4 回転膜2に必要な強度は 主に流体の流れの抗力に
よる応力で、主に膜の引っ張り応力として伝達されるの
で、強度の必要な部分にはスチールベルト、ワイヤー、
ケブラー繊維、ガラス繊維等の複合材料を用い、流体の
圧力による形状保持の困難な個所は骨構造などにて補
強、剛性を持たすことも可能である。 5 回転膜2の形状を、固定翼7よりの回転力、抗力と
合わせてCAD,CAM,CEA、三次元造型等のコン
ピューター技術利用で膜造形する事により、膜応力、流
体力学にそった形状を計算設計する事ができ、複雑な形
状でも平面に展開してつなぎ合わせることで容易に製作
できる。
[0007] As shown in FIG. 3, the wing function is obtained by obtaining a rotational force with a wing shape formed of a rigid material. 1 The fixed wing 7 is opened by the casing effect of the rotating film 2. The fluid that has entered from the section gradually decreases the cross-sectional area of the passage and increases the flow rate, so that the fixed vanes 7 with high power conversion efficiency can be operated efficiently. (2) Since power can be transmitted from the fixed blade 7 via the fixed shaft 8, a structure in which a kinking force is not applied to the tension line 4 can be provided. 3 Since the wing shape itself does not deform, high-speed rotation and high efficiency are possible. 4 The strength required for the rotating membrane 2 is mainly the stress due to the drag of the fluid flow, and is mainly transmitted as the tensile stress of the membrane. Therefore, the steel belt, wire,
It is also possible to use a composite material such as Kevlar fiber or glass fiber, and to strengthen and have rigidity at a portion where the shape cannot be easily maintained by the pressure of the fluid by using a bone structure or the like. 5 The shape of the rotating film 2 is formed by computer technology such as CAD, CAM, CEA, and three-dimensional molding together with the rotational force and the drag force from the fixed wings 7 so that the shape conforms to the film stress and fluid dynamics. Can be calculated and designed, and even complex shapes can be easily manufactured by developing them on a plane and joining them together.

【0008】図7及び図12にて示されるように 複数
の円筒又はテーパー状である回転膜2をねじれあわせた
形状 又は図14にて示されるように回転体内部仕切り
を螺旋形状とする 又はそれらの組合せによって回転体
を構成することによって、 1 回転体が回転膜2の形状のみで構成されるので、構
造が簡単で製作が簡単。 2 回転膜2をねじれあわせた形状の場合、回転体の外
周も螺旋形状となり外部流れも回転力に変換できる。 3 図7の形状の場合、ブラケット11と回転膜2を張
力線4で吊着する位置が円形状にならないので、回転し
た時に張力線4がねじれにくい。 4 回転膜2内部に流体抵抗となる翼形状がないので流
体抗力抵抗が少ない。 5 回転膜2に必要な強度は 主に流体の流れの抗力に
よる応力で、主に膜の引っ張り応力として伝達されるの
で、強度の必要な部分にはスチールベルト、ワイヤー、
ケブラー繊維、ガラス繊維等の複合材料を用い、流体の
圧力による形状保持の困難な個所は骨構造などにて補
強、剛性を持たすことも可能である。 6 回転体2の形状を、回転力、抗力と合わせてCA
D,CAM,CEA、三次元造型等のコンピューター技
術利用で膜造形する事により、膜応力、流体力学にそっ
た形状を計算設計する事ができ、複雑な形状でも平面に
展開してつなぎ合わせることで容易に製作できる。 7 回転体2の膜強度を超えるような過負荷が生じる場
合、一部の強度を低くする 又は弾性体で構成すること
で、異常な力がかかった場合、一部の破損又は弾性変形
にて見かけの面積を減少させて、これに対処する事がで
きる。
As shown in FIG. 7 and FIG. 12, a plurality of cylindrical or tapered rotating films 2 are twisted together, or as shown in FIG. By configuring the rotating body by the combination of (1) 1 Since the rotating body is constituted only by the shape of the rotating film 2, the structure is simple and the manufacturing is easy. 2. In the case where the rotating film 2 has a twisted shape, the outer periphery of the rotating body also has a spiral shape, and the external flow can be converted into a rotating force. 3. In the case of the shape shown in FIG. 7, the position where the bracket 11 and the rotating film 2 are hung by the tension line 4 does not become circular, so that the tension line 4 is hardly twisted when rotated. 4. Since there is no wing shape serving as a fluid resistance inside the rotating film 2, the fluid drag resistance is small. 5 The strength required for the rotating membrane 2 is mainly the stress caused by the drag of the fluid flow, and is mainly transmitted as the tensile stress of the membrane. Therefore, the steel belt, wire,
It is also possible to use a composite material such as Kevlar fiber or glass fiber, and to strengthen and have rigidity at a portion where the shape cannot be easily maintained by the pressure of the fluid by using a bone structure or the like. 6 Change the shape of the rotating body 2 to CA
By forming membranes using computer technologies such as D, CAM, CEA, and three-dimensional molding, it is possible to calculate and design shapes that conform to membrane stress and fluid dynamics. Even complex shapes can be developed and connected to a plane. Can be easily manufactured. 7 If an overload that exceeds the film strength of the rotating body 2 occurs, reduce the strength of some parts or configure it with an elastic body. If an abnormal force is applied, some breakage or elastic deformation may occur. This can be dealt with by reducing the apparent area.

【0009】図9にて示されるように 回転体と回転軸
を吊着する張力線4に翼形状の翼羽根12を、一部又は
全長に渡り形成することにより 1 回転体が回転膜2の形状のみで構成されるので、構
造が簡単で製作が簡単。 2 他の方式と合わせて回転力を附加できるので効率が
良くなる。 3 フランジ5と回転膜2を吊着する張力線4に翼羽根
12にて剛性を与える事ができるので、回転した時に張
力線4がねじれにくい。 4 回転膜2内部に流体抵抗となる翼形状がないので流
体抗力抵抗が少ない。
As shown in FIG. 9, a wing-shaped wing blade 12 is formed on a tension line 4 for suspending the rotator and the rotation shaft, partly or over the entire length. Since it is composed only of the shape, the structure is simple and the production is easy. 2 Efficiency is improved because a rotational force can be applied in combination with other methods. (3) Since the wing blades 12 can provide rigidity to the tension line 4 for suspending the flange 5 and the rotating membrane 2, the tension line 4 is hardly twisted when rotated. 4. Since there is no wing shape serving as a fluid resistance inside the rotating film 2, the fluid drag resistance is small.

【0010】図11にて示されるように 回転体と出力
軸間の一部に回転力を伝達できる可撓性を持たせた回転
軸で構成することにより、 1 発電機1または動力部の設置位置を自由に出来、構
造も簡単でコストが低減できる。 2 流体の流れの方向が変化しても軸のたわみにより自
在の向きに回転体に追従して固定軸に回転力を伝達でき
る。 3 可撓回転軸13の形状を中空テーパーとして軸の曲
がり方を設計時に決めることが出来、釣り竿のように多
段引き伸ばし式構造を取ることも出来、未利用時コンパ
クトにすることも可能。 4 回転トルクが大きい場合は可撓回転軸13の可撓部
を可撓軸継ぎ手を多段に直列接続して利用することも出
来る。以上のような手段を単独又は組み合わせて講じ
る。
As shown in FIG. 11, by using a rotating shaft having flexibility capable of transmitting a rotating force to a part between the rotating body and the output shaft, 1 the generator 1 or the power unit is installed. The position can be freely set, the structure is simple, and the cost can be reduced. (2) Even if the direction of the fluid flow changes, the rotational force can be transmitted to the fixed shaft by following the rotating body in any direction due to the bending of the shaft. (3) The shape of the flexible rotating shaft 13 can be determined by designing the shaft to be bent as a hollow taper, and a multi-stage extending type structure such as a fishing rod can be adopted as in a fishing rod, and can be made compact when not in use. 4. When the rotation torque is large, the flexible portion of the flexible rotary shaft 13 can be used by connecting the flexible shaft joints in series in multiple stages. The above measures are taken alone or in combination.

【0011】[0011]

【発明の実施の形態】実施形態の違いにより、その構造
特徴を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structural features of the embodiment will be described with reference to the differences between the embodiments.

【0012】1 図1に膜翼型の断面図及び図2に膜翼
型の正面図を示し、これを説明する。流体の流れを受け
て、吹流しのように円筒形状となる回転膜2の内面に
流体の流れを受けてヨットの帆のように回転方向の力に
変換する回転膜翼3を複数形成し、発電機1の入力軸に
固着されたフランジ5外周より複数の張力線4を介して
回転膜2の開口部に吊着する。流体の流れのないとき
は、回転膜2及び回転膜翼3はフランジ5より張力線4
にて重力方向に垂れ下がった状態となっているが、流体
の流れが速くなり回転膜2が流され流体がその開口部よ
り進入すると抗力によりテーパー、あるいは円筒状に形
状を保ち内面に形成された回転膜翼3は回転中心部のハ
ブ6にて相互に引っ張られ翼形状を形成する、回転膜2
に進入した流体は回転膜翼3を通過し回転力を発生し回
転膜2に伝達、回転膜2は自己の張力によりトルクを張
力線4によってフランジ5に伝達する。このとき張力線
4を可撓線とする場合は、フランジ5の直径を回転体の
発生するトルクと抗力のバランスにて緊張状態を保ち、
張力線4がよじれないよう設定する。張力線4に剛性を
持たせて これを防止することも出来る。特性的には軸
流多翼型と同様で低流速でも効率よく回転力を得る事が
できる。膜の性状は軽い方が低速流に良く対応し、形状
安定のため延びが少なく、引張り強度が高く、表面は流
体との摩擦抵抗の少ない物を選択し、形状を折りたたむ
必要がなければ剛性の有る薄板状のもので構成しても良
い。またハブ6の接合部分の強度を弱く、可逆的に接合
できるようにする事で容易に過負荷時の保護構造として
用いることが出来、同様に弾性体の変形によって回転膜
翼3の受圧面積を低減することも出来き、回転膜2の一
部をマジックテープ(登録商標)のような可逆的に張り
合わせ出来る構造でを利用して過負荷にてその部分がは
がれて回転体の形状を保持しなくなる様にすることも出
来る。
FIG. 1 is a sectional view of a membrane airfoil, and FIG. 2 is a front view of the membrane airfoil. In response to the flow of the fluid, the inner surface of the rotating film 2 having a cylindrical shape like a streamer
A plurality of rotating membrane blades 3 that receive a flow of fluid and convert it into a force in a rotating direction like a sail of a yacht are formed, and a plurality of tension lines 4 are provided from an outer periphery of a flange 5 fixed to an input shaft of the generator 1. It is hung on the opening of the rotating film 2. When there is no fluid flow, the rotating membrane 2 and the rotating membrane blade 3 are
, The fluid flow speeds up, the rotating film 2 flows, and when the fluid enters through the opening, the fluid is formed on the inner surface while maintaining a tapered or cylindrical shape due to a drag. The rotating film blades 3 are mutually pulled by a hub 6 at the center of rotation to form a wing shape.
The fluid that has entered the rotary membrane 2 passes through the rotary membrane blades 3 to generate a rotational force and transmits it to the rotary membrane 2. The rotary membrane 2 transmits torque to the flange 5 by a tension line 4 by its own tension. At this time, when the tension line 4 is a flexible line, the diameter of the flange 5 is kept in a state of tension by the balance between the torque generated by the rotating body and the drag,
Set so that the tension line 4 is not twisted. This can be prevented by providing the tension line 4 with rigidity. The characteristics are the same as those of the axial flow multi-blade type, and a rotating force can be efficiently obtained even at a low flow velocity. Lighter membranes are better suited for low-speed flows, have less elongation for shape stability, have higher tensile strength, and have a surface that has less frictional resistance with the fluid.If the surface does not need to be folded, it should be rigid. It may be made of a certain thin plate. In addition, since the strength of the connecting portion of the hub 6 is weak and the connecting portion can be reversibly connected, it can be easily used as a protection structure at the time of overload. Similarly, the pressure receiving area of the rotating membrane blade 3 can be reduced by deformation of the elastic body. It can also be reduced, and by using a structure that can reversibly bond a part of the rotating film 2 such as Velcro (registered trademark), the part is peeled off by overload and the shape of the rotating body is maintained. It can be lost.

【0013】2 図3に固定翼型の断面図及び図4に固
定翼型の正面図を示し、これを説明する。流体の流れを
受けて、吹流しのようにテーパーあるいは円筒形状とな
る回転膜2の吹き出し側にに 流体の流れを受けて回転
方向の力に変換する固定翼7を固着し、発電機1の入力
軸に固着されたフランジ5外周より複数の張力線4を介
して回転膜2の開口部に吊着する。流体の流れのないと
きは、回転膜2及び回転膜翼3はフランジ5より張力線
4にて重力方向に垂れ下がった状態となっているが、流
体の流れが速くなり回転膜2が流され流体がその開口部
より進入すると抗力により円錐状に形状を保ちながら進
行と同時に流体は断面積を絞られ流速を上げる、流速の
上がった流体は固定翼7により回転力を発生し回転膜2
に伝達、回転膜2は自己の張力によりトルクを張力線4
によってフランジ5に伝達する。また固定翼7とフラン
ジ5を固定軸8で直結して伝達も可能である。このとき
張力線4を可撓線とする場合は、フランジ5の直径を回
転体の発生するトルクと抗力のバランスにて緊張状態を
保ち、張力線4がよじれないよう設定する。張力線4に
剛性を持たせて これを防止することも出来る。特性的
にはケーシング内装の軸流型と同様で、効率良く設計さ
れた形状の翼型を利用する事ができ、翼を通過する流速
を高めることで相対的に低流速に対応することが出来
る。
2 FIG. 3 is a cross-sectional view of the fixed airfoil, and FIG. 4 is a front view of the fixed airfoil. A fixed wing 7 that receives the fluid flow and converts it into a force in the rotational direction is fixed to the outlet side of the rotating film 2 that has a tapered or cylindrical shape like a streamer. It is hung from the outer periphery of the flange 5 fixed to the shaft to the opening of the rotating film 2 via a plurality of tension lines 4. When there is no flow of the fluid, the rotating membrane 2 and the rotating membrane blades 3 hang down in the direction of gravity at the tension line 4 from the flange 5. When the fluid enters through the opening, the fluid progresses while maintaining a conical shape due to the drag, and at the same time, the fluid has a reduced cross-sectional area to increase the flow velocity.
The rotating membrane 2 transmits torque by its own tension to the tension line 4.
To the flange 5. Further, transmission is also possible by directly connecting the fixed wing 7 and the flange 5 with a fixed shaft 8. At this time, when the tension line 4 is a flexible line, the diameter of the flange 5 is set so as to keep the tension line in balance with the torque generated by the rotating body and the drag, so that the tension line 4 is not twisted. This can be prevented by providing the tension line 4 with rigidity. Characteristically, it is possible to use an airfoil with an efficiently designed shape similar to the axial flow type inside the casing interior, and it is possible to respond to a relatively low flow velocity by increasing the flow velocity passing through the wing .

【0014】3 図5に旋回吹き出し型の断面図及び図
6旋回吹き出し型のの正面図を示し、これを説明する 流体の流れを受けて、パラシュートのように半球形状と
なる回転膜2に 流体の流れを同一回転方向に変向する
形状の噴出し口10とノズル膜9を複数形成し、発電機
1の入力軸に固着されたフランジ5外周より複数の張力
線4を介して回転膜2の開口部に吊着する。流体の流れ
のないときは、回転膜2及びノズル膜9はフランジ5よ
り張力線4にて重力方向に垂れ下がった状態となってい
るが、流体の流れが速くなり回転膜2が流され流体がそ
の開口部より進入すると抗力により半球形状を保ち内面
に形成されたノズル膜9より旋回流として吹き出し、そ
の反力にて回転膜2は自己の張力によりトルクを張力線
4によってフランジ5に伝達する。このとき張力線4を
可撓線とする場合は、フランジ5の直径を回転体の発生
するトルクと抗力のバランスにて緊張状態を保ち、張力
線4がよじれないよう設定する。張力線4に剛性を持た
せて これを防止することも出来る。特性的には低流速
で回転膜2の形状を保つことが出来、噴出し口10とノ
ズル膜9を調整して低速回転することで、回転膜2を簡
単な形状で造形、広告などを載せ視覚的な広告等にも利
用可能である。
3 is a cross-sectional view of the swirling blow-off type and FIG. 6 is a front view of the swirling blow-out type. This is explained. Outlet 10 and a plurality of nozzle membranes 9 are formed in such a manner as to turn the flow of air in the same rotational direction, and the rotating membrane 2 is connected to the outer periphery of the flange 5 fixed to the input shaft of the generator 1 via a plurality of tension lines 4. To the opening. When there is no flow of the fluid, the rotating film 2 and the nozzle film 9 hang down in the direction of gravity at the tension line 4 from the flange 5, but the flow of the fluid becomes faster and the rotating film 2 flows and the fluid flows. When it enters through the opening, it keeps a hemispherical shape due to the drag and blows out as a swirling flow from the nozzle film 9 formed on the inner surface. . At this time, when the tension line 4 is a flexible line, the diameter of the flange 5 is set so that the tension line 4 is kept in tension by the balance between the torque generated by the rotating body and the drag, so that the tension line 4 is not twisted. This can be prevented by providing the tension line 4 with rigidity. Characteristically, the shape of the rotating film 2 can be maintained at a low flow rate, and by adjusting the ejection port 10 and the nozzle film 9 and rotating at a low speed, the rotating film 2 can be formed in a simple shape, an advertisement, etc. can be placed. It can also be used for visual advertisements.

【0015】4 図7に螺旋型の側面図及び図8に螺旋
型の正面図を示し、これを説明する。吹流しのような円
筒状又はテーパー状の形状を複数螺旋状に形成した回転
膜2に、発電機1の入力軸に固着されたブラケット11
より複数の張力線4を介して回転膜2の開口部に吊着す
る。流体の流れのないときは、回転膜2はブラケット1
1より張力線4にて重力方向に垂れ下がった状態となっ
ているが、流体の流れが速くなり回転膜2が流され流体
がその開口部より進入すると螺旋状の流路を通過するこ
とにより、その反力にて回転膜2の自己の張力によりト
ルクを張力線4によってブラケット11に伝達する。こ
のとき張力線4を可撓線とする場合は、ブラケット11
の直径を回転体の発生するトルクと抗力のバランスにて
緊張状態を保ち、張力線4がよじれないよう設定する。
張力線4に剛性を持たせて これを防止することも出来
る。また、回転膜2を二重構造として、ドーナツ状の開
口部に螺旋状に仕切り膜を構成しても同様の効果を得る
ことが出来、簡単な展開方法で平面展開を行なう事がで
きる。高速流でも抗力による抵抗が少なく、比較的流体
の比重の大きな物に対して効率が良い。
FIG. 7 is a side view of the spiral type, and FIG. 8 is a front view of the spiral type. A bracket 11 fixed to the input shaft of the generator 1 is attached to the rotating membrane 2 having a plurality of spirally formed cylindrical or tapered shapes such as a streamer.
It is hung on the opening of the rotating membrane 2 via a plurality of tension lines 4. When there is no fluid flow, the rotating membrane 2 is
Although it is in a state of hanging down in the direction of gravity at the tension line 4 from 1, the flow of the fluid becomes faster, the rotating membrane 2 flows, and when the fluid enters from the opening, the fluid passes through the spiral flow path. The torque is transmitted to the bracket 11 by the tension line 4 by the tension of the rotating membrane 2 by the reaction force. At this time, when the tension wire 4 is a flexible wire, the bracket 11
Is maintained in a state of tension by the balance between the torque and the drag generated by the rotating body, and the tension line 4 is set so as not to be twisted.
This can be prevented by providing the tension line 4 with rigidity. Further, the same effect can be obtained even when the rotating film 2 has a double structure and the partition film is spirally formed in the donut-shaped opening, and the flat film can be developed by a simple developing method. Even in high-speed flow, resistance due to drag is small, and efficiency is high for objects having a relatively large specific gravity of fluid.

【0016】5 図12に螺旋補強型の側面図及び図1
3に螺旋補強型の正面図を示し、これを説明する。吹流
しのような円筒状又はテーパー状の形状を複数螺旋状に
形成した回転膜2の開口部に補強線16にて縁取りし、
回転中心にて補強線16を束ね発電機1の入力軸に連結
する。補強線16は弾力のあるワイヤーロープ等によ
り、開口部の形状保持と回転トルクの伝達を行なう。流
体の流れのないときは、回転膜2は発電機1の入力軸よ
り補強線16にて重力方向に垂れ下がった状態となって
いるが、流体の流れが速くなり回転膜2が流され流体が
その開口部より進入すると螺旋状の流路を通過すること
により、その反力にて回転膜2の自己の張力によりトル
クを補強線16によって発電機1の入力軸に伝達する。
回転膜2の開口部は傾斜した切り口として補強線16に
より形状保持することで流体の流入がしやすくなり、形
状を安定させる働きもある。また、固定軸又は可倒軸に
回転膜2の回転中心部を固定して回転力の伝達を行なう
ことも出来る。構造が簡単で、高速流でも抗力による抵
抗が少ない。
5 FIG. 12 is a side view of the spiral reinforcement type and FIG.
FIG. 3 shows a front view of the spiral reinforcement type, which will be described. A cylindrical or tapered shape such as a streamer is formed with a plurality of spirals, and the opening of the rotating film 2 is bordered by a reinforcing line 16,
The reinforcing wire 16 is bundled at the rotation center and connected to the input shaft of the generator 1. The reinforcing wire 16 retains the shape of the opening and transmits rotational torque by means of an elastic wire rope or the like. When there is no flow of the fluid, the rotating membrane 2 hangs down in the direction of gravity from the input shaft of the generator 1 at the reinforcing line 16, but the flow of the fluid becomes faster and the rotating membrane 2 flows and the fluid flows. When it enters from the opening, it passes through the spiral flow path, and transmits the torque to the input shaft of the generator 1 by the reinforcing wire 16 by its own tension due to its reaction force.
The opening of the rotating film 2 is shaped as an inclined cut by the reinforcing wire 16 so that the fluid can easily flow in and has a function of stabilizing the shape. In addition, the rotational force can be transmitted by fixing the rotation center of the rotating film 2 to a fixed shaft or a tiltable shaft. The structure is simple and there is little drag due to drag even at high speeds.

【0017】6 図14に螺旋仕切り型の側面図及び図
15に螺旋仕切り型の正面図を示し、これを説明する。
吹流しのような円筒状又はテーパー状の形状の回転膜2
の内側に螺旋状に仕切り膜17を形成し、仕切り膜17
斜辺に補強線16にて縁取りし、回転中心にて補強線1
6を束ね発電機1の入力軸に連結する。補強線16は弾
力のあるワイヤーロープ等により、開口部の形状保持と
回転トルクの伝達を行なう。流体の流れのないときは、
回転膜2は発電機1の入力軸より補強線16にて重力方
向に垂れ下がった状態となっているが、流体の流れが速
くなり回転膜2が流され流体がその開口部より進入する
と螺旋状の流路を通過することにより、その反力にて回
転膜2の自己の張力によりトルクを補強線16によって
発電機1の入力軸に伝達する。回転膜2の開口部は補強
線16により形状保持することで流体の流入がしやすく
なり、形状を安定させる働きもある。また、固定軸又は
可倒軸に仕切り膜17の回転中心部を固定して回転力の
伝達を行なうことも出来る。構造が簡単で、高速流でも
抗力による抵抗が少なく、構造的に仕切り膜17の螺旋
ピッチを小さくし易い。
6 FIG. 14 shows a side view of the spiral partition type, and FIG. 15 shows a front view of the spiral partition type, which will be described.
Rotating film 2 having a cylindrical or tapered shape such as a streamer
A spiral partitioning film 17 is formed inside the
The oblique side is bordered by the reinforcement line 16, and the reinforcement line 1 is set at the center of rotation.
6 are connected to the input shaft of the generator 1. The reinforcing wire 16 retains the shape of the opening and transmits rotational torque by means of an elastic wire rope or the like. When there is no fluid flow,
The rotating membrane 2 hangs in the direction of gravity from the input shaft of the generator 1 at the reinforcement line 16, but when the fluid flows faster and the rotating membrane 2 flows and the fluid enters from the opening, the spiral membrane 2 has a spiral shape. , The torque is transmitted to the input shaft of the generator 1 by the reinforcing wire 16 by the self-tension of the rotating membrane 2 by the reaction force. The shape of the opening of the rotating film 2 is maintained by the reinforcing wire 16 so that the fluid can easily flow in and has a function of stabilizing the shape. Further, the rotational force can be transmitted by fixing the rotation center of the partition film 17 to a fixed shaft or a tiltable shaft. The structure is simple, the resistance due to drag is small even in high-speed flow, and the helical pitch of the partition film 17 is easily reduced structurally.

【0018】7 図9に翼羽根型の側面図及び図10に
翼羽根型の正面図を示し、これを説明する。回転膜2よ
り、発電機1の入力軸に固着されたフランジ5外周より
複数の張力線4を介して回転膜2の開口部に吊着した張
力線4に翼断面形状を持つ翼羽根12を取り付る。流体
の流れのないときは、回転膜2と翼羽根12はフランジ
5より張力線4にて重力方向に垂れ下がった状態となっ
ているが、流体の流れが速くなり回転膜2が流され流体
がその開口部より進入すると翼羽根12は傘を開くよう
に展開し、展開した翼羽根12は流体の流れを受け、回
転力を発生し張力線4によってにフランジ5に伝達す
る。主に剛性の低いロープ等で張力線4とした時のよじ
れを防止する働きに有るが、張力線4の流体抵抗も回転
力に変換が可能であり、フランジ5の外形を小さくする
ことが出来る。
FIG. 9 shows a side view of the wing blade type, and FIG. 10 shows a front view of the wing blade type. A blade blade 12 having a blade cross-sectional shape is attached to the tension line 4 suspended from the outer periphery of the flange 5 fixed to the input shaft of the generator 1 through the plurality of tension lines 4 to the opening of the rotary film 2 from the rotating film 2. Attach. When there is no flow of the fluid, the rotating membrane 2 and the blades 12 hang down in the direction of gravity from the flange 5 along the tension line 4, but the flow of the fluid becomes faster and the rotating membrane 2 flows and the fluid flows. When the blade enters through the opening, the blade 12 expands so as to open the umbrella, and the expanded blade 12 receives the flow of the fluid, generates rotational force, and transmits it to the flange 5 by the tension line 4. It mainly has the function of preventing kinking when the tension line 4 is formed with a rope having low rigidity, but the fluid resistance of the tension line 4 can also be converted into rotational force, and the outer shape of the flange 5 can be reduced. .

【0019】8 図11に可撓軸設置図を示し、これを
説明する。発電機1の入力軸に結合された可撓回転軸1
3の根元部分を架台15に設けられた軸受け14にて軸
支し、先端部にフランジ5を介して張力線4で回転膜2
を吊着する。可撓回転軸13は釣竿のように根元部分よ
り先端に行くにつれ細くなり先端部ほど曲がり易い構造
を持つ。流体の流れのないときは、可撓回転軸13はほ
ぼ垂直状で回転膜2はフランジ5より張力線4にて重力
方向に垂れ下がった状態となっているが、流体の流れが
速くなり回転膜2が流され流体がその開口部より進入す
ると回転膜2は傘を開くように展開する、展開した回転
膜2の流体の抗力を受け、可撓回転軸13は流体の流れ
方向に弾性曲がりを起こし、回転力を伝達すると共に流
れ方向に曲がり常に回転膜2の開口部を流体の流れ方向
に沿わせることが出来る。また、可撓回転軸13として
ワイヤーロープ等のトルクを伝達できる可撓線の利
用、コイルスプリング軸継ぎ手、多段直列につながれた
ユニバーサルジョイント、ベベルギヤボックス、などの
回転軸偏向機構を剛体軸に附加して同様の効果を得るこ
とも出来る。この構造により、風力では可撓回転軸13
を垂直に、水力では水平にして回転体を任意の位置に導
くことが可能であり、回転体の取替えにて風力,水力、
流速の条件を合わせることも出来る。また図12の螺旋
補強型、図14の螺旋仕切り型に回転軸を一体構造とす
る事で、全体構造が簡素化される。以上のようにそれぞ
れの構造と特徴をもち、各構造、機能の組合せ、構成材
質により、さまざまな環境に合わせることが可能であ
る。
8 FIG. 11 is a view showing the installation of the flexible shaft, which will be described. Flexible rotary shaft 1 coupled to input shaft of generator 1
3 is supported by a bearing 14 provided on a gantry 15, and the rotating membrane 2 is connected to a tip end of the rotating membrane 2 by a tension line 4 via a flange 5.
Hang. The flexible rotating shaft 13 has a structure like a fishing rod, which becomes thinner toward the tip from the root portion and is more easily bent toward the tip. When there is no fluid flow, the flexible rotating shaft 13 is substantially vertical and the rotating membrane 2 is hanging down from the flange 5 in the direction of gravity at the tension line 4. When the fluid flows and the fluid enters through the opening, the rotating membrane 2 expands to open the umbrella, and receives the drag of the fluid of the developed rotating membrane 2, and the flexible rotating shaft 13 elastically bends in the flow direction of the fluid. The opening of the rotating membrane 2 can be always made to follow the flow direction of the fluid by transmitting the rotation force and bending in the flow direction. In addition, a flexible shaft, such as a wire rope, capable of transmitting torque, a coil spring shaft joint, a universal joint connected in multiple stages, a bevel gear box, and the like, are added to the rigid shaft as the flexible rotating shaft 13. The same effect can be obtained. With this structure, in the case of wind power, the flexible rotary shaft 13
It is possible to guide the rotating body to an arbitrary position by setting the rotating body vertically and hydraulically horizontally, and by replacing the rotating body, wind, hydraulic,
The conditions of the flow velocity can be adjusted. In addition, the integral structure of the rotary shaft in the spiral reinforcement type shown in FIG. 12 and the spiral partition type shown in FIG. 14 simplifies the overall structure. As described above, each of the structures and features can be adapted to various environments depending on the structure, combination of functions, and constituent materials.

【0020】[0020]

【実施例】1 図1に膜翼型の断面図及び図2に膜翼型
の正面図を示した形態で、直径約300mm、長さ15
0mmの回転膜2と12枚の回転膜翼3を膜厚0.2m
m厚みの軟質塩ビにて作成し、発電機1に自転車用ハブ
発電器、張力線4にナイロンロープとして試作し、水流
流速1m/s程度に浸漬した所、水中にて回転膜2は開
き水流を得て秒速2回転程度の回転力を得る事ができ
た。また、大気中にて軸無抵抗状態で風速5m/s程度
での回転を確認できた同様に、膜厚0.04mm厚みの
市販のナイロン袋材にて作成し、大気中にて軸無抵抗状
態で風速1m/s程度での回転を確認できた。
1 is a sectional view of a membrane airfoil shown in FIG. 1 and a front view of the membrane airfoil shown in FIG.
The rotating film 2 having a thickness of 0 mm and the twelve rotating film blades 3 have a thickness of 0.2 m.
m made of soft PVC, prototyped as a bicycle hub generator for the generator 1 and a nylon rope for the tension line 4 and immersed at a water flow velocity of about 1 m / s. And a rotational force of about 2 revolutions per second was obtained. Similarly, rotation at a wind speed of about 5 m / s was confirmed in the air with no shaft resistance, and similarly, it was made with a commercially available nylon bag material having a thickness of 0.04 mm, In this state, rotation at a wind speed of about 1 m / s was confirmed.

【0021】2 図3に固定翼型の断面図及び図4に固
定翼型の正面図を示し、これを説明する。直径約150
mm、長さ150mmの回転膜2を膜厚0.04mm厚
みの市販のナイロン袋材にて作成し、固定翼7を模型用
12枚羽根軸流ファン直径80mmとして、大気中にて
軸無抵抗状態で風速1m/s程度での回転を確認でき
た。
2 FIG. 3 shows a sectional view of the fixed airfoil type, and FIG. 4 shows a front view of the fixed airfoil type. About 150 diameter
The rotating membrane 2 having a thickness of 150 mm and a length of 150 mm is made of a commercially available nylon bag material having a thickness of 0.04 mm, and the fixed blade 7 is a model 12-blade axial fan having a diameter of 80 mm, and has no axial resistance in the atmosphere. In this state, rotation at a wind speed of about 1 m / s was confirmed.

【0022】3 図5に旋回吹き出し型の断面図及び図
6旋回吹き出し型のの正面図を示した形態で、直径約2
00mmの半球の回転膜2を膜厚0.04mm厚みの市
販のナイロンゴミ袋にて作成し、噴出し口10を八箇所
として、大気中にて軸無抵抗状態で風速0.3m/s程
度での回転を確認できた。
3 FIG. 5 shows a sectional view of the swirling blowout type and FIG. 6 shows a front view of the swirling blowout type.
A 00 mm hemispherical rotating film 2 is made from a commercially available nylon trash bag having a thickness of 0.04 mm, and eight outlets 10 are provided, and the wind speed is about 0.3 m / s in the atmosphere without any axial resistance. The rotation at was confirmed.

【0023】4 図7に螺旋型の側面図及び図8に螺旋
型の正面図を示した形態で、直径約50mmのチューブ
状3本をねじり合わせた形状の回転膜2を膜厚0.04
mm厚みの市販のナイロン袋材にて作成し、ねじれ角約
30度,長さ200mmとして、大気中にて軸無抵抗状
態で風速0.5m/s程度での回転を確認できた。
FIG. 7 is a side view of the spiral type shown in FIG. 7, and FIG. 8 is a front view of the spiral type. The rotating film 2 is formed by twisting three tubes each having a diameter of about 50 mm.
It was made of a commercially available nylon bag material having a thickness of 2 mm, and the torsion angle was about 30 degrees and the length was 200 mm, and rotation at a wind speed of about 0.5 m / s was confirmed in the atmosphere with no shaft resistance.

【0024】5 図9に翼羽根型の側面図及び図10に
翼羽根型の正面図を示した形状で、直径約150mm、
長さ150mmの回転膜2を膜厚0.04mm厚みの市
販のナイロンゴミ袋にて作成し、翼羽根12を硬質塩ビ
0.5mm、幅15mm、長さ60mmを翼断面状に曲
げた物12枚として、大気中にて軸無抵抗状態で風速2
m/s程度での回転を確認できた。
5 FIG. 9 is a side view of the wing blade type, and FIG. 10 is a front view of the wing blade type.
A rotating membrane 2 having a length of 150 mm was prepared from a commercially available nylon trash bag having a thickness of 0.04 mm, and a wing blade 12 was formed by bending a rigid PVC of 0.5 mm, a width of 15 mm and a length of 60 mm into a wing cross section. As a sheet, wind speed 2 with no shaft resistance in the atmosphere
The rotation at about m / s was confirmed.

【0025】6 図11に可撓軸設置図を示した方法
で、可撓回転軸13に市販のグラスファイバー製釣竿を
用い根元部分を無負荷軸受け14にて軸支し、回転膜2
を直径約300mm長さ150mmの回転膜2と12枚
の回転膜翼3を膜厚0.04mm厚みの市販のナイロン
袋材にて作成した物を先端部に吊着した物で、風速1m
/s程度で可撓回転軸13はほどよく曲がり根元垂直部
分での回転を確認できた。
6 A flexible shaft installation diagram is shown in FIG. 11, a commercially available fiberglass fishing rod is used for the flexible rotating shaft 13, and the root portion is supported by a no-load bearing 14.
Is a product obtained by hanging a rotating membrane 2 having a diameter of about 300 mm and a length of 150 mm and twelve rotating membrane blades 3 using a commercially available nylon bag material having a thickness of 0.04 mm at the tip thereof, and a wind speed of 1 m.
At about / s, the flexible rotating shaft 13 was bent moderately and rotation at the root vertical portion was confirmed.

【0026】[0026]

【発明の効果】以上説明したように、本発明の効果を以
下に列記する。
As described above, the effects of the present invention are listed below.

【0027】装置及び設備の製造コストの低減により 1 設備のコストが低減し、これにかかるエネルギーの
消費が少なくなる。 2 今までエネルギー密度が低いために利用されなかっ
た一般河川、灌漑水路の水流を容易に有効利用できるよ
うになる。 3 今までエネルギー密度が低いために利用されなかっ
た山岳、市街地、ビルの谷間などの風力を容易に有効利
用できるようになる。高層ビル風のような人工の地形要
因を統合して設計すれば、より高い効率で自然エネルギ
ーの有効利用が出来る。 4 今までエネルギー密度が低いために利用されなかっ
た海洋、沿岸等の潮流を容易に有効利用できるようにな
る。エネルギー密度が低い運動エネルギーはいたるとこ
ろに存在しており、コストが見合えばより多くの自然エ
ネルギーの利用が見込まれる。 5 灌漑ポンプの駆動のように、回転動力をそのまま利
用すれば利用効率もよくなり、発電設備も必要無くな
り、更にコストの低減が図れる。
[0027] The reduction of the manufacturing cost of the equipment and the equipment reduces the cost of the equipment and the energy consumption associated with it. 2 Water flows from general rivers and irrigation canals that have not been used because of low energy density can be easily and effectively used. 3. Wind power in mountains, urban areas, building valleys, etc., which have not been used because of low energy density, can be easily and effectively used. By integrating artificial terrain factors such as high-rise buildings, the natural energy can be used more efficiently and efficiently. 4. Currents such as oceans and coasts that have not been used due to low energy density can be easily and effectively used. Kinetic energy with low energy density is ubiquitous, and if cost is justified, more natural energy can be used. 5 If the rotational power is used as it is, as in the case of driving an irrigation pump, the utilization efficiency will be improved, and no power generation equipment will be required, and the cost will be further reduced.

【0028】装置、設備の設置及び復元の容易性により 1 移動を伴う設置でキャンプなど、電源のない場所で
の電源の確保が容易に出来る。 2 緊急災害時など電力、動力が利用不可能になったと
き、容易に設置して緊急電源、緊急動力とする事ができ
る。 3 搬送が困難なために設置する事ができなかった場所
でも設置が可能となり、深海中など人間が入る事もでき
ないところでも、沈下させるだけで利用が可能となる。 4 設置形態を 水中、海中にする事で景観にも影響を
与えない。 5 台風等の非常時には、即座に撤去でき、設備の安全
性を確保する事が容易である。
(1) Due to the ease of installation and restoration of the apparatus and equipment, (1) the installation with movement can easily secure the power supply in a place where there is no power supply, such as a camp. 2. When power or power becomes unavailable, such as during an emergency disaster, it can be easily installed and used as an emergency power source or power source. (3) Installation is possible even in places where installation was not possible due to difficulty in transportation, and it is possible to use in places where humans cannot enter, such as in the deep sea, just by sinking. 4. The landscape is not affected by setting the installation form underwater or underwater. 5 In the event of an emergency such as a typhoon, it can be removed immediately and it is easy to ensure the safety of the equipment.

【0029】設備の軽量化により 1 設備が何らかの異常で破壊されても、硬く重い部品
がなく、破壊 故障による二次災害が防止できる。これ
により、人が集まる場所でも安全に設置が可能となる。 2 設備の移動及び携帯が容易である。 3 設備の製造にかかる原料が少なく、設備廃止時に排
出される廃棄物も減少する。
[0029] Even if the equipment is destroyed due to some abnormality due to the weight reduction of the equipment, there are no hard and heavy parts, and a secondary disaster due to a breakdown failure can be prevented. As a result, it is possible to safely install the device even in a place where people gather. 2 Equipment is easy to move and carry. 3. There are few raw materials for the production of equipment and the amount of waste discharged when the equipment is abolished also decreases.

【0030】未利用時コンパクトな状態とすることで 1 移動を伴う設置でキャンプなど、電源のない所での
電源の確保が容易に出来る。 2 災害時に復旧に時間がかかる場合など、電池切れ心
配もなく、保存性も良い。以上のように本発明の効果は
さまざまな環境に対応でき、装置、設備のコストが削減
出来る。
By setting the apparatus in a compact state when not in use, it is possible to easily secure a power supply in a place where there is no power supply, such as a camp, by installing the apparatus with a movement. 2. When recovery takes time in a disaster, there is no need to worry about running out of batteries, and storage is good. As described above, the effects of the present invention can be applied to various environments, and the cost of equipment and facilities can be reduced.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】膜翼型の断面図FIG. 1 is a sectional view of a membrane airfoil.

【図2】膜翼型の正面図FIG. 2 is a front view of a membrane airfoil.

【図3】固定翼型の断面図FIG. 3 is a sectional view of a fixed-wing type.

【図4】固定翼型の正面図FIG. 4 is a front view of a fixed-wing type.

【図5】旋回吹き出し型の断面図FIG. 5 is a sectional view of a swirling blow-out type.

【図6】旋回吹き出し型のの正面図FIG. 6 is a front view of a swirling blow-off type.

【図7】螺旋型の側面図FIG. 7 is a side view of a spiral type.

【図8】螺旋型の正面図FIG. 8 is a front view of a spiral type.

【図9】翼羽根型の側面図FIG. 9 is a side view of a wing blade type.

【図10】翼羽根型の正面図FIG. 10 is a front view of a wing blade type.

【図11】可撓軸設置図FIG. 11 is a view showing a flexible shaft installation.

【図12】螺旋補強型の側面図FIG. 12 is a side view of a spiral reinforcement type.

【図13】螺旋補強型の正面図FIG. 13 is a front view of a spiral reinforcement type.

【図14】螺旋仕切り型の側面図FIG. 14 is a side view of a spiral partition type.

【図15】螺旋仕切り型の正面図FIG. 15 is a front view of a spiral partition type.

【符号の説明】[Explanation of symbols]

1 発電機 2 回転膜 3 回転膜翼 4 張力線 5 フランジ 6 ハブ 7 固定翼 8 固定軸 9 ノズル膜 10 噴出し口 11 ブラケット 12 翼羽根 13 可撓回転軸 14 軸受け 15 架台 16 補強線 17 仕切り膜 DESCRIPTION OF SYMBOLS 1 Generator 2 Rotating film 3 Rotating film blade 4 Tension line 5 Flange 6 Hub 7 Fixed blade 8 Fixed shaft 9 Nozzle film 10 Jet opening 11 Bracket 12 Blade blade 13 Flexible rotating shaft 14 Bearing 15 Mounting stand 16 Reinforcement line 17 Partition film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】流体の運動エネルギーを回転運動に変換す
る収集装置において、自らの形状により生じる流体の圧
力差により、回転体形状を保持する回転膜と、流体の流
れを受けて回転力を発生する翼形状及び開口部形状より
なる、運動エネルギー収集装置。
1. A collecting device for converting kinetic energy of a fluid into rotational motion, wherein a pressure difference of the fluid caused by its own shape causes a rotating film holding a rotating body shape and a rotating force to be generated by receiving a flow of the fluid. A kinetic energy collecting device having a wing shape and an opening shape.
【請求項2】翼機能を、膜又は膜と補強線により構成し
た、請求項1の運動エネルギー収集装置。
2. The kinetic energy collecting device according to claim 1, wherein the wing function is constituted by a film or a film and a reinforcing wire.
【請求項3】翼機能を、剛性の有る材料にて翼形状を形
成した、請求項1の運動エネルギー収集装置。
3. The kinetic energy collecting apparatus according to claim 1, wherein the wing function is formed in a wing shape from a rigid material.
【請求項4】回転膜自身又は回転膜内部仕切り及び回転
膜自身と回転膜内部仕切りの組合せて螺旋形状とした、
請求項1の運動エネルギー収集装置。
4. A helical shape formed by combining the rotating film itself or the rotating film internal partition and the rotating film itself and the rotating film internal partition.
The kinetic energy collecting device according to claim 1.
【請求項5】回転体と回転軸を吊着する張力線に翼形状
を、一部又は全長に渡り形成した、請求項1の運動エネ
ルギー収集装置。
5. The kinetic energy collecting device according to claim 1, wherein a wing shape is formed on a tension line for suspending the rotating body and the rotating shaft, partly or over the entire length.
【請求項6】回転体の回転力を伝達する軸の一部に回転
力を伝達できる可撓性を持たせた回転軸で構成される、
請求項1の運動エネルギー収集装置。
6. A rotary shaft having a part capable of transmitting a rotational force to a part of a shaft for transmitting a rotational force of a rotator having flexibility.
The kinetic energy collecting device according to claim 1.
JP2001138379A 2001-05-09 2001-05-09 Kinetic energy collecting device Pending JP2002332953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138379A JP2002332953A (en) 2001-05-09 2001-05-09 Kinetic energy collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138379A JP2002332953A (en) 2001-05-09 2001-05-09 Kinetic energy collecting device

Publications (1)

Publication Number Publication Date
JP2002332953A true JP2002332953A (en) 2002-11-22

Family

ID=18985324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138379A Pending JP2002332953A (en) 2001-05-09 2001-05-09 Kinetic energy collecting device

Country Status (1)

Country Link
JP (1) JP2002332953A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003552A1 (en) * 2003-07-01 2005-01-13 Tama-Tlo, Ltd. Assembly-type wind wheel
WO2009063605A1 (en) * 2007-11-12 2009-05-22 Nova Laboratory Co., Ltd. Water flow power generation equipment
WO2010033147A2 (en) * 2008-08-22 2010-03-25 Natural Power Concepts, Inc. Apparatus for generating electricity from flowing fluid using generally prolate turbine
CN101684772A (en) * 2008-09-23 2010-03-31 张云龙 Wind-powered machine rotor with venturi tube effect
WO2010037254A1 (en) * 2008-09-23 2010-04-08 Zhang Yulong Wind turbine rotor with venturi tube effect
KR101009591B1 (en) 2010-05-10 2011-01-20 손광국 Windmill for wind power generator
DE102011016141A1 (en) 2011-03-24 2012-09-27 Friedrich Grimm Wind turbine for converting kinetic energy of wind flow into electrical energy, has wing projection, where flow at projection is divided into unbraked air flow and another airflow so that annular turbulence is produced at rear edge
JP2013007273A (en) * 2011-06-22 2013-01-10 Takagi Co Ltd Power generation apparatus
WO2014048468A1 (en) 2012-09-26 2014-04-03 Friedrich Grimm Turbine with a nozzle body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003552A1 (en) * 2003-07-01 2005-01-13 Tama-Tlo, Ltd. Assembly-type wind wheel
WO2009063605A1 (en) * 2007-11-12 2009-05-22 Nova Laboratory Co., Ltd. Water flow power generation equipment
US8338973B2 (en) 2007-11-12 2012-12-25 Nova Laboratory Co., Ltd. Water flow electric power generator
WO2010033147A3 (en) * 2008-08-22 2010-05-20 Natural Power Concepts, Inc. Apparatus for generating electricity from flowing fluid using generally prolate turbine
WO2010033147A2 (en) * 2008-08-22 2010-03-25 Natural Power Concepts, Inc. Apparatus for generating electricity from flowing fluid using generally prolate turbine
CN101684772A (en) * 2008-09-23 2010-03-31 张云龙 Wind-powered machine rotor with venturi tube effect
AU2009299045B2 (en) * 2008-09-23 2012-12-20 Shanghai Forevoo New Energy Systems Co., Ltd Rotor Of Wind Conversion System With Venturi-Tube Effect
WO2010037254A1 (en) * 2008-09-23 2010-04-08 Zhang Yulong Wind turbine rotor with venturi tube effect
KR101009591B1 (en) 2010-05-10 2011-01-20 손광국 Windmill for wind power generator
DE102011016141A1 (en) 2011-03-24 2012-09-27 Friedrich Grimm Wind turbine for converting kinetic energy of wind flow into electrical energy, has wing projection, where flow at projection is divided into unbraked air flow and another airflow so that annular turbulence is produced at rear edge
DE102011016141B4 (en) * 2011-03-24 2013-06-06 Friedrich Grimm Wind turbine with a nozzle body
JP2013007273A (en) * 2011-06-22 2013-01-10 Takagi Co Ltd Power generation apparatus
WO2014048468A1 (en) 2012-09-26 2014-04-03 Friedrich Grimm Turbine with a nozzle body

Similar Documents

Publication Publication Date Title
JP5651680B2 (en) High efficiency turbine and power generation method
EP2304225B1 (en) Blade for a water turbine
AU2010243281B2 (en) Underwater power generator
JP5454946B2 (en) Turbine power generation unit and power generation method
JP5539893B2 (en) Power generator
US8633609B2 (en) Sub sea central axis turbine with rearwardly raked blades
JP2011504214A5 (en)
EA023602B1 (en) Wind/water turbine with rotational resistance reduced due to wind vane blades
EP2483554B1 (en) Tapered hollow helical turbine for energy transduction
EP0449979A1 (en) Vertical axis sail bladed wind turbine
JP2002332953A (en) Kinetic energy collecting device
SE1330093A1 (en) End-mounted spiral rotor
NO320286B1 (en) Turbine for power generation
WO1994009272A1 (en) Combined wind and wave power generator
JP2001073923A (en) Annular wind turbine
JP2023530198A (en) Swivel propeller, method of operation, and preferred use thereof
JP2003247481A (en) Running-water hydraulic power generator
JP5093629B1 (en) Fluid acceleration penetrating blade
JP2012233466A (en) Lift speed-up type windmill and power generator driving method