JP2002307471A - Method for molding thermoplastic resin - Google Patents

Method for molding thermoplastic resin

Info

Publication number
JP2002307471A
JP2002307471A JP2002100709A JP2002100709A JP2002307471A JP 2002307471 A JP2002307471 A JP 2002307471A JP 2002100709 A JP2002100709 A JP 2002100709A JP 2002100709 A JP2002100709 A JP 2002100709A JP 2002307471 A JP2002307471 A JP 2002307471A
Authority
JP
Japan
Prior art keywords
resin
mold
gas
cavity
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002100709A
Other languages
Japanese (ja)
Other versions
JP3875586B2 (en
Inventor
Hiroshi Yamaki
宏 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002100709A priority Critical patent/JP3875586B2/en
Publication of JP2002307471A publication Critical patent/JP2002307471A/en
Application granted granted Critical
Publication of JP3875586B2 publication Critical patent/JP3875586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2608Mould seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/4005Ejector constructions; Ejector operating mechanisms
    • B29C45/401Ejector pin constructions or mountings
    • B29C2045/4015Ejector pins provided with sealing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To economically provide a method for transferring a state of the surface of a mold to a molding precisely without using a complex apparatus and a complex mold by preventing solidification and viscosity rise of a thermoplastic resin in a resin packing process in the injection molding of the resin. SOLUTION: The thermoplastic resin incorporated with a filler is melted, packed in a cooling mold filled with carbon dioxide at a pressure which dissolves at least 0.1 wt.% of carbon dioxide in the resin, and molded with the solidification temperature of the surface of the resin lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱可塑性樹脂の成形
において、金型表面状態を成形品表面に高度に転写する
成形法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding method for transferring a surface state of a mold to the surface of a molded article at a high level in molding a thermoplastic resin.

【0002】[0002]

【従来の技術】熱可塑性樹脂の成形において、通常、金
型の温度は成形樹脂の固化する温度よりも十分に低い温
度に保たれる。これは、熱伝導性が著しく低い樹脂素材
を、短時間で溶融状態から成形品として取り出せる温度
にまで冷却するために必要なことである。また、金型表
面状態を高度に成形品に転写するには粘度が低い状態の
樹脂を高い圧力で金型に押しつける必要がある。
2. Description of the Related Art In molding a thermoplastic resin, the temperature of a mold is usually kept sufficiently lower than the temperature at which the molding resin solidifies. This is necessary for cooling a resin material having extremely low thermal conductivity from a molten state to a temperature at which it can be taken out as a molded product in a short time. Further, in order to transfer a mold surface state to a molded article to a high degree, it is necessary to press a resin having a low viscosity into a mold with a high pressure.

【0003】しかしながら、樹脂の固化温度よりも金型
温度が低いと、樹脂充填と樹脂の固化が同時に進行する
ことになり、樹脂流動先端部(フローフロント)付近で
金型に接触した樹脂は、急激に冷却され粘度が高くなる
とともに、金型表面に低い圧力で押し付けられた状態で
固化するため、金型表面状態を高度に成形品に転写する
ことは困難となる。このため通常の射出成形では、光沢
ムラ、ウェルドライン、フローマーク、ジェッティング
などの外観不良や、光ディスク等の精密成形品では微細
なピットの転写不良を起こしやすく、薄肉部品ではショ
ートショットを起こすこともある。
However, when the mold temperature is lower than the solidification temperature of the resin, the resin filling and the solidification of the resin proceed simultaneously, and the resin contacting the mold near the resin flow front (flow front) is It is rapidly cooled to increase the viscosity and solidifies while being pressed against the mold surface at a low pressure. Therefore, it is difficult to transfer the mold surface state to a molded product at a high level. For this reason, normal injection molding tends to cause poor appearance such as uneven gloss, weld lines, flow marks, and jetting, and poor transfer of fine pits in precision molded products such as optical discs, and short shots in thin parts. There is also.

【0004】金型表面の転写性を高めるには、樹脂充填
工程中の樹脂の固化を防止したり、最小限にとどめるこ
とが必要となる。
In order to enhance the transferability of the mold surface, it is necessary to prevent or minimize the solidification of the resin during the resin filling step.

【0005】熱可塑性樹脂の射出成形等では、成形サイ
クルタイムを長くせず、経済的に金型表面転写性を高め
ることが常に要求されてきた。金型表面転写性を高める
手段としてこれまで種々の方法が提案されており、例え
ば、次のような方法がある。
[0005] In injection molding of a thermoplastic resin and the like, it has always been required to economically enhance the mold surface transferability without increasing the molding cycle time. Various methods have been proposed as means for improving the mold surface transferability. For example, there are the following methods.

【0006】(1)金型に熱媒と冷媒を交互に流して金
型表面の加熱、冷却を繰り返す方法(Plastic
Technology,VOL.34(June),1
50(1988)等)。 (2)成形直前に高周波誘導加熱で金型表面を選択的に
加熱する方法(USP4439492等)。 (3)金型表面に絶縁層と導電層を設け、導電層に通電
して加熱する方法(Polym.Eng.Sci.,V
ol.34(11),894(1994)等)。 (4)金型表面を輻射加熱する方法(合成樹脂,Vo
l.42(1),48(1996)等)。 (5)金型表面を断熱層で被覆し、成形樹脂自身の熱で
金型表面を加熱しつつ成形する断熱層被覆法(USP
5362226,WO97/04938等)。
(1) A method of repeating heating and cooling of the mold surface by alternately flowing a heat medium and a coolant through the mold (Plastic)
Technology, VOL. 34 (June), 1
50 (1988)). (2) A method of selectively heating the mold surface by high-frequency induction heating immediately before molding (US Pat. No. 4,439,492). (3) A method in which an insulating layer and a conductive layer are provided on a mold surface, and the conductive layer is energized and heated (Polym. Eng. Sci., V
ol. 34 (11), 894 (1994), etc.). (4) Method of radiantly heating the mold surface (synthetic resin, Vo
l. 42 (1), 48 (1996), etc.). (5) A heat insulating layer coating method (USP) in which a mold surface is coated with a heat insulating layer, and the mold surface is molded while heating the mold surface with the heat of the molding resin itself.
5362226, WO97 / 04938, etc.).

【0007】ビー・エイチ・キム(B.H.Kim)の
報告(Polym.Plast.Technol.En
g.,Vol.25(1),73(1986))では、
成形直前に電気等の外部エネルギーで金型表面を加熱す
る上記の(1)〜(4)の方法をアクティブコントロー
ル法、それに対して、外部エネルギーを加えず、成形樹
脂自身の熱で金型表面を加熱する上記(5)の方法をパ
ッシブコントロール法と称している。
[0007] A report by BH Kim (Polym. Plast. Technol. En.)
g. , Vol. 25 (1), 73 (1986))
The method of (1) to (4), in which the mold surface is heated by external energy such as electricity just before molding, is an active control method. Is referred to as a passive control method.

【0008】上記アクティブコントロール法も、パッシ
ブコントロール法もいずれも射出成形時に金型表面を加
熱しつつ成形する方法である。すなわち、射出された溶
融樹脂が金型壁面に押し付けられる時に金型表面を該樹
脂の固化温度以上に加熱することにより金型表面転写性
を良くする成形法である。
[0008] Both the active control method and the passive control method are methods of molding while heating the mold surface during injection molding. That is, this is a molding method in which the mold surface is heated to a temperature not lower than the solidification temperature of the resin when the injected molten resin is pressed against the mold wall surface, thereby improving the mold surface transferability.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、熱可
塑性樹脂の成形において、樹脂充填工程中の樹脂の固化
や粘度上昇を防止し、金型表面状態を高度に成形品に転
写する方法を経済的に提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of transferring a surface state of a mold to a molded article by preventing the resin from solidifying or increasing in viscosity during a resin filling step in molding a thermoplastic resin. Is to provide economically.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
本発明者らは検討の結果、従来考えられていた金型表面
を加熱することにより金型表面転写性を改良する手法と
は全く異なる方法により、金型表面状態が成形品に高度
に転写できることを見いだし本発明を完成するに至っ
た。すなわち本発明は、次の各発明からなる。
The present inventors have studied to solve the above-mentioned problems, and as a result, the present invention is completely different from the conventionally considered method of improving the mold surface transferability by heating the mold surface. The present inventors have found that the mold surface state can be highly transferred to a molded article by the method, and have completed the present invention. That is, the present invention includes the following inventions.

【0011】(1)充填材が配合された溶融熱可塑性樹
脂を金型に充填して成形する成形法において、該樹脂の
固化温度における該樹脂への溶解度が空気及び/又は窒
素の2倍以上であるガス体を金型キャビティに充填し、
次いで上記樹脂を該金型キャビティに充填して、樹脂充
填工程中に、金型に接する該樹脂表面の固化温度を低下
させつつ成形することを特徴とする熱可塑性樹脂の成形
法。
(1) In a molding method in which a molten thermoplastic resin mixed with a filler is filled in a mold and molded, the solubility of the resin at the solidification temperature in the resin is at least twice that of air and / or nitrogen. Is filled into the mold cavity,
Next, the resin is filled in the mold cavity, and the resin is molded while the solidification temperature of the resin surface in contact with the mold is lowered during the resin filling step.

【0012】(2)上記(1)において、上記ガス体が
二酸化炭素である成形法。
(2) The molding method according to (1), wherein the gas is carbon dioxide.

【0013】(3)上記(1)または(2)において、
上記充填材がガラス繊維である成形法。
(3) In the above (1) or (2),
A molding method wherein the filler is glass fiber.

【0014】本発明は前記従来の金型表面転写性を良く
する成形メカニズムとは全く異なるメカニズムによりそ
の目的を達成する方法であり、従来技術とは異なる新し
い考え方により著しい効果を得る方法を発見し、本発明
に至ったものである。
The present invention is a method for achieving the object by a mechanism completely different from the conventional molding mechanism for improving the mold surface transferability, and has found a method for obtaining a remarkable effect by a new idea different from the conventional art. This has led to the present invention.

【0015】本発明に若干関連する公知文献について次
に述べる。
The following is a description of known documents that are somewhat relevant to the present invention.

【0016】発泡剤や水分を含有する発泡性樹脂の射出
成形において、発泡ガスによる成形品表面のスワールマ
ーク等の表面不良をなくすために、樹脂充填に先立ち金
型キャビティに加圧ガス体を注入して加圧状態にして成
形する、いわゆるカウンタープレッシャー法がある。こ
の方法は金型キャビティを流動する溶融樹脂のフローフ
ロントで、発泡ガスあるいは気化した水分により生じた
気泡が破裂し、表面不良の原因となることを防ぐため
に、金型キャビティにあらかじめガス圧力をかける方法
であり、この場合のガス体は樹脂を酸化劣化させないも
のであれば良く、一般に空気が使用され、不活性なガス
体は全てこの成形法に使用できる。このカウンタープレ
ッシャー法は発泡剤含有樹脂や、乾燥が不十分な樹脂の
射出成形に使用される方法であり、一般の非発泡性樹脂
の成形にこの方法を使用すると、キャビティ内に存在す
るガス体が、溶融樹脂と金型の間に入り込み転写を阻害
したり、ガス体が空気の場合、キャビティ内で樹脂によ
り空気が圧縮される部分では、高温で高酸素濃度の状態
となり、樹脂の酸化劣化を引き起こしたりするなどの問
題が生じるだけであり、金型表面転写性を高める効果は
ないといえる。このため、金型表面状態を高度に成形品
に転写するには、樹脂充填時のみ金型をわずかに開きキ
ャビティ内の空気を逃がしたり、真空ポンプにより金型
内を減圧にするなどの方法も使用されている。
In injection molding of a foaming resin containing a foaming agent or water, a pressurized gas body is injected into a mold cavity prior to resin filling in order to eliminate surface defects such as swirl marks on the surface of the molded product due to foaming gas. And pressurizing and molding the so-called counter pressure method. In this method, gas pressure is applied to the mold cavity in advance to prevent bubbles generated by foaming gas or vaporized moisture from exploding at the flow front of the molten resin flowing through the mold cavity and causing surface defects. In this case, the gas may be any one that does not cause oxidative degradation of the resin. In general, air is used, and all inert gas can be used in this molding method. This counter pressure method is a method used for injection molding of a foaming agent-containing resin or a resin that is insufficiently dried. However, when the air enters the gap between the molten resin and the mold and hinders transfer, or when the gaseous body is air, the part where the air is compressed by the resin in the cavity becomes a state of high oxygen concentration at high temperature, resulting in oxidative deterioration of the resin. It can be said that only the problem of causing the mold transfer or the like occurs, and there is no effect of improving the mold surface transferability. For this reason, in order to transfer the mold surface state to the molded product to a high degree, there are also methods such as opening the mold slightly during resin filling to release air in the cavity, and reducing the pressure inside the mold by a vacuum pump. It is used.

【0017】特開昭62−231715号公報には、水
分含有ポリマーアロイの射出成形にカウンタープレッシ
ャー法を用いて成形する方法が示されており、金型キャ
ビティを予備加圧するガス体として空気、窒素、二酸化
炭素等の不活性ガス体があげられているが、本発明の考
え方を何ら示唆するものではない。
Japanese Unexamined Patent Publication (Kokai) No. 62-231715 discloses a method of molding a water-containing polymer alloy using a counter pressure method for injection molding. The gas body for pre-pressurizing the mold cavity is air or nitrogen. And inert gas bodies such as carbon dioxide, but do not suggest the concept of the present invention.

【0018】更に特開昭61−213111号公報に
は、二種のモノマーを混合し、射出する反応射出成形
(Reaction Injection Moldi
ng)について、金型キャビティを大気圧の二酸化炭素
で置換した後に成形することで、樹脂充填時に樹脂中に
エアが巻き込まれて発生するボイドを、減少させる方法
が示されている。しかし、二種以上のモノマーを混合し
た原料の温度よりも金型温度の方が高い反応射出成形
と、本発明の熱可塑性樹脂の射出成形とは分野が全く異
なり、樹脂充填工程中の樹脂の固化に起因した金型表面
転写性不良を改良する手法を開示するものではない。
Further, Japanese Unexamined Patent Publication (Kokai) No. 61-213111 discloses a reaction injection molding in which two kinds of monomers are mixed and injected (Reaction Injection Molding).
Regarding ng), a method is described in which the mold cavity is replaced with carbon dioxide at atmospheric pressure and then molded to reduce voids generated when air is entrapped in the resin during resin filling. However, the reaction injection molding in which the mold temperature is higher than the temperature of the raw material in which two or more types of monomers are mixed, and the injection molding of the thermoplastic resin of the present invention are completely different fields, and the resin molding during the resin filling step is different. It does not disclose a method for improving a mold surface transferability defect caused by solidification.

【0019】一方、J.Appl.Polym.Sc
i.,Vol.30,2633(1985)など、多く
の文献に示されるように、二酸化炭素を樹脂に吸収させ
ると、樹脂の可塑剤として働き、ガラス転移温度を低下
させることが知られているが、樹脂の成形加工に広く応
用されるに至ってはいない。わずかな応用事例として、
ドイツ国特許DE4314869号に、生体吸収性のポ
リエステルに高圧容器内で超臨界状態の二酸化炭素や炭
化水素などを溶解させてガラス転移温度を低下させ、5
0℃程度の低温で樹脂を成形する方法が開示されてい
る。しかし、この方法では樹脂全体のガラス転移温度が
低下するため、成形にはガラス転移温度の低下分だけ通
常よりも低い金型温度を使用する必要があり、樹脂充填
工程中の固化に基づく転写不良を防止する効果はない。
On the other hand, J.I. Appl. Polym. Sc
i. , Vol. 30, 2633 (1985), it is known that when carbon dioxide is absorbed by a resin, it acts as a plasticizer for the resin and lowers the glass transition temperature. It has not been widely applied to processing. As a few application examples,
German Patent DE 4314869 discloses that a glass transition temperature is lowered by dissolving supercritical carbon dioxide and hydrocarbons in a bioabsorbable polyester in a high-pressure vessel.
A method of molding a resin at a low temperature of about 0 ° C. is disclosed. However, this method lowers the glass transition temperature of the entire resin, so it is necessary to use a mold temperature lower than usual for the reduction of the glass transition temperature for molding, and improper transfer due to solidification during the resin filling step. There is no effect to prevent.

【0020】本発明は、従来、金型表面の転写を阻害す
ると考えられていた金型キャビティ内のガス体に着目し
たものであり、その効果が発現されるメカニズムは次の
ように考えられる。
The present invention focuses on the gas inside the mold cavity, which has been conventionally considered to inhibit the transfer of the mold surface. The mechanism by which the effect is exhibited is considered as follows.

【0021】射出成形では、樹脂は金型キャビティ内を
常に層流で流れ、冷却された金型壁面に接触するとその
界面に固化層が形成され、後から充填される樹脂はその
固化層の内側を流動して前進し、樹脂流動先端部(フロ
ーフロント)に達してから金型壁面に向かうファウンテ
ンフローと呼ばれる流動をする。金型キャビティを二酸
化炭素などの特定のガス体で、適度なガス圧力で満たし
てから樹脂を充填すると、ガス体は流動樹脂のフローフ
ロントで吸収されたり、金型と樹脂の界面に入り込み樹
脂表面層に溶解する。樹脂に溶解したガス体は可塑剤と
して作用し、樹脂表面だけ固化温度を選択的に低下させ
たり、樹脂の溶融粘度を下げる。薄い樹脂表面層だけ固
化温度が下がり、固化温度が金型表面温度以下となれ
ば、樹脂充填工程中の固化が起きず、成形品の金型表面
転写性を著しく改良することができることになる。樹脂
表面層に溶解したガス体は、時間とともに樹脂内部に拡
散し、樹脂表面層の固化温度が上昇するため、通常の樹
脂冷却時間内で表面層は固化し、製品として取り出すこ
とができる。
In the injection molding, the resin always flows in a laminar flow in the mold cavity, and when it comes into contact with the cooled mold wall, a solidified layer is formed at the interface, and the resin to be filled later is placed inside the solidified layer. And flows forward to reach a resin flow front end (flow front), and then flow toward a mold wall surface, called a fountain flow. If the mold cavity is filled with resin after filling the mold cavity with a specific gaseous substance such as carbon dioxide at an appropriate gas pressure, the gaseous body is absorbed at the flow front of the flowing resin or enters the interface between the mold and the resin and enters the resin surface. Dissolve in layer. The gas dissolved in the resin acts as a plasticizer and selectively lowers the solidification temperature only on the resin surface or lowers the melt viscosity of the resin. If the solidification temperature is lowered only for the thin resin surface layer and the solidification temperature is equal to or lower than the mold surface temperature, no solidification occurs during the resin filling step, and the mold surface transferability of the molded product can be significantly improved. The gas dissolved in the resin surface layer diffuses into the resin with time, and the solidification temperature of the resin surface layer rises. Therefore, the surface layer solidifies within the usual resin cooling time and can be taken out as a product.

【0022】この結果、樹脂充填工程中に金型に接する
樹脂表面の固化温度を低下させつつ成形することが可能
となり、本発明に至った。
As a result, it becomes possible to perform molding while lowering the solidification temperature of the resin surface in contact with the mold during the resin filling step, and the present invention has been achieved.

【0023】[0023]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0024】本発明で使用される樹脂は、一般の射出成
形等に使用できる熱可塑性樹脂である。良好に使用でき
るのは非結晶性熱可塑性樹脂、非結晶性樹脂が主成分の
熱可塑性ポリマーアロイ、あるいは結晶化度が低い一部
の結晶性熱可塑性樹脂である。ポリスチレン、スチレン
−アクリロニトリル共重合体、ゴム強化ポリスチレン、
スチレン−メチルメタクリレート共重合体、ABS樹
脂、スチレン−メチルメタクリレート−ブタジエン共重
合体等のスチレン系樹脂、ポリメチルメタクリレート、
メチルメタクリレート−スチレン共重合体等のメタクリ
ル樹脂、ポリビニルアセテート、ポリカーボネート、ポ
リフェニレンエーテルあるいはポリスチレン等を配合し
た変成ポリフェニレンエーテル、ポリスルホン、ポリエ
ーテルスルホン、ポリエーテルイミド、ポリアリレー
ト、ポリアミドイミド、ポリ塩化ビニル、塩化ビニル−
エチレン共重合体、塩化ビニル−酢酸ビニル共重合体等
の塩化ビニル系樹脂等は特に良好に使用できる。更にこ
れらの樹脂のブレンド、これらの非結晶性樹脂に一部の
結晶性樹脂を配合した樹脂、無機物や有機物の各種充填
材が配合された樹脂である。
The resin used in the present invention is a thermoplastic resin that can be used for general injection molding and the like. An amorphous thermoplastic resin, a thermoplastic polymer alloy containing an amorphous resin as a main component, or a part of the crystalline thermoplastic resin having a low crystallinity can be preferably used. Polystyrene, styrene-acrylonitrile copolymer, rubber-reinforced polystyrene,
Styrene-methyl methacrylate copolymer, ABS resin, styrene-based resin such as styrene-methyl methacrylate-butadiene copolymer, polymethyl methacrylate,
Modified polyphenylene ether blended with methacrylic resin such as methyl methacrylate-styrene copolymer, polyvinyl acetate, polycarbonate, polyphenylene ether or polystyrene, polysulfone, polyether sulfone, polyetherimide, polyarylate, polyamideimide, polyvinyl chloride, chloride Vinyl-
Vinyl chloride resins such as an ethylene copolymer and a vinyl chloride-vinyl acetate copolymer can be used particularly favorably. Further, there are blends of these resins, resins in which some crystalline resins are blended with these amorphous resins, and resins in which various fillers such as inorganic and organic substances are blended.

【0025】本発明では、使用するガス体が樹脂に良く
溶解する組み合わせが好ましい。ガス体として二酸化炭
素を使用する場合、二酸化炭素との親和性が高く、二酸
化炭素の溶解度が高い樹脂の方が大きな効果が得られ
る。更に本発明では、各種難加工性樹脂で、成形品外観
が悪くなる樹脂も効果が大きく現れる。
In the present invention, a combination in which the gas used is well dissolved in the resin is preferable. When carbon dioxide is used as the gas, a resin having a higher affinity for carbon dioxide and a higher solubility of carbon dioxide has a greater effect. Further, in the present invention, a resin having a poor appearance of a molded product among various difficult-to-process resins has a large effect.

【0026】本発明に述べる樹脂の固化温度は、溶融し
た熱可塑性樹脂が金型内で固化する温度であり、非結晶
性樹脂ではガラス転移温度、結晶性樹脂では結晶化開始
温度である。非相溶系ポリマーアロイにおいては、海島
構造の海を構成する樹脂の、ガラス転移温度または結晶
化開始温度である。ここで、結晶性樹脂の結晶化開始温
度は、示差熱量計を用いて樹脂を成形時の温度まで加熱
し溶融させた後、20℃/分の速度で冷却し、樹脂の結
晶化による発熱が最初に認められる温度とする。
The solidification temperature of the resin described in the present invention is a temperature at which a molten thermoplastic resin solidifies in a mold, a glass transition temperature for an amorphous resin, and a crystallization start temperature for a crystalline resin. In the case of the incompatible polymer alloy, it is the glass transition temperature or the crystallization start temperature of the resin constituting the sea having the sea-island structure. Here, the crystallization start temperature of the crystalline resin is determined by heating the resin to a molding temperature using a differential calorimeter, melting the resin, and cooling the resin at a rate of 20 ° C./min. The temperature allowed first.

【0027】また、本発明において金型キャビティに充
填するガス体とは、熱可塑性樹脂への溶解度が大きく、
該樹脂の固化温度において空気及び/又は窒素の2倍以
上の溶解度を有し、樹脂の可塑化効果を有するガス体で
ある。すなわち、ガス体は金型キャビティに存在し、樹
脂充填工程中に樹脂表面に吸収されて、金型に接する樹
脂表面の固化温度を低下させるガス体である。樹脂への
溶解度が空気や、窒素程度のガス体では、従来から知ら
れるように、キャビティ中で金型表面の転写を阻害する
だけであり、従って少なくともこれらの2倍以上の樹脂
への溶解度が必要である。また、樹脂を劣化させないこ
と、金型や成形する環境に対し危険性がないこと、安価
であることなどの制約から選定される。ガス体は溶解度
が大きいものであれば2種以上の混合物であっても使用
できる。
In the present invention, the gas filling the mold cavity has a high solubility in a thermoplastic resin,
A gas having a solubility of at least twice that of air and / or nitrogen at the solidification temperature of the resin and having a plasticizing effect on the resin. That is, the gas body is a gas body that exists in the mold cavity, is absorbed by the resin surface during the resin filling step, and lowers the solidification temperature of the resin surface in contact with the mold. In the case of air or a gaseous substance having a solubility of about nitrogen in a resin, the transfer of the mold surface is only inhibited in the cavity, as is conventionally known. is necessary. In addition, it is selected from restrictions such as not deteriorating the resin, no danger to the mold and molding environment, and being inexpensive. As long as the gas has high solubility, a mixture of two or more gases can be used.

【0028】具体的には二酸化炭素、メタン、エタン、
プロパンなどの炭化水素、およびその一部水素をフッ素
などで置換したフロンなどであり、使用する熱可塑性樹
脂により最適な物が選択される。この中で二酸化炭素は
安全性、価格、取り扱いやすさ等の点で最も良好に使用
できるだけでなく、樹脂に良く溶解して可塑剤となり、
樹脂の固化温度を低下させる効果も大きい。
Specifically, carbon dioxide, methane, ethane,
Hydrocarbons such as propane, and fluorocarbons in which hydrogen has been partially substituted with fluorine or the like, and the most suitable one is selected depending on the thermoplastic resin used. Among them, carbon dioxide can be used best not only in terms of safety, price, ease of handling, etc., but also dissolves well in resin and becomes a plasticizer,
The effect of lowering the solidification temperature of the resin is also great.

【0029】次に本発明に最も良好に使用されるガス体
である二酸化炭素の各樹脂への溶解量、二酸化炭素溶解
による樹脂のガラス転移温度(以後Tgと略称する)の
低下等について図面を用いて説明する。
Next, the drawings showing the amount of dissolved carbon dioxide, which is the gaseous substance most preferably used in the present invention, in each resin, and the decrease in the glass transition temperature (hereinafter abbreviated as Tg) of the resin due to the dissolution of carbon dioxide, etc. It will be described using FIG.

【0030】図1〜図10は各種文献に記載の報告を示
したものである。すなわち、図1と図2は、成形加工’
96(JSPP’96 Tech.Papers),2
79(1996)より、図3〜図6と図9は、J.Ap
pl.Polym.Sci.,Vol.30,4019
(1985)より、図7と図10はJ.Appl.Po
lym.Sci.,Vol.30,2633(198
5)より、図8はJ.Membrane Sci.,V
ol.5,63(1979)からそれぞれ引用した図で
ある。
FIGS. 1 to 10 show reports described in various documents. That is, FIG. 1 and FIG.
96 (JSPP'96 Tech. Papers), 2
3 to FIG. 6 and FIG. Ap
pl. Polym. Sci. , Vol. 30,4019
(1985), FIG. 7 and FIG. Appl. Po
lym. Sci. , Vol. 30, 2633 (198
From FIG. 5), FIG. Membrane Sci. , V
ol. 5, 63 (1979).

【0031】図1と図2はポリスチレンへの二酸化炭素
と窒素の溶解量を示した図であり、二酸化炭素は窒素の
約10倍の溶解量がある。
FIGS. 1 and 2 show the amounts of carbon dioxide and nitrogen dissolved in polystyrene. Carbon dioxide has about 10 times the amount of nitrogen dissolved.

【0032】図3と図4は液状可塑剤を含むポリスチレ
ンへの二酸化炭素の溶解量を示し、図5は二酸化炭素溶
解によるTgの低下量を示す。ポリスチレンは二酸化炭
素を溶解させることにより、容易にTgを下げることが
できる。
FIGS. 3 and 4 show the amount of carbon dioxide dissolved in polystyrene containing a liquid plasticizer, and FIG. 5 shows the amount of reduction in Tg due to dissolution of carbon dioxide. Polystyrene can easily lower Tg by dissolving carbon dioxide.

【0033】図6と図7はポリメチルメタクリレートお
よびポリフッ化ビニリデンポリマーアロイへの二酸化炭
素の溶解量と、二酸化炭素溶解によるTgの低下量を示
した図であり、二酸化炭素溶解によりTgを下げること
ができる。
FIGS. 6 and 7 show the amount of carbon dioxide dissolved in polymethyl methacrylate and polyvinylidene fluoride polymer alloy, and the amount of decrease in Tg due to the dissolution of carbon dioxide. Can be.

【0034】図8と図9はポリカーボネートとポリスル
ホンへの二酸化炭素溶解量を示した図である。
FIGS. 8 and 9 show the amounts of carbon dioxide dissolved in polycarbonate and polysulfone.

【0035】図10は各樹脂の二酸化炭素溶解によるT
g低下量をまとめて示した図である。二酸化炭素溶解に
よるTgの低下量はポリカーボネートを除けばほぼ同一
である。ポリカーボネートは二酸化炭素溶解によるTg
の低下が特に大きい。
FIG. 10 is a graph showing T by dissolving each resin in carbon dioxide.
It is the figure which showed the g reduction amount collectively. The decrease in Tg due to dissolution of carbon dioxide is almost the same except for polycarbonate. Polycarbonate is Tg by dissolving carbon dioxide
Is particularly large.

【0036】金型キャビティに封入するガス圧力は、高
い圧力になるほど多量のガス体が樹脂に溶解するため、
より固化温度が低くなり、低い金型温度でも樹脂充填工
程中の固化を防止できることになる。実用的には、要求
する金型表面転写性の程度、樹脂やガス体の種類、金型
温度等から必要なガス圧力が決まり、高い溶解性を持つ
ガス体を使用し、金型温度を高く設定すれば低いガス圧
力で十分な転写性を得ることもできる。
As the gas pressure filled in the mold cavity becomes higher, a larger amount of gas is dissolved in the resin as the pressure becomes higher.
The solidification temperature is lower, and solidification during the resin filling step can be prevented even at a low mold temperature. In practice, the required gas pressure is determined by the required mold surface transferability, the type of resin and gas body, and the mold temperature.Use a gas body with high solubility and raise the mold temperature. If set, sufficient transferability can be obtained at a low gas pressure.

【0037】圧力の下限は、樹脂に溶解したガス体の可
塑剤効果から決まり、樹脂の固化温度において、平衡状
態で0.1重量%樹脂に溶解する圧力であり、好ましく
は0.5重量%溶解する圧力である。ここで用いるガス
体の樹脂への溶解度は、圧力降下法による測定値であ
る。これ未満の圧力や大気圧であっても、二酸化炭素な
どの溶解性の高いガス体を使用すれば、キャビティを真
空ポンプにより減圧にしたときと同等以上の転写性向上
効果を得ることができる。低い圧力で使用する場合は、
キャビティを可能な限り特定ガス体で置換することが好
ましい。
The lower limit of the pressure is determined by the plasticizer effect of the gas dissolved in the resin, and is the pressure at which the resin dissolves in the resin in an equilibrium state at a solidification temperature of 0.1% by weight, preferably 0.5% by weight. Dissolution pressure. The solubility of the gas used in the resin is a value measured by a pressure drop method. Even if the pressure or the atmospheric pressure is lower than this, when a highly soluble gas such as carbon dioxide is used, it is possible to obtain an effect of improving transferability equal to or higher than that when the cavity is depressurized by a vacuum pump. When using at low pressure,
It is preferable to replace the cavity with a specific gas as much as possible.

【0038】また、圧力の上限は、特に限定はないが、
あまりに高圧になると金型を開こうとする力が無視でき
なくなったり、金型のシールが難しくなるなどの問題が
生じやすいことから、15MPa以下が実用的であり、
好ましくは10MPa以下である。ガス圧力は1工程に
使用するガス体の量を最小限に押さえ、金型のシールや
ガス供給装置の構造を簡単にするために、要求する効果
が得られる範囲で低い方が好ましい。
The upper limit of the pressure is not particularly limited.
If the pressure is too high, the force to open the mold cannot be ignored, and problems such as difficulty in sealing the mold are likely to occur. Therefore, 15 MPa or less is practical.
Preferably it is 10 MPa or less. In order to minimize the amount of gas used in one process and to simplify the structure of the mold seal and the gas supply device, the gas pressure is preferably as low as possible within the range where the required effects can be obtained.

【0039】型閉時に型内に残る空気は、型締め中や型
締め完了後に使用するガス体で置換した方が好ましい
が、使用するガス圧力が1MPaを超えるような場合、
空気の影響はほとんど無視できる。
It is preferable that the air remaining in the mold when the mold is closed be replaced with a gas used during or after completion of the mold clamping. However, when the gas pressure used exceeds 1 MPa,
The effect of air is almost negligible.

【0040】樹脂充填後、キャビティ外に押し出された
ガス体を解放し、大気圧とする。ガス体の解放は、キャ
ビティ内を溶融樹脂で満たした後に行う。樹脂充填後は
金型表面状態を成形品に転写するため、成形品表面が固
化するまでキャビティ内の樹脂に十分な圧力を与えるこ
とが望ましい。特に、金型表面にある点状の凹み形状を
転写する場合には、凹み内部のガス圧力に対抗して樹脂
を金型に押しつける必要があり、このような場合には通
常の成形よりも高い樹脂圧力で成形することが望まし
い。
After filling the resin, the gas pushed out of the cavity is released to atmospheric pressure. The release of the gas is performed after the cavity is filled with the molten resin. After the resin is filled, it is desirable to apply a sufficient pressure to the resin in the cavity until the surface of the molded product is solidified in order to transfer the surface state of the mold to the molded product. In particular, when transferring a point-like dent shape on the mold surface, it is necessary to press the resin against the mold against the gas pressure inside the dent, in which case it is higher than normal molding It is desirable to mold with resin pressure.

【0041】樹脂中に溶解したガス体は、樹脂の成形後
に成形品を大気中に放置すれば徐々に大気中に放散す
る。放散により成形品に気泡を生じることはなく、放散
後の成形品の機械的性能は通常の成形法で作ったものと
変わらない。
The gas dissolved in the resin gradually diffuses into the air if the molded article is left in the air after the resin is molded. No bubbles are generated in the molded article due to the radiation, and the mechanical performance of the molded article after the radiation is the same as that produced by the ordinary molding method.

【0042】ガス体をキャビティに供給、排出する装
置、ガス配管および金型は、ガス体の液化を防ぐための
対策をとることが好ましい。これはガス体の液化が起き
るような温度では、高いガス圧力が得られないばかり
か、キャビティ内で液化ガスが樹脂に触れると多量のガ
スが樹脂中に溶け込み、ガス圧力解放後に成形品表面が
発泡し、外観不良を起こすためである。液化防止の対策
としては、ガス体を加温器により加熱し、ガス体の流路
や金型の温度もガス体の臨界温度以上に保つことや、樹
脂充填時にキャビティからガス体が押し出されことによ
る大幅な圧力上昇を防止するために、キャビティと配管
内のガス圧力を任意の範囲に保つことのできる圧力解放
弁や、キャビティからガス体が逆流可能なガス溜めを設
けることがあげられる。ただし、ガス体の液化を防止す
るために、ガス体の温度を過剰に高くすることは、ガス
体の膨張によりキャビティ内のガス量が減少するため好
ましくない。
It is preferable that a device for supplying and discharging a gas body to and from the cavity, a gas pipe and a mold take measures to prevent liquefaction of the gas body. This is because at a temperature at which liquefaction of the gas occurs, not only a high gas pressure cannot be obtained, but also when the liquefied gas comes into contact with the resin in the cavity, a large amount of gas dissolves into the resin, and after the gas pressure is released, the surface of the molded product is released. This is to cause foaming and cause poor appearance. As measures to prevent liquefaction, the gas body is heated by a heater to maintain the temperature of the gas body flow path and mold above the critical temperature of the gas body, and the gas body is pushed out of the cavity during resin filling. In order to prevent a large pressure increase due to the above, a pressure release valve capable of maintaining the gas pressure in the cavity and the pipe in an arbitrary range, and a gas reservoir in which a gas can flow backward from the cavity are provided. However, it is not preferable to increase the temperature of the gas body excessively in order to prevent liquefaction of the gas body, because the gas amount in the cavity decreases due to expansion of the gas body.

【0043】通常、カウンタープレッシャー法による成
形などで金型を気密構造にするには、パーティング面や
各プレート間をOリングでシールし、キャビティに連通
する突き出しピンなどの可動ピンもOリングでシールし
たり、突き出しピンが固定された突き出しプレート部分
全体を覆い気密とするなどの方法が採られている。突き
出しピンのシールにOリングを使用する場合、2枚のプ
レート間にOリングを入れた後に、突き出しピンを通す
ことが必要である。この時、突き出しピン先端のエッジ
でOリングを傷つけたり、ピン挿入抵抗が大きいとOリ
ングがねじれ確実なシール性が確保できないことが多
い。これに対し、半径方向の断面形状がU字形状のゴム
パッキン(以下、Uパッキン)でシールすると、突き出
しピン挿入時に挿入抵抗が少なく、ピン先端のエッジで
傷ついたり、ねじれたりすることなく容易に金型組立が
でき、高い信頼性のシール性を得ることができる。
Normally, in order to make the mold hermetically sealed by molding by a counter pressure method or the like, the parting surface and each plate are sealed with an O-ring, and movable pins such as protruding pins communicating with the cavity are also formed with an O-ring. A method of sealing or covering the entire protruding plate portion to which the protruding pin is fixed to be airtight is adopted. When an O-ring is used to seal the ejection pin, it is necessary to insert the O-ring between the two plates and then pass the ejection pin. At this time, if the O-ring is damaged by the edge of the tip of the protruding pin, or if the pin insertion resistance is large, the O-ring is twisted, and reliable sealing performance cannot often be secured. On the other hand, when sealing is performed with a rubber packing having a U-shaped cross section in the radial direction (hereinafter referred to as U packing), the insertion resistance at the time of inserting the protruding pin is small, and it is easily formed without being damaged or twisted at the edge of the pin tip. The mold can be assembled, and a highly reliable sealing property can be obtained.

【0044】また、可動ピンをパッキンでシールする場
合、キャビティとパッキン間でピンまわりの隙間に入っ
た加圧ガス体は、樹脂充填により隙間に閉じこめられ、
成形品表面が冷え金型表面から離れると、キャビティに
流れ出し、十分に固まっていない成形品表面を凹ませた
り、型開き時に成形品を膨らませ変形させることがあ
る。このような問題が生じる場合は、ピンまわりの隙間
に入った加圧ガス体を、キャビティ以外の経路から金型
外に排出できる溝や穴を金型に設け、樹脂充填後、キャ
ビティから押し出されたガス体の排出と同時に排気する
ことが望ましい。図12にキャビティ以外の経路から金
型外に加圧ガス体を排出できる金型の構造例を示す。
When the movable pin is sealed with packing, the pressurized gas body that has entered the gap around the pin between the cavity and the packing is confined in the gap by resin filling.
If the surface of the molded product is cooled and separates from the surface of the mold, the molded product may flow into the cavity, dent the surface of the molded product that is not sufficiently solidified, or expand and deform the molded product when the mold is opened. When such a problem occurs, the mold is provided with a groove or a hole capable of discharging the pressurized gas entering the gap around the pin from the path other than the cavity to the outside of the mold, and after being filled with the resin, is pushed out of the cavity. It is desirable to exhaust the gas at the same time as the exhausted gas. FIG. 12 shows an example of the structure of a mold capable of discharging a pressurized gas body out of the mold from a path other than the cavity.

【0045】キャビティへのガス体の注入は、一般にキ
ャビティのガス抜きに用いられる金型構造を用いれば可
能であり、キャビティ外周のパーティング面に設けたス
リット、金型入れ子や突き出しピンの隙間、ガス抜きピ
ン、多孔質焼結体でできた入れ子などが使用できる。キ
ャビティを大気圧付近のガス体で置換する場合、キャビ
ティの空気を、できるだけ短時間に、できるだけ少量の
ガス体で、できるだけ100%近く置換する、経済的な
方法が必要であり、金型スプルからガス体を吹き込む方
法が適している。キャビティへ樹脂を充填するに先立
ち、金型スプル付近よりガス体を注入して成形すること
により、ガス体が樹脂により押されて、ガス体によりキ
ャビティに残存する空気を金型外へ排出しつつ成形され
ることになる。すなわち、金型のスプル、ランナ、ゲー
ト付近を十分にガス体で置換すれば、樹脂に触れるガス
体は常に注入したガス体となる。
Injection of the gas into the cavity can be performed by using a mold structure generally used for venting the cavity. A slit provided on a parting surface on the outer periphery of the cavity, a gap between a mold insert and a protrusion pin, Degassing pins and nests made of porous sintered bodies can be used. When replacing the cavity with a gas body near the atmospheric pressure, an economical method is required that replaces the air in the cavity with as little gas as possible and as little as 100% as much as possible. A method of blowing a gas body is suitable. Prior to filling the cavity with the resin, the gas body is injected from the vicinity of the mold sprue and molded, so that the gas body is pushed by the resin and the gas body discharges the air remaining in the cavity to the outside of the mold. It will be molded. That is, if the vicinity of the sprue, runner, and gate of the mold is sufficiently replaced with a gas, the gas that comes into contact with the resin is always the injected gas.

【0046】図11はキャビティを加圧するガス体を金
型のスプル部分から注入するノズルを示す。図11にお
いて、射出シリンダ1に連結するノズル2にはノズル先
端3を開閉するニードル弁4がある。ノズル先端部にア
ウタノズル5があり、ノズル本体2とアウタノズル5で
形成される空間6は通路7を通してガス体源と連結して
いる。アウタノズル5が軽く金型に接触すると空間6は
キャビティに連結し、この状態でガス体を空間6から金
型へ圧入する。次いで射出シリンダ1が前進してアウタ
ノズル5が金型に強く押し付けられると、アウタノズル
5を金型に押しつけていたスプリングが圧縮され、ノズ
ル本体2が前進して、空間6と金型との連結は遮断され
る。この状態で射出シリンダ1より樹脂を金型に充填す
る。
FIG. 11 shows a nozzle for injecting a gas for pressurizing the cavity from the sprue portion of the mold. In FIG. 11, a nozzle 2 connected to an injection cylinder 1 has a needle valve 4 for opening and closing a nozzle tip 3. An outer nozzle 5 is provided at the nozzle tip, and a space 6 formed by the nozzle body 2 and the outer nozzle 5 is connected to a gas source through a passage 7. When the outer nozzle 5 contacts the mold lightly, the space 6 is connected to the cavity, and in this state, the gas is pressed into the mold from the space 6. Next, when the injection cylinder 1 moves forward and the outer nozzle 5 is strongly pressed against the mold, the spring pressing the outer nozzle 5 against the mold is compressed, the nozzle body 2 moves forward, and the connection between the space 6 and the mold is established. Will be shut off. In this state, the mold is filled with resin from the injection cylinder 1.

【0047】本発明には、ガス体を金型キャビティに大
気圧から1MPa程度の低い圧力で満たし、次いで溶融
樹脂の充填によりキャビティのガス体を圧縮し、ガス圧
力を増加させつつ成形する方法も含まれる。Oリング等
でキャビティのガス体をシールした構造の金型を用い、
キャビティをガス体で大気圧から1MPa程度の低い圧
力で満たし樹脂を充填すると、樹脂によりガス体は圧縮
され、樹脂充填が進む程ガス圧力は上昇する。ガス圧力
が上昇すると樹脂中に溶解するガス量が増大し、溶解し
たガス体により樹脂は可塑化され、流動性は良くなり、
高い金型表面転写性を得ることができる。一般の射出成
形品では、射出圧力伝達の悪い樹脂流動末端部の金型表
面転写性はゲート付近に比べ低いが、上記の方法では流
動末端部の金型表面転写性を改良することができる。
According to the present invention, there is also provided a method of filling a mold cavity with a mold cavity at a pressure as low as about 1 MPa from the atmospheric pressure, and then compressing the cavity with a molten resin and molding while increasing the gas pressure. included. Using a mold with a structure in which the gas body in the cavity is sealed with an O-ring or the like,
When the cavity is filled with a gas and filled with a resin at a pressure as low as about 1 MPa from the atmospheric pressure, the gas is compressed by the resin, and the gas pressure increases as the filling of the resin proceeds. When the gas pressure increases, the amount of gas dissolved in the resin increases, the resin is plasticized by the dissolved gas, and the fluidity improves,
High mold surface transferability can be obtained. In general injection-molded products, the mold surface transferability at the resin flow end where the injection pressure is poor is lower than that near the gate, but the above method can improve the mold surface transfer at the flow end.

【0048】同様な効果は、金型表面の微細な凹部の転
写に対しても有効である。一般に、微細な凹部では、樹
脂流動中の固化や凹形状内にトラップされた空気のため
に、十分奥まで樹脂が入り込めない場合が多いが、本発
明ではトラップされたガス体が樹脂に吸収されるため樹
脂充填の障害となることが少なく、吸収されたガス体の
可塑剤効果により樹脂の固化温度が下がり、流動性が増
すため、凹部の奥まで樹脂を充填することが可能とな
る。
The same effect is also effective for transferring a fine concave portion on the surface of a mold. In general, in a fine concave portion, the resin often cannot enter the interior sufficiently due to solidification during resin flow or air trapped in the concave shape, but in the present invention, the trapped gas is absorbed by the resin. Therefore, it hardly hinders the filling of the resin, the solidification temperature of the resin is reduced by the plasticizer effect of the absorbed gas, and the fluidity is increased, so that the resin can be filled all the way into the recess.

【0049】さらに本発明はキャビティのガス体圧力が
より低圧で型表面再現性効果をもたらす別の成形法も同
時に提供する。すなわち、樹脂に溶解し可塑剤となる液
体を、金型と溶融樹脂が接触する界面に存在させること
により、成形工程中に樹脂表面の固化温度を低下させつ
つ成形する成形法も含まれる。適度に可塑剤を選定し、
適度な厚みに型表面に被覆することにより、成形品の型
表面再現性が改良される。
Further, the present invention also provides another molding method which provides a mold surface reproducibility effect at a lower gas pressure in the cavity. That is, there is also included a molding method in which a liquid that becomes a plasticizer dissolved in a resin is present at an interface where a mold and a molten resin come into contact with each other, thereby lowering the solidification temperature of the resin surface during the molding process. Choose an appropriate plasticizer,
By coating the mold surface with an appropriate thickness, the mold surface reproducibility of the molded product is improved.

【0050】また、二酸化炭素等を溶解し易い液体の気
化物及び/又は霧状微粒子状分散体を含む二酸化炭素等
を、冷却した金型のキャビティへ圧入して成形する成形
法も本発明に含まれる。ここに述べる液体は二酸化炭素
の溶解量が大きく、沸点が金型温度以上で樹脂に良く溶
ける液体である。二酸化炭素の溶解量が大きな、樹脂の
良溶剤、可塑剤が良好に使用できる。一般には水、アセ
トン、メチルエチルケトン等のケトン類、エチルアルコ
ール等のアルコール類や種々の極性溶剤等が使用でき
る。
The present invention also includes a molding method in which carbon dioxide or the like containing a liquid vaporized substance and / or atomized fine particle dispersion in which carbon dioxide or the like is easily dissolved is pressed into a cavity of a cooled mold and molded. included. The liquid described here has a large amount of dissolved carbon dioxide, and is a liquid that is well soluble in resin when the boiling point is equal to or higher than the mold temperature. A good solvent and plasticizer for the resin, which has a large amount of dissolved carbon dioxide, can be used favorably. Generally, water, ketones such as acetone and methyl ethyl ketone, alcohols such as ethyl alcohol, and various polar solvents can be used.

【0051】二酸化炭素等を溶解し易い液体の気化物、
及び/又は霧状微粒子状に分散した該液体を含む二酸化
炭素を、冷却した金型のキャビティへ圧入すると、キャ
ビティ表面は、結露等により樹脂の可塑化効果を有し二
酸化炭素等を多量に含む液体の薄層で被覆され、該表面
に成形中の樹脂を押し付けて、樹脂表面層に多量の二酸
化炭素を含浸させて成形品の金型表面転写性を良くする
こともできる。すなわち型表面に多量の二酸化炭素を含
有する液体を存在させることにより、キャビティ中に低
圧力の二酸化炭素を供給するだけで、十分な量の二酸化
炭素を樹脂表面に供給する方法である。
Liquid vapor which easily dissolves carbon dioxide and the like;
When carbon dioxide containing the liquid dispersed in the form of atomized fine particles is injected into the cavity of the cooled mold, the cavity surface has a plasticizing effect of the resin due to dew condensation and contains a large amount of carbon dioxide and the like. It is also possible to improve the mold surface transferability of the molded product by coating the resin being molded with a thin layer of liquid and pressing the resin being molded onto the surface to impregnate the resin surface layer with a large amount of carbon dioxide. That is, a method in which a sufficient amount of carbon dioxide is supplied to the resin surface only by supplying low-pressure carbon dioxide into the cavity by allowing a liquid containing a large amount of carbon dioxide to exist on the mold surface.

【0052】金型表面の薄層液体の厚みは、樹脂充填時
の樹脂固化層が型表面をスリップしない範囲の厚みにす
る必要があり、一般には0.1μmから10μm程度の
範囲が好ましい。二酸化炭素中の液体の濃度はこの薄層
液体の厚みになる濃度にしてキャビティへ圧入すること
が好ましい。
The thickness of the thin liquid on the surface of the mold must be within a range that does not cause the resin solidified layer to slip on the surface of the mold when the resin is filled, and is generally preferably in the range of about 0.1 μm to 10 μm. It is preferable that the concentration of the liquid in the carbon dioxide be adjusted to a concentration that allows the thickness of the thin liquid to be injected into the cavity.

【0053】本発明では各種の射出成形法が良好に使用
できる。一般に、金型表面転写性に劣るとされる、ガス
アシスト射出成形、液体アシスト射出成形、射出圧縮成
形などの低圧射出成形法は良好に使用できる。さらに樹
脂のフローフロント流動速度が200mm/秒以下、特
に100mm/秒以下の低速充填を含む射出成形も良好
に使用できる。これには樹脂の流動速度が一時的に低速
になる場合、瞬間的に流動が止まる場合、全体的に低速
の場合等の各種が含まれる。本発明によれば、樹脂充填
時の樹脂の固化を防止できるため、ガスアシスト射出成
形にみられるヘジテーションマークと呼ばれる樹脂流動
速度の差に起因した、部分的な金型表面転写性の違いも
少なくなる。
In the present invention, various injection molding methods can be favorably used. In general, low-pressure injection molding methods such as gas-assisted injection molding, liquid-assisted injection molding, and injection compression molding, which are considered to be inferior in mold surface transferability, can be used favorably. Further, injection molding including low-speed filling with a flow front flow rate of the resin of 200 mm / sec or less, particularly 100 mm / sec or less, can also be favorably used. This includes various cases such as a case where the flow speed of the resin temporarily becomes low, a case where the flow stops momentarily, and a case where the flow is entirely low. According to the present invention, since the solidification of the resin at the time of filling the resin can be prevented, a difference in partial mold surface transferability due to a difference in resin flow speed called a hesitation mark found in gas assist injection molding is also small. Become.

【0054】また本発明では、前述した金型表面温度を
高める既存の金型表面転写性改良法と組み合わせて使用
することもできる。これらの成形法では、金型温度が高
いため、樹脂充填時に樹脂と金型が密着しやすく、キャ
ビティ内の空気が樹脂と金型の間にトラップされると、
樹脂表面に凹みとなることが多い。本発明と組み合わせ
ることにより樹脂表面の凹み不良が改善されるだけでな
く、より低い金型温度で高い金型表面転写性が得られ加
熱効率を高めることができる。
Further, in the present invention, it can be used in combination with the existing mold surface transferability improving method for increasing the mold surface temperature described above. In these molding methods, since the mold temperature is high, the resin and the mold are easily brought into close contact with each other at the time of filling the resin, and when air in the cavity is trapped between the resin and the mold,
Often a depression is formed on the resin surface. In combination with the present invention, not only the dent defect on the resin surface is improved, but also high mold surface transferability can be obtained at a lower mold temperature, and the heating efficiency can be increased.

【0055】さらに本発明は、樹脂充填工程中に樹脂に
振動を加える方法と組み合わせることで、高い金型表面
転写性と高い機械物性をあわせ持った成形品を得ること
もできる。樹脂に振動を加える方法としては、射出シリ
ンダ中の樹脂を加振する方法(Polym.Plas
t.Technol.Eng.,17(1),11(1
981)など)、金型を加振する方法(成形加工’97
(JSPP’97 Tech.Papers),18
5,(1997)など)、キャビティ内の加圧ガスを加
振する方法(Platstics World,Jul
y,8(1997)など)があげられる。特に、キャビ
ティ内の加圧ガスを加振する方法と本発明の併用では、
従来使用していた窒素ガスによる転写阻害が防止できる
ため高い併用効果が得られる。
Further, the present invention can provide a molded article having both high mold surface transferability and high mechanical properties by combining with a method of applying vibration to the resin during the resin filling step. As a method of applying vibration to the resin, a method of vibrating the resin in the injection cylinder (Polym. Plas.
t. Technol. Eng. , 17 (1), 11 (1
981)), a method of vibrating the mold (forming process '97
(JSPP '97 Tech. Papers), 18
5, (1997)), and a method of vibrating a pressurized gas in a cavity (Plattics World, Jul.
y, 8 (1997)). In particular, in the combination of the present invention with the method of exciting the pressurized gas in the cavity,
Since the transfer inhibition by the nitrogen gas used conventionally can be prevented, a high combined effect can be obtained.

【0056】[0056]

【実施例】以下に実施例、比較例を用いて本発明の効果
をさらに具体的に説明する。
EXAMPLES The effects of the present invention will be more specifically described below with reference to examples and comparative examples.

【0057】射出成形に使用した樹脂は、ゴム補強ポリ
スチレン(旭化成工業製,商品名:スタイロン40
0)、ガラス繊維20%充填ABS樹脂(旭化成工業
製,商品名:スタイラックABS R240A)、メタ
クリル樹脂(旭化成工業製,商品名:デルペット 80
NH)、ポリカーボネート(帝人化成製,商品名:パン
ライト L1225)である。
The resin used in the injection molding was rubber-reinforced polystyrene (manufactured by Asahi Kasei Corporation, trade name: Stylon 40).
0), 20% glass fiber-filled ABS resin (manufactured by Asahi Kasei Corp., trade name: Stylac ABS R240A), methacrylic resin (manufactured by Asahi Kasei Corp., trade name: Delpet 80)
NH) and polycarbonate (trade name: Panlite L1225, manufactured by Teijin Chemicals Ltd.).

【0058】ガス体としては純度99%以上の二酸化炭
素を使用した。
Carbon dioxide having a purity of 99% or more was used as the gas.

【0059】成形機は住友重機械工業製のSG50を使
用した。
As a molding machine, SG50 manufactured by Sumitomo Heavy Industries, Ltd. was used.

【0060】成形品は厚み2mmで縦横各100mmの
正方形平板である。金型の構造を図12に、ガス供給装
置の構造を図13に示す。尚、図12中(a)は金型全
体の断面図、(b)は金型の移動側断面図で(a)中の
A−A’断面図、(c)はキャビティ外周部の詳細断面
図、(d)は付き出しピンのシール部詳細断面図であ
る。
The molded product is a square flat plate having a thickness of 2 mm and a length and width of 100 mm. FIG. 12 shows the structure of the mold, and FIG. 13 shows the structure of the gas supply device. 12A is a cross-sectional view of the whole mold, FIG. 12B is a cross-sectional view of the mold on the moving side, and FIG. 12A is a cross-sectional view of AA ′ in FIG. 12A, and FIG. FIG. 3D is a detailed sectional view of the sealing portion of the extension pin.

【0061】金型表面は、移動側キャビティ表面の半分
を梨地処理し、他は鏡面とした。成形品中心に直径8m
mのダイレクトゲートを設け、スプルの長さは58m
m、ノズルタッチ部の直径を3.5mmとした。金型の
キャビティ外周にはガス供給と開放のための深さ0.0
5mmの隙間8とガス流路溝9、およびガス流路溝9か
ら金型外に通じる孔10を設けてガス供給装置と接続
し、ガス流路溝9の外周にガスシールのためにOリング
11を設け、キャビティを気密構造とした。また、突き
出しピン12はキャビティブロック13とバックアップ
プレート14間にUパッキン15を挿入してシールし
た。Uパッキンには日本バルカー工業製MPRシリーズ
を用いた。金型外に通じる孔10は、突き出しピン12
のまわり、およびキャビティブロック13とバックアッ
ププレート14間の隙間にも通じ、隙間のガス体を樹脂
充填完了と同時に解放できる構造とした。
On the surface of the mold, half of the surface of the cavity on the moving side was matte-treated, and the other surfaces were mirror-finished. 8m diameter at center of molded product
m direct gate, sprue length is 58m
m, the diameter of the nozzle touch portion was 3.5 mm. Depth of 0.0 for gas supply and release around the mold cavity
A gap 8 having a width of 5 mm, a gas passage groove 9, and a hole 10 communicating from the gas passage groove 9 to the outside of the mold are provided and connected to a gas supply device. 11 and the cavity was made airtight. The protrusion pins 12 were sealed by inserting a U packing 15 between the cavity block 13 and the backup plate 14. The MPR series manufactured by Nippon Valqua Industries was used for the U packing. The hole 10 communicating with the outside of the mold has a protruding pin 12
Around the space and between the cavity block 13 and the backup plate 14, so that the gas in the gap can be released simultaneously with the completion of the resin filling.

【0062】ガス供給装置は、液化炭酸ガスを充填した
ボンベ16を40℃で保温し約12MPaのガス体供給
源として用いた。ガス体はボンベ16より加温器17を
通り、減圧弁18にて所定圧力に調圧された後、約40
℃に保温された内容量100cm3のガス溜19に溜め
られる。金型キャビティへのガス体供給は、ガス溜19
の下流にある供給用電磁弁20を開け、同時に解放用電
磁弁21を閉じることで行われ、樹脂充填中はガス溜と
キャビティはつながっている。樹脂充填が終了すると同
時に、供給用電磁弁20を閉じ、解放用電磁弁21を開
けることでガス体を金型外に解放する。溶融樹脂の充填
によりキャビティ内のガス体を圧縮し圧力を増す場合に
は、ガス体供給後、樹脂充填開始とともに供給用電磁弁
20を閉じ、樹脂充填の終了時に、解放用電磁弁21を
開け、樹脂充填中の不要な圧力上昇は圧力解放弁22よ
りガスを解放することで防止する。
In the gas supply device, a cylinder 16 filled with liquefied carbon dioxide was kept at 40 ° C. and used as a gas supply source of about 12 MPa. The gas passes through a heater 17 from a cylinder 16 and is regulated to a predetermined pressure by a pressure reducing valve 18.
It is stored in a gas reservoir 19 having an internal volume of 100 cm 3 kept at a temperature of ° C. Gas supply to the mold cavity is performed by the gas reservoir 19.
The opening is performed by opening the supply solenoid valve 20 and simultaneously closing the release solenoid valve 21, so that the gas reservoir and the cavity are connected during resin filling. Simultaneously with the completion of the resin filling, the supply electromagnetic valve 20 is closed and the release electromagnetic valve 21 is opened to release the gas body from the mold. When compressing the gas in the cavity and increasing the pressure by filling the molten resin, after supplying the gas, the supply electromagnetic valve 20 is closed at the same time as the resin filling is started, and the release electromagnetic valve 21 is opened at the end of the resin filling. Unnecessary pressure rise during resin filling is prevented by releasing gas from the pressure release valve 22.

【0063】金型表面状態の転写性は、鏡面部分の表面
光沢測定、光学顕微鏡による観察、梨地部分の表面粗さ
測定で評価した。表面光沢の測定には、スガ試験機製の
変角光沢計,商品名:UGV−5K、表面粗さの測定に
は東京精密製,商品名:サーフコム575Aを用いた。
The transferability of the mold surface state was evaluated by measuring the surface gloss of the mirror surface portion, observing with an optical microscope, and measuring the surface roughness of the satin portion. The surface gloss was measured using a variable angle glossmeter manufactured by Suga Test Instruments, trade name: UGV-5K, and the surface roughness was measured using Tokyo Seimitsu, trade name: Surfcom 575A.

【0064】[実施例1]キャビティ表面温度70℃の
金型内に、二酸化炭素を5.0MPaの圧力で満たし、
樹脂温度220℃のゴム補強ポリスチレンを充填時間
0.6秒および2.4秒で充填し、シリンダ内樹脂圧力
35MPaで10秒間保圧し、20秒間冷却した後成形
品を取り出した。金型に満たした二酸化炭素は、樹脂充
填完了と同時に大気中に解放した。
Example 1 A mold having a cavity surface temperature of 70 ° C. was filled with carbon dioxide at a pressure of 5.0 MPa.
The rubber-reinforced polystyrene at a resin temperature of 220 ° C. was filled at filling times of 0.6 seconds and 2.4 seconds, the pressure in the cylinder was maintained at 35 MPa for 10 seconds, and after cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released to the atmosphere at the same time as the resin filling was completed.

【0065】得られた成形品の表面光沢を測定した結
果、充填時間によらず表面光沢に優れる(60度鏡面光
沢度=いずれも101)ことが確認された。
As a result of measuring the surface gloss of the obtained molded article, it was confirmed that the surface gloss was excellent regardless of the filling time (60 ° specular gloss = 101 for all).

【0066】[実施例2]金型に満たす二酸化炭素の圧
力を2.5MPaとし、それ以外は実施例1と同様にし
て成形品を得た。
Example 2 A molded product was obtained in the same manner as in Example 1 except that the pressure of carbon dioxide filling the mold was 2.5 MPa.

【0067】得られた成形品の表面光沢を測定した結
果、充填時間によらず表面光沢に優れる(60度鏡面光
沢度=いずれも88)ことが確認された。
As a result of measuring the surface gloss of the obtained molded article, it was confirmed that the surface gloss was excellent regardless of the filling time (60 ° specular gloss = 88 in all cases).

【0068】[実施例3]金型キャビティ表面温度を8
0℃とし、それ以外は実施例2と同様にして成形品を得
た。
Example 3 The mold cavity surface temperature was set to 8
A molded product was obtained in the same manner as in Example 2 except that the temperature was 0 ° C.

【0069】得られた成形品の表面光沢を測定した結
果、充填時間によらず表面光沢に優れる(60度鏡面光
沢度=いずれも108)ことが確認された。
As a result of measuring the surface gloss of the obtained molded article, it was confirmed that the surface gloss was excellent regardless of the filling time (60 ° mirror gloss = 108 for all).

【0070】[実施例4]ガラス繊維20%充填ABS
樹脂を用い、キャビティ表面温度88℃、樹脂温度24
0℃、保圧力70MPaとした以外は、実施例1と同様
にして成形品を得た。得られた成形品の表面光沢を測定
した結果、充填時間によらず表面光沢に優れる(60度
鏡面光沢度=99及び100)ことが確認された。
Example 4 ABS filled with 20% glass fiber
Using resin, cavity surface temperature 88 ° C, resin temperature 24
A molded product was obtained in the same manner as in Example 1, except that the temperature was set to 0 ° C. and the holding pressure was set to 70 MPa. As a result of measuring the surface gloss of the obtained molded article, it was confirmed that the surface gloss was excellent (60-degree specular gloss = 99 and 100) regardless of the filling time.

【0071】また、成形品の表面を顕微鏡で100倍の
倍率で観察したところ、表面にはガラス繊維がほとんど
露出しておらず平滑であった。
When the surface of the molded product was observed with a microscope at a magnification of 100 times, glass fiber was hardly exposed on the surface, and the surface was smooth.

【0072】[実施例5]キャビティ表面温度80℃の
金型内に、二酸化炭素を5.0MPaの圧力で満たし、
樹脂温度240℃のメタクリル樹脂を充填時間0.6秒
で充填し、シリンダ内樹脂圧力80MPaで10秒間保
圧し、20秒間冷却した後成形品を取り出した。金型に
満たした二酸化炭素は、樹脂充填完了と同時に大気中に
解放した。得られた成形品の梨地部分の表面粗さRmax
は12.0μmであった。
Example 5 A mold having a cavity surface temperature of 80 ° C. was filled with carbon dioxide at a pressure of 5.0 MPa.
A methacrylic resin having a resin temperature of 240 ° C. was charged for a charging time of 0.6 second, the pressure in the cylinder was maintained at 80 MPa for 10 seconds, and after cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released to the atmosphere at the same time as the resin filling was completed. Surface roughness R max of satin part of obtained molded product
Was 12.0 μm.

【0073】[実施例6]キャビティ表面温度120℃
の金型内に、二酸化炭素を5.0MPaの圧力に満た
し、樹脂温度300℃のポリカーボネートを充填時間
0.6秒で充填し、シリンダ内樹脂圧力120MPaで
10秒間保圧し、20秒間冷却した後成形品を取り出し
た。金型に満たした二酸化炭素は、樹脂充填完了と同時
に大気中に解放した。
Example 6 Cavity surface temperature 120 ° C.
After filling carbon dioxide to a pressure of 5.0 MPa and filling a polycarbonate at a resin temperature of 300 ° C. for a filling time of 0.6 seconds, holding the resin pressure in a cylinder at 120 MPa for 10 seconds, and cooling for 20 seconds, The molded article was taken out. The carbon dioxide filled in the mold was released to the atmosphere at the same time as the resin filling was completed.

【0074】得られた成形品の梨地部分の表面粗さR
maxは11.5μmであった。
The surface roughness R of the satin portion of the obtained molded article
max was 11.5 μm.

【0075】[比較例1]金型にガス供給装置を接続せ
ずに大気開放し、それ以外は実施例1と同様にして成形
品を得た。
Comparative Example 1 A molded product was obtained in the same manner as in Example 1 except that the mold was opened to the atmosphere without connecting a gas supply device.

【0076】得られた成形品の表面光沢を測定した結
果、充填時間0.6秒で60度鏡面光沢度=61、充填
時間2.4秒で60度鏡面光沢度=48と表面光沢は劣
り、充填時間に依存することが確認された。
As a result of measuring the surface gloss of the obtained molded product, the surface gloss was inferior at 60 ° specular gloss = 61 at a filling time of 0.6 seconds and at 60 ° specular gloss = 48 at a filling time of 2.4 seconds. , It was confirmed that it depends on the filling time.

【0077】[比較例2]金型に満たすガスに窒素を用
い、それ以外は実施例1と同様にして成形品を得た。
Comparative Example 2 A molded product was obtained in the same manner as in Example 1 except that nitrogen was used as a gas to fill a mold.

【0078】得られた成形品の表面光沢を測定した結
果、表面光沢は比較例1よりも劣る(充填時間0.6秒
で60度鏡面光沢度=46、充填時間2.4秒で60度
鏡面光沢度=40)ことが確認された。
As a result of measuring the surface gloss of the obtained molded article, the surface gloss was inferior to that of Comparative Example 1 (mirror gloss = 46 at a filling time of 0.6 seconds = 46, 60 degrees at a filling time of 2.4 seconds). Specular gloss = 40) was confirmed.

【0079】[比較例3]金型にガス供給装置を接続せ
ずに大気開放し、それ以外は実施例4と同様にして成形
品を得た。
Comparative Example 3 A molded product was obtained in the same manner as in Example 4, except that the mold was opened to the atmosphere without connecting a gas supply device.

【0080】得られた成形品の表面光沢を測定した結
果、充填時間0.6秒で60度鏡面光沢度=85、充填
時間2.4秒で60度鏡面光沢度=62と表面光沢は劣
り、充填時間に依存することが確認された。
As a result of measuring the surface gloss of the obtained molded article, the surface gloss was inferior: 60 ° specular gloss = 85 at a filling time of 0.6 seconds, and 60 ° specular gloss = 62 at a filling time of 2.4 seconds. , It was confirmed that it depends on the filling time.

【0081】また、成形品の表面を顕微鏡で観察したと
ころ、表面には多数のガラス繊維および凹凸がみられ
た。
When the surface of the molded product was observed with a microscope, a large number of glass fibers and irregularities were found on the surface.

【0082】[比較例4]金型にガス供給装置を接続せ
ずに大気開放し、それ以外は実施例5と同様にして成形
品を得た。
Comparative Example 4 A molded product was obtained in the same manner as in Example 5 except that the mold was opened to the atmosphere without connecting a gas supply device.

【0083】得られた成形品の梨地部分の表面粗さR
maxは8.2μmであった。
The surface roughness R of the matte portion of the obtained molded product
max was 8.2 μm.

【0084】[比較例5]金型にガス供給装置を接続せ
ずに大気開放し、それ以外は実施例6と同様にして成形
品を得た。
Comparative Example 5 A molded article was obtained in the same manner as in Example 6, except that the mold was opened to the atmosphere without connecting a gas supply device.

【0085】得られた成形品の梨地部分の表面粗さR
maxは7.4μmであった。
The surface roughness R of the satin portion of the obtained molded article
max was 7.4 μm.

【0086】実施例、比較例の結果をまとめて表1、表
2に示す。
Tables 1 and 2 summarize the results of the examples and comparative examples.

【0087】[0087]

【表1】 [Table 1]

【0088】[0088]

【表2】 [Table 2]

【0089】[0089]

【発明の効果】本発明によって、経済的に金型表面状態
を高度に成形品に転写することが可能となるため、従
来、成形品の外観が悪い場合にやむをえず施されていた
塗装などの後工程が不要になり、部品の大幅なコストダ
ウンができる。また、微細な金型表面状態を成形品に均
一に転写することができないために、射出成形に比べ生
産性の低いプレス成形で成形していた平面レンズなどの
生産性が著しく高められ、新たな射出成形の用途分野を
創造できるなどの効果が期待できる。
According to the present invention, it is possible to economically transfer the surface state of a mold to a molded product at a high level. No post-process is required, and the cost of parts can be greatly reduced. In addition, since it is not possible to uniformly transfer the fine mold surface state to the molded product, the productivity of flat lenses and the like that were molded by press molding, which has low productivity compared to injection molding, has been significantly increased, and a new It can be expected to have the effect of creating application fields for injection molding.

【0090】本発明の成形法で良好に成形される成形品
には、光学機器部品、弱電機器、電子機器、事務機器等
のハウジング、各種自動車部品、各種日用品、等の樹脂
射出成形品があげられる。多点ゲートで射出成形され、
その結果ウエルドラインが多数発生する電子機器、電気
機器、事務機器のハウジング等や、艶消し状成形品、パ
ターンしぼ成形品の外観向上に適する。また、透明な合
成樹脂を用いて成形したレンチキュラーレンズ、フレネ
ルレンズ等のレンズ、光ディスク等の記録用ディスク、
液晶表示部品である導光板、拡散板等の各種光学部品の
射出成形品にも好適である。本発明法で成形されるこれ
らの成形品は、型表面の再現性が良くなり、光沢度の向
上、ウエルドラインによる外観不良の減少、型表面のシ
ャープエッジの再現性向上、微細な型表面凹凸の再現性
向上などの効果があるだけでなく、樹脂充填工程時に発
生する成形品表面付近の内部ひずみが低減され、複屈折
の減少、耐薬品性の向上、配合したゴムの配向低減によ
るメッキ性能向上などの効果もある。そして、キャビテ
ィ内に高圧のガスを封入することで、樹脂充填工程時に
発生するメルトフロントからのガスの発生が抑制される
ため、金型汚れが減少したり、成形品の離型力が低減す
るなどの効果も期待される。
Examples of the molded article that can be favorably molded by the molding method of the present invention include resin injection molded articles such as optical equipment parts, housings for light electric equipment, electronic equipment, office equipment, various automobile parts, various daily necessities, and the like. Can be Injection molding with multi-point gate,
As a result, the present invention is suitable for improving the appearance of housings of electronic equipment, electric equipment, office equipment, etc., in which a large number of weld lines are generated, matte molded products, and patterned grain molded products. In addition, lenses such as lenticular lenses and Fresnel lenses molded using a transparent synthetic resin, recording disks such as optical disks,
It is also suitable for injection molded products of various optical components such as a light guide plate and a diffusion plate which are liquid crystal display components. These molded articles molded by the method of the present invention have improved mold surface reproducibility, improved gloss, reduced appearance defects due to weld lines, improved sharp edge reproducibility of the mold surface, and fine mold surface irregularities. Not only has the effect of improving the reproducibility of the resin, but also reduces the internal strain near the surface of the molded product that occurs during the resin filling process, reduces birefringence, improves chemical resistance, and reduces plating orientation by reducing the orientation of the compounded rubber. There are also effects such as improvement. By filling high-pressure gas in the cavity, generation of gas from the melt front generated during the resin filling step is suppressed, so that mold contamination is reduced and the mold release force of the molded product is reduced. Such effects are expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポリスチレンへの二酸化炭素の溶解量を示す図
である。
FIG. 1 is a diagram showing the amount of carbon dioxide dissolved in polystyrene.

【図2】ポリスチレンへの窒素ガスの溶解量を示す図で
ある。
FIG. 2 is a diagram showing the amount of nitrogen gas dissolved in polystyrene.

【図3】ポリスチレンへの二酸化炭素の溶解量を示す図
である。
FIG. 3 is a graph showing the amount of carbon dioxide dissolved in polystyrene.

【図4】ポリスチレンへの二酸化炭素の溶解量を示す図
である。
FIG. 4 is a diagram showing the amount of carbon dioxide dissolved in polystyrene.

【図5】ポリスチレンへの二酸化炭素溶解によるTgの
低下量を示す図である。
FIG. 5 is a graph showing the amount of decrease in Tg due to dissolution of carbon dioxide in polystyrene.

【図6】PMMA/PVF2系ポリマーアロイへの二酸
化炭素の溶解量を示す図である。
FIG. 6 is a graph showing the amount of carbon dioxide dissolved in a PMMA / PVF2-based polymer alloy.

【図7】PMMA/PVF2系ポリマーアロイへの二酸
化炭素溶解によるTgの低下量を示す図である。
FIG. 7 is a graph showing a decrease in Tg due to dissolution of carbon dioxide in a PMMA / PVF2-based polymer alloy.

【図8】ポリカーボネートへの二酸化炭素の溶解量を示
す図である。
FIG. 8 is a graph showing the amount of carbon dioxide dissolved in polycarbonate.

【図9】ポリスルホンへの二酸化炭素の溶解量を示す図
である。
FIG. 9 is a diagram showing the amount of carbon dioxide dissolved in polysulfone.

【図10】各合成樹脂の二酸化炭素溶解によるTgの低
下を示す図である。
FIG. 10 is a diagram showing a decrease in Tg due to dissolution of carbon dioxide in each synthetic resin.

【図11】本発明を実施する射出成形機ノズルの本発明
に直接係わる部分の断面を示す図である。
FIG. 11 is a view showing a cross section of a part directly related to the present invention of an injection molding machine nozzle embodying the present invention.

【図12】本発明を実施する金型の本発明に直接係わる
部分の断面を示す図である。
FIG. 12 is a view showing a cross section of a part directly related to the present invention of a mold for carrying out the present invention.

【図13】本発明を実施するガス供給装置の構造を示す
図である。
FIG. 13 is a diagram showing a structure of a gas supply device for implementing the present invention.

【符号の説明】[Explanation of symbols]

1 射出シリンダ 2 ノズル 3 ノズル先端 4 ニードル弁 5 アウタノズル 6 空間 7 通路 8 隙間 9 ガス流路溝 10 ガス流路溝から金型外に通じる孔 11 Oリング 12 突き出しピン 13 キャビティブロック 14 バックアッププレート 15 Uパッキン 16 ボンベ 17 加温器 18 減圧弁 19 ガス溜 20 供給用電磁弁 21 解放用電磁弁 22 圧力解放弁 DESCRIPTION OF SYMBOLS 1 Injection cylinder 2 Nozzle 3 Nozzle tip 4 Needle valve 5 Outer nozzle 6 Space 7 Passage 8 Gap 9 Gas passage groove 10 Hole leading out of mold from gas passage groove 11 O-ring 12 Protruding pin 13 Cavity block 14 Backup plate 15 U Packing 16 cylinder 17 heater 18 pressure reducing valve 19 gas reservoir 20 supply solenoid valve 21 release solenoid valve 22 pressure release valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 充填材が配合された溶融熱可塑性樹脂を
金型に充填して成形する成形法において、該樹脂の固化
温度における該樹脂への溶解度が空気及び/又は窒素の
2倍以上であるガス体を金型キャビティに充填し、次い
で上記樹脂を該金型キャビティに充填して、樹脂充填工
程中に、金型に接する該樹脂表面の固化温度を低下させ
つつ成形することを特徴とする熱可塑性樹脂の成形法。
1. A molding method in which a molten thermoplastic resin blended with a filler is filled in a mold and molded, wherein the resin has a solubility in the resin at a solidification temperature of at least twice that of air and / or nitrogen. A certain gas body is filled in a mold cavity, and then the resin is filled in the mold cavity.During the resin filling step, molding is performed while lowering the solidification temperature of the resin surface in contact with the mold. Molding method of thermoplastic resin.
【請求項2】 上記ガス体が二酸化炭素である請求項1
の熱可塑性樹脂の成形法。
2. The gas body according to claim 1, wherein said gas body is carbon dioxide.
Molding method of thermoplastic resin.
【請求項3】 上記充填材がガラス繊維である請求項1
あるいは2に記載の熱可塑性樹脂の成形法。
3. The method according to claim 1, wherein the filler is glass fiber.
Alternatively, the thermoplastic resin molding method according to 2.
JP2002100709A 1996-09-03 2002-04-03 Molding method of thermoplastic resin Expired - Fee Related JP3875586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100709A JP3875586B2 (en) 1996-09-03 2002-04-03 Molding method of thermoplastic resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-232818 1996-09-03
JP23281896 1996-09-03
JP2002100709A JP3875586B2 (en) 1996-09-03 2002-04-03 Molding method of thermoplastic resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23676397A Division JP3349070B2 (en) 1996-09-03 1997-09-02 Molding method of thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2002307471A true JP2002307471A (en) 2002-10-23
JP3875586B2 JP3875586B2 (en) 2007-01-31

Family

ID=26530678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100709A Expired - Fee Related JP3875586B2 (en) 1996-09-03 2002-04-03 Molding method of thermoplastic resin

Country Status (1)

Country Link
JP (1) JP3875586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152744A (en) * 2005-12-05 2007-06-21 Sumitomo Heavy Ind Ltd Injection-molding method, injection-molding machine, and medium-feeding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152744A (en) * 2005-12-05 2007-06-21 Sumitomo Heavy Ind Ltd Injection-molding method, injection-molding machine, and medium-feeding device

Also Published As

Publication number Publication date
JP3875586B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3349070B2 (en) Molding method of thermoplastic resin
US6146577A (en) Method for injection molding of thermoplastic resins
AU633093B2 (en) Controlled casting of shrinkable material
EP0826477B1 (en) Method for molding thermoplastic resin
US6322735B1 (en) Method for molding thermoplastic resin
KR101992701B1 (en) Mold device, injection molding system, and molding manufacturing method
JPWO2002094532A1 (en) Resin molding method
JP2002307476A (en) Gas assist injection molding method for thermoplastic resin
JP3096904B2 (en) Injection molding of amorphous thermoplastic resin
JP2002307471A (en) Method for molding thermoplastic resin
JPH11179750A (en) Injection molding method using gas together
JP2004167777A (en) Thermoplastic resin foam and method/device for manufacturing the foam
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP2001341152A (en) Injection molding machine
JP2007131725A (en) Method of surface modification for thermoplastic resin
JP5771058B2 (en) Molding method of resin
JP2003334846A (en) Method for manufacturing foamed thermoplastic resin
JPH11245252A (en) Method for injection-molding of amorphous resin
JP2002192549A (en) Expanded injection moldings
JP2001353742A (en) Method for injection-molding recycled resin
JPH11245254A (en) Method for counterpressure molding
JP2004223879A (en) Gas pressurizing injection molding method
JPH11245250A (en) Method for injection-molding of amorphous resin
JPH10286840A (en) New molding method of synthetic resin
JP2003266500A (en) Molding apparatus for optical disk and molding method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees