JP2002306603A - Oxygen concentrator - Google Patents

Oxygen concentrator

Info

Publication number
JP2002306603A
JP2002306603A JP2001116609A JP2001116609A JP2002306603A JP 2002306603 A JP2002306603 A JP 2002306603A JP 2001116609 A JP2001116609 A JP 2001116609A JP 2001116609 A JP2001116609 A JP 2001116609A JP 2002306603 A JP2002306603 A JP 2002306603A
Authority
JP
Japan
Prior art keywords
gas
ultrasonic
oxygen
calculating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001116609A
Other languages
Japanese (ja)
Other versions
JP4612218B2 (en
Inventor
Naotoshi Fujimoto
直登志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2001116609A priority Critical patent/JP4612218B2/en
Publication of JP2002306603A publication Critical patent/JP2002306603A/en
Application granted granted Critical
Publication of JP4612218B2 publication Critical patent/JP4612218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02845Humidity, wetness

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus capable of inexpensively and simply measuring the oxygen concentration before and after humidification and the gas flow after humidification by connecting one ultrasonic gas measuring device at the back of a humidifier. SOLUTION: Two ultrasonic vibrators, a temperature sensor, and a humidity sensor are mounted in a pipe where humidified gas flows, whereby the oxygen concentration before and after humidification and the humidified gas flow can be measured using the water content and temperature calculated from the speed of sound, relative humidity and temperature measured by transmitting and receiving the ultrasonic waves in the gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波により、ガ
スの濃度及び流量を測定する装置に関するものである。
さらに詳細には、例えば医療目的で使用される酸素濃縮
器から送り出され、加湿器を通過した加湿後のガスか
ら、ガスの流量、及び、加湿前後の酸素濃度の測定に適
する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the concentration and flow rate of a gas using ultrasonic waves.
More specifically, the present invention relates to an apparatus suitable for measuring the flow rate of a gas, and the oxygen concentration before and after humidification, for example, from a gas after humidification that is sent out from an oxygen concentrator used for medical purposes and passed through a humidifier. .

【0002】[0002]

【従来の技術】従来、加湿器を内蔵、もしくは外付けに
て利用する酸素濃縮器において、酸素濃度測定装置とし
ては、一般的に、酸化物イオン導電体である安定化ジル
コニアを用いたジルコニアセンサが用いられている。ま
た、該ガスの流量測定装置としては差圧式流量計が広く
用いられており、濃度、流量測定のために別々の測定装
置が搭載されている。
2. Description of the Related Art Conventionally, in an oxygen concentrator using a humidifier internally or externally, a zirconia sensor using a stabilized zirconia which is an oxide ion conductor is generally used as an oxygen concentration measuring device. Is used. A differential pressure type flow meter is widely used as a gas flow rate measuring device, and is equipped with separate measuring devices for measuring the concentration and the flow rate.

【0003】酸素濃縮器から送り出されるガスの流量及
び酸素濃度を同時に測定可能とする測定装置として、た
とえば特開平6-213877には、ガスが通る配管中に超音波
振動子2つを対向させて配置し、該超音波振動子間を伝
播する超音波の伝播時間を計測することによってガスの
濃度及び流量を測定する、超音波式ガス濃度流量測定装
置が記載されている。
As a measuring device capable of simultaneously measuring the flow rate and the oxygen concentration of the gas sent from the oxygen concentrator, for example, Japanese Patent Application Laid-Open No. 6-213877 discloses a measuring device in which two ultrasonic vibrators are opposed to each other in a pipe through which the gas passes. An ultrasonic gas concentration and flow rate measuring device is disclosed, which is arranged and measures a gas concentration and a flow rate by measuring a propagation time of an ultrasonic wave propagating between the ultrasonic transducers.

【0004】従来から提案されている超音波式ガス測定
装置のガス濃度測定方法は次の2種類に大別できる。
被測定ガス中を伝播する音速と濃度との関係式、もしく
は音速−濃度の関係テーブルをあらかじめ保持してお
き、測定される音速からガス濃度を求める方法。被測
定ガスを構成する分子の割合を1つの変数で記述できる
場合、すなわち、被測定ガスが例えば酸素と窒素の2分
子から構成されており、酸素濃度をPとすれば窒素濃度
は1-Pと記述できるような場合に、被測定ガス中を伝播
する音速は被測定ガスの温度と平均分子量の関数になっ
ていることから、音速と温度を測定することで平均分子
量を計算し、平均分子量=酸素分子量×P+窒素分子量
×(1-P)から酸素濃度Pを求める方法。
[0004] Conventionally proposed methods for measuring the gas concentration of an ultrasonic gas measuring apparatus can be broadly classified into the following two types.
A method in which a relational expression between a sound speed and a concentration propagating in a measured gas or a sound speed-concentration relation table is held in advance, and the gas concentration is determined from the measured sound speed. When the ratio of the molecules constituting the gas to be measured can be described by one variable, that is, when the gas to be measured is composed of, for example, two molecules of oxygen and nitrogen, and the oxygen concentration is P, the nitrogen concentration is 1-P Since the speed of sound propagating in the gas to be measured is a function of the temperature and the average molecular weight of the gas to be measured, the average molecular weight is calculated by measuring the speed of sound and the temperature, and the average molecular weight is calculated. = A method of calculating the oxygen concentration P from oxygen molecular weight x P + nitrogen molecular weight x (1-P).

【0005】[0005]

【発明が解決しようとする課題】酸素濃縮器から送り出
されるガスの酸素濃度、流量を測定するために、それぞ
れジルコニアセンサ、差圧式流量計等を装備する場合、
測定装置が2つになるために占有体積が増加し、装置の
小型化に不利となり、また、コストアップにつながると
いった欠点があった。
When a zirconia sensor, a differential pressure type flow meter, etc. are provided to measure the oxygen concentration and the flow rate of the gas sent from the oxygen concentrator, respectively.
Since there are two measuring devices, the occupied volume increases, which is disadvantageous for miniaturization of the device, and also leads to an increase in cost.

【0006】このような問題点を解決するため、安価に
作成でき、1つの測定装置にて濃度、流量を同時に測定
できる装置として、超音波式ガス測定装置が各種提案さ
れているが、上述したの方法を酸素濃縮器から送り出
されたガスが加湿器を通過した後に設置された測定装置
に適用する場合には、酸素分子と水分子の濃度は独立に
変化するため、濃度と音速の関係式を導き出すためには
多種多様な濃度の組み合わせにおける音速をあらかじめ
測定しておかなければならず、多大な労力が必要である
という欠点があった。
In order to solve such problems, various ultrasonic gas measuring devices have been proposed as devices which can be manufactured at low cost and can simultaneously measure the concentration and the flow rate with one measuring device. If the method of (1) is applied to a measuring device installed after the gas sent from the oxygen concentrator passes through the humidifier, the concentration of oxygen molecules and water molecules changes independently. In order to derive, the sound velocity in various combinations of concentrations must be measured in advance, and there is a disadvantage that a great deal of labor is required.

【0007】また、の方法を適用する場合には、酸素
分子と水分子の濃度が独立に変化するため、測定装置を
加湿器の後に設置しても正確な酸素濃度を測定できない
という欠点があった。
Further, when the method (1) is applied, there is a disadvantage that the oxygen concentration cannot be measured accurately even if the measuring device is installed after the humidifier since the concentrations of oxygen molecules and water molecules change independently. Was.

【0008】酸素濃縮器を使用する使用者に対しては、
使用者に最も近い部分、すなわち、加湿器を接続して使
用する場合には、加湿器の後にガス測定装置を測定する
ことが好ましい。なぜなら、加湿器の前に測定装置を接
続した場合には、例えば加湿器の装着ミス等がありガス
漏れが発生している場合、使用者には測定装置にて測定
された流量とは異なる流量にてガスが送られることにな
ってしまう。
For users using an oxygen concentrator,
When a portion closest to the user, that is, a humidifier is connected and used, it is preferable to measure the gas measuring device after the humidifier. Because, if the measuring device is connected before the humidifier, for example, if the humidifier is installed incorrectly and a gas leak occurs, the user will be asked for a different flow rate than the flow rate measured by the measuring device. The gas will be sent at.

【0009】本発明は、加湿器の後に超音波式ガス測定
装置を1つだけ接続することにより、安価、かつ簡便に
加湿前後における酸素濃度、及び加湿後におけるガス流
量を測定できる方法、及び装置を見出すことを目的とし
ている。
SUMMARY OF THE INVENTION The present invention provides a method and an apparatus which can easily and inexpensively and simply measure the oxygen concentration before and after humidification and the gas flow rate after humidification by connecting only one ultrasonic gas measuring device after the humidifier. The purpose is to find out.

【0010】[0010]

【課題を解決するための手段】本発明者らは、かかる目
的を達成するために鋭意研究した結果、加湿後のガスの
流れる配管中に、2つの超音波振動子、温度センサ、及
び湿度センサを装備した測定装置を1つだけ接続するこ
とにより、加湿前後の酸素濃度、及び加湿後のガス流量
を測定可能となることを見出したものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the object, and as a result, found that two ultrasonic vibrators, a temperature sensor, and a humidity sensor were provided in a pipe through which gas after humidification flows. It has been found that the oxygen concentration before and after humidification and the gas flow rate after humidification can be measured by connecting only one measuring device equipped with.

【0011】即ち本発明は、空気から酸素を分離する酸
素濃縮手段、酸素濃縮空気を加湿する加湿器、加湿後酸
素濃縮空気を使用者に供給する酸素供給手段を備えた酸
素濃縮装置において、加湿器の下流に超音波式ガス測定
手段を備え、該超音波式ガス測定手段が測定ガスの流れ
る配管、該配管中に対向させて配置した超音波を送受信
する2つの超音波振動子、温度センサ、及び湿度センサ
を備え、該超音波振動子の各々から送信された超音波を
他方の超音波振動子で受信するまでの伝播速度を検出
し、検出結果に基づいてガス流量を演算する流量演算手
段、該温度センサ及び湿度センサの出力値から測定ガス
中の含有水分量を演算し、超音波の伝播速度、ガス温度
から、測定ガス濃度を演算する濃度演算手段を備えるこ
とを特徴とする酸素濃縮装置を提供するものである。
That is, the present invention relates to an oxygen concentrating apparatus provided with oxygen concentrating means for separating oxygen from air, a humidifier for humidifying oxygen-enriched air, and oxygen supplying means for supplying oxygen-enriched air to a user after humidification. An ultrasonic gas measuring means provided downstream of the vessel, a pipe through which the ultrasonic gas measuring means flows, two ultrasonic transducers for transmitting and receiving ultrasonic waves arranged opposite to each other in the pipe, and a temperature sensor , And a humidity sensor, a flow rate calculation for detecting a propagation speed until the ultrasonic wave transmitted from each of the ultrasonic vibrators is received by the other ultrasonic vibrator, and calculating a gas flow rate based on the detection result. Means for calculating the amount of water contained in the measurement gas from the output values of the temperature sensor and the humidity sensor, and calculating the measurement gas concentration from the ultrasonic wave propagation speed and the gas temperature. There is provided a condensation device.

【0012】また本発明は、測定ガスの流れる配管、該
配管中に対向させて配置した超音波を送受信する2つの
超音波振動子、温度センサ、及び湿度センサを備え、該
超音波振動子の各々から送信された超音波を他方の超音
波振動子で受信するまでの伝播速度を検出し、検出結果
に基づいてガス流量を演算する流量演算手段、該温度セ
ンサ及び湿度センサの出力値から測定ガス中の含有水分
量を演算し、超音波の伝播速度、ガス温度から、測定ガ
ス濃度を演算する濃度演算手段を備えることを特徴とす
る超音波式ガス測定装置を提供するものである。
Further, the present invention comprises a pipe through which a measurement gas flows, two ultrasonic transducers for transmitting and receiving ultrasonic waves arranged opposite to each other in the pipe, a temperature sensor, and a humidity sensor. Flow rate calculating means for detecting the propagation speed until the ultrasonic wave transmitted from each of them is received by the other ultrasonic transducer, and calculating the gas flow rate based on the detection result, and measuring from the output values of the temperature sensor and the humidity sensor. It is an object of the present invention to provide an ultrasonic gas measuring apparatus comprising a concentration calculating means for calculating a moisture content in a gas and calculating a measurement gas concentration from a propagation speed of an ultrasonic wave and a gas temperature.

【0013】また本発明は、測定ガスの温度及び湿度か
ら測定ガス中の含有水分量を算出し、測定ガスの流れに
対して超音波振動子を対向して配置し2つの超音波振動
子の各々から送信された超音波を他方の超音波振動子で
受信するまでの伝播速度を測定し、ガス温度及び該含有
水分量からガス流量及びガス濃度を測定する方法を提供
するものである。
Further, according to the present invention, the amount of water contained in the measurement gas is calculated from the temperature and the humidity of the measurement gas, and the ultrasonic vibrator is disposed so as to face the flow of the measurement gas. An object of the present invention is to provide a method of measuring a propagation speed until an ultrasonic wave transmitted from each of them is received by the other ultrasonic transducer, and measuring a gas flow rate and a gas concentration from a gas temperature and the water content.

【0014】[0014]

【発明の実施の形態】ガス流量を測定する方法は、上述
の装置構成を用い、広く知られている方法にて簡便に計
算可能である。すなわち、2つの超音波振動子間を流れ
るガス中の超音波伝播速度がC[m/sec]、該ガスの流速が
V[m/sec]であったとき、該ガスの流れに対して順方向に
超音波を送信したときに測定される超音波伝播速度V1[m
/sec]は、 V1 = C+V ---------- 式(1) 逆方向に超音波を送信したときに測定される超音波伝播
速度V2[m/sec]は、 V2 = C−V ---------- 式(2) となるので、該ガスの流速V[m/sec]は、次式で求めるこ
とができる。 V=(V1−V2)/2 ---------- 式(3) これに該ガスの流れている配管の内面積[m2]を乗じるこ
とで、該ガスの流量[m3/sec]を求めることができる。さ
らに体積換算、時間換算を行えば、流量を[L/min]で求
めることも容易である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of measuring a gas flow rate can be easily calculated by a widely known method using the above-described apparatus configuration. That is, the ultrasonic wave propagation velocity in the gas flowing between the two ultrasonic transducers is C [m / sec], and the flow velocity of the gas is
V [m / sec], the ultrasonic wave propagation velocity V 1 [m measured when ultrasonic waves are transmitted in the forward direction to the gas flow
/ sec] is: V 1 = C + V Equation (1) The ultrasonic wave propagation velocity V 2 [m / sec] measured when an ultrasonic wave is transmitted in the reverse direction is V 2 = C−V 式 式 式 式 式 式 式 式 式 式 式 式 式 2 式 式 式 式 式 式 式 式 式 式 、 、 2 、 式 式 、 2 、 、 、 、 2 、 、流速 流速 、 流速 流速 次 次 次 V V V [[次 次 次 次 次 次 次 次 On occasion it was found that V = (V 1 −V 2 ) / 2 Equation (3) By multiplying this by the inner area [m 2 ] of the pipe through which the gas flows, the flow rate of the gas is obtained. [m 3 / sec] can be obtained. Further, if volume conversion and time conversion are performed, it is easy to obtain the flow rate in [L / min].

【0015】以下には、加湿後に設置された超音波式ガ
ス測定装置により、加湿前後のガス濃度を求める方法に
ついて述べる。ガス中を伝播する超音波の伝播速度は、
ガスの濃度、温度の関数として表されることが広く知ら
れている。すなわち、ガスの平均分子量をM、温度をT
[K]とすれば、ガス中の超音波伝播速度C[m/sec]は、次
式で表される。
Hereinafter, a method for obtaining gas concentrations before and after humidification by an ultrasonic gas measuring device installed after humidification will be described. The propagation speed of ultrasonic waves propagating in gas is
It is widely known that this is expressed as a function of gas concentration and temperature. That is, the average molecular weight of the gas is M and the temperature is T
Assuming that [K], the ultrasonic wave propagation velocity C [m / sec] in the gas is expressed by the following equation.

【0016】[0016]

【数1】 (Equation 1)

【0017】ここで、k、Rはそれぞれ、比熱比(定積モ
ル比熱と定圧モル比熱の比。分子毎に既知の値)、気体
定数である。すなわち、ガス中の超音波伝播速度C[m/se
c]とガスの温度T[K]が測定できれば、ガスの平均分子量
Mを決定できる。
Here, k and R are a specific heat ratio (a ratio of the specific heat molar specific heat to the constant pressure molar specific heat; a known value for each molecule) and a gas constant, respectively. That is, the ultrasonic wave propagation velocity C [m / se
c] and the gas temperature T [K] can be measured, the average molecular weight of the gas
M can be determined.

【0018】ガスの温度Tは、具備する温度センサにて
測定し、ガス中の音速Cは、式(1)、(2)のように
測定される音速V1、V2を用いて次式で求める。
The temperature T of the gas is measured by a temperature sensor provided, and the sound velocity C in the gas is calculated by using the sound velocities V 1 and V 2 measured as in the equations (1) and (2). Ask for.

【0019】[0019]

【数2】 (Equation 2)

【0020】前述のように、被測定ガスを構成する分子
の割合を1つの変数で記述できる場合であれば、計算さ
れた平均分子量からガス濃度を決定可能であるが、例え
ば酸素濃縮器から送り出されたガスが加湿器を通過した
後のガスのように、酸素分子と水分子といった被測定ガ
スを構成する分子の割合が独立となっているような場合
には、該方法で正確な酸素濃度を導出することは不可能
である。
As described above, if the ratio of the molecules constituting the gas to be measured can be described by one variable, the gas concentration can be determined from the calculated average molecular weight. If the ratio of the molecules constituting the gas to be measured, such as oxygen molecules and water molecules, is independent, such as the gas after passing through a humidifier, the oxygen concentration can be accurately determined by the method. Is impossible to derive.

【0021】しかしながら、超音波式ガス測定装置に新
たに湿度センサを内蔵させることで、以下に示す方法に
より、加湿後に該測定装置を1つだけ設置した場合にお
いても加湿前後のガス濃度を正確に測定することが可能
となる。以下では加湿前のガスが酸素分子、窒素分子の
2種類からなるガスに関して記述するが、加湿前の被測
定ガスを構成する分子の割合を1つの変数で記述できる
場合であれば容易に適用できるものであり、これだけに
限定されるものではない。
However, by incorporating a new humidity sensor into the ultrasonic gas measuring device, even if only one measuring device is installed after humidification, the gas concentration before and after humidification can be accurately measured by the following method. It becomes possible to measure. Below, the gas before humidification is
A description will be given of two types of gases, but the present invention is easily applicable as long as the ratio of molecules constituting the gas to be measured before humidification can be described by one variable, and is not limited to this.

【0022】まず、本願発明による超音波式ガス測定装
置に内蔵された湿度センサの出力から、加湿後のガス中
の含有水分量を求める。湿度センサの出力が相対湿度A
[%]である場合には、温度センサによって得られるガス
温度Ts[K]と飽和水蒸気量[g/m3]との関係を用いて、絶
対湿度B[g/m3]を計算する。ガス温度と飽和水蒸気量の
関係は一般的に知られており、A[%]からB[g/m3]を求め
ることは容易である。B[g/m 3]は、水の分子量を18とす
るとB/18[mol/m3]と変換することができる。すなわち、
気体1[m3]中に、B/18[mol]の水分子が存在することにな
る。ここで、気体の状態方程式(PV=nRT)を用いると、
1[atm]における被測定ガス1[m3](=1000[L])中の水分
子の体積Vw[L]を次式で求めることができる。 Vw = (B/18)RTs ---------- 式(6) すなわち、被測定ガス中に存在する水分子の濃度100×
α[%]を次式で求めることができる。 100×α = 100×(Vw /1000) ---------- 式(7)
First, an ultrasonic gas measuring apparatus according to the present invention
From the output of the humidity sensor built into the
Is determined. Humidity sensor output is relative humidity A
If [%], the gas obtained by the temperature sensor
Temperature Ts[K] and saturated steam amount [g / mThree] Using the relationship
Humidity B [g / mThree]. Gas temperature and saturated water vapor
The relationship is generally known, from A [%] to B [g / mThree]
It is easy to do. B [g / m Three] Assumes that the molecular weight of water is 18.
Then B / 18 [mol / mThree] Can be converted. That is,
Gas 1 [mThree] Contains water molecules of B / 18 [mol].
You. Here, using the equation of state of gas (PV = nRT),
Gas to be measured at 1 [atm] 1 [mThree] (= 1000 [L])
Child volume Vw[L] can be obtained by the following equation. Vw = (B / 18) RTs ---------- Equation (6) That is, the concentration of water molecules present in the gas to be measured is 100 ×
α [%] can be obtained by the following equation. 100 × α = 100 × (Vw/ 1000) ---------- Equation (7)

【0023】被測定ガス中の水分子の濃度(100×α
[%])を一意に決定できれば、加湿前のガスが酸素(100
×ρ[%])と窒素(100×(1-ρ)[%])からなる混合気体
とした場合には、被測定ガスの平均分子量Mは次式で表
すことが可能となる。ただし、酸素、窒素の分子量をそ
れぞれ32、28とする。 M = (32ρ+28(1-ρ))(1-α) + 18α -------- 式(8)
The concentration of water molecules in the gas to be measured (100 × α
[%]), If the gas before humidification is oxygen (100
× ρ [%]) and nitrogen (100 × (1-ρ) [%]), the average molecular weight M of the gas to be measured can be expressed by the following equation. However, the molecular weights of oxygen and nitrogen are 32 and 28, respectively. M = (32ρ + 28 (1-ρ)) (1-α) + 18α -------- Equation (8)

【0024】さらに、 2原子分子(例:O2、N2)の比熱
比k2は1.4であり、3原子分子(例:H2O)の比熱比k3
1.3であることが知られており、被測定ガスの比熱比k
は次式で求めることができる。 k = 1.4(1-α) + 1.3α ---------- 式(9)
Furthermore, diatomic molecules: specific heat ratio k 2 (eg O 2, N 2) is 1.4, 3 atom molecules (eg: H 2 O) specific heat ratio k 3 of
It is known that the specific heat ratio is 1.3.
Can be obtained by the following equation. k = 1.4 (1-α) + 1.3α ---------- Equation (9)

【0025】すなわち、被測定ガスの温度Ts[K]は既に
測定済であるので、被測定ガス中の音速Cs[m/sec]は式
(4)から、次式で表すことが可能である。
That is, since the temperature T s [K] of the gas to be measured has already been measured, the sound velocity C s [m / sec] in the gas to be measured can be expressed by the following equation from the equation (4). It is.

【0026】[0026]

【数3】 (Equation 3)

【0027】したがって、被測定ガス中の音速Cs[m/se
c]を式(5)を用いて測定すれば、未知数である酸素濃
度ρは、式(10)を変形して整理することにより、次
式のように求めることが可能である。
Therefore, the sound speed C s [m / se
If c] is measured using equation (5), the oxygen concentration ρ, which is an unknown, can be obtained as follows by modifying equation (10) and rearranging it.

【0028】[0028]

【数4】 (Equation 4)

【0029】また、加湿前の酸素濃度100×ρ[%]を特定
できれば、加湿後の酸素濃度100×ρ'[%]も次式から容
易に求めることが可能である。
Further, if the oxygen concentration before humidification 100 × ρ [%] can be specified, the oxygen concentration after humidification 100 × ρ '[%] can be easily obtained from the following equation.

【0030】 ρ'= ρ×(1‐α) ---------- 式(12) 以上により、被測定ガスの温度Ts[K]、湿度A[%](Aより
αを求める)、音速Cs[m/sec]を測定できれば、加湿前
後の酸素濃度、及び被測定ガスの流量を測定可能であ
る。
Ρ ′ = ρ × (1-α) ---------- Equation (12) From the above, the temperature T s [K] and the humidity A [%] of the measured gas (α from A If the sound velocity C s [m / sec] can be measured, the oxygen concentration before and after humidification and the flow rate of the gas to be measured can be measured.

【0031】以下に実施例を示す。本実施例において
は、加湿前の被測定ガスが酸素と窒素の2分子からなっ
ており、ガスの流量、及び、加湿前後の酸素濃度を測定
する装置に関して示す。本発明によって測定できるガス
は、本実施例に示すように加湿前は酸素と窒素からなる
ガスだけに限定されるものではなく、他の分子によって
構成されるガスに対しても容易に適用できる。
An embodiment will be described below. In the present embodiment, the gas to be measured before humidification is composed of two molecules of oxygen and nitrogen, and an apparatus for measuring the gas flow rate and the oxygen concentration before and after humidification will be described. The gas that can be measured by the present invention is not limited to a gas composed of oxygen and nitrogen before humidification as shown in the present embodiment, but can be easily applied to a gas composed of other molecules.

【0032】図1に本願発明による超音波式ガス測定装
置の構成を示す概略図を示す。2つの超音波振動子2を
結ぶ部分の配管1は円筒形状をしており、超音波振動子
2は、加湿後のガスの流れる配管1の中に対向させて配
置する。温度センサ3は、超音波伝播経路上のガスの流
れを乱すことのないように、ガスの出口付近に配置す
る。配管1を流れる被測定ガスの温度変化が無視できな
い場合には、ガスの入り口付近にも温度センサ3を装備
し2つの温度センサの出力平均値をガス温度とするよう
な構成でも良い。さらに、温度センサ3の近傍に湿度セ
ンサ10を装備する。2つの超音波振動子2は、それぞ
れ超音波の送受信が可能であり、送受信の切り替えは送
受信切り替え器4によって実施される。
FIG. 1 is a schematic diagram showing the configuration of an ultrasonic gas measuring apparatus according to the present invention. The pipe 1 at the portion connecting the two ultrasonic vibrators 2 has a cylindrical shape, and the ultrasonic vibrator 2 is arranged facing the pipe 1 through which the gas after humidification flows. The temperature sensor 3 is arranged near the gas outlet so as not to disturb the gas flow on the ultrasonic wave propagation path. If the temperature change of the gas to be measured flowing through the pipe 1 cannot be neglected, the temperature sensor 3 may be provided also near the gas inlet, and the average output value of the two temperature sensors may be used as the gas temperature. Further, a humidity sensor 10 is provided near the temperature sensor 3. The two ultrasonic transducers 2 can transmit and receive ultrasonic waves, respectively, and switching between transmission and reception is performed by a transmission and reception switch 4.

【0033】加湿後のガスから、流量、及び、加湿前後
の酸素濃度を測定する際には、ガス投入中において、マ
イクロコンピュータ7より超音波の送信パルスをドライ
バ5に送り、送受信切り替え器4によって被測定ガスの
流れと順方向に超音波を送信するように選択された超音
波振動子2にパルス電圧が印加され、超音波が送信され
る。もう一方の超音波振動子2によって受信された超音
波は、送受信切り替え器4、レシーバ6を介してマイク
ロコンピュータ7に入力され、超音波伝播速度V1[m/se
c]が測定される。該超音波伝播速度V1[m/sec]が測定さ
れた後、送受信切り替え器4によって超音波振動子2の
送受信を切り替え、今度は被測定ガスの流れと逆方向に
超音波の送信を行い、先と同様に超音波伝播速度V2[m/s
ec]を測定する。そして、マイクロコンピュータ7に
て、上述した式(3)を用いて被測定ガスの流速、さら
には流量が計算され、表示器8に結果が表示される。
When measuring the flow rate and the oxygen concentration before and after the humidification from the gas after the humidification, the microcomputer 7 sends an ultrasonic transmission pulse to the driver 5 during the gas injection, and the transmission / reception switch 4 A pulse voltage is applied to the ultrasonic transducer 2 selected to transmit ultrasonic waves in the forward direction of the flow of the gas to be measured, and the ultrasonic waves are transmitted. The ultrasonic wave received by the other ultrasonic transducer 2 is input to the microcomputer 7 via the transmission / reception switch 4 and the receiver 6, and the ultrasonic wave propagation speed V 1 [m / se
c] is measured. After the ultrasonic wave propagation velocity V 1 [m / sec] is measured, the transmission / reception of the ultrasonic vibrator 2 is switched by the transmission / reception switch 4 and the ultrasonic wave is transmitted in the opposite direction to the flow of the gas to be measured. , The ultrasonic propagation velocity V 2 [m / s
ec]. Then, the microcomputer 7 calculates the flow velocity and the flow rate of the gas to be measured by using the above-described equation (3), and displays the result on the display 8.

【0034】さらに、マイクロコンピュータ7にてV1
V2から被測定ガス中の音速Cs[m/sec]も計算される。こ
のとき、温度センサ3と湿度センサ10によって被測定
ガスの温度Ts[K]、相対湿度A[%]を測定しておく。温度
と相対湿度が測定されると、マイクロコンピュータ7に
おいて、ガス温度Ts[K]と飽和水蒸気量[g/m3]との関係
から絶対湿度B[g/m3]が計算され、上述の式(6)、
(7)から被測定ガス中に存在する水分子の濃度100×
α[%]が計算される。
Further, V 1 ,
Sound velocity C s [m / sec] in the measurement gas from V 2 is also calculated. At this time, the temperature T s [K] and the relative humidity A [%] of the gas to be measured are measured by the temperature sensor 3 and the humidity sensor 10. When the temperature and the relative humidity are measured, the microcomputer 7 calculates the absolute humidity B [g / m 3 ] from the relationship between the gas temperature T s [K] and the saturated water vapor amount [g / m 3 ]. Equation (6),
From (7), the concentration of water molecules present in the gas to be measured is 100 ×
α [%] is calculated.

【0035】αが計算されれば、すでに求められている
被測定ガスの温度Ts、被測定ガス中の音速Csを用いて式
(11)、(12)から加湿前後の酸素濃度がマイクロ
コンピュータ7にて計算され、表示器8に結果が表示さ
れる。
When α is calculated, the oxygen concentration before and after humidification is calculated from the equations (11) and (12) using the temperature T s of the gas to be measured and the sound velocity C s in the gas to be measured, which have already been obtained. The calculation is performed by the computer 7, and the result is displayed on the display 8.

【0036】以上のように、本願発明によれば、加湿後
のガスであっても被測定ガスの流量、及び、加湿前後の
ガス濃度を測定可能となる。
As described above, according to the present invention, the flow rate of the gas to be measured and the gas concentration before and after the humidification can be measured even for the gas after the humidification.

【0037】本発明の酸素濃縮装置(図示せず)は、空
気中の酸素を分離濃縮して呼吸器疾患患者に供給する装
置であり、酸素濃縮手段としては、酸素よりも窒素を選
択的に充填した5A型ゼオライトなどの吸着剤を充填し
た吸着床を使用した圧力変動吸着型酸素濃縮装置が好適
に使用される。しかし特にかかる手段に限定するもので
はなく、酸素を選択的に透過する高分子酸素富化膜や、
固体電解質膜などを使用し空気を原料として酸素を分離
する手段にも適用可能である。
The oxygen concentrating device (not shown) of the present invention is a device for separating and concentrating oxygen in the air and supplying it to a patient with a respiratory disease. The oxygen concentrating means selectively uses nitrogen over oxygen. A pressure fluctuation adsorption type oxygen concentrator using a bed filled with an adsorbent such as a packed 5A zeolite is preferably used. However, the present invention is not particularly limited to such means, and a polymer oxygen-enriched membrane that selectively transmits oxygen,
The present invention is also applicable to means for separating oxygen using air as a raw material by using a solid electrolyte membrane or the like.

【0038】かかる手段で発生した酸素濃縮空気を、内
部に水を充填した加湿器を通すことで酸素を加湿し、鼻
カニューラなどの供給手段を用いて使用者に供給する。
加湿器としてはバブリング式や表面蒸発式などの水加湿
器が使用される。
The oxygen-enriched air generated by such means is humidified by passing it through a humidifier filled with water, and supplied to the user using a supply means such as a nasal cannula.
As the humidifier, a water humidifier such as a bubbling type or a surface evaporation type is used.

【0039】上記超音波式ガス測定装置(手段)は、か
かる加湿器の下流側に組み込む。これにより実際に使用
者に供給する加湿酸素の流量、酸素濃度を正確に測定す
ることが可能となる。
The above ultrasonic gas measuring device (means) is installed downstream of the humidifier. This makes it possible to accurately measure the flow rate and oxygen concentration of the humidified oxygen actually supplied to the user.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超音波式ガス測定装置の構成を示す概
略図。
FIG. 1 is a schematic diagram showing a configuration of an ultrasonic gas measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 配管 2 超音波振動子 3 温度センサ 4 送受信切り替え器 5 ドライバ 6 レシーバ 7 マイクロコンピュータ 8 表示器 9 不揮発性メモリ 10 湿度センサ DESCRIPTION OF SYMBOLS 1 Piping 2 Ultrasonic transducer 3 Temperature sensor 4 Transmission / reception switch 5 Driver 6 Receiver 7 Microcomputer 8 Display 9 Non-volatile memory 10 Humidity sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気から酸素を分離する酸素濃縮手段、
酸素濃縮空気を加湿する加湿器、加湿後酸素濃縮空気を
使用者に供給する酸素供給手段を備えた酸素濃縮装置に
おいて、加湿器の下流に超音波式ガス測定手段を備え、
該超音波式ガス測定手段が測定ガスの流れる配管、該配
管中に対向させて配置した超音波を送受信する2つの超
音波振動子、温度センサ、及び湿度センサを備え、該超
音波振動子の各々から送信された超音波を他方の超音波
振動子で受信するまでの伝播速度を検出し、検出結果に
基づいてガス流量を演算する流量演算手段、該温度セン
サ及び湿度センサの出力値から測定ガス中の含有水分量
を演算し、超音波の伝播速度、ガス温度から、測定ガス
濃度を演算する濃度演算手段を備えることを特徴とする
酸素濃縮装置。
1. An oxygen concentrating means for separating oxygen from air,
A humidifier for humidifying oxygen-enriched air, an oxygen concentrator provided with oxygen supply means for supplying oxygen-enriched air after humidification to a user, comprising an ultrasonic gas measuring means downstream of the humidifier,
The ultrasonic gas measuring means includes a pipe through which the measurement gas flows, two ultrasonic transducers for transmitting and receiving ultrasonic waves arranged opposite to each other in the pipe, a temperature sensor, and a humidity sensor. A flow rate calculating means for detecting a propagation velocity until the ultrasonic wave transmitted from each of the ultrasonic waves is received by the other ultrasonic vibrator and calculating a gas flow rate based on the detection result, and measuring from output values of the temperature sensor and the humidity sensor. An oxygen concentrator comprising a concentration calculating means for calculating a moisture content in a gas and calculating a measurement gas concentration from a propagation speed of an ultrasonic wave and a gas temperature.
【請求項2】 測定ガスの流れる配管、該配管中に対向
させて配置した超音波を送受信する2つの超音波振動
子、温度センサ、及び湿度センサを備え、該超音波振動
子の各々から送信された超音波を他方の超音波振動子で
受信するまでの伝播速度を検出し、検出結果に基づいて
ガス流量を演算する流量演算手段、該温度センサ及び湿
度センサの出力値から測定ガス中の含有水分量を演算
し、超音波の伝播速度、ガス温度から、測定ガス濃度を
演算する濃度演算手段を備えることを特徴とする超音波
式ガス測定装置。
2. A pipe through which a measurement gas flows, two ultrasonic transducers for transmitting and receiving ultrasonic waves arranged in the pipes facing each other, a temperature sensor, and a humidity sensor, each of which is transmitted from each of the ultrasonic transducers. The flow rate calculating means for detecting the propagation speed until the received ultrasonic wave is received by the other ultrasonic transducer and calculating the gas flow rate based on the detection result, the output value of the temperature sensor and the humidity sensor, An ultrasonic gas measuring apparatus comprising a concentration calculating means for calculating a moisture content and calculating a measurement gas concentration from an ultrasonic wave propagation speed and a gas temperature.
【請求項3】 測定ガスの温度及び湿度から測定ガス中
の含有水分量を算出し、測定ガスの流れに対して超音波
振動子を対向して配置し2つの超音波振動子の各々から
送信された超音波を他方の超音波振動子で受信するまで
の伝播速度を測定し、ガス温度及び該含有水分量からガ
ス流量及びガス濃度を測定する方法。
3. A method for calculating a water content in a measurement gas from a temperature and a humidity of the measurement gas, arranging an ultrasonic vibrator so as to face a flow of the measurement gas, and transmitting the ultrasonic vibrator from each of the two ultrasonic vibrators. A method of measuring a propagation velocity until the received ultrasonic wave is received by the other ultrasonic transducer, and measuring a gas flow rate and a gas concentration from the gas temperature and the water content.
JP2001116609A 2001-04-16 2001-04-16 Oxygen concentrator Expired - Lifetime JP4612218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116609A JP4612218B2 (en) 2001-04-16 2001-04-16 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116609A JP4612218B2 (en) 2001-04-16 2001-04-16 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2002306603A true JP2002306603A (en) 2002-10-22
JP4612218B2 JP4612218B2 (en) 2011-01-12

Family

ID=18967320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116609A Expired - Lifetime JP4612218B2 (en) 2001-04-16 2001-04-16 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP4612218B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077518A (en) * 2001-09-06 2003-03-14 Nippon Soken Inc Fuel reforming device
JP2004325297A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Apparatus and method for measuring gas concentration
JP2005080857A (en) * 2003-09-08 2005-03-31 Wmt:Kk Oxygen concentration display unit and oxygen concentration display method
US7682428B2 (en) 2003-08-26 2010-03-23 Teijin Pharma Limited Oxygen concentration apparatus
CN101813673A (en) * 2010-05-07 2010-08-25 河海大学常州校区 Acoustic signal processing device and method for detecting concentration of trace binary-component gas
JP4988839B2 (en) * 2007-05-31 2012-08-01 帝人ファーマ株式会社 Ultrasonic gas concentration measuring method and apparatus using the same
WO2015183107A1 (en) 2014-05-27 2015-12-03 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
CN106662476A (en) * 2014-07-30 2017-05-10 日立汽车系统株式会社 Physical-quantity detection device
US10357629B2 (en) 2012-04-05 2019-07-23 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
US11666720B2 (en) 2015-12-02 2023-06-06 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305209B2 (en) * 2014-05-26 2018-04-04 株式会社ホクシンエレクトロニクス Ultrasonic gas measuring device
JP7023158B2 (en) * 2018-03-30 2022-02-21 大阪瓦斯株式会社 Gas security equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624355U (en) * 1985-06-21 1987-01-12
JPH03223669A (en) * 1989-11-30 1991-10-02 Puritan Bennett Corp Ultrasonic gas measuring apparatus
JPH06213877A (en) * 1992-11-12 1994-08-05 Devilbiss Health Care Inc Gas concentration and/or flow rate sensor
JPH08500043A (en) * 1993-06-04 1996-01-09 エンデーデー メディツィンテヒニク ゲゼルシャフト ミット ベシュレンクテルハフツング Method for measuring the molar mass of a gas or gas mixture and a device for carrying out the method
JPH0975459A (en) * 1995-09-13 1997-03-25 Fukuoka Sanso Kk Medical gas blender and supply method and system for medical gas
JPH11347127A (en) * 1998-06-08 1999-12-21 Teijin Ltd Medical oxygen supplying device
JP2001095920A (en) * 1999-09-29 2001-04-10 Fukuda Denshi Co Ltd Medical care instrument at home and method for displaying alarm for medical care instrument at home

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624355U (en) * 1985-06-21 1987-01-12
JPH03223669A (en) * 1989-11-30 1991-10-02 Puritan Bennett Corp Ultrasonic gas measuring apparatus
JPH06213877A (en) * 1992-11-12 1994-08-05 Devilbiss Health Care Inc Gas concentration and/or flow rate sensor
JPH08500043A (en) * 1993-06-04 1996-01-09 エンデーデー メディツィンテヒニク ゲゼルシャフト ミット ベシュレンクテルハフツング Method for measuring the molar mass of a gas or gas mixture and a device for carrying out the method
JPH0975459A (en) * 1995-09-13 1997-03-25 Fukuoka Sanso Kk Medical gas blender and supply method and system for medical gas
JPH11347127A (en) * 1998-06-08 1999-12-21 Teijin Ltd Medical oxygen supplying device
JP2001095920A (en) * 1999-09-29 2001-04-10 Fukuda Denshi Co Ltd Medical care instrument at home and method for displaying alarm for medical care instrument at home

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077518A (en) * 2001-09-06 2003-03-14 Nippon Soken Inc Fuel reforming device
JP2004325297A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Apparatus and method for measuring gas concentration
US7682428B2 (en) 2003-08-26 2010-03-23 Teijin Pharma Limited Oxygen concentration apparatus
JP2005080857A (en) * 2003-09-08 2005-03-31 Wmt:Kk Oxygen concentration display unit and oxygen concentration display method
JP4515062B2 (en) * 2003-09-08 2010-07-28 博之 横井 Oxygen concentration display device and oxygen concentration display method
JP4988839B2 (en) * 2007-05-31 2012-08-01 帝人ファーマ株式会社 Ultrasonic gas concentration measuring method and apparatus using the same
CN101813673A (en) * 2010-05-07 2010-08-25 河海大学常州校区 Acoustic signal processing device and method for detecting concentration of trace binary-component gas
US11918748B2 (en) 2012-04-05 2024-03-05 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
US10980967B2 (en) 2012-04-05 2021-04-20 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
US10357629B2 (en) 2012-04-05 2019-07-23 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
EP3148624A4 (en) * 2014-05-27 2018-01-17 Fisher&Paykel Healthcare Limited Gases mixing and measuring for a medical device
JP2017517319A (en) * 2014-05-27 2017-06-29 フィッシャー アンド ペイケル ヘルスケア リミテッド Gas mixing and measurement for medical devices
CN110354356A (en) * 2014-05-27 2019-10-22 费雪派克医疗保健有限公司 Gas mixing and measurement for medical device
CN110393839A (en) * 2014-05-27 2019-11-01 费雪派克医疗保健有限公司 Gas mixing and measurement for medical device
JP2022091902A (en) * 2014-05-27 2022-06-21 フィッシャー アンド ペイケル ヘルスケア リミテッド Mixing and measurement of gases for medical device
US11433210B2 (en) 2014-05-27 2022-09-06 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
EP4235120A3 (en) * 2014-05-27 2023-10-04 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
WO2015183107A1 (en) 2014-05-27 2015-12-03 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
CN106662476A (en) * 2014-07-30 2017-05-10 日立汽车系统株式会社 Physical-quantity detection device
US11666720B2 (en) 2015-12-02 2023-06-06 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus

Also Published As

Publication number Publication date
JP4612218B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
TWI445957B (en) Ultrasonic gas concentration measurement method and apparatus using the same, and an oxygen concentration apparatus
JP4612218B2 (en) Oxygen concentrator
EP1477798B1 (en) Acoustic determination of moisture content of a gas mixture
WO2002057770A1 (en) Equipment and method for measuring concentration and flow rate of gas ultrasonically
CN101203750B (en) Method for decreasing temperature influence caused by acoustic velocity pressure in gas
TWI259090B (en) An oxygen concentrator
EP1205748A1 (en) Acoustic gas analyser
JP2000028409A (en) Ultrasonic wave flow meter
CN101592630B (en) Device for analyzing oxygen density and flow rate and analysis method thereof
EP1764036B1 (en) Method for the determination of the time-delay between a main-stream ultrasonic flow sensor and a side-stream gas analyzer
JP2003337119A (en) Acoustical gas monitor
CN1867373B (en) Oxygen-concentrating device
JP2004294434A (en) Acoustic type gas analyzer
JP4381751B2 (en) Gas supply device
CN101949893B (en) Reduction of temperature influence caused by pressure of sound velocity in gas
JP3979821B2 (en) Medical oxygen concentrator
JP4180815B2 (en) Medical oxygen concentrator
CN201237583Y (en) Apparatus for analyzing oxygen concentration and flow velocity
JP2003077518A (en) Fuel reforming device
JP4275466B2 (en) Oxygen concentrator
JPH09187509A (en) Automatic gas supplying device for medical care
TW202206806A (en) Continuous wave sonic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4612218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term