JP2002307208A - Cutting tool made of silicon nitride sintered body - Google Patents

Cutting tool made of silicon nitride sintered body

Info

Publication number
JP2002307208A
JP2002307208A JP2001109155A JP2001109155A JP2002307208A JP 2002307208 A JP2002307208 A JP 2002307208A JP 2001109155 A JP2001109155 A JP 2001109155A JP 2001109155 A JP2001109155 A JP 2001109155A JP 2002307208 A JP2002307208 A JP 2002307208A
Authority
JP
Japan
Prior art keywords
silicon nitride
cutting tool
sintered body
rake face
tool made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001109155A
Other languages
Japanese (ja)
Other versions
JP4763146B2 (en
Inventor
Yoshihito Igai
良仁 猪飼
Yutaka Sekiguchi
豊 関口
Yasuhiro Takagi
保宏 高木
Kazuhiro Urashima
和浩 浦島
Satoshi Iio
聡 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001109155A priority Critical patent/JP4763146B2/en
Publication of JP2002307208A publication Critical patent/JP2002307208A/en
Application granted granted Critical
Publication of JP4763146B2 publication Critical patent/JP4763146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool made of a silicon nitride sintered compact having excellent chipping resistance and wear resistance. SOLUTION: This cutting tool made of the silicon nitride sintered compact is formed of the silicon nitride sintered compact in which the orientation direction of crystal grain is controlled in a specific direction by the plastic flow of the crystal grain caused by compression-baking a premolding formed by compacting silicon nitride raw powder. The cutting tool made of the other silicon nitride sintered compact is formed of a silicon nitride sintered compact in which the major axis of crystal grain in the rake face of the cutting tool is controlled in a parallel direction to the rake face. In both cases, excellent chipping resistance is obtained by setting the X-ray intensity ratio of the rake face and at least one flank relief into a specific range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化珪素製切削工
具に関し、更に詳しくは、耐欠損性及び耐摩耗性に優れ
る窒化珪素製切削工具に関する。
The present invention relates to a cutting tool made of silicon nitride, and more particularly, to a cutting tool made of silicon nitride which is excellent in chipping resistance and wear resistance.

【0002】[0002]

【従来の技術】従来より、窒化珪素質焼結体は、高強
度、高靭性であり、耐摩耗性、耐熱衝撃性、耐欠損性に
優れることが知られている。また、窒化珪素の成形体を
焼結と同時に超塑性加工(以下、超塑性鍛造焼結ともい
う。)すると高強度、高靭性の窒化珪素焼結体が得られ
ることが知られている(例えば、第2923781号公
報、第2944953号、及び特開平5−221738
号公報等)。しかし、これらの焼結体は切削工具を目的
とするものではい。更に、この焼結体は、強度の弱い面
を有しており、どのように使用すれば切削工具材料とし
て有用であるかということは全く知られていなかった。
2. Description of the Related Art It has been known that a silicon nitride sintered body has high strength and high toughness, and is excellent in abrasion resistance, thermal shock resistance and fracture resistance. Further, it is known that a silicon nitride compact can be obtained with high strength and high toughness by superplastic working (hereinafter, also referred to as superplastic forging sintering) simultaneously with sintering of a molded body of silicon nitride (for example, No. 2,923,781; No. 2,944,953;
Publication). However, these sintered bodies are not intended for cutting tools. Furthermore, this sintered body has a surface with low strength, and it has not been known at all how the sintered body is useful as a cutting tool material.

【0003】また、焼成中に塑性流動させて粒子を配向
させるといった記載はないが、強度、靭性、耐チッピン
グ性の向上を目的とした切削工具として、特開平8−1
12705号公報等が挙げられる。この切削工具は、柱
状で粗大なβ窒化珪素粒子の軸を切削工具のすくい面に
対して平行方向に2次元配向させることで、上記の性能
を向上させている。しかし、粒子の配向方法が粗大な柱
状のβ窒化珪素粒子を添加して焼成前に配向させている
ため、残留ポア、残留応力の影響により強度が1100
MPa程度で停滞してしまい、切り込み量を増やした場
合、耐欠損性に劣ってしまう。このため、耐欠損性、耐
摩耗性等に優れ、より高寿命な切削工具が望まれてい
た。
[0003] Although there is no description that the particles are oriented by plastic flow during firing, Japanese Patent Application Laid-Open No. Hei 8-1 discloses a cutting tool for improving strength, toughness and chipping resistance.
No. 12705 and the like. This cutting tool improves the above performance by orienting the axis of the columnar and coarse β silicon nitride particles two-dimensionally in a direction parallel to the rake face of the cutting tool. However, since the particle orientation method is such that coarse columnar β silicon nitride particles are added and oriented before firing, the strength is 1100 due to the influence of residual pores and residual stress.
It stagnates at about MPa, and when the cut amount is increased, the fracture resistance is poor. Therefore, there has been a demand for a cutting tool which is excellent in chipping resistance, wear resistance and the like and has a longer life.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みてなされたものであり、耐欠損性及び耐摩耗性のい
ずれにも優れる窒化珪素質焼結体製切削工具を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a cutting tool made of a silicon nitride sintered body which is excellent in both fracture resistance and wear resistance. is there.

【0005】[0005]

【課題を解決するための手段】本発明者等は、耐欠損性
及び耐摩耗性のいずれにも優れる窒化珪素質焼結体製切
削工具について検討した結果、本発明を完成するに至っ
た。即ち、予備成形体を超塑性鍛造焼結により残留ポア
を除去すること、及び/又は切削工具のすくい面を特定
方向に設定すること、並びに結晶粒子の配向度を設定す
ることによって、特定方向の強度、靭性を向上させるこ
とができ、切削工具とした場合に優れた耐欠損性及び耐
摩耗性が得られることを見出したものである。
Means for Solving the Problems The present inventors have studied a cutting tool made of a silicon nitride sintered body which is excellent in both fracture resistance and wear resistance, and have completed the present invention. That is, by removing the residual pores of the preform by superplastic forging sintering, and / or by setting the rake face of the cutting tool in a specific direction, and by setting the degree of orientation of the crystal grains, It has been found that strength and toughness can be improved, and excellent fracture resistance and wear resistance can be obtained when a cutting tool is used.

【0006】本発明の窒化珪素質焼結体製切削工具は、
窒化珪素系原料粉末を圧粉成形して、予備成形体を作製
し、該予備成形体を焼成すると同時に圧縮により結晶粒
を塑性流動させ、結晶粒の配向方向を特定方向に制御し
て得られた窒化珪素系焼結体からなることを特徴とす
る。
[0006] The cutting tool made of a silicon nitride sintered body of the present invention comprises:
A silicon nitride-based raw material powder is compacted to produce a pre-formed body, and the pre-formed body is baked and, at the same time, is subjected to plastic flow of the crystal grains by compression, whereby the orientation direction of the crystal grains is controlled in a specific direction. And a silicon nitride-based sintered body.

【0007】上記「窒化珪素系原料粉末」は、特に限定
されるものではないが、焼結体の結晶粒が異方粒成長す
る必要があるという点から、焼成温度域で超塑性変形さ
せるために液相焼結するものが好ましい。通常、α窒化
珪素粉末、αサイアロン粉末、β窒化珪素粉末、及びβ
サイアロン粉末のうちの少なくとも1種と、焼結助剤粉
末とが用いられる。上記α窒化珪素粉末、αサイアロン
粉末、β窒化珪素粉末、及びβサイアロン粉末の平均粒
径は0.1〜2μmであることが好ましい。また、これ
らの粉末の比表面積は5〜15g/m2であることが好
ましい。
The above-mentioned “silicon nitride raw material powder” is not particularly limited. However, since it is necessary that the crystal grains of the sintered body grow anisotropically, they are superplastically deformed in the firing temperature range. It is preferable to perform liquid phase sintering. Usually, α silicon nitride powder, α sialon powder, β silicon nitride powder, and β silicon nitride powder
At least one of sialon powder and sintering aid powder are used. The average particle diameter of the α silicon nitride powder, α sialon powder, β silicon nitride powder, and β sialon powder is preferably 0.1 to 2 μm. The specific surface area of these powders is preferably 5 to 15 g / m 2 .

【0008】上記焼結助剤粉末は、特に限定されるもの
ではなく、焼結温度域で液相を形成する化合物であれば
よい。通常、金属元素を含む酸化物(例えば、酸化イッ
トリウム、酸化アルミニウム、酸化マグネシウム及び酸
化ジルコニウム等)、炭化物(例えば、炭化ジルコニウ
ム、炭化チタン及び炭化タングステン等)、及び窒化物
(例えば、窒化アルミニウム、窒化チタン及び窒化イッ
トリウム等)等の粉末が用いられる。これらの焼結助剤
粉末の比表面積は5〜35g/m2であることが好まし
い。これらの焼結助剤粉末は、単独で用いてもよいし、
2種以上を混合して用いてもよい。
The sintering aid powder is not particularly limited, and may be any compound that forms a liquid phase in the sintering temperature range. Usually, oxides containing metal elements (eg, yttrium oxide, aluminum oxide, magnesium oxide, zirconium oxide, etc.), carbides (eg, zirconium carbide, titanium carbide, tungsten carbide, etc.), and nitrides (eg, aluminum nitride, nitride, etc.) Powders such as titanium and yttrium nitride) are used. The specific surface area of these sintering aid powders is preferably 5 to 35 g / m 2 . These sintering aid powders may be used alone,
You may mix and use 2 or more types.

【0009】上記「予備成形体」は、所定の窒化珪素系
原料粉末を圧粉成形して得られる。上記圧粉成形は、原
料粉末を加圧すればよく、この加圧方法としては、例え
ば、CIP(冷間静水圧プレス)、金型プレス及びラバ
ープレス等が挙げられる。圧粉成形する際の温度、圧力
等の成形条件は原材料の種類、所望の形状等により適宜
調整される。更に、射出成形、鋳込み成形等、原料粉末
をそのまま成形できる方法であれば適宜調製される。
The "preformed body" is obtained by compacting a predetermined silicon nitride-based raw material powder. In the compacting, the raw material powder may be pressurized, and examples of the pressurizing method include a CIP (Cold Isostatic Press), a die press, and a rubber press. Molding conditions, such as temperature and pressure, at the time of compacting are appropriately adjusted depending on the type of raw material, desired shape, and the like. Furthermore, it is appropriately prepared as long as the raw material powder can be molded as it is, such as injection molding and casting molding.

【0010】上記「窒化珪素系焼結体」は、上記予備成
形体を焼結と同時に圧縮して塑性流動(超塑性鍛造焼
結)させて得られるものであり、結晶粒の配向方向が特
定方向に制御されたものである。このため、圧縮面に対
して針状又は柱状粒子の長軸が平行に配向され、長軸の
配向がランダムな組織の焼結体より圧縮面の強度、靭性
を飛躍的に向上させることができる。更に、粗大なβ窒
化珪素粒子を焼結前に添加して配向させて作製した焼結
体より粒径が小さく、且つ残留ポアが除去され、高強
度、高靭性のものが得られ、耐欠損性に優れる切削工具
とすることができる。
The "silicon nitride-based sintered body" is obtained by compressing the preformed body at the same time as sintering and performing plastic flow (superplastic forging sintering). The orientation direction of the crystal grains is specified. It is controlled in the direction. For this reason, the major axis of the needle-like or columnar particles is oriented parallel to the compression surface, and the orientation of the major axis can dramatically improve the strength and toughness of the compression surface compared to a sintered body having a random structure. . In addition, a sintered body produced by adding coarse β silicon nitride particles prior to sintering and orienting has a smaller particle size, removes residual pores, obtains a material having high strength and high toughness, A cutting tool with excellent properties can be obtained.

【0011】上記超塑性鍛造焼結する方法としては、熱
間圧縮加工、熱間圧延加工及び熱間押出し加工等が挙げ
られる。この際、上記予備成形体は、側面の拘束がない
状態、若しくは一組以上の側面の変形が拘束されるよう
に型に入れられる。また、超塑性鍛造焼結する際の温
度、圧力等の成型条件は予備成形体の形状、所望の形状
等により適宜調整される。例えば、熱間圧縮加工による
場合、焼結温度1500〜2000℃、成形圧力2〜1
00MPa、窒素気圧1〜10atmの条件で超塑性鍛
造焼結を行うことができるこの窒化珪素系焼結体の相対
密度は、通常、97〜100%(好ましくは98〜10
0%)である。
The superplastic forging and sintering methods include hot compression, hot rolling, and hot extrusion. At this time, the preform is placed in a mold in a state where there is no constraint on the side faces, or in such a manner that deformation of one or more side faces is restrained. Molding conditions such as temperature and pressure during superplastic forging and sintering are appropriately adjusted depending on the shape of the preformed body, a desired shape, and the like. For example, in the case of hot compression processing, a sintering temperature of 1500 to 2000 ° C. and a molding pressure of 2-1.
The relative density of this silicon nitride-based sintered body capable of performing superplastic forging sintering under the conditions of 00 MPa and a nitrogen pressure of 1 to 10 atm is usually 97 to 100% (preferably 98 to 10%).
0%).

【0012】本発明の切削工具は、窒化珪素質焼結体の
どの面をすくい面としてもよいが、塑性流動させる際の
圧縮軸方向に垂直となる面を、すくい面とすることが好
ましい。この場合、切削工具が欠損する際のクラック進
展方向と結晶粒の軸とが垂直になるため、耐欠損性を向
上させることができる。
In the cutting tool of the present invention, any surface of the silicon nitride sintered body may be used as the rake surface, but it is preferable that the surface perpendicular to the compression axis direction at the time of plastic flow be the rake surface. In this case, the crack propagation direction when the cutting tool breaks is perpendicular to the axis of the crystal grain, so that the fracture resistance can be improved.

【0013】他の本発明の窒化珪素質焼結体製切削工具
は、窒化珪素質焼結体からなる切削工具であって、該切
削工具のすくい面における結晶粒の長軸が、該すくい面
に対して平行方向に制御されていることを特徴とする。
Another cutting tool made of a silicon nitride based sintered body of the present invention is a cutting tool made of a silicon nitride based sintered body, wherein a major axis of crystal grains on a rake face of the cutting tool is the rake face. Is controlled in a direction parallel to

【0014】上記切削工具は、すくい面における結晶粒
の長軸が、このすくい面に対して平行方向に制御されて
いる。このため、切削工具が欠損する際のクラック進展
方向と結晶粒の長軸が垂直になり、耐欠損性が向上させ
ることができる。また、上記焼結体は、切削工具とした
場合に、すくい面における結晶粒の長軸が、このすくい
面に対して平行方向に制御されていればよく、特に限定
されるものではない。この焼結体は、前述の窒化珪素系
原料粉末等を用いることができ、例えば、前述の超塑性
鍛造焼結により作製することができる。
In the above cutting tool, the major axis of the crystal grains on the rake face is controlled in a direction parallel to the rake face. For this reason, the crack propagation direction when the cutting tool breaks is perpendicular to the major axis of the crystal grain, and the fracture resistance can be improved. In the case of a cutting tool, the sintered body is not particularly limited as long as the major axis of the crystal grain on the rake face is controlled in a direction parallel to the rake face. This sintered body can use the aforementioned silicon nitride-based raw material powder and the like, and can be produced, for example, by the aforementioned superplastic forging sintering.

【0015】上記本発明と、上記他の本発明の両発明に
おける、上記すくい面において、下記式(1)に示すX
線回折ピークの強度比Rが0.90〜1(より好ましく
は0.95〜1)であり、且つ少なくとも逃げ面の一方
において、強度比Rが0.10〜0.80(より好まし
くは0.15〜0.75)であることが好ましい。 R=I(200)/(I(200)+I(002)) (1) [但し、I(200)、I(002)は、それぞれβ窒化珪素及び
/又はβサイアロンの(200)面、(002)面の反
射強度を示す。]この強度比Rが1の場合はβ窒化珪素
及び/又はβサイアロン結晶の長軸(以下c軸ともい
う)が測定面に対して全ての粒子において平行であるこ
とを意味し、Rが0の場合は、β窒化珪素結晶のc軸が
測定面に対して全ての粒子において垂直であることを意
味している。
In the above-mentioned present invention and the above-mentioned other present invention, the above-mentioned rake face has an X shown in the following formula (1).
The intensity ratio R of the line diffraction peak is 0.90 to 1 (more preferably 0.95 to 1), and at least one of the flank surfaces has an intensity ratio R of 0.10 to 0.80 (more preferably 0 to 0). .15 to 0.75). R = I (200) / (I (200) + I (002) ) (1) [where I (200) and I (002) are the (200) plane of β silicon nitride and / or β sialon, respectively. 002) represents the reflection intensity of the surface. When the intensity ratio R is 1, it means that the major axis of the β silicon nitride and / or β sialon crystal (hereinafter also referred to as c-axis) is parallel to the measurement plane in all the particles, and R is 0 The case of means that the c-axis of the β silicon nitride crystal is perpendicular to the measurement plane in all the particles.

【0016】このすくい面の強度比Rが0.90未満で
あると、すくい面に対してc軸が垂直となるβ窒化珪素
及び/又はβサイアロンの粒子数が増加するため、すく
い面の強度が低下し、耐欠損性も低下する。また、少な
くとも一方の逃げ面の強度比Rが0.80より大きい
と、逃げ面とc軸が平行となるβ窒化珪素及び/又はβ
サイアロンの粒子数が増加し、その逃げ面と垂直方向の
すくい面強度が低下するため耐欠損性が低下することが
ある。また、一方の逃げ面の強度比Rが0.10未満で
あると、他方の逃げ面におけるc軸が平行となるβ窒化
珪素及び/又はβサイアロンの粒子数が増加し、その逃
げ面と平行方向のすくい面強度が低下し、耐欠損性が低
下することがある。
If the strength ratio R of the rake face is less than 0.90, the number of particles of β silicon nitride and / or β sialon whose c-axis is perpendicular to the rake face increases, so that the strength of the rake face increases. And fracture resistance also decreases. If the intensity ratio R of at least one flank is greater than 0.80, β silicon nitride and / or β
Since the number of sialon particles increases and the strength of the rake face in the direction perpendicular to the flank face decreases, fracture resistance may decrease. If the intensity ratio R of one flank is less than 0.10, the number of particles of β silicon nitride and / or β sialon whose c-axis is parallel on the other flank increases, and the flank is parallel to the flank. The strength of the rake face in the direction may decrease, and the fracture resistance may decrease.

【0017】また、両発明の切削工具は、断面が高さ3
mm、幅4mmの曲げ試験片を用いたスパン16mmの
3点曲げ強度試験法において、上記すくい面の強度が1
200MPa以上、(好ましくは1300MPa以上、
より好ましくは1400MPa以上)とすることができ
る。更には、試験片の形状、スパンの長さ等が異なる他
の3点曲げ或いは4点曲げ強度試験(例えば、JIS
R 1601の曲げ強度試験)においても、有効体積換
算に基づき、本強度試験法の強度と同等若しくはそれ以
上のものとすることができる。尚、有効体積は下記数式
(2)を用いて求めることができ、更に下記数式(3)
を用いることで、本発明における強度試験法による有効
体積(V1)及び強度(σ1)と、上記他の方法による有
効体積(V2)及び強度(σ2)との相関を求めることが
できる。
The cutting tool according to the invention has a cross section of height 3
In a three-point bending strength test method using a bending test piece having a width of 4 mm and a width of 4 mm, the strength of the rake face is 1
200 MPa or more (preferably 1300 MPa or more,
More preferably, it can be set to 1400 MPa or more. Furthermore, other three-point bending or four-point bending strength tests (for example, JIS
R 1601 bending strength test), the strength can be equal to or higher than the strength of the present strength test method based on the effective volume conversion. The effective volume can be obtained by using the following equation (2), and further, the following equation (3)
Is used to determine the correlation between the effective volume (V 1 ) and strength (σ 1 ) according to the strength test method of the present invention and the effective volume (V 2 ) and strength (σ 2 ) according to the other methods described above. it can.

【0018】[0018]

【数1】 (Equation 1)

【0019】[但し、VE:有効体積、b:試験片の
幅、h:(試験片の高さ)/2、L1:(外スパン−内
スパン)/2、L2:内スパン、m:ワイブル係数を示
す。]
[However, V E : effective volume, b: width of test piece, h: (height of test piece) / 2, L 1 : (outer span−inner span) / 2, L 2 : inner span, m: Weibull coefficient. ]

【0020】[0020]

【数2】 (Equation 2)

【0021】[但し、σ1,σ2:平均強度、V1,V2
有効体積、m:ワイブル係数を示す。]
[However, σ 1 , σ 2 : average intensity, V 1 , V 2 :
Effective volume, m: Weibull coefficient. ]

【0022】更に、両発明の切削工具は、下記実施例の
耐欠損性を評価する切削試験において、加工山数が10
個以上(好ましくは14個以上)であるものとすること
ができる。
Further, the cutting tools of both inventions have a number of processing peaks of 10 in a cutting test for evaluating fracture resistance in the following examples.
Or more (preferably 14 or more).

【0023】また、両発明の切削工具は、常圧焼結及び
ガス圧焼結により作製される同一組成の切削工具の耐摩
耗量を1とした場合に、この耐摩耗量が0.95以下
(好ましくは0.90以下、より好ましくは0.70以
下)であるものとすることができる。但し、耐摩耗量は
下記実施例の評価方法によるものとする。
In addition, the cutting tools of the present invention have a wear resistance of 0.95 or less, provided that the wear resistance of a cutting tool of the same composition produced by normal pressure sintering and gas pressure sintering is 1. (Preferably 0.90 or less, more preferably 0.70 or less). However, the abrasion resistance is determined by the evaluation method in the following example.

【0024】[0024]

【発明の実施の形態】以下、実施例により、本発明を更
に詳しく説明する。 実施例1 (1)窒化珪素質焼結体製切削工具(実験例1、2、4
及び5) 原料粉末としてα窒化珪素粉末(宇部興産株式会社製、
「E−10」、比表面積;10m2/g、平均粒径;
0.5μm)と、焼結助剤成分粉末[酸化イットリウム
(比表面積;10m2/g)、酸化アルミニウム(比表
面積;13m2/g)、酸化マグネシウム(比表面積;
30m2/g)、酸化セリウム(比表面積;10m2
g)、酸化ジルコニウム(比表面積;10m2/g)]
とを、表1の所定の量比となるように配合し、エタノー
ル中でボールミルを用いて40時間湿式粉砕混合を行っ
た。得られたスラリーを500メッシュのふるいを通
し、溶媒を除去し粉末を回収した後、50メッシュのふ
るいを用い、造粒粉を得た。これを一軸加圧成形した
後、196MPaでCIP(冷間静水圧プレス)処理を
行い、40×20×30mmの予備成形体を得た。得ら
れた予備成形体を、一組の側面が変形を拘束するように
底面60×20mmのカーボンダイスに入れ、焼結と同
時に圧縮加工した。熱間圧縮加工は、1650〜175
0℃、窒素9atm下、圧縮荷重36kN(最終圧力3
0MPa)の条件で、3時間行った。得られた焼結体は
約60×20×10mmで、密度は理論密度比で95〜
99%程度であった。その後、焼結体から圧縮軸に垂直
な面(以下、N面という。)がすくい面、塑性流動した
方向に垂直な面(以下、E面という。)と変形を拘束し
た面(以下、T面という。)とが逃げ面になるように、
所定の工具形状(ISO SNGN432型、サイズ;
縦12.7mm、横12.7mm、高さ4.76mm)
に加工した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. Example 1 (1) Cutting tool made of silicon nitride sintered body (Experimental Examples 1, 2, and 4)
And 5) α silicon nitride powder (manufactured by Ube Industries, Ltd.,
“E-10”, specific surface area; 10 m 2 / g, average particle size;
0.5 μm) and a sintering aid component powder [yttrium oxide (specific surface area; 10 m 2 / g), aluminum oxide (specific surface area; 13 m 2 / g), magnesium oxide (specific surface area;
30m 2 / g), cerium oxide (specific surface area; 10 m 2 /
g), zirconium oxide (specific surface area; 10 m 2 / g)]
Were mixed so as to have a predetermined ratio as shown in Table 1, and wet-pulverized and mixed in ethanol using a ball mill for 40 hours. The obtained slurry was passed through a 500-mesh sieve to remove the solvent and collect the powder, and then a granulated powder was obtained using a 50-mesh sieve. This was uniaxially pressed and then subjected to a CIP (cold isostatic pressing) treatment at 196 MPa to obtain a preform of 40 × 20 × 30 mm. The obtained preform was placed in a carbon die having a bottom surface of 60 × 20 mm so that one set of side surfaces restrained deformation, and was subjected to compression processing simultaneously with sintering. Hot compression processing is 1650-175
0 ° C, 9atm of nitrogen, compressive load 36kN (final pressure 3
This was performed for 3 hours under the condition of 0 MPa). The obtained sintered body is about 60 × 20 × 10 mm, and the density is 95 to
It was about 99%. Thereafter, a surface perpendicular to the compression axis (hereinafter, referred to as N surface) is a rake surface, a surface perpendicular to the direction in which plastic flow has occurred (hereinafter, referred to as E surface), and a surface restraining deformation (hereinafter, referred to as T). Surface).
Predetermined tool shape (ISO SNGN432 type, size;
12.7mm in height, 12.7mm in width, 4.76mm in height)
Processed to.

【0025】(2)窒化珪素質焼結体製切削工具(実験
例3及び6) 上記(1)と同様の原料粉末を用いて、上記(1)と同
様に予備成形体を作製し、1650〜1700℃、窒素
ガス中で常圧焼結した後、更に1600℃〜1800
℃、窒素75atm下でガス圧焼結して得られた焼結体
を所定の工具形状(ISO SNGN432型)となる
ように加工した。
(2) Cutting tool made of silicon nitride sintered body (Experimental Examples 3 and 6) Using the same raw material powder as in (1) above, a preform was prepared in the same manner as in (1) above, and 1650 After sintering under normal pressure in nitrogen gas at 11700 ° C., further 1600 ° C. to 1800
A sintered body obtained by gas pressure sintering at 75 ° C. and 75 atm of nitrogen was processed into a predetermined tool shape (ISO SNGN432 type).

【0026】[0026]

【表1】 [Table 1]

【0027】(3)切削工具の評価(実験例1〜6) 上記(1)及び(2)で得られた各々の切削工具の耐欠
損性及び耐摩耗性を以下の条件による切削試験により評
価した。これらの結果をそれぞれ表1に併記した。 (耐欠損性の評価方法)各々の切削工具の逃げ面にチャ
ンファー0.07mmの面取り加工を施し、両端面に鋳
砂の残った「FC200」を被削材として、乾式下、切
削速度;150mm/min、切り込み;2.0mm、
送り速度;1.3mm/revの条件にて切削を同様の
条件で3回行った。加工山数は最大15とした。欠損が
生じるまでの加工山数が、10個以下を「×」、11〜
14個を「○」、15個(欠損が生じず)を「◎」とし
た。 (耐摩耗性の評価方法)各々の切削工具の逃げ面にチャ
ンファー0.2mmの面取り加工を施し、両端面に鋳砂
の残った「FC200」を被削材として、乾式下、切削
速度;300mm/min、切り込み;1.5mm、送
り速度;0.34mm/minの条件にて切削を行い、
フランク最大摩耗量を測定し、これを逃げ面摩耗量(m
m)とした。
(3) Evaluation of Cutting Tools (Experimental Examples 1 to 6) The chipping resistance and wear resistance of each of the cutting tools obtained in (1) and (2) above were evaluated by cutting tests under the following conditions. did. These results are also shown in Table 1. (Evaluation method of fracture resistance) The flank of each cutting tool is chamfered with a chamfer of 0.07 mm, and "FC200" with cast sand remaining on both end surfaces is used as a work material, under a dry method, at a cutting speed; 150 mm / min, depth of cut; 2.0 mm,
Cutting was performed three times under the same conditions at a feed speed of 1.3 mm / rev. The number of processing peaks was set to a maximum of 15. If the number of processing peaks before the occurrence of chipping is 10 or less,
Fourteen were evaluated as “○”, and fifteen (no defects occurred) as “◎”. (Evaluation method of wear resistance) The flank of each cutting tool is chamfered with a chamfer of 0.2 mm, and "FC200" having cast sand remaining on both end surfaces is used as a work material, under a dry method, at a cutting speed; Cut under the conditions of 300 mm / min, depth of cut; 1.5 mm, feed rate; 0.34 mm / min,
The maximum amount of flank wear was measured, and the flank wear (m
m).

【0028】(4)評価結果(実験例1〜6) 表1によれば、常圧焼結及びガス圧焼結により作製した
窒化珪素質焼結体を用いた、実験例3及び実験例6で
は、それぞれ加工山数が3回とも3個及び2個以下で、
耐欠損性が「×」であった。これに対して、超塑性鍛造
焼結により作製した焼結体を用い、前逃げ面となる面を
E面とした実験例1及び実験例4、及び前逃げ面となる
面をT面とした実験例2及び実験例5では、すべてにお
いて加工山数が3回とも15個で欠損せず、耐欠損性が
「◎」と優れていた。また、同一組成である実験例1〜
3のフランク摩耗量を比較してみると、本発明の範囲外
の実験例3では2.32mmであるのに対して、本発明
の範囲内の実験例1、2では、それぞれ1.46mm
(実験例3の耐摩耗量:実験例1の耐摩耗量=1:0.
63)、2.18mm(実験例3の耐摩耗量:実験例2
の耐摩耗量=1:0.94)と耐摩耗性に優れていた。
更に、同一組成である実験例4〜6のフランク摩耗量を
比較してみても、と、本発明の範囲外の実験例6では、
1.03mmであるのに対して、本発明の範囲内の実験
例4、5では、それぞれ0.41mm(実験例6の耐摩
耗量:実験例4の耐摩耗量=1:0.40)、0.9m
m(実験例6の耐摩耗量:実験例5の耐摩耗量=1:
0.88)と耐摩耗性に優れていた。上記のことから、
実験例1、2、4及び5は、耐欠損性及び耐摩耗性の両
方の性能において優れていることが分かった。
(4) Evaluation Results (Experimental Examples 1 to 6) According to Table 1, Experimental Examples 3 and 6 using silicon nitride sintered bodies produced by normal pressure sintering and gas pressure sintering. Then, the number of processing peaks is 3 and 2 or less for 3 times, respectively.
The fracture resistance was "x". On the other hand, using the sintered body produced by superplastic forging sintering, the experimental example 1 and the experimental example 4 in which the front flank surface was the E surface, and the front flank surface was the T surface. In all of Experimental Examples 2 and 5, the number of processing hills was 15 at all three times, and there was no fracture, and the fracture resistance was excellent as “◎”. Further, Experimental Examples 1 to 1 having the same composition
Comparing the flank wear amounts of Example 3 and Example 2, which are 2.32 mm in Experimental Example 3 outside the range of the present invention, 1.46 mm respectively in Experimental Examples 1 and 2 within the range of the present invention.
(Abrasion resistance of Experimental example 3: Abrasion resistance of Experimental example 1 = 1: 0.
63), 2.18 mm (abrasion resistance of Experimental Example 3: Experimental Example 2)
The amount of abrasion was 1: 0.94), and the abrasion resistance was excellent.
Further, when the flank wear amounts of Experimental Examples 4 to 6 having the same composition were compared, it was found that Experimental Example 6 outside the scope of the present invention showed that
While it is 1.03 mm, in Experimental Examples 4 and 5 within the scope of the present invention, each is 0.41 mm (abrasion resistance of Experimental Example 6: Abrasion resistance of Experimental Example 4 = 1: 0.40). , 0.9m
m (abrasion resistance of Experimental Example 6: abrasion resistance of Experimental Example 5 = 1: 1)
0.88), which is excellent in abrasion resistance. From the above,
Experimental Examples 1, 2, 4, and 5 were found to be excellent in both the fracture resistance and the wear resistance.

【0029】実施例2 (1)窒化珪素質焼結体製切削工具の作製(実験例7〜
11) β窒化珪素の配向による影響を確認するため、実施例1
の実験例4と同一組成、同一方法で調製した粉末を用い
て、表2に示す形状の予備成形体を作製し、熱間圧縮加
工してβ窒化珪素及び/又はβサイアロンの配向度の異
なる焼結体(形状;N方向60mm、T方向20mm、
E方向6.5〜15mm)を得た。得られた焼結体を所
定の工具形状(ISO SNGN432型)となるよう
に加工した。
Example 2 (1) Production of cutting tool made of silicon nitride sintered body (Experimental Examples 7 to
11) To confirm the effect of β silicon nitride orientation,
Using powders having the same composition and the same method as in Experimental Example 4, a preform having the shape shown in Table 2 was prepared, and subjected to hot pressing to differ in the degree of orientation of β silicon nitride and / or β sialon. Sintered body (shape; N direction 60 mm, T direction 20 mm,
E direction 6.5 to 15 mm). The obtained sintered body was processed so as to have a predetermined tool shape (ISO SNGN432 type).

【0030】(2)窒化珪素質焼結体製切削工具の作製
(実験例12及び13) 上記(1)と同一組成の造粒子を用いて、表2に示す形
状の予備成形体を作製し、1600〜1700℃、窒素
ガス中で常圧焼結した後、更に1600℃〜1800
℃、窒素75atm下でガス圧焼結した焼結体(形状;
N方向32mm、T方向16mm、E方向24mm)
と、粉末から1700℃でホットプレス焼結した焼結体
(形状;N方向60mm、T方向20mm、E方向10
mm)を作製し、得られた焼結体を所定の工具形状(I
SO SNGN432型)となるように加工した。
(2) Preparation of Cutting Tool Made of Silicon Nitride Sintered Body (Experimental Examples 12 and 13) A preform having the shape shown in Table 2 was prepared by using granulated particles having the same composition as in the above (1). After sintering at 1600-1700 ° C. in nitrogen gas at normal pressure, the temperature is further increased from 1600 ° C. to 1800 ° C.
Sintered body (shape; gas-pressure sintered at 75 ° C and 75atm nitrogen)
(N direction 32mm, T direction 16mm, E direction 24mm)
And a sintered body obtained by hot press sintering the powder at 1700 ° C. (shape: N direction 60 mm, T direction 20 mm, E direction 10
mm), and the obtained sintered body is shaped into a predetermined tool shape (I
(SO SNGN432 type).

【0031】[0031]

【表2】 [Table 2]

【0032】(3)切削工具の評価(実験例7〜13) 上記(1)及び(2)で得られた各々の切削工具の耐欠
損性、3点曲げ強度、及びX線強度比を以下の条件によ
り測定し、評価した。これらの結果をそれぞれ表2に併
記した。更に、実験例9のX線強度比を示すX線チャー
トを図1に示した。 (耐欠損性の評価方法)上記実施例1の(3)と同様に
評価した。 (3点曲げ強度の評価方法)すくい面を引張面とし、前
逃げ面方向を引張軸とした3×4×20(mm)の試料
を切り出して作製し、断面が高さ3mm、幅4mm、ス
パン16mmの3点曲げ強度を評価した。
(3) Evaluation of Cutting Tools (Experimental Examples 7 to 13) The fracture resistance, three-point bending strength, and X-ray intensity ratio of each of the cutting tools obtained in the above (1) and (2) are as follows. Was measured and evaluated under the following conditions. These results are also shown in Table 2. Further, an X-ray chart showing the X-ray intensity ratio of Experimental Example 9 is shown in FIG. (Evaluation method for fracture resistance) Evaluation was performed in the same manner as (3) of Example 1 above. (Evaluation method of three-point bending strength) A sample of 3 × 4 × 20 (mm) was prepared by cutting a rake face as a tensile face and a front flank direction as a tensile axis, and the cross section was 3 mm in height, 4 mm in width, The three-point bending strength of a span of 16 mm was evaluated.

【0033】(X線強度比の測定方法)β窒化珪素及び
/又はβサイアロンの結晶粒の配向度は、以下の条件に
よるX線回折によって得られたβ窒化珪素及び/又はβ
サイアロンの(200)面及び(002)面のX線回折
ピークの強度比Rを用いて示した。X線回折装置(理学
電機工業社製、「RU−200T」)を使用し、X線源
として、CuKα線を用い、X線出力は40kV、10
0mAとした。測定方法はFT法を用い、スキャンスピ
ード2°/min、ステップ0.02°とした。スリッ
トは、発散スリット0.5degree、散乱スリット
0.5degree、受光スリット0.15mmを用い
た。ピーク強度は、Kα1とKα2の分離後、Kα1の強
度を用いた。
(Method of Measuring X-Ray Intensity Ratio) The degree of orientation of the crystal grains of β silicon nitride and / or β sialon can be determined by the following method.
It is shown using the intensity ratio R of the X-ray diffraction peaks of the (200) plane and the (002) plane of Sialon. An X-ray diffractometer (“RU-200T”, manufactured by Rigaku Denki Kogyo Co., Ltd.) was used, CuKα radiation was used as an X-ray source, and the X-ray output was 40 kV, 10 kV.
0 mA. The measurement method was an FT method, with a scan speed of 2 ° / min and a step of 0.02 °. As the slit, a divergence slit of 0.5 degree, a scattering slit of 0.5 degree, and a light receiving slit of 0.15 mm were used. Peak intensity, after separation K [alpha 1 and K [alpha 2, with a strength of K [alpha 1.

【0034】(4)評価結果(実験例7〜13) 表2によれば、X線強度比RがN面0.84、T面0.
59、E面0.59であり、粉末ホットプレス焼結によ
り作製した窒化珪素質焼結体を用いた実験例12、及び
X線強度比が全ての面で0.72であり、常圧焼結及び
ガス圧焼結により作製した窒化珪素質焼結体を用いた実
験例13では、それぞれ加工山数が3回とも5個又は3
個以下で、耐欠損性が「×」であった。また、3点曲げ
強度においては、実験例12は1400MPaであった
が、実験例13では1160MPaと低い値であった。
(4) Evaluation Results (Experimental Examples 7 to 13) According to Table 2, the X-ray intensity ratio R was 0.84 for the N plane and 0.5 for the T plane.
59, E surface 0.59, Experimental Example 12 using a silicon nitride sintered body produced by powder hot press sintering, and X-ray intensity ratio was 0.72 on all surfaces. In Experimental Example 13 using a silicon nitride sintered body produced by sintering and gas pressure sintering, the number of processing peaks was 5 or 3 for each of the three times.
The number of pieces was not more than the number of pieces, and the fracture resistance was “×”. Further, the three-point bending strength was 1400 MPa in Experimental Example 12, but was a low value of 1160 MPa in Experimental Example 13.

【0035】これに対して、超塑性鍛造焼結により作製
した焼結体を用いた実験例10(X線強度比R;N面
1、T面0.75、E面0.15)及び実験例11(X
線強度比R;N面1、T面0.80、E面0.10)で
は、前逃げ面がE面である場合は、加工山数が3回とも
15個で欠損せず、前逃げ面がT面である場合は、加工
山数が11〜15個であり、耐欠損性が「○」又は
「◎」と優れていた。また、3点曲げ強度は、実験例1
0では1900MPa(前逃げ面;E面)、1310M
Pa(前逃げ面;T面)であり、実験例11では、19
20MPa(前逃げ面;E面)、1210MPa(前逃
げ面;T面)と優れた強度を示し、耐欠損性に優れてい
ることが分かった。
On the other hand, an experimental example 10 (X-ray intensity ratio R; N plane 1, T plane 0.75, E plane 0.15) using a sintered body produced by superplastic forging sintering and an experiment Example 11 (X
(Line intensity ratio R; N surface 1, T surface 0.80, E surface 0.10), when the front flank is the E surface, the number of processing hills is 15 and the front flank is not lost at all three times. When the surface was a T surface, the number of processed peaks was 11 to 15, and the fracture resistance was excellent as “「 ”or“ ◎ ”. In addition, the three-point bending strength is shown in Experimental Example 1
At 0, 1900MPa (front flank; E side), 1310M
Pa (front flank; T-plane).
It showed excellent strength of 20 MPa (front flank; E side) and 1210 MPa (front flank; T side) and was found to be excellent in fracture resistance.

【0036】更に、超塑性鍛造焼結により作製した焼結
体を用いた実験例7(X線強度比R;N面0.95、T
面0.50、E面0.48)、実験例8(X線強度比
R;N面0.99、T面0.63、E面0.30)及び
実験例9(X線強度比R;N面1、T面0.66、E面
0.23)では、すべてにおいて加工山数が3回とも1
5個で欠損せず、前逃げ面に影響されること無く耐欠損
性が「◎」とより優れていた。また、3点曲げ強度は、
実験例7では1600MPa(前逃げ面;E面)、15
80MPa(前逃げ面;T面)、実験例8では、172
0MPa(前逃げ面;E面)、1620MPa(前逃げ
面;T面)であり、且つ実験例9では、1830MPa
(前逃げ面;E面)、1430MPa(前逃げ面;T
面)と優れた強度を示し、これらが耐欠損性により優れ
ていることが分かった。
Further, an experimental example 7 (X-ray intensity ratio R; N surface 0.95, T surface) using a sintered body produced by superplastic forging sintering
Surface 0.50, E surface 0.48), Experimental example 8 (X-ray intensity ratio R; N surface 0.99, T surface 0.63, E surface 0.30) and Experimental example 9 (X-ray intensity ratio R) N face 1, T face 0.66, E face 0.23), the number of machining peaks is 1 for all three times.
Five pieces were not damaged, and the fracture resistance was "耐", which was better, without being affected by the front flank. The three-point bending strength is
In Experimental Example 7, 1600 MPa (front flank; E side), 15
80 MPa (front flank; T-plane);
0 MPa (front flank; E side), 1620 MPa (front flank; T side), and in Experimental Example 9, 1830 MPa
(Front flank; E side), 1430 MPa (Front flank; T)
Surface) and excellent strength, indicating that these are more excellent in fracture resistance.

【0037】特に、すくい面のX線強度比が0.95〜
1であり、逃げ面の強度比Rが0.15〜0.75の場
合、3点曲げ強度における前逃げ面の違いによる差が少
なく、非常に優れた耐欠損性が得られた。尚、本発明に
おいては、上記実施例に示されたものに限られず、目
的、用途に応じて種々変更した実施例とすることができ
る。例えば、高い耐欠損性を求められる耐熱合金切削用
の工具にも好適である。
In particular, when the X-ray intensity ratio of the rake face is 0.95 to
When the flank strength ratio R was 0.15 to 0.75, there was little difference in the three-point bending strength due to the difference in the front flank face, and extremely excellent fracture resistance was obtained. It should be noted that the present invention is not limited to the above-described embodiment, but may be variously modified according to the purpose and application. For example, it is also suitable for a heat-resistant alloy cutting tool requiring high fracture resistance.

【0038】[0038]

【発明の効果】本発明の窒化珪素質焼結体製切削工具
は、圧粉成形された予備成形体を超塑性鍛造焼結して得
られた、結晶粒の配向方向が制御された焼結体からなる
ことで、特定方向の強度、靭性を向上させることがで
き、優れた耐欠損性及び耐摩耗性を有する。他の本発明
の窒化珪素質焼結体製切削工具は、窒化珪素質焼結体か
らなり、切削工具のすくい面における結晶粒の長軸が、
すくい面に対して平行方向に制御されているため、特定
方向の強度、靭性を向上させることができ、優れた耐欠
損性及び耐摩耗性を有する。
The cutting tool made of a silicon nitride sintered body according to the present invention is a sintered tool obtained by superplastic forging sintering of a green compacted preform and having a controlled orientation direction of crystal grains. By being composed of a body, strength and toughness in a specific direction can be improved, and excellent fracture resistance and wear resistance are obtained. Another cutting tool made of a silicon nitride based sintered body of the present invention is made of a silicon nitride based sintered body, and the major axis of crystal grains on the rake face of the cutting tool is
Since it is controlled in a direction parallel to the rake face, strength and toughness in a specific direction can be improved, and excellent fracture resistance and wear resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験例9のN面、T面及びE面の各X線強度比
を示すX線チャート図である。
FIG. 1 is an X-ray chart showing the X-ray intensity ratios of N-plane, T-plane and E-plane in Experimental Example 9.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 保宏 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 浦島 和浩 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 飯尾 聡 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 3C046 FF33 FF47 FF55 4G001 BA03 BA06 BA09 BA11 BA14 BA32 BA52 BB03 BB06 BB09 BB11 BB14 BB32 BB52 BC43 BD12 BD13 BD14 BD18 BE02 BE03 BE12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuhiro Takagi 14-18, Takatsuji-cho, Mizuho-ku, Nagoya-shi Inside Japan Special Ceramics Co., Ltd. (72) Inventor Kazuhiro Urashima 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan Special Ceramics Co., Ltd. (72) Inventor Satoshi Iio 14-18 Takatsuji-cho, Mizuho-ku, Nagoya Japan F-term (reference) 3C046 FF33 FF47 FF55 4G001 BA03 BA06 BA09 BA11 BA14 BA32 BA52 BB03 BB06 BB09 BB11 BB14 BB32 BB52 BC43 BD12 BD13 BD14 BD18 BE02 BE03 BE12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素系原料粉末を圧粉成形してなる
予備成形体を圧縮焼成により、結晶粒を塑性流動させて
結晶粒の配向方向を特定方向に制御した窒化珪素系焼結
体からなることを特徴とする窒化珪素質焼結体製切削工
具。
1. A silicon nitride-based sintered body in which crystal grains are plastically fluidized by compressing and firing a preformed body obtained by compacting silicon nitride-based raw material powder to control the orientation direction of crystal grains in a specific direction. A cutting tool made of a silicon nitride-based sintered body.
【請求項2】 上記窒化珪素系原料粉末が、α窒化珪素
粉末、αサイアロン粉末、β窒化珪素粉末及びβサイア
ロン粉末のうちの少なくとも1種と、焼結助剤粉末を含
む請求項1記載の窒化珪素質焼結体製切削工具。
2. The method according to claim 1, wherein the silicon nitride-based raw material powder includes at least one of α-silicon nitride powder, α-sialon powder, β-silicon nitride powder, and β-sialon powder, and a sintering aid powder. Cutting tool made of silicon nitride sintered body.
【請求項3】 圧縮軸方向に対して垂直となる面を、上
記切削工具のすくい面とし、それ以外の面を逃げ面とす
る請求項1又は請求項2に記載の窒化珪素質焼結体製切
削工具。
3. The silicon nitride sintered body according to claim 1, wherein a surface perpendicular to the compression axis direction is a rake surface of the cutting tool, and the other surface is a flank. Cutting tools.
【請求項4】 上記すくい面において、下記式(1)で
表されるX線回折ピークの強度比Rが0.90〜1であ
り、且つ上記逃げ面の少なくとも一方において、該強度
比Rが0.10〜0.80である請求項3記載の窒化珪
素質焼結体製切削工具。 R=I(200)/(I(200)+I(002)) (1) [但し、I(200)、I(002)は、それぞれβ窒化珪素及び
/又はβサイアロンの(200)面、(002)面の反
射強度を示す。]
4. On the rake face, the intensity ratio R of the X-ray diffraction peak represented by the following formula (1) is 0.90 to 1, and on at least one of the flank faces, the intensity ratio R is 4. The cutting tool made of a silicon nitride sintered body according to claim 3, wherein the cutting tool is 0.10 to 0.80. R = I (200) / (I (200) + I (002) ) (1) [where I (200) and I (002) are the (200) plane of β silicon nitride and / or β sialon, respectively. 002) represents the reflection intensity of the surface. ]
【請求項5】 断面が高さ3mm、幅4mmの曲げ試験
片を用いたスパン16mmの3点曲げ強度試験法におい
て、上記すくい面の強度が、1200MPa以上である
請求項3又は請求項4に記載の窒化珪素質焼結体製切削
工具。
5. The method according to claim 3, wherein the rake face has a strength of 1200 MPa or more in a three-point bending strength test method with a span of 16 mm using a bending test piece having a cross section of 3 mm in height and 4 mm in width. The cutting tool made of the silicon nitride based sintered body described in the above.
【請求項6】 窒化珪素質焼結体からなる切削工具であ
って、該切削工具のすくい面における結晶粒の長軸が、
該すくい面に対して平行方向に制御されていることを特
徴とする窒化珪素質焼結体製切削工具。
6. A cutting tool comprising a silicon nitride based sintered body, wherein a major axis of a crystal grain on a rake face of the cutting tool is:
A cutting tool made of a silicon nitride sintered body, wherein the cutting tool is controlled in a direction parallel to the rake face.
【請求項7】 上記すくい面において、上記式(1)で
表されるX線回折ピークの強度比Rが0.90〜1であ
り、且つ上記逃げ面の少なくとも一方において、該強度
比Rが0.10〜0.80である請求項6記載の窒化珪
素質焼結体製切削工具。
7. The intensity ratio R of the X-ray diffraction peak represented by the formula (1) is 0.90 to 1 on the rake face, and the intensity ratio R is at least one of the flank faces. The cutting tool made of a silicon nitride based sintered body according to claim 6, wherein the cutting tool is 0.10 to 0.80.
【請求項8】 断面が高さ3mm、幅4mmの曲げ試験
片を用いたスパン16mmの3点曲げ強度試験法におい
て、上記すくい面の強度が、1200MPa以上、或い
は有効体積換算に基づき、これと同等以上の強度を示す
請求項6又は請求項7に記載の窒化珪素質焼結体製切削
工具。
8. In a three-point bending strength test method with a span of 16 mm using a bending test piece having a cross section of 3 mm in height and 4 mm in width, the strength of the rake face is 1200 MPa or more, or based on an effective volume conversion. The cutting tool made of a silicon nitride-based sintered body according to claim 6 or 7, which exhibits equal or higher strength.
JP2001109155A 2001-04-06 2001-04-06 Cutting tool made of sintered silicon nitride Expired - Fee Related JP4763146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109155A JP4763146B2 (en) 2001-04-06 2001-04-06 Cutting tool made of sintered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109155A JP4763146B2 (en) 2001-04-06 2001-04-06 Cutting tool made of sintered silicon nitride

Publications (2)

Publication Number Publication Date
JP2002307208A true JP2002307208A (en) 2002-10-23
JP4763146B2 JP4763146B2 (en) 2011-08-31

Family

ID=18961150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109155A Expired - Fee Related JP4763146B2 (en) 2001-04-06 2001-04-06 Cutting tool made of sintered silicon nitride

Country Status (1)

Country Link
JP (1) JP4763146B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068220A1 (en) * 2004-12-22 2006-06-29 Ngk Spark Plug Co., Ltd. Sialon insert and cutting tool equipped therewith
JP7451350B2 (en) 2020-08-24 2024-03-18 日本特殊陶業株式会社 End mills and friction stir welding tools

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007446A (en) * 1998-06-22 2000-01-11 Agency Of Ind Science & Technol Method for sintering and forming silicon nitride-base ceramics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112705A (en) * 1994-10-17 1996-05-07 Nissan Motor Co Ltd Cutting tool made of silicon nitride substance sintered body and its manufacture
JPH08290972A (en) * 1995-02-20 1996-11-05 Sumitomo Electric Ind Ltd Silicon nitride ceramic member and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007446A (en) * 1998-06-22 2000-01-11 Agency Of Ind Science & Technol Method for sintering and forming silicon nitride-base ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068220A1 (en) * 2004-12-22 2006-06-29 Ngk Spark Plug Co., Ltd. Sialon insert and cutting tool equipped therewith
JP7451350B2 (en) 2020-08-24 2024-03-18 日本特殊陶業株式会社 End mills and friction stir welding tools

Also Published As

Publication number Publication date
JP4763146B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
KR0167427B1 (en) Silicon nitride ceramic and method of shaping the same
EP3257829A1 (en) Cubic boron nitride polycrystal, cutting tool, wear resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
JP6291995B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
US5908797A (en) Silicon nitride based sintered material and method for producing same
EP2266935A1 (en) Anti-wear member, anti-wear instrument and method of producing anti-wear member
US20180236561A1 (en) Sintered body and cutting tool
EP3109220B1 (en) Use of sintered body and cutting tool
EP2957368A1 (en) Cutting tool
JP2002307208A (en) Cutting tool made of silicon nitride sintered body
JPH0212918B2 (en)
JPH05301776A (en) Cubic boron nitride-based sintered compact
JP3588162B2 (en) Silicon nitride cutting tool and method of manufacturing the same
JP2006016233A (en) Silicon nitride sintered compact and silicon nitride tool, cutting insert, and cutting tool
JP7204558B2 (en) Boron nitride sintered bodies, inserts and cutting tools
JP6743663B2 (en) Cemented Carbide and Cemented Carbide
CN108883996B (en) Silicon nitride-based sintered body and cutting insert
JP2723170B2 (en) Superplastic silicon nitride sintered body
JP2002263917A (en) Silicon nitride material cutter
JP2922713B2 (en) Zirconia sintered body for tools
JPH03218974A (en) Silicon nitride sintered body and production thereof
JP5275744B2 (en) Cutting insert, silicon nitride cutting tool, and method of manufacturing silicon nitride sintered body used for cutting insert
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP2000226262A (en) High-hardness and high-strength sintered compact
JP2003171172A (en) Alumina sintered compact, blade edge exchange-type chip and cutting tool
JPH08112705A (en) Cutting tool made of silicon nitride substance sintered body and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees