JP2002307086A - Discharge type wastewater denitrification equipment - Google Patents

Discharge type wastewater denitrification equipment

Info

Publication number
JP2002307086A
JP2002307086A JP2001191994A JP2001191994A JP2002307086A JP 2002307086 A JP2002307086 A JP 2002307086A JP 2001191994 A JP2001191994 A JP 2001191994A JP 2001191994 A JP2001191994 A JP 2001191994A JP 2002307086 A JP2002307086 A JP 2002307086A
Authority
JP
Japan
Prior art keywords
water
soil
denitrification
discharge type
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001191994A
Other languages
Japanese (ja)
Inventor
Miki Sato
幹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001191994A priority Critical patent/JP2002307086A/en
Publication of JP2002307086A publication Critical patent/JP2002307086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge type wastewater denitrification equipment which is simple in operation, does not need special management can be installed in a small installation area, is inexpensive and free from toxity problem, can be hardly affected by temperature, and can obtain an enough denitrification effect even in a large scale wastewater treatment such as stockbreeding wastewater treatment, while the features of a biological denitrification method are being utilized. SOLUTION: In the wastewater denitrification equipment in which air permeable soil 4 is packed in a space 2 with its upper part opened which is formed in an earth 1 by a water impermeable member 3, a water collecting pipe 5 is installed on the bottom surface of the space 2, a treatment water soaking member 6 is installed above the pipe 5, embankment 8 is carried out over the outside of the member 3 in the upper part of the space 2, and treated wastewater is supplied to the member 6, and after being denitrified by being soaked in the soil 4, is discharged from the pipe 5, a water permeable iron layer 7 is formed in the soil 4 between the member 6 and the pipe 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脱窒処理後の水を
集水管で集めて排出する放流方式の汚水処理に用いる脱
窒装置に関し、特に生活汚水、畜産排水などの一次処理
水の放流式汚水脱窒装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitrification apparatus used for sewage treatment of a discharge type in which water after denitrification treatment is collected and collected by a water collecting pipe, and more particularly to discharge of primary treatment water such as domestic sewage and livestock wastewater. The present invention relates to a sewage denitrification system.

【0002】[0002]

【従来の技術】水洗便所の汚水や厨房雑排水などの生活
汚水、家畜の糞尿や畜舎の洗浄水などの畜産汚水中に
は、有機性窒素、アンモニア性窒素をはじめとして、各
種の窒素酸化物が含まれており、これらは、河川、湖沼
の富栄養化の原因となるため、除去する必要がある。特
に、硝酸性窒素は、メトヘモグロビン血症を引き起こす
など人体への悪影響があるほか、さまざまな環境汚染の
原因となるため、環境庁の公共用水域及び地下水の環境
基準として、10mg/リットル以下とするように規定
されている。
2. Description of the Related Art Various types of nitrogen oxides, including organic nitrogen, ammonia nitrogen, etc., are contained in domestic wastewater such as sewage of flush toilets and kitchen wastewater, and livestock sewage such as livestock excreta and livestock washing water. Which must be removed because they cause eutrophication of rivers and lakes. In particular, nitrate nitrogen has adverse effects on the human body, such as causing methemoglobinemia, and causes various environmental pollution. Therefore, the environmental standard of the public waters and groundwater of the Environment Agency is less than 10 mg / liter. It is stipulated that

【0003】汚水中の窒素を除去する方法としては、ア
ンモニアストリッピング法、イオン交換法等の選択的物
理化学処理法、逆浸透法、電気透析法等の総括的物理化
学処理法、生物学的脱窒素法等の生物化学的処理法など
が提案されているが、なかでも、生物学的脱窒素法は、
アンモニア性窒素と共に有機性窒素も除去できるため、
各種廃水処理の分野で実用化されるようになってきてい
る。
[0003] Methods for removing nitrogen in wastewater include selective physicochemical treatment methods such as ammonia stripping and ion exchange, comprehensive physicochemical treatments such as reverse osmosis and electrodialysis, and biological methods. Biochemical treatment methods such as the denitrification method have been proposed. Among them, the biological denitrification method
Since organic nitrogen can be removed together with ammonia nitrogen,
Practical applications are being made in the field of various wastewater treatments.

【0004】生物学的脱窒素法は、自然界に生息して窒
素循環に関係している微生物群を利用し、窒素化合物を
最終的に窒素ガスに変換するものである。この方法で
は、反応槽を硝化槽と脱窒槽とに分け、硝化槽におい
て、BOD酸化菌で有機性窒素をアンモニア性窒素に酸
化し、次いで偏性好氣性の亜硝酸菌、硝酸菌で亜硝酸
性、硝酸性窒素に酸化した後、脱窒槽において、通性嫌
気性の脱窒菌で亜硝酸性、硝酸性窒素を還元して窒素ガ
スとし、大気中に放出させる。
[0004] Biological denitrification utilizes a group of microorganisms that live in nature and are involved in the nitrogen cycle, and ultimately convert nitrogen compounds into nitrogen gas. In this method, a reaction tank is divided into a nitrification tank and a denitrification tank, and in the nitrification tank, organic nitrogen is oxidized to ammonia nitrogen by a BOD oxidizing bacterium, and then nitrite is oxidized by an obligately aerobic nitrite and a nitrate. After oxidizing to nitric acid and nitrate nitrogen, nitrite and nitrate nitrogen are reduced by a facultative anaerobic denitrifying bacterium to nitrogen gas in a denitrification tank and released into the atmosphere.

【0005】しかしながら、かかる従来の生物学的脱窒
素法では、運転操作や汚泥処理などの管理が煩雑である
こと、硝化槽や脱窒槽には沈殿池を併設する必要がある
ため、処理装置の設置に広大な敷地を要し、建設費が高
いこと、硝化槽にpH調整用のアルカリを多量に要する
こと、脱窒槽にメタノールが必要で、毒性の問題が生ず
ること、低温で処理効率が低下することなどの問題があ
った。
[0005] However, in such a conventional biological denitrification method, the operation and management of sludge treatment are complicated, and a nitrification tank and a denitrification tank need to be provided with a sedimentation tank. Requires large site for installation, high construction cost, large amount of alkali for pH adjustment in nitrification tank, need for methanol in denitrification tank, causing toxicity problems, processing efficiency decreases at low temperature There were problems such as doing.

【0006】このような従来の生物学的脱窒素法の問題
を解消するために、本発明者は、先に、「不透水性部材
により、上部が開放された幅60cm〜4mの空間を土
中に形成して、該空間内に通気性土壌を充填し、その底
部に集水管を敷設すると共に、該集水管の上方に処理水
浸潤部材を設け、かつ該空間上部に、該不透水性部材の
外側にわたって盛土し、該処理水浸潤部材へ供給された
汚水処理水を該通気性土壌内へ浸潤させて脱窒処理した
後、該集水管から排出させることを特徴とする汚水脱窒
装置」を提案した(特許第3105519号)。
[0006] In order to solve such a problem of the conventional biological denitrification method, the present inventor first stated that "a 60 cm to 4 m wide space having an open upper part by an impermeable member was soiled. The space is filled with air-permeable soil, a water collection pipe is laid at the bottom thereof, a treated water infiltration member is provided above the water collection pipe, and the water-impermeable member is provided above the space. A sewage denitrification apparatus which fills over the outside of the member, infiltrates the treated water infiltration member with the sewage treatment water supplied into the permeable soil, performs a denitrification treatment, and discharges the sewage treatment water from the water collection pipe. (Japanese Patent No. 3105519).

【0007】この装置では、家庭、店舗、公共設備など
の小規模での汚水処理の場合は、十分な脱窒効果が得ら
れるが、畜産排水処理などの大規模処理の場合は、十分
な脱窒が行われない恐れがあった。
With this apparatus, a sufficient denitrification effect can be obtained in the case of small-scale sewage treatment of households, shops, public facilities, etc. There was a risk that nitriding would not take place.

【0008】一方、金属鉄により硝酸性窒素含有排水を
処理して、硝酸を還元し、窒素ガスに転換する技術(第
32回日本水環境学会年次講演集、84頁(平成10
年))や、鉄くずを硝酸分解に利用して排水浄化する技
術(中日新聞、第1面、平成12年6月29日)も提案
されている。しかしながら、これらの方法は、pH4以
下の酸性条件下では還元速度が高いが、pH4を超える
中性、アルカリ性条件下では還元速度が低くなり、反応
生成物の窒素ガスへの変換率(脱窒効果)が低下すると
いう問題がある。更に、本発明者の実験によると、処理
排水を単に鉄で処理しただけでは、確かに硝酸性窒素は
減るものの、亜硝酸性窒素、アンモニア性窒素が増え
て、結局全窒素量はあまり減らず、しかも生物化学的酸
素要求量(BOD)及び化学的酸素要求量(COD)が
高くなるという知見も得られている。
On the other hand, a technique for treating nitrate-nitrogen-containing wastewater with metallic iron to reduce nitric acid and convert it to nitrogen gas (32nd Annual Meeting of Japan Society on Water Environment, p. 84 (1998)
)), And a technology for purifying wastewater by using iron scrap for nitric acid decomposition (Chunichi Shimbun, page 1, June 29, 2000). However, in these methods, the reduction rate is high under acidic conditions of pH 4 or less, but the reduction rate is low under neutral or alkaline conditions exceeding pH 4, and the conversion rate of the reaction product to nitrogen gas (the denitrification effect). ) Is reduced. Furthermore, according to the experiment of the present inventor, simply treating the treated wastewater with iron reduces nitrate nitrogen, but increases nitrite nitrogen and ammonia nitrogen, and eventually the total nitrogen amount does not decrease much. Further, it has been found that the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD) increase.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明は、上
記従来技術の問題を解消し、生物学的脱窒法の優れた特
徴を生かしつつ、操作が簡単で、特別な管理を必要とせ
ず、設置面積も少なくてすみ、低コストで、毒性の問題
がなく、寒暖の影響を受け難い上に、畜産排水処理など
の大規模な汚水処理でも十分な脱窒効果が得られる放流
式脱窒装置を提供することを課題とするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention solves the above-mentioned problems of the prior art, makes use of the excellent characteristics of the biological denitrification method, is simple in operation, and does not require any special management. A discharge type denitrification device that requires a small installation area, is low-cost, has no toxicity problems, is not easily affected by cold and heat, and has a sufficient denitrification effect even in large-scale wastewater treatment such as livestock wastewater treatment. It is an object to provide

【0010】[0010]

【課題を解決するための手段】本発明者は、先に、特許
第3105519号で提案した通気性土壌による放流方
式の脱窒装置をベースにして、更に改良を重ねた結果、
それ単独の使用では十分な脱窒効果を奏することのでき
ない金属鉄を前記放流式脱窒装置の通気性土壌内で使用
することにより、大規模な汚水処理でも十分な脱窒効果
が得られ、特に、有害な硝酸性窒素の混入を問題のない
レベルまで低減させることができることを見出し、本発
明を完成するに至った。
The inventor of the present invention has made further improvements based on the denitrification apparatus of the discharge type using the breathable soil proposed in Japanese Patent No. 3105519.
By using metallic iron which cannot exert a sufficient denitrification effect in its sole use in the permeable soil of the discharge type denitrification device, a sufficient denitrification effect can be obtained even in large-scale sewage treatment, In particular, they have found that contamination of harmful nitrate nitrogen can be reduced to a level that does not cause any problem, and have completed the present invention.

【0011】すなわち、本発明によれば、(1)不透水
性部材により土中に形成した上部が開放された空間内に
通気性土壌を充填し、その底部に集水管を敷設すると共
に、該集水管の上方に処理水浸潤部材を設け、かつ該空
間上部に該不透水性部材の外側にわたって盛土し、該処
理水浸潤部材へ供給された汚水処理水を該通気性土壌内
へ浸潤させて脱窒処理した後、該集水管から排出させる
放流式汚水脱窒装置において、処理水浸潤部材と集水管
との間の通気性土壌内に透水性の金属鉄層を設けたこと
を特徴とする放流式汚水脱窒装置、(2)前記金属鉄層
が、銑鉄球状物からなる層である上記(1)の放流式汚
水脱窒装置、(3)前記金属鉄層が、金属鉄線条体から
なる層である上記(1)の放流式汚水脱窒装置、及び
(4)前記処理水浸潤部材が、吸水性シートの管状体側
面に、吸水性シートからなる複数個の翼片を突出形成せ
しめたものである上記(1)、(2)又は(3)の放流
式汚水脱窒装置が提供される。
That is, according to the present invention, (1) air-permeable soil is filled in an open space formed in the soil by a water-impermeable member, and a water collecting pipe is laid at the bottom thereof. A treated water infiltration member is provided above the water collection pipe, and the embankment is laid over the outside of the water impermeable member in the upper part of the space, and the sewage treated water supplied to the treated water infiltration member is infiltrated into the breathable soil. After the denitrification treatment, the discharge type sewage denitrification device discharged from the water collection pipe is characterized in that a permeable metal iron layer is provided in the permeable soil between the treated water infiltration member and the water collection pipe. Discharge type sewage denitrification apparatus, (2) The discharge type sewage denitrification apparatus of (1), wherein the metal iron layer is a layer made of pig iron spheres, (3) The metal iron layer is formed of a metal iron wire. (1) the discharge type sewage denitrification apparatus of (1), and (4) the treated water immersion The discharge type sewage denitrification apparatus according to (1), (2) or (3), wherein the member is formed by projecting a plurality of wing pieces made of a water-absorbent sheet on the side surface of the tubular body of the water-absorbent sheet. Provided.

【0012】[0012]

【発明の実施の形態】以下、図面により本発明を説明す
る。図1は、本発明の放流式汚水脱窒装置を用いた汚水
処理システムの一例を示す概略縦断面図、図2は、図1
に示した本発明の放流式汚水脱窒装置の横断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a schematic vertical sectional view showing an example of a sewage treatment system using a discharge type sewage denitrification apparatus of the present invention, and FIG.
1 is a cross-sectional view of the discharge type sewage denitrification apparatus of the present invention shown in FIG.

【0013】図1及び図2において、Aは汚水供給パイ
プ、Bは通気性土壌B1及び礫B2を内蔵する第一消化
室、Cは通気性土壌C1及び礫C2を内蔵する第二消化
室、Dは通気性土壌D1及び礫D2を充填した消化性濾
過室、EはポンプE1を設けたポンプ室である。Fは本
発明の放流式汚水脱窒装置であり、土1中に上部が開放
された空間2を形成する不透水性部材3、該空間2内に
充填した通気性土壌4、その底部に敷設した集水管5、
該集水管5の上方の通気性土壌4内に設けた処理水浸潤
部材6、該処理水浸潤部材6と該集水管5との間の通気
性土壌4内に設けた透水性の金属鉄層7、及び空間2上
部に、不透水性部材3の外側、すなわち土1の側にわた
って形成した盛土8で構成されている。なお、9は、集
水管5で集められた排水を一時的に貯めておく排水貯留
槽である。
1 and 2, A is a sewage supply pipe, B is a first digestion chamber containing a permeable soil B1 and gravels B2, C is a second digestion chamber containing a permeable soil C1 and gravels C2, D is a digestive filtration room filled with breathable soil D1 and gravel D2, and E is a pump room provided with a pump E1. F is a discharge type sewage denitrification apparatus of the present invention, which is an impermeable member 3 forming a space 2 having an open top in soil 1, a permeable soil 4 filled in the space 2, and laid on the bottom thereof. Drainage pipe 5,
A treated water infiltration member 6 provided in the permeable soil 4 above the water collecting pipe 5, a permeable metallic iron layer provided in the permeable soil 4 between the treated water infiltrating member 6 and the water collecting pipe 5. 7 and an embankment 8 formed above the space 2 over the impermeable member 3, that is, over the soil 1. Reference numeral 9 denotes a drainage storage tank for temporarily storing wastewater collected by the water collection pipe 5.

【0014】土1中に上部が開放された空間2を形成す
る不透水性部材3としては、土中で安定であり、水の透
過を防止できるものであれば特に限定はなく、例えば、
合成樹脂製シート、繊維補強プラスティック、補強コン
クリート等を例示することができる。
The water-impermeable member 3 forming the open space 2 in the soil 1 is not particularly limited as long as it is stable in the soil and can prevent water permeation.
Examples include synthetic resin sheets, fiber-reinforced plastics, and reinforced concrete.

【0015】土1中に形成する空間2は、通常、幅1〜
2m、長さ10〜30m、深さ0.4〜1mであり、こ
の空間2に通気性土壌4を充填する。通気性土壌4とし
ては、土壌処理に通常用いられるものを使用することが
でき、例えば、粘土含量15〜25%、シルト含量20
〜45%、砂含量3〜65%の埴壌土に相当する土壌が
適当であるとされており、壌質砂土やフライアッシュ、
パーライトなどを混合した土壌なども使用できる。ま
た、製紙、パルプ工場から排出されるスラッジの焼却灰
や、石炭火力発電所などから出るクリンカーなども好適
に使用できる。
The space 2 formed in the soil 1 usually has a width of 1 to 1.
The space 2 is 2 m long, 10 to 30 m long and 0.4 to 1 m deep. As the breathable soil 4, those usually used for soil treatment can be used, for example, a clay content of 15 to 25% and a silt content of 20.
Soil corresponding to clay loam having a sand content of ~ 45% and a sand content of 3 to 65% is considered to be suitable.
Soil mixed with perlite or the like can also be used. Also, incinerated ash of sludge discharged from papermaking and pulp mills, clinker from coal-fired power plants and the like can be suitably used.

【0016】また、集水管5としては,例えば、適当数
の通水孔を穿設した合成樹脂パイプや合成樹脂製モノフ
ィラメントを筒状に編組した直径5〜10mmのパイプ
を不織布で包んだものなどを挙げることができる。
The water collecting pipe 5 is, for example, a synthetic resin pipe having an appropriate number of water holes or a pipe formed by braiding a synthetic resin monofilament into a tubular shape and having a diameter of 5 to 10 mm with a nonwoven fabric. Can be mentioned.

【0017】集水管5の上方の通気性土壌4内には、処
理水浸潤部材6が設けられる。処理水浸潤部材6として
は、処理水を土壌中に均等に不飽和の状態で浸潤させる
ことのできるものであれば如何なるものでもよいが、例
えば、図3に示すごとき構造体が好適に用いられる。図
3に示した処理水浸潤部材5においては、吸水性シート
からなる管状体11の側面に、同じく吸水性シートから
なる複数個の翼片12、12′を突出形成させており、
管状体11内には剛毛状繊維13が充填され、その中央
部に透水性パイプ14が配設されている。管状体11の
下面外側は、不透水性シート15で覆われている。管状
体11及び翼片12、12′を構成する吸水性シートと
しては、厚さ1〜10mm程度のポリエステル繊維不織
布が好適に用いられる。なお、集水管5と処理水浸潤部
材6との間隔は、通常、20〜30cmあれば十分であ
る。
A treated water infiltration member 6 is provided in the permeable soil 4 above the water collecting pipe 5. As the treated water infiltrating member 6, any material can be used as long as it can infiltrate treated water into the soil in an unsaturated state. For example, a structure as shown in FIG. 3 is preferably used. . In the treated water infiltration member 5 shown in FIG. 3, a plurality of wing pieces 12 and 12 ′ also made of a water-absorbent sheet are formed on the side surface of a tubular body 11 made of a water-absorbent sheet.
The tubular body 11 is filled with bristle-like fibers 13, and a water-permeable pipe 14 is provided at the center thereof. The outside of the lower surface of the tubular body 11 is covered with a water-impermeable sheet 15. As the water-absorbing sheet constituting the tubular body 11 and the wing pieces 12, 12 ', a polyester fiber nonwoven fabric having a thickness of about 1 to 10 mm is suitably used. In addition, the space between the water collecting pipe 5 and the treated water infiltration member 6 is usually sufficient if it is 20 to 30 cm.

【0018】更に、処理水浸潤部材6と該集水管5との
間の通水性土壌4内には、透水性の金属鉄層7を設け
る。金属鉄としては、還元性を有するものであれば、鉄
片、鉄粉、線条体、スラグ、透水性シート、ネット等の
任意の形状を有するものを用いることができるが、粒径
が1〜10mm程度の銑鉄球状物が好適に用いられる。
また、土壌やその他の有機、無機物質と混合して用いて
もよい。更に、鉄筋等の金属鉄線条体を複数本平行に並
べて敷設するのも、脱窒効果が大きく、敷設作業が容易
である点で好ましい。この場合、線条体の直径は10〜
20mm、好ましくは13〜17mm、その敷設間隔は
5〜20cm、好ましくは8〜15cmが適当である。
また、複数本の線条体の間隔を維持固定するために、金
属、合成樹脂などからなる他の線条体を横方向に織込ん
でもよい。この横方向に織込む線条体も、金属鉄で構成
するのが効果的である。この金属鉄層7は、処理水浸潤
部材6から通気性土壌4内へ浸潤した処理水中の硝酸を
還元して、排水中へ混入する硝酸の量を低減させるもの
であり、その厚さは、5〜50mmが適当である。ま
た、この金属鉄層7は、処理水浸潤部材6と該集水管5
との間の通水性土壌4内に設けることが必要であり、例
えば、排水貯留槽9内に金属鉄を入れて処理したので
は、硝酸性窒素は減るものの、亜硝酸性窒素、アンモニ
ア性窒素が増えて、結局全窒素量はあまり減らず、しか
も生物化学的酸素要求量(BOD)及び化学的酸素要求
量(COD)が高くなるので不適当である。
Further, a water-permeable metallic iron layer 7 is provided in the water-permeable soil 4 between the treated water infiltrating member 6 and the water collecting pipe 5. As the metallic iron, any material having a reducing property can be used, such as iron pieces, iron powder, striatum, slag, a water-permeable sheet, and an arbitrary shape such as a net. Pig iron spheres of about 10 mm are preferably used.
Further, it may be used by mixing with soil or other organic or inorganic substances. Further, it is also preferable to lay a plurality of metal iron wire strips such as reinforcing bars in parallel, since the denitrification effect is large and the laying work is easy. In this case, the diameter of the striatum is 10
20 mm, preferably 13 to 17 mm, and the laying interval is suitably 5 to 20 cm, preferably 8 to 15 cm.
Further, in order to maintain and fix the interval between the plurality of filaments, another filament made of metal, synthetic resin, or the like may be woven in the lateral direction. It is effective that the wire woven in the lateral direction is also made of metallic iron. The metallic iron layer 7 reduces nitric acid in the treated water infiltrated into the permeable soil 4 from the treated water infiltrating member 6 to reduce the amount of nitric acid mixed into the wastewater. 5 to 50 mm is appropriate. Further, the metal iron layer 7 includes the treated water infiltration member 6 and the water collecting pipe 5.
For example, if metallic iron is placed in the drainage storage tank 9 and treated, nitrate nitrogen is reduced, but nitrite nitrogen and ammonia nitrogen The total nitrogen amount does not decrease so much, and the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD) increase.

【0019】また、空間2上部に、不透水性部材3の外
側にわたって形成した盛土8は、雨水を表面流として流
し、装置内へ侵入するのを防ぐと共に、不透水性部材3
の内側と外側とを連通させることにより、サイホン現象
で不透水性部材3の内側を負圧に保ち、後述する動水勾
配線によって区分された毛管不飽和水帯と毛管飽和水帯
を形成し、酸化処理と還元処理とを順次施すことを可能
にするために設けたものであり、通常、土1の表面から
10cm以上の厚さとなるように形成すればよい。
The embankment 8 formed above the space 2 over the water-impermeable member 3 prevents rainwater from flowing into the apparatus as a surface flow, and prevents the water-impermeable member 3 from entering the apparatus.
By keeping the inside and outside communicating with each other, the inside of the water-impermeable member 3 is maintained at a negative pressure by a siphon phenomenon, and a capillary unsaturated water zone and a capillary saturated water zone separated by a hydrodynamic gradient line described later are formed. This is provided so that the oxidation treatment and the reduction treatment can be sequentially performed, and is usually formed to have a thickness of 10 cm or more from the surface of the soil 1.

【0020】いま、汚水供給パイプAを経由して供給さ
れた汚水は、通気性土壌B1及び礫B2を内蔵する第一
消化室B、通気性土壌C1及び礫C2を内蔵する第二消
化室C、通気性土壌D1及び礫D2を充填した消化性濾
過室Dにおいて、常法により消化、濾過され、ポンプ室
E内のポンプE1で本発明の汚水脱窒装置Fに送られ
る。この消化、濾過工程は、上記のものに限られるもの
ではなく、一般に用いられている任意の汚水処理方式を
用いることができる。また、消化性濾過室Dと汚水脱窒
装置Fとの間に、自然流下が可能な勾配があれば、ポン
プ室E及びポンプE1を設ける必要はない。
Now, the sewage supplied via the sewage supply pipe A is supplied to the first digestion chamber B containing the permeable soil B1 and the gravel B2, and the second digestion chamber C containing the permeable soil C1 and the gravel C2. In the digestive filtration chamber D filled with the permeable soil D1 and the gravels D2, it is digested and filtered by a conventional method, and sent to the sewage denitrification apparatus F of the present invention by the pump E1 in the pump chamber E. The digestion and filtration steps are not limited to those described above, and any generally used sewage treatment method can be used. In addition, if there is a gradient allowing natural flow between the digestive filtration chamber D and the sewage denitrification apparatus F, the pump chamber E and the pump E1 need not be provided.

【0021】このようにして本発明の汚水脱窒装置Fへ
送られた一次処理水は、処理水浸潤部材5から通気性土
壌3内に均等に不飽和の状態で浸潤させられる。通気性
土壌3内では、図2に示すように、集水管5の左右に放
物線状の動水勾配線A、A’が形成される。この動水勾
配線A、A’の上側は毛管不飽和水帯となり、土壌の間
隙水の負圧が高く、好氣性が保持され、好氣性菌による
活発な酸化が行われて、一次処理水中の有機性、アンモ
ニア性窒素が酸化され、亜硝酸性、硝酸性窒素となる。
特に、消化処理されて供給されてくる一次処理水は、溶
存酸素が零に近いものであるが、処理水浸潤部材5から
サイホン現象と不飽和の流れで土壌3中に浸潤する際
に、極めて効率よく酸素を取り込むことができる。一
方、動水勾配線A、A’の下側は毛管飽和水帯となり、
時間の経過と共に土壌の間隙水の負圧が低くなって、酸
欠状態となる。従って、上記毛管不飽和水帯で酸化され
て生じた亜硝酸性、硝酸性窒素が、この帯域で通性嫌気
性菌によって還元され、窒素ガスとなる。
The primary treated water sent to the sewage denitrification apparatus F of the present invention is infiltrated from the treated water infiltrating member 5 into the permeable soil 3 in an evenly unsaturated state. As shown in FIG. 2, parabolic hydrodynamic gradient lines A and A ′ are formed on the left and right of the water collecting pipe 5 in the permeable soil 3. The upper side of the hydrodynamic gradient lines A and A 'becomes a capillary unsaturated water zone, the negative pressure of pore water in the soil is high, aerobicity is maintained, active oxidation by aerobic bacteria is performed, and the primary treated water Is oxidized to nitrite and nitrate nitrogen.
In particular, the primary treated water supplied after digestion treatment has dissolved oxygen near zero, but when the treated water infiltrate into the soil 3 due to the siphon phenomenon and the unsaturated flow from the treated water infiltration member 5, Oxygen can be taken in efficiently. On the other hand, the lower side of the hydrodynamic gradient lines A and A 'becomes a capillary saturated water zone,
As the time elapses, the negative pressure of the pore water in the soil decreases, and the state becomes oxygen-deficient. Accordingly, nitrite and nitrate nitrogen generated by oxidation in the capillary unsaturated water zone are reduced by facultative anaerobic bacteria in this zone to become nitrogen gas.

【0022】この際、処理水浸潤部材6と該集水管5と
の間に設けた透水性の金属鉄層7によって、処理水中の
硝酸性窒素の還元を更に促進し、排水中へ混入する硝酸
性窒素の量を、問題のないレベルまで大幅に低減させる
ことができる。このようにして脱窒処理された処理水
は、集水管5から排水貯留槽9へ排出される。
At this time, the reduction of nitrate nitrogen in the treated water is further promoted by the water-permeable metallic iron layer 7 provided between the treated water infiltrating member 6 and the water collecting pipe 5, and the nitric acid mixed into the wastewater is reduced. The amount of nitrogen can be greatly reduced to a level that is not problematic. The treated water thus denitrified is discharged from the collecting pipe 5 to the drainage storage tank 9.

【0023】[0023]

【実施例】実施例1 豚舎から排出され糞尿固液分離された後の尿と、豚舎の
洗滌水とを、図1に示す多室型消化室(B)〜(D)で
消化した一次処理水を、図1及び2に示す本発明の放流
式汚水脱窒装置Fで処理した。汚水脱窒装置Fは、空間
2の幅を1m、深さを0.6mとし、水量負荷が80リ
ットル/m・日となるように設計した。
Example 1 Primary treatment in which urine discharged from a piggery and separated from manure and solid and liquid and washing water of the piggery were digested in a multi-compartment digester (B) to (D) shown in FIG. The water was treated in the discharge type sewage denitrification apparatus F of the present invention shown in FIGS. The sewage denitrification apparatus F was designed such that the space 2 had a width of 1 m and a depth of 0.6 m, and a water load of 80 liter / m · day.

【0024】汚水脱窒装置Fに用いる処理水浸潤部材6
としては、図3に示すような、タフ 平均粒径が5.3mmの銑鉄球状物を3mmの厚さに敷
きつめた。1ヶ月運転後、排水貯留槽9から採取した脱
窒処理水の検査結果は、表1に示す通りであった。
Treated water infiltration member 6 used for sewage denitrification device F
As shown in FIG. Pig iron spheres having an average particle size of 5.3 mm were spread to a thickness of 3 mm. After the operation for one month, the inspection results of the denitrification-treated water collected from the drainage storage tank 9 were as shown in Table 1.

【0025】実施例2 金属鉄層7として、実施例1の銑鉄球状物の代わりに、
直径15mmの金属鉄線条体(コンクリート補強用鉄
筋)11本を10cm間隔で空間2の長手方向に敷設
し、その他は実施例1と同様にして処理した。1ヶ月運
転後、排水貯留槽9から採取した脱窒処理水の検査結果
は、表1に示す通りであった。
Example 2 As the metal iron layer 7, instead of the pig iron spheres of Example 1,
Eleven metal iron wires (reinforcing bars for concrete reinforcement) having a diameter of 15 mm were laid in the longitudinal direction of the space 2 at intervals of 10 cm, and the others were treated in the same manner as in Example 1. After the operation for one month, the inspection results of the denitrification-treated water collected from the drainage storage tank 9 were as shown in Table 1.

【0026】比較例1、2 一方、比較のために、上記実施例の汚水脱窒装置Fにお
いて、金属鉄層を使用せず、その他は上記実施例と同様
にして脱窒処理を行った(比較例1)。また、比較例1
において、排水貯留槽9内の処理水の中へ20g/トン
の金属鉄(上記銑鉄球状体)を入れて、25℃で5日間
放置した(比較例2)。それぞれの脱窒処理水の検査結
果は、表1に示す通りであった。
Comparative Examples 1 and 2 On the other hand, for comparison, in the sewage denitrification apparatus F of the above embodiment, a denitrification treatment was carried out in the same manner as in the above embodiment without using a metallic iron layer. Comparative example 1). Comparative Example 1
, 20 g / ton of metallic iron (the pig iron sphere) was put into the treated water in the drainage storage tank 9 and left at 25 ° C. for 5 days (Comparative Example 2). The inspection results of each denitrification treatment water were as shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1からも明らかなように、本発明の汚水
脱窒装置を用いた場合(実施例1、2)は、硝酸性窒素
の量が排水に混入しても問題のないレベルまで低下して
いるが、金属鉄層を用いない比較例1では、硝酸性窒素
の量が多く、排水汚染の可能性がある。一方、比較例1
で得られた脱窒処理水を、更に排水貯留槽内で金属鉄に
より処理した比較例2では、硝酸性窒素は減少するもの
の、亜硝酸性窒素、アンモニア性窒素が増えて、結局全
窒素量はあまり減らず、しかもBOD、CODが高くな
るという問題がある。金属鉄を土壌内で使用した本発明
の汚水脱窒装置を用いている実施例では、全窒素量が大
幅に減少し、窒素の除去が確実に行われており、しかも
BOD、CODが高くなるようなことはない。この理由
は、現状では不明であり、今後解明していかなければな
らない点である。なお、上記実施例では、大規模な畜産
排水処理について述べたが、し尿と洗浄水及び厨房、風
呂、洗濯等の雑排水を含む家庭生活排水などにも有効に
利用できることはいうまでもない。
As is clear from Table 1, when the sewage denitrification apparatus of the present invention is used (Examples 1 and 2), the amount of nitrate nitrogen is reduced to a level at which there is no problem even if it is mixed into the wastewater. However, in Comparative Example 1 in which the metallic iron layer was not used, the amount of nitrate nitrogen was large, and there was a possibility of wastewater contamination. On the other hand, Comparative Example 1
In Comparative Example 2 in which the denitrification-treated water obtained in Step 2 was further treated with metallic iron in a wastewater storage tank, although nitrate nitrogen decreased, nitrite nitrogen and ammonia nitrogen increased, resulting in total nitrogen However, there is a problem that BOD and COD are increased. In the embodiment using the sewage denitrification apparatus of the present invention in which metallic iron is used in soil, the total nitrogen amount is greatly reduced, the nitrogen is reliably removed, and the BOD and COD are increased. There is no such thing. The reason for this is unclear at present, and must be elucidated in the future. Although a large-scale livestock wastewater treatment has been described in the above embodiment, it goes without saying that the wastewater can be effectively used for human waste and washing water, and domestic living wastewater including miscellaneous wastewater such as kitchens, baths, and laundry.

【0029】[0029]

【発明の効果】本発明の汚水脱窒装置によれば、生物学
的脱窒法の優れた特徴を生かしつつ、操作が簡単で、特
別な管理を必要とせず、沈殿池などを設けるための広大
な敷地が不要であり、低コストで、毒性の問題がなく、
寒暖の影響を受け難い上に、家庭用雑排水はもとより、
畜産排水処理などの大規模な汚水処理でも十分な脱窒効
果を奏することができ、特に、硝酸性窒素の量を排水に
混入しても問題のないレベルまで低下させることがで
き、BOD、CODが高くなるようなこともない。
According to the sewage denitrification apparatus of the present invention, while utilizing the excellent features of the biological denitrification method, the operation is simple, no special management is required, and a vast area for installing a sedimentation basin is provided. And no costly site, no toxicity problems,
It is hardly affected by the cold and warm weather,
A sufficient denitrification effect can be achieved even in large-scale wastewater treatment such as livestock wastewater treatment, and in particular, the amount of nitrate nitrogen can be reduced to a level at which there is no problem even if mixed into wastewater. Does not increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放流方式汚水脱窒装置を使用した汚水
処理システムの一例を示す概略縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of a sewage treatment system using a discharge type sewage denitrification device of the present invention.

【図2】図1に示した本発明の放流方式汚水脱窒装置の
横断面図である。
FIG. 2 is a cross-sectional view of the discharge type sewage denitrification apparatus of the present invention shown in FIG.

【図3】本発明において使用する処理水浸潤部材の一例
を示す横断面図である。
FIG. 3 is a cross-sectional view showing an example of a treated water infiltration member used in the present invention.

【符号の説明】[Explanation of symbols]

F 放流方式汚水脱窒装置 1 土 2 空間 3 不透水性部材 4 通気性土壌 5 集水管 6 処理水浸潤部材 7 金属鉄層 8 盛土 F Discharge type sewage denitrification equipment 1 Soil 2 Space 3 Water-impermeable member 4 Breathable soil 5 Water collecting pipe 6 Treated water infiltration member 7 Metal iron layer 8 Embankment

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不透水性部材により土中に形成した上部
が開放された空間内に通気性土壌を充填し、その底部に
集水管を敷設すると共に、該集水管の上方に処理水浸潤
部材を設け、かつ該空間上部に該不透水性部材の外側に
わたって盛土し、該処理水浸潤部材へ供給された汚水処
理水を該通気性土壌内へ浸潤させて脱窒処理した後、該
集水管から排出させる放流式汚水脱窒装置において、処
理水浸潤部材と集水管との間の通気性土壌内に透水性の
金属鉄層を設けたことを特徴とする放流式汚水脱窒装
置。
An air-permeable soil is filled in an open space formed in the soil by an impermeable member, and a water collecting pipe is laid at a bottom thereof, and a treated water infiltrating member is provided above the water collecting pipe. And embankment is provided over the outside of the water-impermeable member in the upper part of the space, and the sewage treated water supplied to the treated water infiltrating member is infiltrated into the permeable soil to perform a denitrification treatment. A discharge type sewage denitrification apparatus, wherein a permeable metallic iron layer is provided in a permeable soil between a treated water infiltration member and a water collection pipe.
【請求項2】 前記金属鉄層が、銑鉄球状物からなる層
である請求項1記載の放流式汚水脱窒装置。
2. The discharge type sewage denitrification apparatus according to claim 1, wherein the metal iron layer is a layer made of pig iron spheres.
【請求項3】 前記金属鉄層が、金属鉄線条体からなる
層である請求項1記載の放流式汚水脱窒装置。
3. The discharge type sewage denitrification apparatus according to claim 1, wherein the metal iron layer is a layer made of a metal iron wire.
【請求項4】 前記処理水浸潤部材が、吸水性シートの
管状体側面に、吸水性シートからなる複数個の翼片を突
出形成せしめたものであることを特徴とする請求項1、
2又は3記載の放流式汚水脱窒装置。
4. The water-infiltrating member according to claim 1, wherein a plurality of wings made of the water-absorbent sheet are formed on the side surface of the tubular body of the water-absorbent sheet.
4. The discharge type sewage denitrification apparatus according to 2 or 3.
JP2001191994A 2001-02-06 2001-05-22 Discharge type wastewater denitrification equipment Pending JP2002307086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191994A JP2002307086A (en) 2001-02-06 2001-05-22 Discharge type wastewater denitrification equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-73102 2001-02-06
JP2001073102 2001-02-06
JP2001191994A JP2002307086A (en) 2001-02-06 2001-05-22 Discharge type wastewater denitrification equipment

Publications (1)

Publication Number Publication Date
JP2002307086A true JP2002307086A (en) 2002-10-22

Family

ID=26611278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191994A Pending JP2002307086A (en) 2001-02-06 2001-05-22 Discharge type wastewater denitrification equipment

Country Status (1)

Country Link
JP (1) JP2002307086A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116748A1 (en) * 2009-04-08 2010-10-14 株式会社オーイケ Sewage treatment device
JP2012081396A (en) * 2010-10-08 2012-04-26 Ooike Co Ltd Treatment device
JP2012125667A (en) * 2010-12-13 2012-07-05 Miki Sato Method for preventing thickening and solidification of scum in sewage treatment tank
KR102075959B1 (en) * 2019-07-23 2020-02-12 박용준 Advanced sewage purification apparatus and the method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116748A1 (en) * 2009-04-08 2010-10-14 株式会社オーイケ Sewage treatment device
JP5595929B2 (en) * 2009-04-08 2014-09-24 株式会社オーイケ Sewage treatment equipment
JP2012081396A (en) * 2010-10-08 2012-04-26 Ooike Co Ltd Treatment device
JP2012125667A (en) * 2010-12-13 2012-07-05 Miki Sato Method for preventing thickening and solidification of scum in sewage treatment tank
KR102075959B1 (en) * 2019-07-23 2020-02-12 박용준 Advanced sewage purification apparatus and the method therefor

Similar Documents

Publication Publication Date Title
CN203845918U (en) Energy-saving emission-reducing type town sewage treatment system
US6652743B2 (en) System and method for removing pollutants from water
Masi et al. Constructed wetlands for the Mediterranean countries: hybrid systems for water reuse and sustainable sanitation
CN102775025B (en) Municipal life wastewater treatment system with high efficiency and low energy consumption
CN110171917B (en) Integrated shore belt system for on-site treatment of river and lake silt and application thereof
CN101525204B (en) Method for treating village sewage and specific device thereof
CN104773929A (en) Zero-valent iron/microorganism composite percolation wall purification system for domestic sewage of irrigated area
KR101218767B1 (en) Vegetation Wetland System for Treatment of Urban Non-Contaminant Pollutants by Aerobic and Anaerobic Decomposition
Lester et al. Sewage and sewage sludge treatment
Bhise et al. Design and suitability of modular vermifilter for domestic sewage treatment
Quansah et al. Sludge wastewater management by conventional treatment process: case study-Bujumbura municipal sewage
CN109574397B (en) Multi-technology coupled efficient constructed wetland treatment system and method
JP2002307086A (en) Discharge type wastewater denitrification equipment
CN113480099B (en) In-situ circulation treatment process for landscape lake water
CN202643507U (en) High-efficiency fluidization-state waste water treatment device without septic tank
JP2002273461A (en) Sewage denitrifying device of undischarging system
Wang et al. Drying beds
CN209835894U (en) Ecological bank protection of water purification type
Mishuk et al. Assessment of treatment efficiency by non-energy consuming aeration system for faecal sludge management in an emergency human settlement in Bangladesh
Jin et al. Design and operation of a wastewater treatment plant treating low concentration of municipal wastewater
JP2936067B1 (en) Sludge treatment method using tidal wetland
Roccaro et al. Historical Development of Sanitation from the 19th Century to Nowadays: Centralized vs Decentralized Wastewater Management Systems (Evolution of Sanitation and Wastewater Technologies through the Centuries)
JP3105519B2 (en) Sewage denitrification equipment
CN111410365A (en) Sanitary drainage and pollution treatment method
O'Keeffe et al. Practical measures for reducing phosphorus and faecal microbial loads from onsite wastewater treatment system discharges to the environment: a review