JP2002309229A - Detoxifying treatment agent for substance contaminated by organic halogen compound and treating method using it - Google Patents

Detoxifying treatment agent for substance contaminated by organic halogen compound and treating method using it

Info

Publication number
JP2002309229A
JP2002309229A JP2001114980A JP2001114980A JP2002309229A JP 2002309229 A JP2002309229 A JP 2002309229A JP 2001114980 A JP2001114980 A JP 2001114980A JP 2001114980 A JP2001114980 A JP 2001114980A JP 2002309229 A JP2002309229 A JP 2002309229A
Authority
JP
Japan
Prior art keywords
organic halogen
halogen compound
detoxifying
nickel
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001114980A
Other languages
Japanese (ja)
Inventor
Toshiki Shimizu
要樹 清水
Shunji Aman
俊二 阿萬
Yasuyuki Nagai
康行 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2001114980A priority Critical patent/JP2002309229A/en
Publication of JP2002309229A publication Critical patent/JP2002309229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detoxifying treatment agent for a substance and a treating method by decomposing an organic halogen compound for a short time without producing a harmful by-product and satisfying a legal restriction. SOLUTION: The detoxifying treatment agent for the substance to contaminated by the organic halogen compound comprises ion-nickel alloy powder. A nickel content of the alloy is 1-38% by weight by a measurement by an induction bonding plasma emission spectral analysis of a steel according to JIS G1258. The treating method using the detoxifying treating agent is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機ハロゲン化合
物で汚染された土壌、産業廃棄物、汚泥、スラッジ、排
水、地下水等の被処理物に対する無害化処理剤およびそ
れを用いた処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detoxifying agent for an object to be treated, such as soil, industrial waste, sludge, sludge, wastewater, and groundwater, which is contaminated with an organic halogen compound, and a method of treating the same using the same. It is.

【0002】[0002]

【従来の技術】近年、世界各地でTCE(トリクロロエ
チレン)、PCE(テトラクロロエチレン)、ジクロロ
メタン、PCB(ポリ塩化ビフェニル)及びダイオキシ
ン類等の有機ハロゲン化合物による環境汚染問題が顕在
化し大きな問題となっている。
2. Description of the Related Art In recent years, environmental pollution problems due to organic halogen compounds such as TCE (trichloroethylene), PCE (tetrachloroethylene), dichloromethane, PCB (polychlorinated biphenyl), and dioxins have become remarkable in many parts of the world and have become a serious problem.

【0003】これらの問題に対し、特に有機ハロゲン化
合物により汚染された土壌、排水、地下水等に対する無
害化用処理剤およびその処理方法が検討され、いくつか
の技術報告または特許が出願されている。
[0003] In order to solve these problems, a treatment agent for detoxifying soil, wastewater, groundwater and the like contaminated by an organic halogen compound and a treatment method thereof have been studied, and several technical reports or patents have been filed.

【0004】1)汚染排水、地下水等の処理法として
は、抽出・吸着法や揚水曝気法等が知られているが、揚
水装置、さらに引き上げた前記汚染物質の吸着設備、活
性炭等吸着剤の再生処理や廃棄処理が必要となる。ま
た、汚染排水、地下水および近辺の土壌自体を無害化す
るものではなく本質的な無害化処理法とはいえない。
[0004] 1) As a method for treating polluted wastewater, groundwater, etc., an extraction / adsorption method, a pumping aeration method, etc. are known. Regeneration and disposal are required. In addition, it does not detoxify contaminated wastewater, groundwater and nearby soil itself, and cannot be said to be an essential detoxification method.

【0005】近年、金属触媒を混合、散布するだけで汚
染物質を分解し無害化する処理法が報告されている。鉄
系触媒により無害化する方法として、例えば特許263
6171号公報、特公平2−49158号公報、特公平
2−49798号公報に開示があるが、汚染排水、地下
水のpH調整、水素ガスや還元剤等を供給する脱酸素処
理が必要であり、実工法としては困難である。また、先
崎ら[工業用水、391巻,29頁(1991年)]に
よるとTCEで汚染された排水、用水を鉄粉やNiまた
はCu化学メッキ鉄粉により還元脱塩素処理する技術が
ある。しかし、これら触媒の経時的性能劣化を抑制する
ため汚染排水、用水中の溶存酸素を除去することが必要
であり、さらに活性のあるニッケルメッキ量範囲が限ら
れており、再現性が問題となる。特表平10−5131
03号公報はジクロロメタンをFe−Pd触媒により分
解する技術に開示しているが、比較例として塩化ニッケ
ル溶液でメッキ処理した鉄粉はその分解速度は遅く無害
化には長時間を要し、完全に分解できない。
In recent years, treatment methods have been reported in which pollutants are decomposed and made harmless simply by mixing and spraying a metal catalyst. As a method of detoxifying with an iron-based catalyst, for example, Japanese Patent No. 263
No. 6171, Japanese Patent Publication No. 2-49158, and Japanese Patent Publication No. 49798/1992, require a pH control of contaminated wastewater and groundwater, and a deoxygenation treatment for supplying hydrogen gas and a reducing agent. It is difficult as a practical method. According to Sakizaki et al. [Industrial Water, Vol. 391, p. 29 (1991)], there is a technique for reducing and dechlorinating waste water and water contaminated with TCE using iron powder or Ni or Cu chemically plated iron powder. However, it is necessary to remove dissolved oxygen in contaminated wastewater and service water in order to suppress the performance deterioration of these catalysts over time, and furthermore, the range of the amount of active nickel plating is limited, and reproducibility becomes a problem. . Tokiohei 10-5131
No. 03 discloses a technique for decomposing dichloromethane with an Fe-Pd catalyst, but as a comparative example, iron powder plated with a nickel chloride solution has a slow decomposition rate and requires a long time to detoxify, Cannot be disassembled.

【0006】2)汚染土壌、スラッジ、汚泥等の処理法
としては掘削土壌または直接土壌中に加熱用電極を挿入
し加熱処理する熱脱着法および熱分解法が知られてい
る。この方法では電極近傍は熱分解されるが、その他は
揮発性の有機ハロゲン化合物を中心に地上に揮散するだ
けで根本的な処理法ではない。微生物によるバイオレメ
デイエ−ション法があるが、無害化には長時間必要であ
り、しかも全土壌に対応できず完全無害化は不可能と言
われている。また、汚染土壌に鉄系分解触媒を添加し、
汚染物質を分解・処理する技術として、例えば特開平1
1−235577号公報に開示があるが、短時間に分解
できるものではなかった。米国特許第5616253号
明細書にはジクロロメタンをFe−Pd触媒により分解
する技術が開示されているが、比較例として鉄−ニッケ
ルメッキ粉が記載されているものの、分解速度が遅く無
害化には長時間を要し、完全に分解できるものではなか
った。
[0006] 2) As a method for treating contaminated soil, sludge, sludge, etc., a thermal desorption method and a thermal decomposition method in which a heating electrode is inserted into excavated soil or directly into the soil for heat treatment are known. In this method, the vicinity of the electrode is thermally decomposed, but the others are volatilized mainly on volatile organic halogen compounds on the ground and are not fundamental treatment methods. Although there is a bioremediation method using microorganisms, it is said that detoxification requires a long time, and cannot be applied to all soils, making complete detoxification impossible. Also, an iron-based decomposition catalyst was added to the contaminated soil,
As a technology for decomposing and treating pollutants, for example,
Although it is disclosed in Japanese Patent Application Laid-Open No. 1-235577, it cannot be decomposed in a short time. U.S. Pat. No. 5,616,253 discloses a technique for decomposing dichloromethane with an Fe-Pd catalyst. However, although an iron-nickel plating powder is described as a comparative example, the decomposition rate is slow and it is not long for detoxification. It was time-consuming and could not be completely disassembled.

【0007】[0007]

【発明が解決しようとする課題】以上述べたように有機
ハロゲン化合物で汚染された被処理物の従来処理法では
処理時間が長い、コスト高、処理法が複雑で実用性に乏
しいといった課題を抱えている。特に、鉄等の金属触媒
を添加し、無害化する技術としては、触媒劣化対策とし
て汚染排水、地下水に対してはpH調整、脱溶存酸素処
理が必要であり、汚染土壌に対しては短時間処理、完全
分解できないため、高性能化が求められている。さら
に、有害性のある分解副生物発生等の問題も残されてい
る。これらの問題を一部解決する触媒の一例としてニッ
ケルメッキ触媒があるが、メッキ部分の剥離や溶出によ
り環境負荷の増大、反応速度の低下の問題が残ってい
た。
As described above, the conventional treatment method for the object to be treated contaminated with an organic halogen compound has problems that the treatment time is long, the cost is high, the treatment method is complicated, and the practicality is poor. ing. In particular, as a technology to add a metal catalyst such as iron to make it harmless, it is necessary to adjust the pH for contaminated wastewater and groundwater as a countermeasure against catalyst deterioration, and to dissolve dissolved oxygen. Since processing and complete disassembly cannot be performed, higher performance is required. Further, problems such as generation of harmful decomposition by-products remain. As an example of a catalyst that partially solves these problems, there is a nickel plating catalyst. However, there still remain problems such as an increase in environmental load and a reduction in reaction rate due to peeling or elution of a plated portion.

【0008】[0008]

【課題を解決するための手段】本発明者らは、これらの
課題を解決するために鋭意検討した結果、本発明を完成
するに至ったものであり、有機ハロゲン化合物で汚染さ
れた被処理物用無害化処理剤及びそれを用いた処理方法
を提供するもので、汚染有機ハロゲン化合物の濃度が法
的規制値をクリアすることができる。すなわち、鉄−ニ
ッケル合金粉末中のニッケル含有量がJIS G125
8の鋼の誘導結合プラズマ発光分光分析方法による測定
で1〜38重量%である有機ハロゲン化合物で汚染され
た被処理物用無害化処理剤及びこれを用いた処理方法で
ある。
Means for Solving the Problems The present inventors have made intensive studies to solve these problems, and as a result, have completed the present invention. The present invention provides a detoxifying treatment agent and a treatment method using the same, whereby the concentration of a contaminating organic halogen compound can meet legally regulated values. That is, the nickel content in the iron-nickel alloy powder is JIS G125
8 is a detoxifying agent for an object to be treated, which is contaminated with an organic halogen compound in an amount of 1 to 38% by weight as measured by inductively coupled plasma emission spectroscopy of steel No. 8, and a processing method using the same.

【0009】以下、本発明についてさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail.

【0010】本発明の無害化処理剤が処理する被処理物
は、有機ハロゲン化合物で汚染されたものである。ここ
に、有機ハロゲン化合物としては、土壌環境基準項目に
記載された化合物であれば、特に限定するものではな
く、例えば、ジクロロメタン、四塩化炭素、1,2−ジ
クロロエタン、1,1−ジクロロエチレン、EDC(c
is−1,2−ジクロロエチレン)、MC(1,1,1
−トリクロロエタン)、1,1,2−トリクロロエタ
ン、TCE(トリクロロエチレン)、PCE(テトラク
ロロエチレン)、1,3−ジクロロプロペン等が挙げら
れる。
The object to be treated by the detoxifying agent of the present invention is one which is contaminated with an organic halogen compound. Here, the organic halogen compound is not particularly limited as long as it is a compound described in the soil environmental standard item. For example, dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, EDC (C
is-1,2-dichloroethylene), MC (1,1,1
-Trichloroethane), 1,1,2-trichloroethane, TCE (trichloroethylene), PCE (tetrachloroethylene), 1,3-dichloropropene and the like.

【0011】本発明の無害化処理剤はニッケル含有量が
JIS G1258、鋼の誘導結合プラズマ発光分光分
析方法により求めた1〜38重量%である鉄−ニッケル
合金粉末である。ニッケル含有量1重量%未満では有機
ハロゲン化合物の分解速度が著しく遅く無害化に長期間
必要である。また、被処理物に対し添加量を多くしても
性能は顕著には現れずコスト高となり、また法的規制値
をクリアできない。一方、ニッケル含有量が38重量%
を超えると分解反応速度は低下する。また、このような
高ニッケル含有粉は高コストとなり分解性能の割には経
済的に不利となる。
The detoxifying agent of the present invention is an iron-nickel alloy powder having a nickel content of 1 to 38% by weight as determined by a method of inductively coupled plasma emission spectroscopy of steel according to JIS G1258. If the nickel content is less than 1% by weight, the decomposition rate of the organic halogen compound is extremely slow, and it is necessary for a long period of time for detoxification. In addition, even if the amount added to the material to be treated is increased, the performance does not appear remarkably and the cost increases, and the legally regulated value cannot be cleared. On the other hand, the nickel content is 38% by weight.
If it exceeds, the decomposition reaction rate decreases. In addition, such a high nickel-containing powder is expensive and economically disadvantageous for its decomposition performance.

【0012】さらに詳しくは、鉄−ニッケル合金粉末に
おいてニッケル含有量が1〜6.8重量%の範囲では合
金粉末製造時の冷却速度調整によりα相(鉄リッチ成
分、体心立方型結晶構造)単相又はα相+γ相(ニッケ
ルリッチ成分、面心立方型結晶構造)の2相型結晶構造
を有することができる。ニッケル含有量が6.8〜38
重量%の範囲では全てα相+γ相の2相型結晶構造を有
する。有機ハロゲン化合物の無害化処理剤の性能と結晶
構造の関係は2相型結晶構造合金、α単相型結晶構造合
金、鉄粉にニッケルメッキした剤の順番になることを確
認している。
More specifically, when the nickel content of the iron-nickel alloy powder is in the range of 1 to 6.8% by weight, the α phase (iron-rich component, body-centered cubic crystal structure) is adjusted by adjusting the cooling rate during the production of the alloy powder. It can have a single phase or a two-phase crystal structure of α phase + γ phase (nickel-rich component, face-centered cubic crystal structure). Nickel content of 6.8 to 38
In the range of weight%, all have a two-phase type crystal structure of α phase + γ phase. It has been confirmed that the relationship between the performance and the crystal structure of the detoxifying agent for an organic halogen compound is in the order of a two-phase crystal structure alloy, an α-single-phase crystal structure alloy, and a nickel-plated iron powder.

【0013】また、本発明の無害化処理剤である鉄−ニ
ッケル合金粉末特性としては、比表面積は0.05m2
/g以上、200μmのふるいを通過する粒径を用いる
ことにより、分解反応速度、被処理物の接触確率を向上
させることができ、より短時間にDCE等の土壌環境基
準項目に記載された有害有機ハロゲン化合物をも分解す
ることができるのでより好ましい。
The iron-nickel alloy powder as the detoxifying agent of the present invention has a specific surface area of 0.05 m 2.
/ G and a particle size passing through a 200 μm sieve can improve the decomposition reaction rate and the contact probability of the object to be treated, and can reduce the harmfulness described in the soil environment standard items such as DCE in a shorter time. It is more preferable because organic halogen compounds can be decomposed.

【0014】本発明無害化処理剤の製造方法に制限はな
く水またはガスアトマイズ法、溶解粉砕法等が含まれ、
製法に起因するところがあるが処理剤の形状は球形状、
樹枝状、片状、針状、角状、積層状、海綿状等が含まれ
る。
The method for producing the detoxifying agent of the present invention is not limited, and includes a water or gas atomizing method, a dissolution pulverizing method, and the like.
Due to the manufacturing method, the shape of the treatment agent is spherical,
Dendrites, flakes, needles, squares, laminates, sponges and the like are included.

【0015】本発明の無害化処理剤は、以上に説明した
ような鉄−ニッケル合金粉末を含むものであるが、その
効果を損なわない程度で添加剤を含んでいてもよい。添
加剤としては特に限定するものではなく、例えば、酸化
防止剤、(電解質系)反応促進剤、分散剤等があげられ
る。ここに、電解質としては、例えば、塩化ナトリウ
ム、硫酸ナトリウム等があげられ、分散剤としては、例
えば、活性炭素、アルミナ、ゼオライト、シリカゲル、
シリカ−アルミナ、等があげられる。
The detoxifying agent of the present invention contains the iron-nickel alloy powder as described above, but may contain an additive to such an extent that its effect is not impaired. The additives are not particularly limited, and include, for example, antioxidants, (electrolyte) reaction accelerators, dispersants and the like. Here, examples of the electrolyte include sodium chloride and sodium sulfate, and examples of the dispersant include activated carbon, alumina, zeolite, and silica gel.
Silica-alumina, and the like.

【0016】本発明の無害化処理方法は、有機ハロゲン
化合物で汚染された被処理物に上記した無害化処理剤を
添加混合し、処理するものである。
According to the detoxification treatment method of the present invention, the above-mentioned detoxification treatment agent is added to an object to be treated contaminated with an organic halogen compound, followed by treatment.

【0017】無害化処理剤の添加量は特に限定するもの
ではないが、被処理物中の有機ハロゲン化合物と接触確
率を高くして分解速度を増加させ、経済的に有利となる
ため、湿体土壌や地下水等の被処理物全量に対して0.
1〜10重量%の範囲であることが好ましい。
The amount of the detoxifying agent added is not particularly limited. However, since the contact probability with the organic halogen compound in the object to be treated is increased to increase the decomposition rate and become economically advantageous, 0% of the total amount of materials to be treated such as soil and groundwater.
Preferably it is in the range of 1 to 10% by weight.

【0018】無害化処理剤の添加、混合方法の例として
は、1)掘削した土壌あるいは揚水した地下水等に対し
てはミキサ−、ニ−ダ−等を用いて連続均一混合処理、
または混合ピット等を用いて回分混合処理、2)原位置
処理法としては空気または水等により無害化処理剤を土
壌、地下水等に圧入することで均一混合処理ができる。
Examples of the method of adding and mixing the detoxifying agent include: 1) Continuous and uniform mixing of excavated soil or pumped groundwater using a mixer, kneader or the like;
Alternatively, batch mixing using a mixing pit or the like, and 2) as an in-situ processing method, uniform mixing can be performed by injecting a detoxifying agent into soil, groundwater, or the like with air or water.

【0019】また、本発明の処理方法によれば、前記有
機ハロゲン化合物で汚染された被処理物に対しpH調整
や脱酸素処理を必要とせず、本発明の無害化処理剤を添
加混合することにより、無害化することができる。
Further, according to the treatment method of the present invention, it is possible to add and mix the detoxifying agent of the present invention without requiring pH adjustment or deoxygenation treatment of the object contaminated with the organic halogen compound. Can be made harmless.

【0020】[0020]

【実施例】次に、本発明を実施例にさらに具体的に説明
するが、本発明はこれらによって限定されるものではな
い。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0021】尚、以下に示す実施例及び比較例で調製さ
れた処理剤は、X線マイクロアナライザーによりその結
晶構造を決定したところ、ニッケル(Ni)含有量が1
重量%未満ではα相単相、1〜38重量%の範囲のもの
はα相とγ相の2相、38重量%を超えるものはγ相単
相であった。
When the crystal structures of the treating agents prepared in the following Examples and Comparative Examples were determined by an X-ray microanalyzer, the nickel (Ni) content was 1%.
When the content was less than 1% by weight, the α phase was a single phase, when the content was in the range of 1 to 38% by weight, there were two phases of the α phase and the γ phase, and when it exceeded 38% by weight, the single phase was the γ phase.

【0022】実施例1〜6および比較例1〜4 TCE含有汚染溶液に対する本発明の無害化処理剤の試
験を行った。125mlバイアル瓶に100mg/Lの
TCE水溶液、メタノ−ルに溶解した内標ベンゼン、そ
して本発明処理剤をすばやく入れて密封した。30℃、
200rpm浸とうを維持した。この水溶液は脱酸素処
理を行っておらず、塩酸または水酸化ナトリウムにより
pH6〜7に調整した。
Examples 1 to 6 and Comparative Examples 1 to 4 Tests of the detoxifying agent of the present invention with respect to a TCE-containing contaminated solution were conducted. In a 125 ml vial, a 100 mg / L aqueous TCE solution, an internal standard benzene dissolved in methanol, and the treating agent of the present invention were quickly added and sealed. 30 ° C,
The 200 rpm soak was maintained. This aqueous solution was not subjected to deoxygenation treatment and was adjusted to pH 6 to 7 with hydrochloric acid or sodium hydroxide.

【0023】用いた処理剤はJIS G1258の鋼の
誘導結合プラズマ発光分光分析方法により測定したニッ
ケル含有量0.01〜42.4重量%、比表面積0.2
〜1.2m2/g、75μmのふるいを通過した鉄−ニ
ッケル合金粉末を用いた(実施例1、3〜6および比較
例1〜3)。実施例2のニッケル3.82重量%粉は川
崎製鉄KIPシグマロイ415を用いた。比較例4のニ
ッケル99.7重量%粉は高純度化学研究所(株)のニ
ッケル粉を用い、75μmフルイを通過した粒度品を用
いた。添加量はいずれも1g(対被処理物1重量%)で
ある。
The treating agent used was a nickel content of 0.01 to 42.4% by weight and a specific surface area of 0.2 as measured by inductively coupled plasma emission spectroscopy of steel according to JIS G1258.
1.21.2 m 2 / g, an iron-nickel alloy powder passed through a 75 μm sieve was used (Examples 1, 3 to 6 and Comparative Examples 1 to 3). As the 3.82% by weight nickel powder of Example 2, Kawasaki Steel KIP Sigmaalloy 415 was used. As the 99.7% by weight nickel powder of Comparative Example 4, nickel powder manufactured by Kojundo Chemical Laboratory Co., Ltd. was used, and a particle size product having passed through a 75 μm sieve was used. The amount added was 1 g (1% by weight based on the material to be treated).

【0024】TCE濃度の分析方法として、JIS K
0125(用水、排水中の揮発性有機化合物試験方
法)に基づいたヘッドスペ−ス法を用い、TCE濃度を
経時的に定量分析した。試験後のORP(mV)も合わ
せて測定した。これらの測定結果を表1および図1に示
す。
As a method for analyzing the TCE concentration, JIS K
The TCE concentration was quantitatively analyzed with time using a head space method based on 0125 (test method for volatile organic compounds in water and wastewater). The ORP (mV) after the test was also measured. The results of these measurements are shown in Table 1 and FIG.

【0025】[0025]

【表1】 実施例1〜6において14日間までにTCE濃度は土壌
環境基準0.03mg/L以下となった。分解生成物と
してエチレンが主であるが、DCE等の環境基準項目の
有機塩素化合物は生成していないことを確認した。ま
た、ORP値もTCE溶液自身のORPより卑な(低
い)電位を示し、TCE溶液が還元分解する傾向にある
ことを示唆している。これに対し、比較例1および比較
例2のニッケル含有量が1重量%未満の触媒は、14日
後もTCE濃度が0.03mg/L以下にならず、比較
例3および4のニッケル含有量が38重量%を超えた触
媒も14日後にTCE濃度が0.03mg/L以下にな
らずORP値も高かった。
[Table 1] In Examples 1 to 6, the TCE concentration was not more than 0.03 mg / L in the soil environment standard by 14 days. It was confirmed that ethylene was mainly used as a decomposition product, but no organic chlorine compound was generated as an environmental standard item such as DCE. The ORP value also shows a lower (lower) potential than the ORP of the TCE solution itself, suggesting that the TCE solution tends to undergo reductive decomposition. On the other hand, in the catalysts of Comparative Examples 1 and 2 having a nickel content of less than 1% by weight, the TCE concentration did not become 0.03 mg / L or less even after 14 days, and the nickel contents of Comparative Examples 3 and 4 were not increased. After 14 days, the catalyst exceeding 38% by weight did not have a TCE concentration of 0.03 mg / L or less and had a high ORP value.

【0026】従って、実施例1〜6で用いた無害化処理
剤を用いれば有機ハロゲン化合物を分解する能力は顕著
であり、法的規制値をクリアすることができることが分
かった。
Therefore, it was found that the use of the detoxifying treatment agents used in Examples 1 to 6 has a remarkable ability to decompose organic halogen compounds, and can satisfy legally regulated values.

【0027】実施例7〜11および比較例5〜8 TCE汚染モデル土壌に対する本発明の分解能力を検討
した。モデル土壌として珪藻土(和光純薬、#25〜3
0)を30g、鉄−ニッケル合金粉末を0.3g(対土
壌1.0重量%)を5分間混合した。
Examples 7 to 11 and Comparative Examples 5 to 8 The ability of the present invention to decompose TCE-contaminated model soil was examined. Diatomaceous earth (Wako Pure Chemical, # 25-3
0) and 0.3 g of iron-nickel alloy powder (1.0% by weight based on soil) were mixed for 5 minutes.

【0028】125mlバイアル瓶に触媒を混合したモ
デル土壌と脱酸素未処理の純水9ml(対土壌30重量
%)を添加し、TCE(100mg/L)とメタノ−ル
に溶解した内標ベンゼンを添加し密封した。バイアル瓶
は30℃、200rpm浸とう条件で反応させた。
To a 125 ml vial was added 9 ml (30% by weight based on soil) of the model soil mixed with the catalyst and deoxidized untreated water, and TCE (100 mg / L) and internal benzene dissolved in methanol were added. Added and sealed. The vial was reacted under the conditions of 30 ° C. and 200 rpm immersion.

【0029】用いた処理剤はJIS G1258の鋼の
誘導結合プラズマ発光分光分析方法により測定したニッ
ケル含有量0.05〜78.5重量%、比表面積0.2
〜1.2m2/g、75μmのふるいを通過した鉄−ニ
ッケル合金粉末を用いた(実施例7、9〜11および比
較例5〜7)。実施例9のニッケル3.82重量%粉は
川崎製鉄KIPシグマロイ415を用いた。比較例8の
ニッケル99.7重量%粉は高純度化学研究所(株)の
ニッケル粉を用い、75μmフルイを通過したものを用
いた。
The treating agent used was a nickel content of 0.05 to 78.5% by weight and a specific surface area of 0.2 measured by inductively coupled plasma emission spectroscopy of steel according to JIS G1258.
1.21.2 m 2 / g, an iron-nickel alloy powder passed through a 75 μm sieve was used (Examples 7, 9 to 11 and Comparative Examples 5 to 7). As the 3.82% by weight nickel powder of Example 9, Kawasaki Steel KIP Sigmaalloy 415 was used. As the 99.7% by weight nickel powder of Comparative Example 8, nickel powder manufactured by Kojundo Chemical Laboratory Co., Ltd., which passed through a 75 μm sieve, was used.

【0030】TCE濃度の分析方法としては、JIS
K 0125(用水、排水中の揮発性有機化合物試験方
法)に基づいたヘッドスペ−ス法を用い、TCE濃度を
経時的に定量分析した。試験後のORP(mV)も合わ
せて測定した。これらの測定結果を表2および図2に示
す。
As a method of analyzing the TCE concentration, JIS
The TCE concentration was quantitatively analyzed over time using a head space method based on K 0125 (test method for volatile organic compounds in water and wastewater). The ORP (mV) after the test was also measured. The results of these measurements are shown in Table 2 and FIG.

【0031】[0031]

【表2】 実施例7〜11はニッケル含有量が1.97〜36.0
重量%の触媒を用いており、4日から遅くとも6日後に
はTCE濃度が土壌環境基準0.03mg/L以下とな
り、土壌中においても本発明の無害化処理剤は高分解能
を示すことを確認した。また、分解副生物は主にエチレ
ンであり土壌環境基準項目に挙げられている他の有機塩
素化合物は生成していないことを確認した。これに対
し、比較例5は14日後でもTCE濃度30mg/L以
下にならず触媒中のニッケル含有量不足が分かる。ま
た、比較例6〜8のニッケル含有量が38重量%を超え
た触媒はORP値も高く、反応速度が小さいため14日
後でTCE濃度10mg/L以下にならなかった。
[Table 2] In Examples 7 to 11, the nickel content was 1.97 to 36.0.
By weight of the catalyst, the TCE concentration became less than 0.03 mg / L in the soil environment standard from 4 days to 6 days at the latest, confirming that the detoxifying agent of the present invention shows high resolution even in soil. did. In addition, it was confirmed that the decomposition by-product was mainly ethylene, and other organic chlorine compounds listed in the soil environmental standard were not generated. On the other hand, in Comparative Example 5, the TCE concentration did not become 30 mg / L or less even after 14 days, indicating that the nickel content in the catalyst was insufficient. Also, the catalysts of Comparative Examples 6 to 8 in which the nickel content exceeded 38% by weight had a high ORP value and a low reaction rate, so that the TCE concentration did not become 10 mg / L or less after 14 days.

【0032】従って、有機ハロゲン化合物で汚染された
土壌中においても、実施例7〜11で用いた無害化処理
剤を用いれば有機ハロゲン化合物を分解する能力は顕著
であり、法的規制値をクリアできることが分かった。
Therefore, even in soil contaminated with an organic halogen compound, the ability to decompose an organic halogen compound is remarkable when the detoxifying agent used in Examples 7 to 11 is used, and the legally regulated value is cleared. I knew I could do it.

【0033】実施例12〜15および比較例9〜11 PCE含有汚染溶液に対する本発明の無害化処理剤の試
験を行った。125mlバイアル瓶に純水、100ml
(10mg/L)PCE、メタノ−ルに溶解した内標ベ
ンゼン、そして処理剤をすばやく入れて密封した。30
℃、200rpm浸とうを維持した。この水溶液は脱酸
素処理を行っておらず、塩酸または水酸化ナトリウムに
よりpH6〜7に調整した。
Examples 12 to 15 and Comparative Examples 9 to 11 Tests of the detoxifying agent of the present invention were performed on PCE-containing contaminated solutions. Pure water in a 125ml vial, 100ml
(10 mg / L) PCE, internal standard benzene dissolved in methanol, and a treating agent were quickly added and sealed. 30
C., 200 rpm immersion was maintained. This aqueous solution was not subjected to deoxygenation treatment and was adjusted to pH 6 to 7 with hydrochloric acid or sodium hydroxide.

【0034】用いた処理剤はJIS G1258の鋼の
誘導結合プラズマ発光分光分析方法により測定したニッ
ケル含有量0.01〜42.4重量%、比表面積0.2
〜1.2m2/g、75μmのふるいを通過した鉄−ニ
ッケル合金粉末を用いた(実施例12、14、15およ
び比較例9〜10)。実施例13のニッケル3.82重
量%粉は川崎製鉄KIPシグマロイ415を用いた。比
較例11のニッケル99.7重量%粉は高純度化学研究
所(株)のニッケル粉を用い、75μmのふるいを通過
した粒度品を用いた。添加量はいずれも1g(対被処理
物1重量%)である。
The treating agent used was a nickel content of 0.01 to 42.4% by weight and a specific surface area of 0.2 as measured by inductively coupled plasma emission spectroscopy of steel according to JIS G1258.
1.21.2 m 2 / g, an iron-nickel alloy powder passed through a 75 μm sieve was used (Examples 12, 14, 15 and Comparative Examples 9 to 10). As the 3.82% by weight nickel powder of Example 13, Kawasaki Steel KIP Sigmaalloy 415 was used. As the 99.7% by weight nickel powder of Comparative Example 11, nickel powder manufactured by Kojundo Chemical Laboratory Co., Ltd. was used, and a particle size product passed through a 75 μm sieve was used. The amount added was 1 g (1% by weight based on the material to be treated).

【0035】PCE濃度の分析方法として、JIS K
0125(用水、排水中の揮発性有機化合物試験方
法)に基づいたヘッドスペ−ス法を用い、PCE濃度を
経時的に定量分析した。試験後のORP(mV)も合わ
せて測定した。これらの測定結果を表3および図3に示
す。
As a method for analyzing the PCE concentration, JIS K
The PCE concentration was quantitatively analyzed with time using a head space method based on 0125 (test method for volatile organic compounds in water and wastewater). The ORP (mV) after the test was also measured. The results of these measurements are shown in Table 3 and FIG.

【0036】[0036]

【表3】 実施例12〜15において30日間までにPCE濃度は
土壌環境基準0.01mg/L以下となった。分解生成
物としてDCE等の環境基準項目の有機塩素化合物は生
成しないことを確認した。また、ORP値も卑な(低
い)電位を示すことからPCE溶液が還元分解する傾向
にあることを示唆している。これに対し、比較例9〜1
1は30日後もPCE濃度が土壌環境基準0.01mg
/Lにならず、ORP値も高かった。
[Table 3] In Examples 12 to 15, the PCE concentration was 0.01 mg / L or less by the soil environmental standard by 30 days. It was confirmed that no organic chlorine compound as an environmental standard item such as DCE was generated as a decomposition product. Further, the ORP value also shows a low (low) potential, suggesting that the PCE solution tends to undergo reductive decomposition. On the other hand, Comparative Examples 9-1
1 means that PCE concentration is 0.01mg after 30 days
/ L, and the ORP value was also high.

【0037】従って、実施例12〜15で用いた無害化
処理剤を用いれば還元分解しにくいと言われるPCEを
分解する能力は顕著で、法的規制値をクリアすることが
できることが分かった。
Therefore, it was found that the use of the detoxifying agents used in Examples 12 to 15 has a remarkable ability to decompose PCE, which is said to be hardly reductively decomposed, and can clear legally regulated values.

【0038】実施例16〜18および比較例12〜14 DCE(cis−1,2−ジクロロエチレン)、10m
g/Lの汚染溶液に対する本発明の無害化処理剤の試験
を行った。試験条件は実施例1〜6と同様である。試験
結果を表4および図4に示す。
Examples 16 to 18 and Comparative Examples 12 to 14 DCE (cis-1,2-dichloroethylene), 10 m
A test of the detoxifying agent of the present invention with respect to a g / L contaminated solution was conducted. The test conditions are the same as in Examples 1 to 6. The test results are shown in Table 4 and FIG.

【0039】[0039]

【表4】 実施例16〜18において14日間までにDCE濃度は
土壌環境基準0.04mg/L以下となった。分解生成
物としてエチレン、エタン等が確認され、環境基準項目
の有機塩素化合物は生成しないことを確認した。また、
ORP値も卑な(低い)電位を示すことからDCE溶液
が還元分解する傾向にあることを示唆している。これに
対し、比較例12〜14は14日後もDCE濃度が土壌
環境基準0.04mg/Lにならず、ORP値も高かっ
た。
[Table 4] In Examples 16 to 18, the DCE concentration was 0.04 mg / L or less by the soil environment standard by 14 days. Ethylene, ethane and the like were confirmed as decomposition products, and it was confirmed that no organic chlorine compound was produced as an environmental standard item. Also,
The ORP value also shows a low (low) potential, suggesting that the DCE solution tends to undergo reductive decomposition. On the other hand, in Comparative Examples 12 to 14, the DCE concentration did not reach the soil environment standard of 0.04 mg / L even after 14 days, and the ORP value was high.

【0040】従って、実施例16〜18で用いた無害化
処理剤を用いれば還元分解しにくいと言われるDCEを
分解する能力は顕著で、法的規制値をクリアすることが
できることが分かった。
Accordingly, it was found that the use of the detoxifying treatment agents used in Examples 16 to 18 has a remarkable ability to decompose DCE, which is said to be difficult to reduce and decompose, and can clear legally regulated values.

【0041】実施例19〜21および比較例15〜17 MC(1,1,1,−トリクロロエタン)、10mg/
Lの汚染溶液に対する本発明の無害化処理剤の試験を行
った。試験条件は実施例1〜6と同様である。試験結果
を表5および図5に示す。
Examples 19 to 21 and Comparative Examples 15 to 17 MC (1,1,1, -trichloroethane), 10 mg /
A test of the detoxifying agent of the present invention with respect to the L-contaminated solution was performed. The test conditions are the same as in Examples 1 to 6. The test results are shown in Table 5 and FIG.

【0042】[0042]

【表5】 実施例19〜21において7日間までにMC濃度は土壌
環境基準1mg/L以下となった。分解生成物としてエ
チレン、エタン等が確認され、環境基準項目の有機塩素
化合物は生成しないことを確認した。また、ORP値も
卑な(低い)電位を示すことからMC溶液が還元分解す
る傾向にあることを示唆している。これに対し、比較例
15〜17は14日後もPCE濃度が土壌環境基準1m
g/Lにならず、ORP値も高かった。
[Table 5] In Examples 19 to 21, the MC concentration became 1 mg / L or less by the soil environment standard by 7 days. Ethylene, ethane and the like were confirmed as decomposition products, and it was confirmed that no organic chlorine compound was produced as an environmental standard item. The ORP value also shows a low (low) potential, indicating that the MC solution tends to undergo reductive decomposition. On the other hand, in Comparative Examples 15 to 17, the PCE concentration was 1 m in the soil environment standard even after 14 days.
g / L and the ORP value was high.

【0043】従って、実施例19〜21で用いた無害化
処理剤を用いれば還元分解しにくいと言われるMCを分
解する能力は顕著で、法的規制値をクリアすることがで
きることが分かった。
Therefore, it was found that the use of the detoxifying agents used in Examples 19 to 21 has a remarkable ability to decompose MC, which is said to be difficult to reduce and decompose, and can clear legally regulated values.

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
の無害化処理剤と無害化処理法によれば、有機ハロゲン
化合物を短時間に分解し、有害な副生物を生成せず無害
化処理でき、しかも法的規制値をクリアすることができ
る効果を有するものである。
As is clear from the above description, according to the detoxifying agent and the detoxifying method of the present invention, an organic halogen compound is decomposed in a short time, and no harmful by-products are generated, thereby making the detoxification possible. It can be processed and has the effect of being able to clear legally regulated values.

【0045】[0045]

【図面の簡単な説明】[Brief description of the drawings]

【図1】TCE含有溶液における無害化処理剤中のニッ
ケル含有量とTCE濃度およびORPの関係を示した図
である。図中、X軸(横軸)は合金中のニッケル(N
i)含有量(単位は重量%)を示し、Y軸(縦軸)の左
側はTCE濃度(単位はmg/L)、Y軸(縦軸)の右
側はORP(単位はmV)を示す。また、黒丸(●)は
14日後のTCE濃度であり、白丸(○)は14日後の
ORPである。
FIG. 1 is a view showing the relationship between the nickel content in a detoxifying agent and the TCE concentration and ORP in a TCE-containing solution. In the figure, the X axis (horizontal axis) indicates nickel (N
i) The content (unit is% by weight), the left side of the Y axis (vertical axis) indicates the TCE concentration (unit: mg / L), and the right side of the Y axis (vertical axis) indicates the ORP (unit: mV). Further, a closed circle (●) indicates the TCE concentration after 14 days, and an open circle (○) indicates the ORP after 14 days.

【図2】TCE含有土壌に対する無害化処理剤中のニッ
ケル含有量とTCE濃度およびORPの関係を示す。図
中、X軸(横軸)は合金中のニッケル(Ni)含有量
(単位は重量%)を示し、Y軸(縦軸)の左側はTCE
濃度(単位はmg/L)、Y軸(縦軸)の右側はORP
(単位はmV)を示す。また、黒丸(●)は14日後の
土壌中のTCE濃度であり、白丸(○)は14日後の土
壌中のORPである。
FIG. 2 shows the relationship between the nickel content in the detoxifying agent, the TCE concentration, and the ORP for a TCE-containing soil. In the figure, the X-axis (horizontal axis) indicates the nickel (Ni) content (unit is% by weight) in the alloy, and the left side of the Y-axis (vertical axis) is TCE.
Concentration (unit: mg / L), ORP on right side of Y axis (vertical axis)
(Unit is mV). In addition, a closed circle (●) indicates the TCE concentration in the soil after 14 days, and an open circle ()) indicates the ORP in the soil after 14 days.

【図3】PCE含有溶液における無害化処理剤中のニッ
ケル含有量とPCE濃度およびORPの関係を示した図
である。図中、X軸(横軸)は合金中のニッケル(N
i)含有量(単位は重量%)を示し、Y軸(縦軸)の左
側はPCE濃度(単位はmg/L)、Y軸(縦軸)の右
側はORP(単位はmV)を示す。また、黒丸(●)は
30日後のTCE濃度であり、白丸(○)は30日後の
ORPである。
FIG. 3 is a diagram showing a relationship between a nickel content in a detoxifying agent, a PCE concentration, and an ORP in a PCE-containing solution. In the figure, the X axis (horizontal axis) indicates nickel (N
i) The content (unit is% by weight), the left side of the Y-axis (vertical axis) indicates PCE concentration (unit: mg / L), and the right side of the Y-axis (vertical axis) indicates ORP (unit: mV). Further, a closed circle ()) indicates the TCE concentration after 30 days, and a white circle (○) indicates the ORP after 30 days.

【図4】DCE含有溶液における無害化処理剤中のニッ
ケル含有量とDCE濃度およびORPの関係を示した図
である。図中、X軸(横軸)は合金中のニッケル(N
i)含有量(単位は重量%)を示し、Y軸(縦軸)の左
側はDCE濃度(単位はmg/L)、Y軸(縦軸)の右
側はORP(単位はmV)を示す。また、黒丸(●)は
14日後のDCE濃度であり、白丸(○)は14日後の
ORPである。
FIG. 4 is a diagram showing a relationship between a nickel content in a detoxifying agent, a DCE concentration, and an ORP in a DCE-containing solution. In the figure, the X axis (horizontal axis) indicates nickel (N
i) The content (unit is% by weight), the left side of the Y-axis (vertical axis) indicates DCE concentration (unit: mg / L), and the right side of the Y-axis (vertical axis) indicates ORP (unit: mV). In addition, a closed circle (●) indicates the DCE concentration after 14 days, and a white circle (○) indicates the ORP after 14 days.

【図5】MC含有溶液における無害化処理剤中のニッケ
ル含有量とMC濃度およびORPの関係を示した図であ
る。図中、X軸(横軸)は合金中のニッケル(Ni)含
有量(単位は重量%)を示し、Y軸(縦軸)の左側はM
C濃度(単位はmg/L)、Y軸(縦軸)の右側はOR
P(単位はmV)を示す。また、黒丸(●)は14日後
のMC濃度であり、白丸(○)は14日後のORPであ
る。
FIG. 5 is a view showing the relationship between the nickel content in the detoxifying agent, the MC concentration, and the ORP in the MC-containing solution. In the figure, the X-axis (horizontal axis) indicates the nickel (Ni) content (unit is% by weight) in the alloy, and the left side of the Y-axis (vertical axis) is M
C concentration (unit: mg / L), right side of Y axis (vertical axis) is OR
P (unit is mV). In addition, a black circle (●) indicates the MC concentration after 14 days, and a white circle (○) indicates the ORP after 14 days.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/70 C07B 35/06 4H006 11/00 C07C 19/05 4H039 C07B 35/06 21/073 C07C 19/05 21/10 21/073 21/12 21/10 G01N 33/00 D 21/12 33/18 101 G01N 33/00 C07B 61/00 300 33/18 101 B09B 3/00 304K // C07B 61/00 300 Fターム(参考) 2E191 BA12 BB01 BC01 BD13 4D004 AA46 AB06 CA34 CC09 4D038 AA08 AB14 BB15 4D050 AA12 AB19 BA00 BC04 4D059 AA03 BK30 4H006 AA05 AC13 BA19 BA21 BA82 BA85 BC32 BC34 EA02 EA03 4H039 CA20 CD20 CE90 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/70 C07B 35/06 4H006 11/00 C07C 19/05 4H039 C07B 35/06 21/073 C07C 19/05 21 / 10 21/073 21/12 21/10 G01N 33/00 D 21/12 33/18 101 G01N 33/00 C07B 61/00 300 33/18 101 B09B 3/00 304K // C07B 61/00 300 F term ( Reference) 2E191 BA12 BB01 BC01 BD13 4D004 AA46 AB06 CA34 CC09 4D038 AA08 AB14 BB15 4D050 AA12 AB19 BA00 BC04 4D059 AA03 BK30 4H006 AA05 AC13 BA19 BA21 BA82 BA85 BC32 BC34 EA02 EA03 4H039 CA20 CD20 CE90

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】鉄−ニッケル合金粉末からなり、該合金の
ニッケル含有量がJIS G1258の鋼の誘導結合プ
ラズマ発光分光分析方法による測定で1〜38重量%で
ある有機ハロゲン化合物で汚染された被処理物用無害化
処理剤。
1. A substrate contaminated with an organic halogen compound comprising iron-nickel alloy powder and having a nickel content of 1 to 38% by weight as measured by inductively coupled plasma emission spectroscopy of steel according to JIS G1258. Detoxifying agent for processed materials.
【請求項2】鉄−ニッケル合金がX線マイクロアナライ
ザ−法により決定されたα相とγ相の2相型結晶構造を
有することを特徴とする請求項1記載の被処理物用無害
化処理剤。
2. The detoxifying treatment for an object to be processed according to claim 1, wherein the iron-nickel alloy has a two-phase type crystal structure of α phase and γ phase determined by an X-ray microanalyzer method. Agent.
【請求項3】0.05m2/g以上の比表面積を有し、
かつ200μmのふるいを通過する粒度を有する鉄−ニ
ッケル合金粉末からなることを特徴とする請求項1又は
請求項2記載の被処理物用無害化処理剤。
3. It has a specific surface area of 0.05 m 2 / g or more,
The detoxifying agent for an object to be treated according to claim 1 or 2, comprising an iron-nickel alloy powder having a particle size passing through a sieve of 200 µm.
【請求項4】有機ハロゲン化合物で汚染された被処理物
に請求項1〜3のいずれかに記載の無害化処理剤を添加
混合し、処理することを特徴とする有機ハロゲン化合物
で汚染された被処理物の無害化処理方法。
4. A treatment object contaminated with an organic halogen compound, characterized in that the object to be treated contaminated with the organic halogen compound is added, mixed and treated. Detoxification treatment method for processed objects.
【請求項5】無害化処理剤の添加量が被処理物の全量に
対し0.1〜10重量%であることを特徴とする請求項
4記載の有機ハロゲン化合物で汚染された被処理物の無
害化処理方法。
5. The method according to claim 4, wherein the amount of the detoxifying agent added is 0.1 to 10% by weight based on the total amount of the object to be treated. Detoxification method.
JP2001114980A 2001-04-13 2001-04-13 Detoxifying treatment agent for substance contaminated by organic halogen compound and treating method using it Pending JP2002309229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114980A JP2002309229A (en) 2001-04-13 2001-04-13 Detoxifying treatment agent for substance contaminated by organic halogen compound and treating method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114980A JP2002309229A (en) 2001-04-13 2001-04-13 Detoxifying treatment agent for substance contaminated by organic halogen compound and treating method using it

Publications (1)

Publication Number Publication Date
JP2002309229A true JP2002309229A (en) 2002-10-23

Family

ID=18965954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114980A Pending JP2002309229A (en) 2001-04-13 2001-04-13 Detoxifying treatment agent for substance contaminated by organic halogen compound and treating method using it

Country Status (1)

Country Link
JP (1) JP2002309229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024952A (en) * 2001-07-19 2003-01-28 Muracam:Kk Wastewater treatment method
JP2005034696A (en) * 2003-07-16 2005-02-10 Tosoh Corp Treatment method for making object to be treated contaminated by organic halogen compound harmless

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024952A (en) * 2001-07-19 2003-01-28 Muracam:Kk Wastewater treatment method
JP2005034696A (en) * 2003-07-16 2005-02-10 Tosoh Corp Treatment method for making object to be treated contaminated by organic halogen compound harmless
JP4701588B2 (en) * 2003-07-16 2011-06-15 東ソー株式会社 A treatment method for detoxifying a workpiece contaminated with an organic halogen compound

Similar Documents

Publication Publication Date Title
Fu et al. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution
Wang et al. Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous Fenton system: Influencing factors and degradation intermediates
Kuo et al. Rapid debromination of tetrabromobisphenol A by Cu/Fe bimetallic nanoparticles in water, its mechanisms, and genotoxicity after treatments
EP1925685B1 (en) Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
Wang et al. Fabrication of resin supported Au–Pd bimetallic nanoparticle composite to efficiently remove chloramphenicol from water
JPH11235577A (en) Detoxicating treatment of soil
JP2002309229A (en) Detoxifying treatment agent for substance contaminated by organic halogen compound and treating method using it
JP4377657B2 (en) Organochlorine compound removing agent and organochlorine compound removing method
JP4009739B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound, its production method and detoxification treatment method using the same
TW200823154A (en) Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
JP4586325B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same
JP4352215B2 (en) Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method
JP4374884B2 (en) Detoxification method for workpieces contaminated with organic halogen compounds
JP4622154B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound and treatment method using the same
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
JP4127102B2 (en) Detoxification method for workpieces contaminated with organic halogen compounds
JP4324372B2 (en) Organic compound decomposition material
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
Liu et al. Insights into the practicability of electrochemical enhanced heterogeneous activation of peroxymonosulfate for the treatment of liquid waste during penicillin g production
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP2002241735A (en) Detoxifying treatment agent for object to-be-treated contaminated with organohalogen compound and detoxifying treatment method using the same
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2010194450A (en) Method for cleaning organic halide
Chen et al. Effect of operating parameters on trichloroethylene degradation by extended release of nanoscale zero-valent iron
JP4557126B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method