JP2002308662A - Production process of slag hardened body - Google Patents

Production process of slag hardened body

Info

Publication number
JP2002308662A
JP2002308662A JP2001112454A JP2001112454A JP2002308662A JP 2002308662 A JP2002308662 A JP 2002308662A JP 2001112454 A JP2001112454 A JP 2001112454A JP 2001112454 A JP2001112454 A JP 2001112454A JP 2002308662 A JP2002308662 A JP 2002308662A
Authority
JP
Japan
Prior art keywords
slag
mass
less
mgo
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001112454A
Other languages
Japanese (ja)
Other versions
JP4644965B2 (en
Inventor
Hisahiro Matsunaga
久宏 松永
Masato Takagi
正人 高木
Fumio Kogiku
史男 小菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001112454A priority Critical patent/JP4644965B2/en
Publication of JP2002308662A publication Critical patent/JP2002308662A/en
Application granted granted Critical
Publication of JP4644965B2 publication Critical patent/JP4644965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • C04B28/082Steelmaking slags; Converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/32Expansion-inhibited materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a slag hardened body production process by which problems such as strength deficiency of a slag hardened body produced by using converter slag and/or ladle-refining slag as a part of the raw material, generation of cracks in the hardened body and expansion of the hardened body due to free MgO, can be solved all at once. SOLUTION: This slag hardened body is produced by mixing water, granular steelmaking slag and an SiO2 -containing material having latent hydraulicity together to obtain a mix and hardening the mix, wherein, as the steelmaking slag, converter slag and/or ladle-refining slag, each containing <=1 mass % unslagged MgO and <=10 mass % crystallized MgO, is used; as the SiO2 - containing material having latent hydraulicity, a blast-furnace slag fine powder is used, and the ratio of the total content of fractions of the converter slag and/or ladle-refining slag, each of which fractions has <=1.18 mm granule size, to the total content of all the components excluding water of the mix is 10-90 mass %, and the ratio of the blast-furnace slag fine powder content to the total content of all the components excluding water of the mix, is 9-40 mass %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スラグ硬化体の製
造方法に係わり、詳しくは、製鋼スラグ、とりわけ従来
は路盤材等として有効利用することが困難であった粉粒
状の転炉スラグ及び/又は取鍋精錬スラグを主原料と
し、ひび割れを可及的に低減した硬化体とする技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hardened slag body, and more particularly, to a converter slag and / or powdery granular slag which has been difficult to use effectively as a roadbed material or the like, in particular. Alternatively, the present invention relates to a technique of using a ladle refining slag as a main raw material and forming a hardened body with cracks reduced as much as possible.

【0002】[0002]

【従来の技術】製鋼工程で発生するスラグは、塩基度
(CaO/SiO2で表す)が高くて遊離CaOを多量
に含有するために水分を吸って膨張し易く、高炉スラグ
のように土木・建設資材としての用途には向かず、その
処理は困難を極めている。そこで、このような製鋼スラ
グを積極的に活用しようとする試みが幾つかなされてい
る。
2. Description of the Related Art Slag generated in a steel making process has a high basicity (expressed as CaO / SiO 2 ) and contains a large amount of free CaO, so that it easily absorbs moisture and expands easily. It is not suitable for use as a construction material, and its treatment is extremely difficult. Therefore, several attempts have been made to actively utilize such steelmaking slag.

【0003】例えば、特開平10−152364号公報
は、製鋼スラグを含有する骨材と、潜在水硬性を有する
シリカ含有物質と、ポゾラン反応性を有するシリカ含有
物質のうち1種又は2種を50%以上含有する水和反応
によって硬化する結合材とを含有してなることを特徴と
する製鋼スラグを利用した水和硬化体を開示している。
また、他の例として、特開平2−233539号公報
は、結合材、細骨材、粗骨材の全てを粉砕又は破砕した
鉄鋼スラグ(高炉スラグも含む)にすると共に、結合材
として高炉スラグ及び製鋼スラグを配合したスラグ・ブ
ロックを開示している。さらに、特開平1−12624
6号公報は、転炉スラグを5mm以下に粉砕後、磁選、
乾燥して、さらに比表面積が3000〜5000cm2
/gになるように微粉砕し、この転炉スラグ微粉末を、
含水比が1%以下で比表面積が3800〜4200cm
2/gの高炉スラグ微粉末に、10〜30重量%混合し
てなる転炉スラグを用いた高炉セメントの例を開示して
いる。加えて、特開昭59−169966号公報は、高
炉水砕スラグに、転炉スラグ破砕設備で発生する集塵ダ
ストを絶乾重量比で、10〜60%添加混合した強化路
盤材を開示している。
For example, JP-A-10-152364 discloses that one or two of an aggregate containing steelmaking slag, a silica-containing substance having latent hydraulic property, and a silica-containing substance having pozzolan reactivity are used. A hydrated hardened product using steelmaking slag, characterized by containing a binder hardened by a hydration reaction containing at least 10% by weight.
Further, as another example, Japanese Patent Application Laid-Open No. Hei 2-233439 discloses a method in which a binder, fine aggregate, and coarse aggregate are all crushed or crushed into steel slag (including blast furnace slag) and blast furnace slag is used as a binder. And a slag block containing steelmaking slag. Further, Japanese Patent Application Laid-Open No.
No. 6 discloses that after crushing the converter slag to 5 mm or less, magnetic separation,
After drying, the specific surface area is 3000-5000 cm 2
/ G, and this converter slag fine powder is
Water content ratio is 1% or less and specific surface area is 3800-4200cm
An example of blast furnace cement using converter slag obtained by mixing 10 to 30% by weight of blast furnace slag fine powder of 2 / g is disclosed. In addition, Japanese Unexamined Patent Publication (Kokai) No. 59-169966 discloses a reinforced roadbed material in which dust-collected dust generated in a converter slag crushing facility is added to and mixed with granulated blast furnace slag in an absolute dry weight ratio of 10 to 60%. ing.

【0004】なお、ここで、製鋼スラグとは、溶鋼を溶
製するために利用するあらゆる精錬容器で形成されたス
ラグを意味し、溶銑予備処理スラグ、転炉スラグ、電気
炉スラグを始めとして、高Cr溶鋼を得るための溶融還
元炉スラグ、ステンレス脱炭炉スラグ、二次精錬スラグ
(転炉や電気炉から取鍋に出鋼した溶鋼を真空脱ガス槽
内あるいは取鍋のままで精錬処理した場合に発生する)
がある。このうち、本発明でいう取鍋精錬スラグとは、
溶鋼をVOD,RH,DH,LF等の取鍋精錬設備にお
いて、脱硫、脱酸、脱炭、脱ガス等の二次精錬を行う際
に発生したスラグである。
[0004] Here, the steelmaking slag means slag formed in any smelting vessel used for smelting molten steel, and includes hot metal pretreatment slag, converter slag, electric furnace slag, and the like. Smelting reduction furnace slag, stainless steel decarburizing furnace slag, and secondary refining slag to obtain high Cr molten steel (smelting treatment of molten steel from a converter or electric furnace into a ladle in a vacuum degassing tank or as it is) Occurs when you do)
There is. Of these, the ladle refining slag referred to in the present invention is:
This is slag generated during secondary refining such as desulfurization, deoxidation, decarburization, and degassing of molten steel in a ladle refining facility such as VOD, RH, DH, and LF.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本発明
者が上記した従来技術を用いて転炉スラグ及び/又は取
鍋精錬スラグを原料として、スラグ硬化体を試作しよう
としたところ、下記のような問題点が明らかとなった。
However, the inventor of the present invention attempted to produce a hardened slag from a converter slag and / or a ladle refining slag as a raw material using the above-mentioned conventional technology. The problem became clear.

【0006】まず、特開平10−152364号公報、
特開平2−233539号公報及び特開平142624
6号公報に開示された方法に従ってスラグ硬化体(以
下、単に硬化体という)を試作したが、一部の製鋼スラ
グを用いると、得られた硬化体の圧縮強度は20N/m
2に満たず、セメント・コンクリートの代替としての
使用に耐えるものにならなかった。また、多数のひび割
れが発生し、特に強度と外観の美麗さが要求されるよう
な建設用硬化体ブロックのような用途には、到底使用に
堪えないことが判明した。さらに、特開平10−152
364号公報に開示されている水浸膨脹比が0.5%以
下の製鋼スラグを用いても、その硬化体の圧縮強度は2
0N/mm2に満たず、またひび割れが発生した。
First, Japanese Patent Application Laid-Open No. 10-152364,
JP-A-2-233538 and JP-A-142624
A slag hardened body (hereinafter simply referred to as a hardened body) was trial-produced according to the method disclosed in Japanese Patent Publication No. 6-206, but if some steelmaking slag was used, the obtained hardened body had a compressive strength of 20 N / m
It was less than m 2, making it unsuitable for use as a substitute for cement and concrete. In addition, it has been found that many cracks are generated, and it is completely unusable for applications such as hardened construction blocks that require strength and beautiful appearance. Further, JP-A-10-152
Even if a steelmaking slag having a water immersion expansion ratio of 0.5% or less disclosed in Japanese Patent Publication No. 364 is used, the compression strength of the hardened body is 2%.
It was less than 0 N / mm 2 and cracks occurred.

【0007】この原因を詳細に調査したところ、近年転
炉、取鍋の内張り耐火物を保護する目的でスラグ中に添
加されているドロマイトやマグネシア・クリンカ等に起
因して、転炉スラグ及び/又は取鍋精錬スラグのMgO
濃度が高くなっているが、このMgO濃度が高い転炉ス
ラグ及び/又は取鍋精錬スラグを用いると、水中養生の
際に該転炉スラグ及び/又は取鍋精錬スラグに含まれる
遊離MgOが水和膨張して、硬化体が崩壊することがわ
かった。つまり、遊離MgOは、遊離CaOとは異な
り、水蒸気エージング等のエージング処理では、容易に
安定な水酸化物にはならず、ゆっくりと水和反応が進む
ために硬化体の強度発現が遅れ、崩壊するのである。こ
こで、遊離MgOには、精錬中に融け残った未滓化Mg
Oと、溶融状態または溶融物と固形物の混合状態のスラ
グが冷却過程で固化する際に発生する晶出MgOが存在
する。
[0007] When the cause was investigated in detail, the slag and / or magnesia clinker added to the slag for the purpose of protecting the refractory lining of the converter and ladle in recent years showed that the converter slag and / or Or ladle refining slag MgO
Although the converter slag and / or ladle refining slag having a high concentration of MgO are used, free MgO contained in the converter slag and / or ladle refining slag during water curing is converted to water. It was found that the cured product collapsed due to the sum expansion. That is, free MgO, unlike free CaO, does not easily become a stable hydroxide by aging treatment such as steam aging, and the hydration reaction proceeds slowly, so that the strength development of the cured product is delayed, You do it. Here, free MgO includes unslagged Mg that has melted during refining.
O and crystallized MgO generated when slag in a molten state or a mixed state of a melt and a solid is solidified in a cooling process are present.

【0008】そこで、本発明者は、製鋼スラグとして遊
離MgOをほとんど含有しない転炉スラグ及び/又は取
鍋精錬スラグを選び、上記公報記載の技術と同様の方法
で硬化体の製造を試みたが、硬化体の圧縮強度は20N
/mm2に満たず、また多数のひび割れが発生する場合
があり、セメント・コンクリートの代替としての使用に
耐えるものが得られなかった。また、特開平1−126
246号公報記載の技術において、比表面積3000c
2/g以上、つまり粒径が約0.07mm以下の転炉
スラグ及び/又は取鍋精錬スラグを含むようにしたとこ
ろ、ほとんど硬化もしなかった。さらに、特開昭59−
169966号公報に記載された技術で硬化体の製造を
試みたところ、スラグが凝集するだけで、コンクリート
のような硬化体は得られなかった。
Therefore, the present inventor selected converter slag and / or ladle refining slag containing almost no free MgO as steelmaking slag, and tried to produce a hardened body by the same method as the technique described in the above publication. , Compressed strength of 20N
/ Mm 2, and many cracks may occur, and no material that can be used as a substitute for cement and concrete was obtained. Also, JP-A-1-126
No. 246, the specific surface area is 3000 c.
When a converter slag and / or a ladle refining slag having a particle size of m 2 / g or more, that is, a particle size of about 0.07 mm or less was included, hardening hardly occurred. Further, Japanese Unexamined Patent Publication No.
When an attempt was made to produce a cured product by the technique described in Japanese Patent Application Publication No. 169966, only a slag aggregated, but a cured product like concrete could not be obtained.

【0009】本発明は、かかる転炉スラグ及び取鍋精錬
スラグを原料の一部として使用して得たスラグ硬化体の
強度不足、ひび割れの発生、遊離MgOに起因する膨張
等の問題を一挙に解決可能なスラグ硬化体の製造方法を
提供することを目的としている。
The present invention addresses the problems of insufficient strength, cracking, expansion caused by free MgO, and the like of a hardened slag obtained by using such converter slag and ladle refining slag as a part of raw materials. It is an object of the present invention to provide a method of manufacturing a slag cured body that can be solved.

【0010】[0010]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究を重ね、その成果を本発明に具現化
した。
Means for Solving the Problems The inventor has conducted intensive studies in order to achieve the above object, and has embodied the results in the present invention.

【0011】すなわち、本発明は、粉粒状の製鋼スラグ
と潜在水硬性を有するSiO2含有物質とを水で混練し
てスラグ硬化体を製造する方法において、前記製鋼スラ
グとして未滓化MgOが1質量%以下で、且つ晶出Mg
Oが10質量%以下の転炉スラグ及び/又は取鍋精錬ス
ラグを、前記潜在水硬性を有するSiO2含有物質とし
て高炉スラグ微粉末を使用すると共に、水を除く全配合
物質における粒径1.18mm以下の該転炉スラグ及び
/又は取鍋精錬スラグの含有率を10〜90質量%、高
炉スラグ微粉末の含有率を9〜40質量%とすることを
特徴とするスラグ硬化体の製造方法である。
That is, according to the present invention, there is provided a method for producing a hardened slag by kneading powdery and granular steelmaking slag and an SiO 2 -containing substance having latent hydraulic properties with water. Mass% or less and crystallized Mg
A converter slag and / or ladle refining slag having O of 10% by mass or less is used as the blast furnace slag fine powder as the SiO 2 -containing substance having the latent hydraulic property, and the particle size of all the mixed substances except water is 1. A method for producing a hardened slag, wherein the content of the converter slag and / or ladle refining slag of 18 mm or less is 10 to 90% by mass, and the content of blast furnace slag fine powder is 9 to 40% by mass. It is.

【0012】また、本発明は、粉粒状の製鋼スラグと潜
在水硬性を有するSiO2含有物質とを水で混練してス
ラグ硬化体を製造する方法において、前記製鋼スラグと
して未滓化MgOが1質量%以下で、且つ晶出MgOが
10質量%以下の転炉スラグ及び/又は取鍋精錬スラグ
を、潜在水硬性を有するSiO2含有物質として高炉ス
ラグ微粉末及びフライアッシュを使用すると共に、水を
除く全配合物質における粒径1.18mm以下の該転炉
スラグ及び/又は取鍋精錬スラグの含有率を10〜90
質量%、高炉スラグ微粉末の含有率を3〜36質量%、
フライアッシュの含有率を1.5〜30質量%とし、且
つ高炉スラグ微粉末とフライアッシュの合計含有量に対
するフライアッシュの含有量の質量比を0.1〜0.7
5とすることを特徴とするスラグ硬化体の製造方法であ
る。
Further, the present invention provides a method for producing a hardened slag by kneading powdery steelmaking slag and an SiO 2 -containing substance having latent hydraulic properties with water, wherein the steelmaking slag contains one or more unslagged MgO. Converter slag and / or ladle refining slag having a mass of not more than 10% by mass and crystallized MgO of not more than 10% by mass are obtained by using blast furnace slag fine powder and fly ash as a SiO 2 -containing substance having latent hydraulic properties, and The content of the converter slag and / or ladle refining slag having a particle size of 1.18 mm or less in all the compounded substances except for
Mass%, blast furnace slag fine powder content of 3 to 36 mass%,
The fly ash content is 1.5 to 30% by mass, and the mass ratio of the fly ash content to the total content of the blast furnace slag fine powder and the fly ash is 0.1 to 0.7.
5. A method for producing a hardened slag body, the method comprising:

【0013】この場合、高炉スラグ微粉末、フライアッ
シュ、粒径1.8mm以下の転炉スラグ及び/又は取鍋
精錬スラグの合計含有量に対する転炉スラグ及び/又は
取鍋精錬スラグの含有量の質量比を0.2超としたり、
あるいは前記水を除く全配合物質に、さらにアルカリ金
属及び/又はアルカリ土類金属の酸化物、水酸化物、硫
酸塩、塩化物から選ばれた1種又は2種以上を、高炉ス
ラグ微粉末とフライアッシュの合計含有量に対して0.
2〜20質量%添加するのが良い。また、前記水を除く
全配合物質に、さらにナフタレンスルホン酸類及び/又
はポリカルボン酸類を、高炉スラグ微粉末、フライアッ
シュ、粒径が0.1mm以下の転炉スラグ及び/又は取
鍋精錬スラグの合計含有量に対して0.1〜2.0質量
%添加するのが好ましい。
In this case, the content of the converter slag and / or the ladle refining slag with respect to the total content of the blast furnace slag fine powder, fly ash and the converter slag and / or ladle refining slag having a particle size of 1.8 mm or less is used. If the mass ratio exceeds 0.2,
Alternatively, one or more kinds selected from oxides, hydroxides, sulfates, and chlorides of alkali metals and / or alkaline earth metals may be further added to the blast furnace slag fine powder to all the compounded substances except for the water. 0.1 based on the total content of fly ash.
It is preferable to add 2 to 20% by mass. In addition, naphthalene sulfonic acids and / or polycarboxylic acids are further added to all the blended substances except for the water, and blast furnace slag fine powder, fly ash, converter slag having a particle size of 0.1 mm or less and / or ladle refining slag are refined. It is preferable to add 0.1 to 2.0% by mass based on the total content.

【0014】[0014]

【発明の実施の形態】以下に、発明をなすに至った経緯
に沿い、本発明の実施の形態を詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below in detail according to the circumstances leading to the invention.

【0015】まず、発明者は、粉粒状の製鋼スラグと潜
在水硬性を有するSiO2含有物質とを水で混練してス
ラグ硬化体を製造する方法において、製鋼スラグとし
て、特に未滓化MgOが1質量%以下で、且つ晶出Mg
Oが10質量%以下である粉粒状の転炉スラグ及び取鍋
精錬スラグを使用することにした。これは、特開平10
−152364号公報及び特開平2−233593号公
報に開示される方法に従い、これらスラグを主原料にし
て硬化体を試作したところ、得られた硬化体に強度低下
やひび割れ発生を生じたが、配合量を適正に調整すれ
ば、高強度で、ひび割れがほとんど無い硬化体の得られ
ることがわかったからである。なお、発明者が、製鋼ス
ラグとして、特に未滓化MgOが1質量%以下で、且つ
晶出MgOが10質量%以下の転炉スラグ及び取鍋精錬
スラグを採用したのは、以下のように考えたことに基づ
いている。
First, the inventor of the present invention discloses a method for producing a hardened slag by kneading a powdery steelmaking slag and an SiO 2 -containing substance having a potential hydraulic property with water. 1% by mass or less and crystallized Mg
A converter slag and a ladle refining slag in which O is 10% by mass or less are used. This is disclosed in
According to the methods disclosed in JP-A-152364 and JP-A-2-233593, when a cured product was trial-produced using these slags as a main raw material, the resulting cured product had reduced strength and cracks. This is because it has been found that by appropriately adjusting the amount, a cured product having high strength and almost no cracks can be obtained. In addition, the inventor adopted a converter slag and a ladle refining slag in which unslagged MgO is 1% by mass or less and crystallized MgO is 10% by mass or less, particularly as steelmaking slag as follows. Based on thoughts.

【0016】(1)他の製鋼スラグと比較して、CaO
/SiO2が2以上と高いため、スラグ中に活性が高い
2CaO・SiO2を多く含む。従って、硬化反応促進
への寄与が大きく、それ自体が高炉スラグ微粉末やフラ
イアッシュの代替になりえる。
(1) Compared with other steelmaking slag, CaO
/ SiO 2 is as high as 2 or more, so the slag contains a large amount of 2CaO · SiO 2 having high activity. Therefore, it greatly contributes to the acceleration of the curing reaction, and can itself be a substitute for blast furnace slag fine powder or fly ash.

【0017】(2)他の製鋼スラグと比較して、鉄分を
多く含むため、比重が高い。従って、硬化体の比重も大
きくなり、消波ブロック等の海洋構造物として使用した
際には、波浪安定性に優れる。
(2) Compared with other steelmaking slags, it contains a large amount of iron, and therefore has a higher specific gravity. Therefore, the specific gravity of the cured body is increased, and when used as an offshore structure such as a wave-dissipating block, the wave stability is excellent.

【0018】(3)遊離MgOの水和膨張による強度低
下及びひび割れ発生を防ぐことができる。そして、発明
者は、上記考えに基づき、遊離MgOを含有する転炉ス
ラグ及び取鍋精錬スラグを用いて、得られる硬化体が遊
離MgOの水和膨張による強度低下やひび割れ発生を解
消する研究を進めることにし、遊離MgOの水和膨張
が、製造した硬化体に及ぼす影響を見出すべく、実験を
繰り返した。
(3) It is possible to prevent a decrease in strength due to hydration expansion of free MgO and generation of cracks. Then, based on the above-mentioned idea, the inventor conducted research on using a converter slag and ladle refining slag containing free MgO to obtain a cured product that eliminates strength reduction and crack generation due to hydration expansion of free MgO. The experiment was repeated to find out the effect of the hydration swelling of free MgO on the produced cured product.

【0019】その結果、遊離MgOのうち、特に未滓化
MgOの存在が硬化体の強度低下やひび割れ発生に極め
て大きな影響を及ぼすことを突きとめた。つまり、転炉
スラグ中の未滓化MgO濃度と硬化体の圧縮強度との関
係を図1に示すが、未滓化MgO濃度が1質量%を超え
ると、強度が低下していくことが明らかである。また、
引き続き実験を重ねた結果、図2に示すように、晶出M
gO濃度が10質量%を超えると、強度が低下すること
もわかった。
As a result, it was found that, among free MgO, the presence of unslagged MgO, in particular, had a very large effect on the reduction in strength of the cured product and the occurrence of cracks. That is, the relationship between the unslagged MgO concentration in the converter slag and the compressive strength of the cured product is shown in FIG. 1. It is clear that when the unslagged MgO concentration exceeds 1% by mass, the strength decreases. It is. Also,
As a result of repeated experiments, as shown in FIG.
It was also found that when the gO concentration exceeded 10% by mass, the strength decreased.

【0020】そこで、発明者は、この知見を本発明の要
件の一つにすることにした。つまり、転炉スラグ及び/
又は取鍋精錬スラグが含有する未滓化MgOを1質量%
以下で、且つ晶出MgOを10質量%にすることで、硬
化体の遊離MgOの水和膨張による強度低下やひび割れ
発生を防ぐようにしたのである。なお、本発明で使用す
る転炉スラグ及び取鍋精錬スラグは、いずれも予めエー
ジング処理して遊離CaOを安定なCa(OH)2又は
CaCO3にするのが好ましい。すなわち、JIS A
5015に規定されている80℃×6時間/日×10
日の水浸膨張試験による膨張率が1.5%以下の転炉ス
ラグ及び取鍋精錬スラグにすることが好ましい。膨張率
が1.5%を超えると、硬化体の強度低下やひび割れ発
生が生じるからである。
Therefore, the inventor has made this finding one of the requirements of the present invention. That is, converter slag and / or
Or 1% by mass of unslagged MgO contained in ladle refining slag
In the following, by setting the crystallized MgO to 10% by mass, it is possible to prevent the strength reduction and the occurrence of cracks due to the hydration expansion of the free MgO of the cured product. The converter slag and the ladle refining slag used in the present invention are preferably subjected to aging treatment beforehand to convert free CaO into stable Ca (OH) 2 or CaCO 3 . That is, JIS A
80 ° C x 6 hours / day x 10 specified in 5015
It is preferable to use a converter slag and a ladle refining slag having an expansion rate of 1.5% or less according to a daily water immersion expansion test. If the expansion coefficient exceeds 1.5%, the strength of the cured product is reduced and cracks occur.

【0021】しかしながら、遊離MgOは、前述したよ
うに、エージング処理では容易に安定な水酸化物にはな
らず、ゆっくりと水和反応が進む。例えば、遊離CaO
を含まない未滓化MgOが1質量%で、且つ晶出Mg0
が10質量%の転炉スラグ及び取鍋精錬スラグのJIS
A 5015による80℃×6時間/日×10日間の
膨張率は約1.0%であるが、その膨張は10日間では
停止せずに持続する。そのため、遊離CaOを安定させ
るだけでは不十分で、得られる硬化体の強度向上やひび
割れの発生抑制は満足できる状態でないと考えられる。
However, as described above, free MgO does not easily become a stable hydroxide by the aging treatment, and the hydration reaction proceeds slowly. For example, free CaO
1% by mass of unslagged MgO containing no
JIS for converter slag and ladle refining slag with 10% by mass
The expansion rate of A 5015 at 80 ° C. × 6 hours / day × 10 days is about 1.0%, but the expansion continues without stopping after 10 days. Therefore, it is considered that merely stabilizing the free CaO is not sufficient, and the improvement of the strength of the obtained cured product and the suppression of the generation of cracks are not considered to be satisfactory.

【0022】そこで、発明者は、対策として、このよう
な未滓化MgOが1質量%以下で、且つ晶出MgOが1
0質量%以下の転炉スラグ及び取鍋精錬スラグを使用す
るにあたって、そのうちの粒径1.18mm以下の部分
が、水を除く全配合物質における含有率が10〜90質
量%とすることを想到した。これらスラグのうちで硬化
反応に大きく寄与する部分を詳細に調査したところ、粒
径1.18mm以下のものが特に反応性が良好で、得ら
れる硬化体の強度が高く、しかもひび割れの発生が著し
く小さくなることを見いだしたからである。また、これ
らスラグを硬化体の原料にすることで、環境問題となる
スラグからのF、B、Se、Vの溶出を抑制できること
もわかった。そして、発明者は、この知見、つまり未滓
化MgOが1質量%以下で、且つ晶出MgOが10質量
%以下の転炉スラグ及び取鍋精錬スラグに含まれる粒径
1.18mm以下の粒度部分の全配合物質での含有量に
ついて、理由は後で述べるが10〜90質量%の制限を
設けることを本発明の要件に加えることにしたのであ
る。なお、このことは、配合に使用する未滓化MgOが
1質量%以下で、且つ晶出MgOが10質量%以下の転
炉スラグ及び取鍋精錬スラグの中に、これよりも粒度の
大きいものが含まれていることを妨げるものではない。
粒度の大きい未滓化MgOが1質量%以下で、且つ晶出
MgOが10質量%以下の転炉スラグ及び取鍋精錬スラ
グは、粉砕の過程で粉砕され難くかったことを意味する
だけであり、結合材としては硬化体の製造に寄与するか
らである。ここで、本発明における粒径とは、篩い分け
で定める数値であり、JIS A1102に規定された
方法等で測定すれば良い。
Therefore, the inventor of the present invention has taken countermeasures such that the unslagged MgO is 1% by mass or less and the crystallized MgO is 1% by mass.
When using converter slag and ladle refining slag of 0% by mass or less, it is conceived that a portion having a particle size of 1.18 mm or less has a content of 10 to 90% by mass in all the substances except water. did. A detailed investigation of the portion of the slag that greatly contributes to the curing reaction revealed that those having a particle size of 1.18 mm or less had particularly good reactivity, had a high strength in the obtained cured product, and had significant cracking. Because they found it to be smaller. In addition, it was also found that by using these slags as raw materials for the cured product, elution of F, B, Se, and V from the slag, which is an environmental problem, can be suppressed. Then, the inventor has found this finding, that is, a particle size of 1.18 mm or less contained in converter slag and ladle refining slag in which unslagged MgO is 1% by mass or less and crystallized MgO is 10% by mass or less. Regarding the content of the part in the whole compounding substance, it will be explained later that the restriction of 10 to 90% by mass is added to the requirement of the present invention. This means that among the converter slag and ladle refining slag in which the unslagged MgO used in the compounding is 1% by mass or less and the crystallized MgO is 10% by mass or less, those having a larger particle size are used. It does not prevent that is included.
Converter slag and ladle refining slag with unslagged MgO having a large particle size of 1% by mass or less and crystallized MgO of 10% by mass or less only mean that it was difficult to be pulverized in the pulverization process. This is because the binder contributes to the production of a cured product. Here, the particle size in the present invention is a numerical value determined by sieving, and may be measured by a method specified in JIS A1102 or the like.

【0023】次に、未滓化MgOが1質量%以下で、且
つ晶出MgOが10質量%以下の転炉スラグ及び/又は
取鍋精錬スラグと反応させる潜在水硬性を有するSiO
2含有物質について検討した。その結果、SiO2含有物
質としては、高炉スラグ微粉末が好ましいことがわかっ
た。ここでいう高炉スラグ微粉末とは、高炉水砕スラグ
を粉砕したものであり、その粒径は約0.1mm以下、
つまりブレーン法による比表面積が約3000cm2
g以上のものが好ましい。また、約4000cm2/g
以上の高炉スラグ微粉末を用いると、より活性が高くな
り一層好ましい。
Next, SiO having latent hydraulicity to react with converter slag and / or ladle refining slag having unslagged MgO of 1% by mass or less and crystallized MgO of 10% by mass or less is used.
2 The substances contained were examined. As a result, it was found that blast furnace slag fine powder is preferable as the SiO 2 -containing substance. The blast furnace slag fine powder referred to here is obtained by crushing granulated blast furnace slag, and has a particle size of about 0.1 mm or less,
That is, the specific surface area by the Blaine method is about 3000 cm 2 /
g or more are preferable. Also, about 4000 cm 2 / g
Use of the above blast furnace slag fine powder is more preferable because of higher activity.

【0024】この高炉スラグ微粉末の適正な配合量につ
いては、前記した転炉スラグ及び/又は取鍋精錬スラグ
の量との関連で定まるが、その適正配合量は、5〜40
質量%であった。そして、前記2つの要件にこの限定を
加え、本発明を完成したのである。なお、高炉スラグ微
粉末の使用量限定の理由は、以下の通りである。すなわ
ち、粒径1.18mm以下の未滓化MgOが1質量%以
下で、且つ晶出MgOが10質量%以下の転炉スラグ及
び/又は取鍋精錬スラグの含有率が10質量%未満、あ
るいは高炉スラグ微粉末の含有量が40質量%超えで
は、相対的にSiO2と反応して硬化するアルカリ(ま
たはアルカリ土類)イオンの供給が不足がちとなり、得
られる硬化体の強度が低下するからである。一方、粒径
1.18mm以下の未滓化MgOが1質量%以下で、且
つ晶出MgOが10質量%以下の転炉スラグ及び/又は
取鍋精錬スラグの含有率が90質量%超え、あるいは高
炉スラグ微粉末の含有量が5質量%未満では、該転炉ス
ラグ及び取鍋精錬スラグの水和膨張性を有するCaO、
MgO等の成分を固定するSiO2が不足気味となるた
め、得られる硬化体を養生する過程で硬化体の膨張や粉
化が発生し、著しく強度が低下するからである。
The appropriate blending amount of the blast furnace slag fine powder is determined in relation to the amount of the converter slag and / or the ladle refining slag, and the proper blending amount is 5 to 40.
% By mass. The present invention has been completed by adding this limitation to the above two requirements. The reason for limiting the amount of blast furnace slag fine powder used is as follows. That is, the content of converter slag and / or ladle refining slag in which unslagged MgO having a particle size of 1.18 mm or less is 1% by mass or less and crystallized MgO is 10% by mass or less is less than 10% by mass, or If the content of the blast furnace slag fine powder exceeds 40% by mass, the supply of alkali (or alkaline earth) ions which react with SiO 2 and harden relatively tends to be insufficient, and the strength of the obtained hardened body decreases. It is. On the other hand, the content of converter slag and / or ladle refining slag in which unslagged MgO having a particle size of 1.18 mm or less is 1% by mass or less and crystallized MgO is 10% by mass or less exceeds 90% by mass, or When the content of the blast furnace slag fine powder is less than 5% by mass, CaO having hydration expandability of the converter slag and the ladle refining slag,
This is because SiO 2 for fixing components such as MgO tends to be insufficient, so that the cured product expands and powders during curing of the obtained cured product, and the strength is significantly reduced.

【0025】以上述べたように、本発明に係るスラグ硬
化体の製造方法は、粉粒状の製鋼スラグと潜在水硬性を
有するSiO2含潜有物質とを水で混練して養生するス
ラグ硬化体の製造方法において、製鋼スラグとして、特
に未滓化MgOが1質量%以下で、且つ晶出MgOが1
0質量%以下である粉粒状の転炉スラグ及び/又は取鍋
精錬スラグを使用し、且つその使用量を制限すると共
に、配合する高炉微粉末の量も適正にするようにして、
水で混練、養生するものである。これにより、転炉スラ
グ及び取鍋精錬スラグ中の遊離MgOは、養生中に水和
膨張を起さないようになる。その結果、得られるスラグ
硬化体は、製造直後から強度が高いばかりでなく、ひび
割れを発生しない。また、該硬化体は、乾燥による収縮
を低減し、その結果ひび割れを防ぐことができる。
As described above, the method for producing a hardened slag according to the present invention is directed to a hardened slag obtained by kneading a powdery steelmaking slag and a latent hydraulically-containing latent material of SiO 2 with water and curing. In the method of producing, as the steelmaking slag, in particular, unslagged MgO is 1% by mass or less and crystallized MgO is 1%.
Using a granular converter slag and / or ladle refining slag of 0% by mass or less and restricting the amount used, and adjusting the amount of blast furnace fine powder to be blended to be appropriate,
It is kneaded and cured with water. Thereby, free MgO in converter slag and ladle refining slag does not cause hydration expansion during curing. As a result, the hardened slag obtained not only has high strength immediately after production, but also does not crack. Further, the cured product can reduce shrinkage due to drying, and as a result, can prevent cracking.

【0026】引き続き、発明者は、この本発明に係るス
ラグ硬化体の製造方法について、さらなる改良を検討し
た。そして、高炉スラグ微粉末に代用できる潜在水硬性
を有するSiO2含潜有物質としてフライアッシュを見
出し、前記した本発明の別形態を提案する。
Subsequently, the inventor studied further improvements in the method for producing a cured slag according to the present invention. Then, fly ash has been found as an SiO 2 latent material having latent hydraulic properties which can be substituted for blast furnace slag fine powder, and another embodiment of the present invention described above is proposed.

【0027】このフライアッシュとは、石炭燃焼時に発
生する灰であり、JISによる規格品は勿論のこと、規
格外のものも使用できる。ただし、JIS A 620
1の規格I種又はII種を用いると、それらは微粉であ
ることから、より活性が高いので好ましい。これを高炉
スラグ微粉末の一部代替として使用することで、未滓化
MgOが1質量%以下で、且つ晶出MgOが10質量%
以下の転炉スラグや取鍋精錬スラグとの反応性が一層向
上し、硬化体のひび割れ発生の抑制と、長時間養生後に
おける強度向上が可能となる。さらに、硬化体の乾燥収
縮によるひび割れ発生を防ぐこともできる。
The fly ash is ash generated when coal is burned. Not only JIS standard products but also non-standard products can be used. However, JIS A 620
It is preferable to use the 1 specification type I or II type because they are fine powder and have higher activity. By using this as a partial substitute for blast furnace slag fine powder, unslagged MgO is 1% by mass or less and crystallized MgO is 10% by mass.
The reactivity with the following converter slag and ladle refining slag is further improved, and it is possible to suppress the occurrence of cracks in the cured product and to improve the strength after curing for a long time. Furthermore, it is also possible to prevent the occurrence of cracks due to drying shrinkage of the cured product.

【0028】このフライアッシュを高炉スラグ微粉末に
混合して使用する場合、配合物質の適正な含有量は、未
滓化MgOが1質量%以下、且つ晶出MgOが10質量
%以下で粒径1.18mm以下の転炉スラグ及び/又は
取鍋精錬スラグが10〜90質量%、高炉スラグ微粉末
が3〜36質量%、フライアッシュが1.5〜30質量
%とするのが良い。そして、この場合、高炉スラグ微粉
末とフライアッシュの合計含有量に対するフライアッシ
ュの含有量の質量比を0.1〜0.75とすることも必
要である。特に、その含有量が1.5重量%以上で、且
つ高炉スラグ微粉末とフライアッシュの合計含有量に対
するフライアッシュの含有量の質量比が0.1以上の範
囲においてその効果が顕著であった。しかしながら、フ
ライアッシュは、常温での硬化性が高炉スラグ微粉末よ
りも劣る傾向があり、フライアッシュの含有率が30質
量%超えたり、あるいは高炉スラグ微粉末とフライアッ
シュの合計含有量に対するフライアッシュの含有量の質
量比が0.75を超えると、硬化体全体としての硬化を
遅らせるので、好ましくない。従って、この別形態の本
発明では、フライアッシュの含有率は、1.5〜30質
量%で、且つ高炉スラグ微粉末とフライアッシュの合計
含有量に対するフライアッシュの含有量の質量比を0.
1〜0.75とする。
When this fly ash is used by mixing it with blast furnace slag fine powder, the appropriate content of the compounding material is 1 mass% or less of unslagged MgO, 10 mass% or less of crystallized MgO, and The converter slag and / or ladle refining slag of 1.18 mm or less are preferably 10 to 90% by mass, the blast furnace slag fine powder is 3 to 36% by mass, and the fly ash is 1.5 to 30% by mass. In this case, the mass ratio of the content of fly ash to the total content of blast furnace slag fine powder and fly ash needs to be 0.1 to 0.75. In particular, the effect was remarkable when the content was 1.5% by weight or more and the mass ratio of the fly ash content to the total content of the blast furnace slag fine powder and the fly ash was 0.1 or more. . However, fly ash tends to be inferior in hardening at room temperature to blast furnace slag fine powder, and the content of fly ash exceeds 30% by mass, or fly ash relative to the total content of blast furnace slag fine powder and fly ash. When the mass ratio of the content exceeds 0.75, the curing of the cured product as a whole is delayed, which is not preferred. Therefore, in the present invention in another form, the content of fly ash is 1.5 to 30% by mass, and the mass ratio of the content of fly ash to the total content of blast furnace slag fine powder and fly ash is 0.1%.
1 to 0.75.

【0029】また、さらなる研究により、高炉スラグ微
粉末、フライアッシュ並びに未滓化MgOが1質量%以
下、且つ晶出MgOが10質量%以下で粒径1.18m
m以下の転炉スラグ及び/又は取鍋精錬スラグの合計含
有量に対する、未滓化MgOが1質量%以下、且つ晶出
MgOが10質量%以下の転炉スラグ及び/又は取鍋精
錬スラグの含有量の質量比を0.2超とするのが良いこ
とがわかった。そのため、これも要件とした本発明を完
成させた。このような範囲に限定することで、未滓化M
gOが1質量%以下で、且つ晶出MgOが10質量%以
下の転炉スラグや取鍋精錬スラグから供給されるアルカ
リ(あるいはアルカリ土類)イオンと、潜在水硬性を有
するSiO2含有物質中の反応性SiO2との量的バラン
スが一層適正となり、得られる硬化体のひび割れ防止効
果が高まるためである。
According to further research, blast furnace slag fine powder, fly ash and unslagged MgO are 1% by mass or less, crystallized MgO is 10% by mass or less, and the particle size is 1.18 m.
m or less of the converter slag and / or ladle refining slag in which unslagged MgO is 1% by mass or less and crystallized MgO is 10% by mass or less with respect to the total content of the converter slag and / or the ladle refining slag. It was found that the mass ratio of the content should be more than 0.2. Therefore, the present invention, which also requires this, has been completed. By limiting to such a range, unslagged M
Alkali (or alkaline earth) ions supplied from converter slag or ladle refining slag having gO of 1% by mass or less and crystallized MgO of 10% by mass or less, and SiO 2 -containing substances having latent hydraulic properties This is because the quantitative balance with the reactive SiO 2 becomes more appropriate, and the effect of preventing the obtained cured product from cracking increases.

【0030】以上述べた別形態をも含む本発明によれ
ば、硬化体の強度向上やひび割れ発生低減に著しい効果
が得られるが、これら本発明に、さらにアルカリ金属及
び/又はアルカリ土類金属の酸化物、水酸化物、硫酸
塩、塩化物から選ばれた1種若しくは2種以上を、高炉
スラグ微粉末とフライアッシュの合計含有量に対して
0.2〜20質量%添加したり、あるいは、ナフタレン
スルホン酸類及び/又はポリカルボン酸類を、高炉スラ
グ微粉末、フライアッシュ並びに粒径が0.1mm以下
の転炉スラグ及び/又は取鍋精錬スラグの合計含有量に
対して0.1〜20質量%添加する要件を加えても良
い。
According to the present invention including the above-described alternative embodiments, a remarkable effect can be obtained in improving the strength of the cured product and reducing the occurrence of cracks. However, the present invention further includes an alkali metal and / or an alkaline earth metal. One or more selected from oxides, hydroxides, sulfates, and chlorides are added in an amount of 0.2 to 20% by mass based on the total content of the blast furnace slag fine powder and fly ash, or , Naphthalene sulfonic acids and / or polycarboxylic acids are used in an amount of 0.1 to 20 with respect to the total content of blast furnace slag fine powder, fly ash and converter slag and / or ladle refining slag having a particle size of 0.1 mm or less. A requirement of adding by mass% may be added.

【0031】アルカリ金属及び/又はアルカリ土類金属
の酸化物、水酸化物、硫酸塩、塩化物から選ばれた1種
若しくは2種以上を0.2質量%以上添加することによ
って、硬化体の硬化を促進することが可能となり、養生
に要する時間を短縮できるからである。しかしながら、
20質量%を超えて添加してもその効果が飽和するた
め、上限は20質量%とする。このような物質として好
ましいものとして、Ca(OH)2、NaOH、Ca
O、CaSO4・2H2O及びCaCl2等が挙げられ
る。
By adding 0.2% by mass or more of one or more selected from oxides, hydroxides, sulfates and chlorides of alkali metals and / or alkaline earth metals, This is because curing can be accelerated, and the time required for curing can be reduced. However,
Even if added in excess of 20% by mass, the effect is saturated, so the upper limit is 20% by mass. Preferred as such materials are Ca (OH) 2 , NaOH, Ca
O, CaSO 4 · 2H 2 O and CaCl 2, and the like.

【0032】また、ナフタレンスルホン酸類及び/又は
ポリカルボン酸類を添加すると、配合原料を水で混練す
る際の混錬性が向上する。そのため、混練に必要な水の
量を低減することができ、その結果、より高強度の硬化
体が得られるようになる。その際、それらの添加量を、
高炉スラグ微粉末、フライアッシュ並びに粒径が0.1
mm以下の転炉スラグ及び/又は取鍋精錬スラグの合計
含有量に対して質量で0.1質量%未満では、効果に乏
しく、2.0質量%を超えて添加しても効果が飽和する
ので、0.1〜2.0質量%に限定するのが良い。ナフ
タレンスルホン酸類としては、K&Dファインケミカル
(株)製のセルフロー110やサンフロー(株)製のサ
ンフロ−H−60等が好ましい。また、ポリカルボン酸
類としては、グレースケミカルズ(株)製のグーレック
ススーパー200等を例示できる。
The addition of naphthalene sulfonic acids and / or polycarboxylic acids improves the kneading properties when kneading the raw materials with water. Therefore, the amount of water required for kneading can be reduced, and as a result, a cured product having higher strength can be obtained. At that time, the amount of their addition
Blast furnace slag fine powder, fly ash and particle size 0.1
If the mass is less than 0.1% by mass with respect to the total content of converter slag and / or ladle refining slag of not more than mm, the effect is poor, and even if added in excess of 2.0% by mass, the effect is saturated. Therefore, the content is preferably limited to 0.1 to 2.0% by mass. As the naphthalenesulfonic acids, Cell Flow 110 manufactured by K & D Fine Chemical Co., Ltd., and Sunflow-H-60 manufactured by Sunflow Co., Ltd. are preferable. Examples of polycarboxylic acids include Gurex Super 200 manufactured by Grace Chemicals Co., Ltd.

【0033】[0033]

【実施例】以下に、製鋼スラグとして表1に組成を示す
未滓化MgOが1質量%以下で、且つ晶出MgOが10
質量%以下である粉粒状の転炉スラグ及び/又は取鍋精
錬スラグを用いての実施例並びに比較例を説明する。な
お、高炉スラグ微粉末は、ブレーン法による比表面積が
約4000cm2/gの品、フライアッシュは、JIS
A 6201のII種品を使用した。 (実施例1)配合原料として粉砕した未滓化MgOが1
質量%以下で、且つ晶出MgOが10質量%以下である
粉粒状の転炉スラグ及び/又は取鍋精錬スラグ、高炉ス
ラグ微粉末、Ca(OH)2を水で混練して型枠に流し
込み、これを20℃の水中で養生をして硬化体を製造し
た。配合物中の各原料物質の含有量、比率、混練水の添
加量を表2に示す。得られた硬化体の20℃における2
8日水中養生後の強度、表面乾燥比重、20℃における
28日大気養生後の表面ひび割れ本数、20℃における
91日水中養生後の強度、20℃における28日大気養
生後の環境庁告示46号法で測定したF、B、Se、V
の溶出量を表3に一括して示す。
EXAMPLES In the following, unslagged MgO having a composition shown in Table 1 as a steelmaking slag is 1% by mass or less and crystallized MgO is 10% or less.
Examples and comparative examples using powdery and granular converter slag and / or ladle refining slag of not more than mass% will be described. The blast furnace slag fine powder has a specific surface area of about 4000 cm 2 / g by the Blaine method, and fly ash is JIS.
A type 6201 of A6201 was used. (Example 1) 1 crushed unslagged MgO was used as a compounding raw material.
The converter granulated converter slag and / or ladle refining slag, blast furnace slag fine powder, and Ca (OH) 2 , which are not more than 10% by mass and crystallized MgO is not more than 10% by mass, are kneaded with water and poured into a mold. This was cured in water at 20 ° C. to produce a cured product. Table 2 shows the content and ratio of each raw material in the blend, and the amount of kneading water added. 2 at 20 ° C. of the obtained cured product
Strength after 8 days water curing, surface dry specific gravity, number of surface cracks after 28 days air curing at 20 ° C., strength after 91 days water curing at 20 ° C., Notification of Environment Agency No. 46 after 20 days air curing at 20 ° C. , B, Se, V measured by the method
Is shown in Table 3.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】(実施例2)配合原料として粉砕した未滓
化MgOが1質量%以下で、且つ晶出MgOが10質量
%以下である粉粒状の転炉スラグ及び/又は取鍋精錬ス
ラグ、高炉スラグ微粉末、フライアッシュ並びにCa
(OH)2を水で混練して型枠に流し込み、これを20
℃の水中で養生をして硬化体を製造した。配合物中の各
原料物質の含有量、比率、混練水の添加量を表4に示
す。得られた硬化体の20℃における28日水中養生後
の強度、表面乾燥比重、20℃28日大気養生後の表面
ひび割れ本数、20℃における91日水中養生後の強
度、20℃における28日大気差生後の環境庁告示46
号法で測定したF、B、Se、Vの溶出量を表5に一括
して示す。
(Example 2) Granulated converter slag and / or ladle refining slag having a crushed unslagged MgO content of 1% by mass or less and a crystallized MgO of 10% by mass or less as a blending raw material, a blast furnace Slag fine powder, fly ash and Ca
(OH) 2 is kneaded with water and poured into a mold.
Cured in water at ℃ to produce a cured product. Table 4 shows the content, ratio, and addition amount of kneading water for each raw material in the formulation. Strength of the obtained cured product after curing in water at 20 ° C. for 28 days, surface specific gravity, number of surface cracks after curing in air at 20 ° C. for 28 days, strength after curing in water at 91 ° C. in water at 20 ° C., atmosphere in 28 days at 20 ° C. Notification 46
Table 5 shows the elution amounts of F, B, Se, and V measured by the above method.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】(実施例3)配合原料として粉砕した未滓
化MgOが1質量%以下で、且つ晶出MgOが10質量
%以下である粉粒状の転炉スラグ及び/又は取鍋精錬ス
ラグ、高炉スラグ微粉末、さらに一部についてはこれら
にフライアッシュを加え、並びにCa(OH)2その他
の添加剤を水で混練して型枠に流し込み、これを20℃
の水中で養生をして硬化体を製造した。配合物中の各原
料物質の含有量、比率、混練水の添加量を表6及び7に
示す。得られた硬化体の20℃における28日水中養生
後の強度、表面乾燥比重、20℃における28日大気養
生後の表面ひび割れ本数、20℃における91日水中養
生後の強度、20℃における28日大気養生後の環境庁
告示46号法で測定したF、B、Se、Vの溶出量を表
8及び9に一括して示す。なお、実施例におけるナフタ
レンスルホン酸類として、K&Dファインケミカル
(株)製のセルフロー110を、ポリカルボン酸類とし
て、グレースケミカルズ(株)製のダーレツクススーパ
ー200を用いた。
(Example 3) Granulated converter slag and / or ladle refining slag having a crushed unslagged MgO content of 1% by mass or less and a crystallized MgO of 10% by mass or less as a blending raw material, a blast furnace Fly ash is added to the slag fine powder, and for some of them, fly ash is added, and Ca (OH) 2 and other additives are kneaded with water and poured into a mold.
After curing in water, a cured product was produced. Tables 6 and 7 show the contents, ratios, and addition amounts of kneading water of the respective raw materials in the blend. Strength of the obtained cured product after curing in water at 20 ° C for 28 days, surface dry specific gravity, number of surface cracks after curing in air at 20 ° C for 28 days, strength after curing in water at 20 ° C for 91 days, 28 days in 20 ° C The elution amounts of F, B, Se, and V measured by the Environmental Agency Notification No. 46 after air curing are shown in Tables 8 and 9 collectively. In the examples, cell flow 110 manufactured by K & D Fine Chemical Co., Ltd. was used as naphthalenesulfonic acids, and Darrex Super 200 manufactured by Grace Chemicals Co., Ltd. was used as polycarboxylic acids.

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【表7】 [Table 7]

【0043】[0043]

【表8】 [Table 8]

【0044】[0044]

【表9】 [Table 9]

【0045】(比較例)配合原料として粉砕した未滓化
MgOが1質量%以下で、且つ晶出MgOが10質量%
である粉粒状の転炉スラグ及び/又は取鍋精錬スラグ、
高炉スラグ微粉末、さらに一部についてはこれらにフラ
イアッシュ並びにCa(OH)2を、本発明範囲から外
れる含有率の条件下において水で混練して型枠に流し込
み、これを20℃の水中で養生をして硬化体を製造し
た。配合物中の各原料物質の含有量、比率、混練水の添
加量を表10に示す。得られた硬化体の20℃における
28日水中養生後の強度、表面乾燥比重、20℃におけ
る28日大気養生後の表面ひび割れ本数、20℃におけ
る91日水中養生後の強度、20℃における28日大気
養生後の環境庁告示46号法で測定したF、B、Se、
Vの溶出量を表11に併せて示す。
Comparative Example 1% by mass or less of crushed MgO and 10% by mass of crystallized MgO
Converter granulated converter slag and / or ladle refining slag,
Blast furnace slag fine powder, and for some of them, fly ash and Ca (OH) 2 are kneaded with water under a condition of a content outside the range of the present invention and poured into a mold. After curing, a cured product was produced. Table 10 shows the content, ratio, and addition amount of kneading water for each raw material in the blend. Strength of the obtained cured product after curing in water at 20 ° C for 28 days, surface dry specific gravity, number of surface cracks after curing in air at 20 ° C for 28 days, strength after curing in water at 20 ° C for 91 days, 28 days in 20 ° C F, B, Se, measured by the Environmental Agency Notification No. 46 method after air curing
The elution amount of V is also shown in Table 11.

【0046】なお、本実施例および比較例における硬化
体の表面ひび割れ本数は、目視で確認可能な数を記載し
た。
The number of surface cracks of the cured product in this example and the comparative example is a number that can be visually confirmed.

【0047】[0047]

【表10】 [Table 10]

【0048】[0048]

【表11】 [Table 11]

【0049】以上の実施例および比較例で得られた成績
は、前記した各表を参照すると、以下のように総括でき
る。つまり、未滓化MgOが1質量%以下で、且つ晶出
MgOが10質量%以下である粉粒状の転炉スラグ及び
/又は取鍋精錬スラグのうち、粒径が1.18mm以下
のものの含有率が本発明の条件を満たさない比較例で
は、28日養生後の硬化体の表面ひび割れが3本/cm
2であり、耐摩耗性が悪く、またハンドリング時の硬化
体の割れや欠けが発生した。しかしながら、本発明例で
は、いずれの硬化体もひび割れが0.5本/cm2以下
であり、ひび割れが著しく小さく、耐摩耗性やハンドリ
ング時の割れや欠けの問題は生じなかった。特に、高炉
スラグ微粉末、フライアッシュ並びに粒径0.425m
m以下の未滓化MgOが1質量%以下で、且つ晶出Mg
Oが10質量%以下である粉粒状の転炉スラグ及び/又
は取鍋精錬スラグの合計含有量に対する該転炉スラグ及
び/又は取鍋精錬スラグの含有量の比(表中Cで示す比
率)が質量で0.2超である本発明例の1−1、1−
3、1−6、1−7、1−9、1−22では、硬化体の
ひび割れ本数が0.4本/cm2以下とさらに少なくな
っている。
The results obtained in the above Examples and Comparative Examples can be summarized as follows with reference to the above tables. In other words, among converter granulated converter slag and / or ladle refining slag having unslagged MgO of 1% by mass or less and crystallized MgO of 10% by mass or less, those having a particle size of 1.18 mm or less are contained. In Comparative Examples in which the rate did not satisfy the conditions of the present invention, the surface cracks of the cured product after curing for 28 days were 3 / cm.
2 , which was poor in abrasion resistance and cracked or chipped in the cured product during handling. However, in each of the examples of the present invention, all the cured products had cracks of 0.5 / cm 2 or less, the cracks were extremely small, and there was no problem of wear resistance, cracking or chipping during handling. Especially blast furnace slag fine powder, fly ash and particle size 0.425m
m or less of unslagged MgO is 1% by mass or less and crystallized Mg
Ratio of the content of converter slag and / or ladle refining slag to the total content of powdery converter slag and / or ladle refining slag in which O is 10% by mass or less (the ratio indicated by C in the table) Is greater than 0.2 by mass, 1-1, 1-
In 3,1-6,1-7,1-9,1-22, cracking number of the cured product becomes even less and 0.4 present / cm 2 or less.

【0050】また、高炉スラグ微粉末、フライアッシュ
並びに粒径0.1mm以下の未滓化MgOが1質量%以
下で、且つ晶出MgOが10質量%以下である粉粒状の
転炉スラグ及び/又は取鍋精錬スラグの合計含有量に対
する該転炉スラグ及び/又は取鍋精錬スラグの含有量の
比(表中Dで示す比率)が質量で0.2超である本発明
例の1−10〜1−22では、硬化体のひび割れ本数が
0.3本/cm2以下とさらに少なくなっている。
Blast furnace slag fine powder, fly ash, and powdery converter slag containing 1% by mass or less of unslagged MgO having a particle size of 0.1 mm or less and crystallized MgO of 10% by mass or less and / or Alternatively, the ratio of the content of the converter slag and / or the ladle refining slag to the total content of the ladle refining slag (the ratio indicated by D in the table) is more than 0.2 by mass, and is 1-10 according to the present invention. In Nos. 1-22, the number of cracks in the cured product was further reduced to 0.3 / cm 2 or less.

【0051】さらに、高炉スラグ微粉末に加えて、フラ
イアッシュを適量配合した実施例2の各例では、より一
層硬化体のひび割れ本数が低減できている。加えて、各
種の添加剤(Ca(OH)2,NaOH,CaSO4・2
2O等)を添加した実施例3の各例では、硬化体の強
度向上とひび割れの低減が達成できた。さらに加えて、
各実施例とも、F、B、Se、Vの溶出量が抑制でき
た。比較例4は、特開平2−233539号公報の実施
例相当の配合量と粒径によって製造したものであるが、
硬化体の圧縮強度は低く、またF、B、Se、Vの溶出
量の抑制効果もほとんど見られなかった。
Further, in each example of Example 2 in which fly ash was added in an appropriate amount in addition to the blast furnace slag fine powder, the number of cracks in the cured product could be further reduced. In addition, various additives (Ca (OH) 2, NaOH , CaSO 4 · 2
In each example of Example 3 to which H 2 O or the like was added, improvement in the strength of the cured product and reduction in cracking could be achieved. In addition,
In each example, the elution amounts of F, B, Se, and V could be suppressed. Comparative Example 4 was produced with a blending amount and particle size corresponding to the examples in JP-A-2-233538.
The compressive strength of the cured product was low, and almost no effect of suppressing the elution amounts of F, B, Se, and V was observed.

【0052】[0052]

【発明の効果】以上述べたように、本発明により、高強
度で、且つ表面層にひび割れがほとんど無いスラグ硬化
体が得られ、また、原料スラグからのF、B、Se、V
の溶出量が抑制ができる。この硬化体は、消波ブロッ
ク、魚礁、藻場造成用ブロック、人工石等の海洋構造
物、その他コンクリート代替品として、また破砕処理を
すれば路盤材、土木材として使用可能である。従って、
本発明は、資源の再利用、環境の向上等に寄与するとこ
ろが大である。
As described above, according to the present invention, a slag hardened body having high strength and almost no cracks in the surface layer can be obtained, and F, B, Se, V from raw slag can be obtained.
Elution amount can be suppressed. This hardened body can be used as a wave-dissipating block, a fish reef, a block for creating a seaweed bed, an offshore structure such as an artificial stone, or other concrete substitute, or a roadbed material or earth and wood after crushing. Therefore,
The present invention greatly contributes to the reuse of resources, improvement of the environment, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】転炉スラグ中の未滓化MgO濃度と硬化体の圧
縮強度との関係を示す図である。
FIG. 1 is a view showing the relationship between the concentration of unslagged MgO in converter slag and the compressive strength of a cured product.

【図2】転炉スラグ中の晶出MgO濃度と硬化体の圧縮
強度との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the concentration of crystallized MgO in converter slag and the compressive strength of a cured product.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C04B 28/08 C04B 18:08 Z 18:08 22:06 Z 22:06 22:14 A 22:14 22:12 22:12 24:20 24:20 24:04 24:04) 111:20 111:20 (72)発明者 小菊 史男 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4G012 JD00 JE02 JE06 MA00 MB08 MB12 PA27 PA29 PB03 PB09 PB10 PB16 PB24 PC03 PC04 PC11 PD01 PE07 4K013 CF01 4K014 AE01 4K070 AB11 BC13 BC14 EA02 EA27──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) (C04B 28/08 C04B 18:08 Z 18:08 22:06 Z 22:06 22:14 A 22:14 22:12 22:12 24:20 24:20 24:04 24:04) 111: 20 111: 20 (72) Inventor Fumio Kogiku 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Technical Research Co., Ltd. In-house F-term (reference) 4G012 JD00 JE02 JE06 MA00 MB08 MB12 PA27 PA29 PB03 PB09 PB10 PB16 PB24 PC03 PC04 PC11 PD01 PE07 4K013 CF01 4K014 AE01 4K070 AB11 BC13 BC14 EA02 EA27

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粉粒状の製鋼スラグと潜在水硬性を有す
るSiO2含有物質とを水で混練してスラグ硬化体を製
造する方法において、 前記製鋼スラグとして未滓化MgOが1質量%以下で、
且つ晶出MgOが10質量%以下の転炉スラグ及び/又
は取鍋精錬スラグを、前記潜在水硬性を有するSiO2
含有物質として高炉スラグ微粉末を使用すると共に、水
を除く全配合物質における粒径1.18mm以下の該転
炉スラグ及び/又は取鍋精錬スラグの含有率を10〜9
0質量%、高炉スラグ微粉末の含有率を9〜40質量%
とすることを特徴とするスラグ硬化体の製造方法。
1. A method for producing a hardened slag by kneading powdery steelmaking slag and an SiO 2 -containing substance having latent hydraulic properties with water, wherein the steelmaking slag contains 1% by mass or less of unslagged MgO. ,
The converter slag and / or ladle refining slag having crystallized MgO of 10% by mass or less are converted to SiO 2 having the latent hydraulic property.
The blast furnace slag fine powder is used as the contained material, and the content of the converter slag and / or ladle refining slag having a particle size of 1.18 mm or less in all the blended materials except water is 10 to 9%.
0 mass%, content of blast furnace slag fine powder is 9-40 mass%
A method for producing a hardened slag body.
【請求項2】 粉粒状の製鋼スラグと潜在水硬性を有す
るSiO2含有物質とを水で混練してスラグ硬化体を製
造する方法において、 前記製鋼スラグとして未滓化MgOが1質量%以下で、
且つ晶出MgOが10質量%以下の転炉スラグ及び/又
は取鍋精錬スラグを、潜在水硬性を有するSiO2含有
物質として高炉スラグ微粉末及びフライアッシュを使用
すると共に、水を除く全配合物質における粒径1.18
mm以下の該転炉スラグ及び/又は取鍋精錬スラグの含
有率を10〜90質量%、高炉スラグ微粉末の含有率を
3〜36質量%、フライアッシュの含有率を1.5〜3
0質量%とし、且つ高炉スラグ微粉末とフライアッシュ
の合計含有量に対するフライアッシュの含有量の質量比
を0.1〜0.75とすることを特徴とするスラグ硬化
体の製造方法。
2. A method for producing a hardened slag by kneading a powdery steelmaking slag and a SiO 2 -containing substance having latent hydraulic properties with water, wherein the steelmaking slag contains 1% by mass or less of unslagged MgO. ,
A converter slag and / or a ladle refining slag having a crystallization MgO of 10% by mass or less, a blast-furnace slag fine powder and fly ash are used as SiO 2 -containing substances having latent hydraulic properties, and all compounded substances except water are used. 1.18
mm or less, the content of the converter slag and / or ladle refining slag is 10 to 90% by mass, the content of blast furnace slag fine powder is 3 to 36% by mass, and the content of fly ash is 1.5 to 3%.
A method for producing a hardened slag, wherein the mass ratio of the content of fly ash to the total content of blast furnace slag fine powder and fly ash is 0.1 to 0.75.
【請求項3】 高炉スラグ微粉末、フライアッシュ並び
に粒径1.18mm以下の転炉スラグ及び/又は取鍋精
錬スラグの合計含有量に対する該転炉スラグ及び/又は
取鍋精錬スラグの含有量の質量比を0.2超とする請求
項1又は2記載のスラグ硬化体の製造方法。
3. The content of the converter slag and / or ladle refining slag to the total content of blast furnace slag fine powder, fly ash and converter slag and / or ladle refining slag having a particle size of 1.18 mm or less. The method for producing a cured slag according to claim 1 or 2, wherein the mass ratio is more than 0.2.
【請求項4】 前記水を除く全配合物質に、さらにアル
カリ金属及び/又はアルカリ土類金属の酸化物、水酸化
物、硫酸塩、塩化物から選ばれた1種若しくは2種以上
を、高炉スラグ微粉末とフライアッシュの合計含有量に
対して0.2〜20質量%添加することを特徴とする請
求項1〜3のいずれかに記載のスラグ硬化体の製造方
法。
4. A blast furnace further comprising at least one selected from the group consisting of oxides, hydroxides, sulfates, and chlorides of alkali metals and / or alkaline earth metals, in all the substances except water. The method for producing a hardened slag according to any one of claims 1 to 3, wherein 0.2 to 20% by mass is added to the total content of the slag fine powder and fly ash.
【請求項5】 前記水を除く全配合物質に、さらにナフ
タレンスルホン酸類及び/又はポリカルボン酸類を、高
炉スラグ微粉末、フライアッシュ並びに粒径が0.1m
m以下の転炉スラグ及び/又は取鍋精錬スラグの合計含
有量に対して0.1〜2.0質量%添加することを特徴
とする請求項1〜4のいずれかに記載のスラグ硬化体の
製造方法。
5. A blast-furnace slag fine powder, fly ash and a particle size of 0.1 m are further added to all the compounding substances except for water, with naphthalenesulfonic acid and / or polycarboxylic acid.
The slag hardened body according to any one of claims 1 to 4, wherein 0.1 to 2.0% by mass is added to the total content of converter slag and / or ladle refining slag of m or less. Manufacturing method.
JP2001112454A 2001-04-11 2001-04-11 Method for producing hardened slag Expired - Fee Related JP4644965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112454A JP4644965B2 (en) 2001-04-11 2001-04-11 Method for producing hardened slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112454A JP4644965B2 (en) 2001-04-11 2001-04-11 Method for producing hardened slag

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010233670A Division JP5195866B2 (en) 2010-10-18 2010-10-18 Method for producing hardened slag

Publications (2)

Publication Number Publication Date
JP2002308662A true JP2002308662A (en) 2002-10-23
JP4644965B2 JP4644965B2 (en) 2011-03-09

Family

ID=18963866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112454A Expired - Fee Related JP4644965B2 (en) 2001-04-11 2001-04-11 Method for producing hardened slag

Country Status (1)

Country Link
JP (1) JP4644965B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292201A (en) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk Admixture for concrete and concrete composition
JP2005231947A (en) * 2004-02-19 2005-09-02 Nippon Magnetic Dressing Co Ltd Method of treating steel slag to make aggregate
JP2006257030A (en) * 2005-03-17 2006-09-28 Nippon Steel Corp Mineral supplement for water area, alga reef block and method for producing the same
JP2013028518A (en) * 2011-07-29 2013-02-07 Nippon Steel & Sumitomo Metal Corp Artificial stone made of expansion-controlled iron and steel slag hydration-solidified body, and method for producing the same
JP2013234111A (en) * 2012-04-05 2013-11-21 Jfe Steel Corp Method for suppressing elution of selenium
JP2014024713A (en) * 2012-07-26 2014-02-06 Kobe Steel Ltd Steel slag hydration product, and production method of the same
JP2014024718A (en) * 2012-07-27 2014-02-06 Kobe Steel Ltd Slag for roadbed material and method of manufacturing slag for roadbed material
CN110627398A (en) * 2019-10-18 2019-12-31 中建材科创新技术研究院(山东)有限公司 Vanadium-titanium slag composite admixture for high-performance concrete and method
JP2020196636A (en) * 2019-05-31 2020-12-10 日本製鉄株式会社 Manufacturing method of hydrated and solidified product of iron and steelmaking slag
WO2021186964A1 (en) * 2020-03-18 2021-09-23 Jfeスチール株式会社 Slag product manufacturing method and slag product
CN113461399A (en) * 2021-06-21 2021-10-01 邯郸钢铁集团有限责任公司 Method for innocent treatment of refining furnace dedusting ash and utilization of dedusting ash in slag pot grating
WO2022249978A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Cured body using slag that contains free mgo and method for producing cured body
CN115417609A (en) * 2022-08-31 2022-12-02 中国建筑材料科学研究总院有限公司 Early-strength low-shrinkage low-heat silicate cement and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349153A (en) * 1991-05-24 1992-12-03 Godo Seitetsu Kk Hydraulic composite subbase course material
JPH08157240A (en) * 1994-12-06 1996-06-18 Kawasaki Steel Corp Short time reforming method of steelmaking slag
JPH08259282A (en) * 1995-03-20 1996-10-08 Kawasaki Steel Corp Stabilization treatment of steel making slag
JPH1088220A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Method for reducing infiltrated expansibility of steel-making slag
JP2000104109A (en) * 1998-09-28 2000-04-11 Kawasaki Steel Corp Method for reducing unslagged calcium oxide and magnesium oxide in slag
JP2001049310A (en) * 1998-10-14 2001-02-20 Kawasaki Steel Corp Method for agglomerating steelmaking slag
JP2001270746A (en) * 2000-03-28 2001-10-02 Kawasaki Steel Corp Method for producing slag hardened body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349153A (en) * 1991-05-24 1992-12-03 Godo Seitetsu Kk Hydraulic composite subbase course material
JPH08157240A (en) * 1994-12-06 1996-06-18 Kawasaki Steel Corp Short time reforming method of steelmaking slag
JPH08259282A (en) * 1995-03-20 1996-10-08 Kawasaki Steel Corp Stabilization treatment of steel making slag
JPH1088220A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Method for reducing infiltrated expansibility of steel-making slag
JP2000104109A (en) * 1998-09-28 2000-04-11 Kawasaki Steel Corp Method for reducing unslagged calcium oxide and magnesium oxide in slag
JP2001049310A (en) * 1998-10-14 2001-02-20 Kawasaki Steel Corp Method for agglomerating steelmaking slag
JP2001270746A (en) * 2000-03-28 2001-10-02 Kawasaki Steel Corp Method for producing slag hardened body

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292201A (en) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk Admixture for concrete and concrete composition
JP2005231947A (en) * 2004-02-19 2005-09-02 Nippon Magnetic Dressing Co Ltd Method of treating steel slag to make aggregate
JP2006257030A (en) * 2005-03-17 2006-09-28 Nippon Steel Corp Mineral supplement for water area, alga reef block and method for producing the same
JP2013028518A (en) * 2011-07-29 2013-02-07 Nippon Steel & Sumitomo Metal Corp Artificial stone made of expansion-controlled iron and steel slag hydration-solidified body, and method for producing the same
JP2013234111A (en) * 2012-04-05 2013-11-21 Jfe Steel Corp Method for suppressing elution of selenium
JP2014024713A (en) * 2012-07-26 2014-02-06 Kobe Steel Ltd Steel slag hydration product, and production method of the same
JP2014024718A (en) * 2012-07-27 2014-02-06 Kobe Steel Ltd Slag for roadbed material and method of manufacturing slag for roadbed material
JP2020196636A (en) * 2019-05-31 2020-12-10 日本製鉄株式会社 Manufacturing method of hydrated and solidified product of iron and steelmaking slag
JP7253981B2 (en) 2019-05-31 2023-04-07 日本製鉄株式会社 Method for producing iron and steel slag hydrated solid
CN110627398A (en) * 2019-10-18 2019-12-31 中建材科创新技术研究院(山东)有限公司 Vanadium-titanium slag composite admixture for high-performance concrete and method
CN110627398B (en) * 2019-10-18 2022-03-11 中建材科创新技术研究院(山东)有限公司 Vanadium-titanium slag composite admixture for high-performance concrete and method
WO2021186964A1 (en) * 2020-03-18 2021-09-23 Jfeスチール株式会社 Slag product manufacturing method and slag product
JP6954500B1 (en) * 2020-03-18 2021-10-27 Jfeスチール株式会社 Manufacturing method of slag products and slag products
WO2022249978A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Cured body using slag that contains free mgo and method for producing cured body
JP7205674B1 (en) * 2021-05-28 2023-01-17 Jfeスチール株式会社 Cured body using slag containing free MgO and method for producing cured body
CN113461399A (en) * 2021-06-21 2021-10-01 邯郸钢铁集团有限责任公司 Method for innocent treatment of refining furnace dedusting ash and utilization of dedusting ash in slag pot grating
CN113461399B (en) * 2021-06-21 2022-06-14 邯郸钢铁集团有限责任公司 Method for innocent treatment of refining furnace dedusting ash and utilization of dedusting ash in slag pot grating
CN115417609A (en) * 2022-08-31 2022-12-02 中国建筑材料科学研究总院有限公司 Early-strength low-shrinkage low-heat silicate cement and preparation method thereof
CN115417609B (en) * 2022-08-31 2023-05-12 中国建筑材料科学研究总院有限公司 Preparation method of early-strength low-shrinkage low-heat silicate cement

Also Published As

Publication number Publication date
JP4644965B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP3654122B2 (en) Method for producing hardened slag
JP3714043B2 (en) Agglomeration method of steelmaking slag
JP5580306B2 (en) Expandable material and method for producing the same
EP2507188B1 (en) Hydraulic binder comprising a ground blast furnace slag
JP6080340B2 (en) Steel slag hydrated solidified body
KR101372676B1 (en) Concrete composition with iron and steelmaking slag
JP2007145652A (en) Supper quick-hardening high-fluidity cement composition and mortar or concrete using the same
JP2002308662A (en) Production process of slag hardened body
JP4560887B2 (en) Underwater hardened body made from steelmaking slag
JP3958090B2 (en) Hydrated cured body
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
JP4860278B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
JP5195866B2 (en) Method for producing hardened slag
KR101558893B1 (en) Admixture for Concrete and Concrete Composite Containing High Durability Additive
JP3823815B2 (en) Method for producing a steelmaking slag hardened body
JP2016216274A (en) Artificial stone material
JP2002179451A (en) Concrete or mortar using slag aggregate
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP4655337B2 (en) Roadbed material made from steelmaking slag
CN114835417A (en) Low-carbon cementing material prepared from industrial solid waste steel slag
JP7253981B2 (en) Method for producing iron and steel slag hydrated solid
JP6015585B2 (en) Hydrated cured body
JP2003146732A (en) Method of producing slag hardened body
CN113831033A (en) Desulfurized fly ash-steel slag composite gelled composition and desulfurized fly ash-steel slag composite gelled material
KR20220089454A (en) Slag mixed cement having steel slag, mortar, and concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4644965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees