JP2002305342A - Exciting light source for raman amplifier and raman amplifier using the same - Google Patents

Exciting light source for raman amplifier and raman amplifier using the same

Info

Publication number
JP2002305342A
JP2002305342A JP2002025238A JP2002025238A JP2002305342A JP 2002305342 A JP2002305342 A JP 2002305342A JP 2002025238 A JP2002025238 A JP 2002025238A JP 2002025238 A JP2002025238 A JP 2002025238A JP 2002305342 A JP2002305342 A JP 2002305342A
Authority
JP
Japan
Prior art keywords
light
wavelength side
light source
intensity
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002025238A
Other languages
Japanese (ja)
Other versions
JP3949463B2 (en
Inventor
Soko Kado
想子 門
Yoshihiro Emori
芳博 江森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002025238A priority Critical patent/JP3949463B2/en
Publication of JP2002305342A publication Critical patent/JP2002305342A/en
Application granted granted Critical
Publication of JP3949463B2 publication Critical patent/JP3949463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Raman amplifier having an arbitrary wavelength characteristic superior in flatness and an arbitrary amplification gain only by independently changing the light intensity of a short wavelength side group and the light intensity of a long wavelength side group. SOLUTION: In an exciting light source for Raman amplification, a plurality of exciting light beams for Raman-amplifying signal light inputted to a light transmission line in the light transmission line are outputted. The exciting light source for Raman amplification is divided into the light source of a shot wavelength side and the light source of a long wavelength side, whose oscillation wavelengths differ. They synthesize and output a plurality of oscillation light beams outputted from the light source of the short wavelength side and the oscillation light of the long wavelength side, collectively control a plurality of oscillation light beams outputted from the light source of the short wavelength side or oscillation light outputted from the light source of the long wavelength side, and adjust output light intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘導ラマン散乱現象
を利用して信号光を光ファイバ等の光伝送路内で光増幅
させるためのラマン増幅用励起光源及びそれを用いたラ
マン増幅器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pumping light source for Raman amplification for amplifying signal light in an optical transmission line such as an optical fiber by utilizing a stimulated Raman scattering phenomenon, and a Raman amplifier using the same.

【0002】[0002]

【従来の技術】一般にラマン増幅システムは、図9に示
すように、光送信局1から出力された光信号2が光ファ
イバなどの光伝送路3を介して光受信局4に導かれる際
に、光伝送路3内で減衰した光信号2を光受信局4の受
信に必要な光信号レベルとなるように、光伝送路3の間
またはその端部に光増幅装置5を配置して光信号を光増
幅するように構成されている。この構成例は、光増幅装
置5を光伝送路3の後端に配置した後方励起型ラマン増
幅システムの一例を示しており、もちろん、光増幅装置
5は、光伝送路3の前端又は両端にあることもある(あ
ってもよい)。
2. Description of the Related Art Generally, in a Raman amplification system, as shown in FIG. 9, when an optical signal 2 output from an optical transmitting station 1 is guided to an optical receiving station 4 via an optical transmission line 3 such as an optical fiber. An optical amplifying device 5 is arranged between the optical transmission lines 3 or at an end thereof so that the optical signal 2 attenuated in the optical transmission line 3 has an optical signal level required for reception by the optical receiving station 4. It is configured to optically amplify a signal. This configuration example shows an example of a backward-pumped Raman amplification system in which the optical amplifier 5 is disposed at the rear end of the optical transmission line 3. Of course, the optical amplifier 5 is provided at the front end or both ends of the optical transmission line 3. Sometimes (may be).

【0003】光送信局1では、伝送しようとする電気情
報を光に変換し光伝送路3に出力する。電気信号は信号
光源となる半導体レーザ素子等に直接印加することによ
って、または信号光源の後に外部変調器を介在させて信
号光源から発振された光を変調することによって光信号
に変換され光伝送路3に出力される。
[0003] The optical transmitting station 1 converts electrical information to be transmitted into light and outputs it to the optical transmission line 3. The electric signal is converted to an optical signal by directly applying the electric signal to a semiconductor laser device or the like serving as a signal light source, or by modulating the light oscillated from the signal light source through an external modulator after the signal light source. 3 is output.

【0004】光受信局4では光伝送路3を伝播して来た
光信号2をフォトダイオード等の光電気変換器により電
気信号に変換し、光送信局1から送信された情報を復調
し、情報を読み取る。
[0004] The optical receiving station 4 converts the optical signal 2 propagating through the optical transmission line 3 into an electrical signal using a photoelectric converter such as a photodiode, and demodulates information transmitted from the optical transmitting station 1. Read information.

【0005】ラマン増幅装置5は、図8に示すように、
前記光伝送路3の一部となるラマン増幅媒体31の端部
から光カプラ6を介して励起光源7からの発振光をラマ
ン増幅媒体31内に入力し、ラマン増幅媒体31内でラ
マン散乱を発生させて光信号2をラマン増幅させる。発
振光の波長は、通常、光送信局1から発せられた光信号
2の波長よりも約20〜200nm短波長のものが選ば
れる。
[0005] As shown in FIG.
Oscillation light from the excitation light source 7 is input into the Raman amplification medium 31 via the optical coupler 6 from the end of the Raman amplification medium 31 which is a part of the optical transmission line 3, and Raman scattering is generated in the Raman amplification medium 31. The optical signal 2 is generated and Raman-amplified. The wavelength of the oscillation light is usually selected to be shorter by about 20 to 200 nm than the wavelength of the optical signal 2 emitted from the optical transmitting station 1.

【0006】ラマン増幅媒体31内でのラマン増幅によ
るラマン利得は、広い範囲の光増幅を行なうことができ
るが、広い信号帯域を均一に増幅することができず、増
幅利得に波長特性を持っている。従って広い信号帯域を
均一にラマン増幅させるために、互いに波長の異なる複
数の励起光源を用いて信号光帯域において利得が均一に
なるように発振光の強度が調整される。
The Raman gain due to the Raman amplification in the Raman amplification medium 31 can perform a wide range of optical amplification, but cannot amplify a wide signal band uniformly, and the amplification gain has a wavelength characteristic. I have. Therefore, in order to uniformly Raman-amplify a wide signal band, the intensity of oscillation light is adjusted using a plurality of pump light sources having different wavelengths so that the gain is uniform in the signal light band.

【0007】上記のように複数の励起光のそれぞれを調
整して光信号の増幅利得特性を信号帯域全体にわたって
一定の利得を持つように調整できるが、一旦、均一に調
整された一定の利得を他の利得に変化させる場合は、従
来は個々の光源から出力される発振光の光強度を全ての
光源に渡って再度個々に調整するようにしていた。
As described above, the amplification gain characteristics of the optical signal can be adjusted so as to have a constant gain over the entire signal band by adjusting each of the plurality of pumping lights. Conventionally, when changing the gain to another value, the light intensity of the oscillating light output from each light source is individually adjusted again for all the light sources.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記の
ように複数光源の発振光の強度を調整する方法は、それ
ら複数の光源の一つを調整しても特定の信号帯の利得が
調整される訳でなく、前記特定の信号帯を含めた更に広
い信号帯の利得も変化してしまい、利得を所望の値に調
整することが容易でなかった。
However, as described above, in the method of adjusting the intensity of the oscillating light of a plurality of light sources, the gain of a specific signal band is adjusted even if one of the plurality of light sources is adjusted. However, the gain of a wider signal band including the specific signal band also changed, and it was not easy to adjust the gain to a desired value.

【0009】[0009]

【課題を解決するための手段】本発明は係る点に鑑みな
されたもので、その目的は、少ない調整で目的の利得を
得ることができるようにしたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to achieve a desired gain with a small adjustment.

【0010】本発明者は、発振波長λ1=1423.516nm、
λ2=1430.990nm、λ3=1438.543nm、λ4=1460.265
nmの半導体LDを用いて、且つそれぞれの励起強度が表
1の(1)に示すように、248.0、170.0、128.0、264.5mW
になるように調整した結果、図7の(1)に示すように、1
530〜1560nmの信号帯域内で25dBの平坦利得が得られ
た。
The inventor has proposed that the oscillation wavelength λ1 = 1423.516 nm,
λ2 = 1430.990 nm, λ3 = 1438.543 nm, λ4 = 1460.265
nm semiconductor LD, and the respective excitation intensities were 248.0, 170.0, 128.0, 264.5 mW as shown in (1) of Table 1.
As a result of the adjustment so as to be as shown in FIG.
A flat gain of 25 dB was obtained within the signal band of 530-1560 nm.

【0011】その後、表1の(2)〜(5)に示すように、全
ての励起強度をそれぞれ80%、60%、40%、20%に減じ
て信号帯域の利得を測定してみた所、それぞれ図7の
〜に示す実線のような値が得られた。これらの実線は
信号帯域の利得が有る程度の平坦性が保たれるものの、
長波長側の利得が短波長側の利得に対してやや大きく変
化し、右下がりの利得を持つものである。
After that, as shown in Tables (2) to (5), all the pumping intensities were reduced to 80%, 60%, 40%, and 20%, respectively, and the gain of the signal band was measured. 7 were obtained as indicated by solid lines in FIG. Although these solid lines maintain flatness to the extent that there is a gain in the signal band,
The gain on the long wavelength side changes a little more than the gain on the short wavelength side, and has a downward-sloping gain.

【0012】[0012]

【表1】 [Table 1]

【0013】また、1460.265nmの半導体LDの励起強度
を100%に保持した状態で、短波長側の1423.516nm、143
0.990nm、1438.543nmの3つの半導体LDの励起光強度を
表2の(6)〜(9)に示すようにそれぞれ80%、60%、40
%、20%に減じて信号帯域の利得を測定してみた所、図
6の(6)〜(9)に示す実線のような値が得られた。この実
線は信号帯域の短波長側の利得が長波長側の利得に対し
て大きく変化し、しかも利得の平坦性が良好なものであ
る。
Further, while maintaining the excitation intensity of the semiconductor LD of 1460.265 nm at 100%, the wavelengths of 1423.516 nm and 143
The excitation light intensities of the three semiconductor LDs of 0.990 nm and 1438.543 nm were set to 80%, 60%, and 40%, respectively, as shown in (6) to (9) of Table 2.
When the gain of the signal band was measured by reducing the gain to 20%, the values as shown by the solid lines in (6) to (9) of FIG. 6 were obtained. This solid line indicates that the gain on the short wavelength side of the signal band changes greatly with respect to the gain on the long wavelength side, and that the flatness of the gain is good.

【0014】[0014]

【表2】 [Table 2]

【0015】更に、本発明者は上記短波長側に配置され
た3つの半導体LDの発振強度を100%に保持した状態
で、長波長側に配置された1460.265nmの半導体LDの発
振強度を表2の(10)〜(13)に示すように、それぞれ80
%、60%、40%、20%に減じて信号帯域の利得を測定し
てみた所、図6の(10)〜(13)の点線に示すような値が得
られた。この点線は信号帯域の短波長側の利得が長波長
側の利得に対して小さく変化し、しかも利得の平坦性が
良好なものである。
Further, the present inventor has shown the oscillation intensity of the 1460.265 nm semiconductor LD arranged on the long wavelength side while maintaining the oscillation intensity of the three semiconductor LDs arranged on the short wavelength side at 100%. As shown in 2 (10) to (13), 80
When the gain of the signal band was measured by reducing the gain to%, 60%, 40%, and 20%, values as indicated by the dotted lines in (10) to (13) of FIG. 6 were obtained. This dotted line indicates that the gain on the short wavelength side of the signal band changes slightly with respect to the gain on the long wavelength side, and that the gain has good flatness.

【0016】これにより、本発明者は、ある信号帯域に
おいて利得特性が平坦になるように最適化された励起波
長を、短波長側のグループAと長波長側のグループBと
に分けた場合に、次の知見を得ることができた。
Thus, the present inventor has found that when the pumping wavelength optimized so that the gain characteristic becomes flat in a certain signal band is divided into a short wavelength side group A and a long wavelength side group B. The following findings were obtained.

【0017】(A)AグループとBグループの励起パワ
ーをそれぞれ同じ割合で下げると、ラマン利得は右下が
りのチルトを持ってレベルが下がること、(B)Aグル
ープの励起パワーを100%に保持した状態でBグループ
の励起パワーを全て同じ割合で下げると、ラマン利得特
性は右下がりのチルトを持って下がること、(C)Bグ
ループの励起パワーを100%に保持した状態でAグルー
プの励起パワーを全て同じ割合で下げると、ラマン利得
は左下がりのチルトを持って下がること。
(A) If the pump powers of the A group and the B group are respectively reduced at the same rate, the Raman gain decreases with a right-down tilt. (B) The pump power of the A group is maintained at 100%. If the pumping power of group B is reduced at the same rate in the state where the pumping is performed, the Raman gain characteristic decreases with a right-down tilt. (C) The pumping of group A while the pumping power of group B is maintained at 100%. If all the powers are reduced at the same rate, the Raman gain will decrease with a downward tilt.

【0018】また、図示していないが、AグループとB
グループの励起パワーを上げたときには、(D)Aグル
ープとBグループの励起パワーをそれぞれ同じ割合で上
げると、ラマン利得は右上がりのチルトを持ってレベル
が上がること、(E)Aグループの励起パワーを100%
に保持した状態でBグループの励起パワーを全て同じ割
合で上げると、ラマン利得特性は右上がりのチルトを持
って上がること、(F)Bグループの励起パワーを100
%に保持した状態でAグループの励起パワー全てを同じ
割合で上げると、ラマン利得は左上がりのチルトを持っ
て上がること。
Although not shown, the group A and the group B
When the pumping power of the group is increased, (D) If the pumping power of the group A and the pumping power of the group B are respectively increased at the same rate, the Raman gain rises with a right-up tilt. (E) The pumping of the group A 100% power
When the pump power of group B is increased at the same rate while holding at the same value, the Raman gain characteristic rises with a tilt that rises to the right.
If the pumping power of group A is increased at the same rate while maintaining the percentage, the Raman gain rises with a tilt rising to the left.

【0019】また、表3の(14)〜(18)に示すように増幅
率の異なる光ファイバを使用すると、同じ励起パワーを
用いても図5に示すように、それぞれ特性の異なる利得
特性が得られる。すなわち、(G)光ファイバのラマン
利得係数が大きいものを使用すると、ラマン利得特性は
右上がりのチルトを持ってレベルが上昇すること、
(H)光ファイバのラマン利得係数が小さいものを使用
すると、ラマン利得特性は右下がりのチルトを持ってレ
ベルが下降すること。
When optical fibers having different amplification factors are used as shown in (14) to (18) of Table 3, even if the same pumping power is used, gain characteristics having different characteristics are obtained as shown in FIG. can get. That is, (G) when an optical fiber having a large Raman gain coefficient is used, the Raman gain characteristic increases in level with a right-up tilt,
(H) When an optical fiber having a small Raman gain coefficient is used, the level of the Raman gain characteristic decreases with a right-down tilt.

【0020】[0020]

【表3】 [Table 3]

【0021】これにより、上記(A)〜(H)の技術を
組み合わせることで、ある程度利得平坦性を保ち、任意
の利得レベルとチルトを持ったラマンアンプを容易に設
計することができることが判った。
Thus, it has been found that by combining the techniques (A) to (H), a gain flatness can be maintained to some extent, and a Raman amplifier having an arbitrary gain level and tilt can be easily designed. .

【0022】本発明はかかる点に鑑みてなされたもので
あり、励起波長を短波長側と長波長側との2つに分け、
それぞれを任意に調整することにより、任意の利得特性
のものを得るようにしたものである。
The present invention has been made in view of the above point, and the excitation wavelength is divided into two, a short wavelength side and a long wavelength side.
By adjusting each of them arbitrarily, one having an arbitrary gain characteristic is obtained.

【0023】請求項1の発明は光伝送路内に入射された
信号光を光伝送路内でラマン増幅させるための複数の励
起光を出力するラマン増幅用励起光源において、ラマン
増幅用励起光源は発振波長が互いに異なる短波長側の光
源と長波長側の光源とに分割され、短波長側の光源から
出力された複数の発振光と長波長側の発振光とを合成し
て出力するとともに、短波長側の光源から出力される複
数の発振光又は長波長側の光源から出力される発振光を
一括制御して、出力光強度を調整するようにしたことを
特徴とする。
According to a first aspect of the present invention, there is provided a pumping light source for Raman amplification for outputting a plurality of pumping lights for Raman-amplifying signal light incident on the optical transmission line in the optical transmission line, wherein the pumping light source for Raman amplification is: Oscillation wavelengths are divided into different short-wavelength light sources and long-wavelength light sources, and a plurality of oscillation lights output from the short-wavelength light sources and long-wavelength oscillation lights are combined and output. A plurality of oscillating lights output from a light source on the short wavelength side or oscillating lights output from a light source on the long wavelength side are collectively controlled to adjust the output light intensity.

【0024】請求項2の発明は、請求項1において、短
波長側に分割された複数の光源の駆動電流を一括制御し
て、短波長側の出力光強度を調整するようにしたことを
特徴とする。
According to a second aspect of the present invention, in the first aspect, the driving currents of the plurality of light sources divided on the short wavelength side are collectively controlled to adjust the output light intensity on the short wavelength side. And

【0025】請求項3の発明は、請求項1において、短
波長側に分割された複数の光源から発振される光を合成
した後、光減衰器により一括制御して、短波長側の出力
光強度を調整するようにしたことを特徴とする。
According to a third aspect of the present invention, in the first aspect, after the lights oscillated from the plurality of light sources split on the short wavelength side are combined, the lights are collectively controlled by an optical attenuator to output light on the short wavelength side. The strength is adjusted.

【0026】請求項4の発明は、請求項1乃至3のいず
れかにおいて、短波長側の発振光の強度と長波長側の発
振光の強度とを同時に調整するようにしたことを特徴と
する。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are simultaneously adjusted. .

【0027】請求項5の発明は、請求項4において、短
波長側の発振光の強度と長波長側の発振光の強度とを1
対0.81の割合で変化させることを特徴とする。
According to a fifth aspect of the present invention, in the fourth aspect, the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are set to one.
It is characterized by being changed at a ratio of 0.81.

【0028】請求項6の発明は、請求項4において、短
波長側の発振光の強度と長波長側の発振光の強度とを1
対1.40の割合で変化させることを特徴とする。
According to a sixth aspect of the present invention, in the fourth aspect, the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are set to one.
It is characterized by changing at a ratio of 1.40.

【0029】請求項7の発明は、請求項4において、短
波長側の発振光の強度と長波長側の発振光の強度とを1
対1.92の割合で変化させることを特徴とする。
According to a seventh aspect of the present invention, in the fourth aspect, the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are set to one.
It is characterized by being changed at a ratio of 1.92.

【0030】請求項8の発明は、信号光を発する光送信
局と、その信号光を受光する光受信局と、光送信局から
の信号光を光受信局に伝播させる光伝送路と、光伝送路
内に励起光を導入させて光伝送路内でラマン散乱を生じ
させて前記信号光をラマン増幅させるラマン増幅用励起
光源とからなるラマン増幅器において、ラマン増幅用励
起光源は、請求項1ないし7の何れか1つで構成されて
いることを特徴とする。
An eighth aspect of the present invention provides an optical transmitting station that emits a signal light, an optical receiving station that receives the signal light, an optical transmission line that propagates the signal light from the optical transmitting station to the optical receiving station, A Raman amplifier comprising: a Raman amplification pumping light source for introducing pumping light into a transmission line to cause Raman scattering in the optical transmission line to Raman-amplify the signal light; -7.

【0031】[0031]

【実施例】図1は本発明の一実施例を図示した構成図で
ある。図1において、31、6及び7はそれぞれ図8と
同様に、石英性光ファイバなどのラマン増幅媒体、励起
光と信号光とをラマン増幅媒体内で一体化となるように
結合させる光カプラ、及びラマン増幅励起光源である。
また、71・71は発振波長1423.516nmの半導体レーザ
素子、72は発振波長1430.990nmの半導体レーザ素子、
73は発振波長1438.543nmの半導体レーザ素子、74・
74は発振波長1460.265nmの半導体レーザ素子である。
75、76はそれぞれ偏波合成器、77、78、79は
それぞれ二つの光を結合させる波長光合波器であり、8
0は光アイソレータである。81は半導体レーザ素子7
1〜74の各素子にそれぞれ駆動電流を供給し、その電
流値を制御することが可能な電流コントローラである。
FIG. 1 is a block diagram showing one embodiment of the present invention. In FIG. 1, reference numerals 31, 6, and 7 denote a Raman amplification medium such as a quartz optical fiber, an optical coupler for coupling pump light and signal light so as to be integrated in the Raman amplification medium, respectively, as in FIG. And a Raman amplification excitation light source.
Further, 71 · 71 is a semiconductor laser device having an oscillation wavelength of 1423.516 nm, 72 is a semiconductor laser device having an oscillation wavelength of 1430.990 nm,
73 is a semiconductor laser device having an oscillation wavelength of 1438.543 nm;
Reference numeral 74 denotes a semiconductor laser device having an oscillation wavelength of 1460.265 nm.
Numerals 75 and 76 denote polarization combiners, 77, 78 and 79 denote wavelength optical multiplexers for coupling two lights, respectively.
0 is an optical isolator. 81 is a semiconductor laser element 7
This is a current controller capable of supplying a drive current to each of the elements 1 to 74 and controlling the current value.

【0032】半導体レーザ素子71・71からの光は偏
波合成器75内で、それぞれの偏波面が互いに90度異
なるように合成され出力される。また半導体レーザ素子
74・74からの光も同様に偏波合成器76内で、互い
の偏波面が90度異なるように合成され出力される。偏
波合成器75により合成された半導体レーザ素子71・
71からの光及び半導体レーザ素子72からの光は、波
長光合波器77により合成される。偏波合成器76によ
り合成された半導体レーザ素子74・74からの光及び
半導体レーザ素子73からの光は、波長光合波器78に
より合成される。波長光合波器77及び78から出力さ
れる各光は波長光合波器79により合成され、アイソレ
ータ80と光カプラ6を通って、ラマン増幅媒体31に
導かれる。
The light from the semiconductor laser elements 71 is combined in a polarization combiner 75 such that the respective polarization planes are different from each other by 90 degrees and output. Similarly, the light from the semiconductor laser elements 74 and 74 is combined and outputted in the polarization combiner 76 so that the polarization planes thereof are different from each other by 90 degrees. The semiconductor laser element 71 synthesized by the polarization synthesizer 75
The light from 71 and the light from the semiconductor laser element 72 are combined by a wavelength optical multiplexer 77. The light from the semiconductor laser elements 74 and 74 and the light from the semiconductor laser element 73 combined by the polarization combiner 76 are combined by a wavelength optical multiplexer 78. The respective lights output from the wavelength optical multiplexers 77 and 78 are combined by the wavelength optical multiplexer 79, and guided to the Raman amplification medium 31 through the isolator 80 and the optical coupler 6.

【0033】ラマン増幅媒体31には、波長1527.994か
ら1562.233nm内に44個の擬似入力信号をほぼ均等にバ
ラつかせて、大凡-15dBm/chの大きさで、入力端から導
入されている。なお、半導体レーザ素子71・71同士
及び半導体レーザ素子74・74同士はそれぞれの素子
から発振される光強度が同じになるように電流コントロ
ーラ81により調整される。
The Raman amplifying medium 31 has 44 pseudo input signals within a wavelength of 1527.994 to 1562.233 nm, which are almost uniformly dispersed, and is introduced from the input terminal with a magnitude of about -15 dBm / ch. The semiconductor laser elements 71 and the semiconductor laser elements 74 and 74 are adjusted by the current controller 81 so that the light intensity oscillated from each element becomes the same.

【0034】上記状態で各半導体レーザ素子71〜74
の駆動電流を電流コントローラ81により調整し、図示
しない光スペクトルアナライザを出力端に取りつけ、増
幅度が25dB前後で且つ信号波長帯全域にわたり利得が
平坦となるように電流調整を行った。このときの半導体
レーザ素子71〜74の光強度は表4のに示すように
それぞれ248、170、128、264.5mWであった(単体の半導
体レーザ素子71及び74から出力される光強度はその
1/2)。このときの増幅値は24.74から25.30dBの範囲
に収まっており、図2のに示すようにほぼフラットな
状態である。本発明では便宜上、この値を励起パワー1
00%と定義する。
In the above state, each of the semiconductor laser elements 71 to 74
Was adjusted by the current controller 81, an optical spectrum analyzer (not shown) was attached to the output terminal, and the current was adjusted so that the amplification was about 25 dB and the gain was flat over the entire signal wavelength band. At this time, the light intensities of the semiconductor laser elements 71 to 74 were 248, 170, 128, and 264.5 mW, respectively, as shown in Table 4 (the light intensity output from the single semiconductor laser elements 71 and 74 was 1 / 2). The amplification value at this time is in the range of 24.74 to 25.30 dB, and is almost flat as shown in FIG. In the present invention, for convenience, this value is referred to as excitation power 1
Defined as 00%.

【0035】[0035]

【表4】 [Table 4]

【0036】次に、同様にして、半導体レーザ素子71
〜74の光強度を表4のに示すように短波長側の半導
体レーザ素子71〜73を電流コントローラ81により
一括制御して光強度が140%になるように増加させ、
半導体レーザ素子74からの光強度を113%になるよ
うに増加させた。そのときの半導体レーザ素子71〜7
4の光強度はそれぞれ384.6、238、179.2、343.85mWで
あった(単体の半導体レーザ素子71及び74から出力
される光強度はその1/2)。このときの増幅値は30.01
から30.77dBの範囲に収まっており、図2のに示すよ
うにほぼフラットな状態である。
Next, the semiconductor laser device 71
As shown in Table 4, the short-wavelength side semiconductor laser elements 71 to 73 are collectively controlled by the current controller 81 to increase the light intensity to a light intensity of 140%.
The light intensity from the semiconductor laser element 74 was increased to 113%. The semiconductor laser elements 71 to 7 at that time
The light intensity of No. 4 was 384.6, 238, 179.2, and 343.85 mW, respectively (the light intensity output from the single semiconductor laser elements 71 and 74 was 1/2). The amplification value at this time is 30.01
And is within a range of 30.77 dB, and is almost flat as shown in FIG.

【0037】次に、同様にして、半導体レーザ素子71
〜74の光強度を表4のに示すように短波長側の半導
体レーザ素子71〜73を電流コントローラ81により
一括制御して光強度が60%になるように減じ、半導体
レーザ素子74からの光強度を84%に減じた。そのと
きの半導体レーザ素子71〜74の光強度はそれぞれ14
9.4、102、76.8、211.6mWであった(単体の半導体レー
ザ素子71及び74から出力される光強度はその1/
2)。このときの増幅値は17.36から17.76dBの範囲に収
まっており、図2のに示すようにほぼフラットな状態
である。
Next, similarly, the semiconductor laser device 71
As shown in Table 4, the semiconductor laser devices 71 to 73 on the short wavelength side are collectively controlled by the current controller 81 to reduce the light intensity to 60%. The strength was reduced to 84%. At this time, the light intensity of the semiconductor laser elements 71 to 74 is 14
9.4, 102, 76.8, 211.6 mW (the light intensity output from the single semiconductor laser elements 71 and 74 is 1 /
2). The amplification value at this time is in the range of 17.36 to 17.76 dB, and is almost flat as shown in FIG.

【0038】次に、同様にして、半導体レーザ素子71
〜74の光強度を表4のに示すように短波長側の半導
体レーザ素子71〜73を電流コントローラ81により
一括制御して光強度が31.2%になるように減じ、半
導体レーザ素子74からの光強度を60%に減じた。そ
のときの半導体レーザ素子71〜74の光強度はそれぞ
れ77.688、53.04、39.936、158.7mWであった(単体の半
導体レーザ素子71及び74から出力される光強度はそ
の1/2)。このときの増幅値は10.44から10.73dBの範
囲に収まっており、図2のに示すようにほぼフラット
な状態である。
Next, the semiconductor laser device 71
As shown in Table 4, the semiconductor laser devices 71 to 73 on the short wavelength side are collectively controlled by the current controller 81 to reduce the light intensity to 31.2%. Was reduced to 60%. The light intensity of the semiconductor laser devices 71 to 74 at that time was 77.688, 53.04, 39.936, and 158.7 mW, respectively (the light intensity output from the single semiconductor laser devices 71 and 74 was 1/2). At this time, the amplification value is in the range of 10.44 to 10.73 dB, and is almost flat as shown in FIG.

【0039】表5は短波長帯側の駆動電流と長波長側の
駆動電流とをそれぞれ一括制御して、各半導体レーザ素
子からの光強度を上記4例以外に更に変化させ、信号波
長帯全域に渡り略平坦な利得が得られるようにしたとき
の光強度を、上記100%を基準とした割合で示してあ
る。図3はこの測定値をグラフにして示したものであ
り、半導体レーザ素子74の変化率に対する半導体レー
ザ素子71〜73の変化率を縦軸(Y軸)にとり、利得
特性を横軸(X軸)に取って示したものである。このグ
ラフはY=0.0006X2+0.0129X+0.3202の曲線に極めて一致
するものであった。
Table 5 shows that the driving current on the short wavelength band side and the driving current on the long wavelength side are collectively controlled, and the light intensity from each semiconductor laser device is further changed to a value other than the above four examples. The light intensity when a substantially flat gain is obtained over a range of 100% is shown by the ratio based on the above 100%. FIG. 3 is a graph showing the measured values. The change rate of the semiconductor laser elements 71 to 73 with respect to the change rate of the semiconductor laser element 74 is plotted on the vertical axis (Y axis), and the gain characteristic is plotted on the horizontal axis (X axis). ). This graph was in excellent agreement with the curve of Y = 0.0006X 2 + 0.0129X + 0.3202.

【0040】[0040]

【表5】 [Table 5]

【0041】従って、本実施例による光部品を使用して
任意のラマン増幅利得αを得ようとするときは、上記X
の値にαを代入したY値を得て、この値と同じになるよ
うに長波長側の光強度に対する短波長側群の光強度比を
設定しながら、両波長の光強度を調整するのみで、任意
の平坦な利得特性を得ることができる。
Therefore, when trying to obtain an arbitrary Raman amplification gain α using the optical component according to the present embodiment, the above X
Only by adjusting the light intensity of both wavelengths while setting the light intensity ratio of the short wavelength side group to the long wavelength side light intensity so that it becomes the same as the Y value obtained by substituting α into the value of Thus, an arbitrary flat gain characteristic can be obtained.

【0042】図4は本発明の他の一実施例を示した構成
図である。図4において82、83は光減衰器であり、
84はその減衰量を制御するコントローラである。その
他の構成部品は図1に同じである。
FIG. 4 is a block diagram showing another embodiment of the present invention. In FIG. 4, 82 and 83 are optical attenuators,
A controller 84 controls the amount of attenuation. Other components are the same as those in FIG.

【0043】半導体レーザ素子71・71からの光は偏
波合成器75内で、それぞれの偏波面が互いに90度異
なるように合成され出力される。また半導体レーザ素子
74・74からの光も同様に偏波合成器76内で、互い
の偏波面が90度異なるように合成され出力される。偏
波合成器75により合成された半導体レーザ素子71・
71からの光及び半導体レーザ素子72からの光は、波
長合波器77により合成される。波長合波器77により
合成された半導体レーザ素子71・71、72からの光
及び半導体レーザ素子73からの光は、波長合波器78
により合成される。波長合波器78及び偏波合成器76
から出力される各光は、それぞれ光減衰器82、83に
よって減衰された後、波長合波器79により合成され、
アイソレータ80を介して光カプラ6に導かれ、ラマン
増幅媒体31に導かれる。
The light from the semiconductor laser elements 71 is combined in a polarization combiner 75 such that the respective polarization planes are different from each other by 90 degrees and output. Similarly, the light from the semiconductor laser elements 74 and 74 is also combined and output in the polarization combiner 76 such that the polarization planes thereof are different from each other by 90 degrees. The semiconductor laser element 71 synthesized by the polarization synthesizer 75
The light from 71 and the light from the semiconductor laser element 72 are combined by the wavelength multiplexer 77. The light from the semiconductor laser elements 71, 72 and 72 and the light from the semiconductor laser element 73 synthesized by the wavelength multiplexer 77 are combined with the wavelength multiplexer 78.
Are synthesized by Wavelength multiplexer 78 and polarization combiner 76
Are attenuated by optical attenuators 82 and 83, respectively, and then combined by a wavelength multiplexer 79.
The light is guided to the optical coupler 6 via the isolator 80 and to the Raman amplification medium 31.

【0044】上記状態において得られる効果は図1に示
す実施例に同じである。
The effect obtained in the above state is the same as that of the embodiment shown in FIG.

【0045】上記実施例は短波長側の光源が3個の場合
でかつ長波長側の光源が1個の場合を説明したが、本発
明はそれぞれの光源がこれ以外の場合でも適用すること
ができる。しかしながら、短波長側の光源は複数個必要
とする。
In the above embodiment, the case where the number of light sources on the short wavelength side is three and the case where the number of light sources on the long wavelength side is one has been described. However, the present invention can be applied even when each light source is other than this. it can. However, a plurality of light sources on the short wavelength side are required.

【0046】上記実施例では、フラットな利得分布を得
る場合を説明したが、短波長側の半導体レーザ素子の駆
動電流と長波長側の駆動電流の、増減率の調節によっ
て、利得プロファイルに任意の傾きを持たせることも可
能である。
In the above embodiment, the case where a flat gain distribution is obtained has been described. However, by adjusting the rate of increase / decrease of the drive current of the semiconductor laser device on the short wavelength side and the drive current on the long wavelength side, an arbitrary gain profile can be obtained. It is also possible to have a slope.

【0047】[0047]

【効果】本発明は上述のように、短波長側群の光強度と
長波長側群の両光強度をそれぞれ独自に変化させるのみ
で、平坦性の優れた任意の波長特性及び任意の増幅利得
を持ったラマン増幅器が得られる優れた効果がある。
According to the present invention, as described above, only the light intensity of the short-wavelength side group and the light intensity of the long-wavelength side group are changed independently, and any wavelength characteristic and any amplification gain excellent in flatness can be obtained. There is an excellent effect that a Raman amplifier having

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の実施例におけるラマン利得プロファイ
ルである。
FIG. 2 is a Raman gain profile in an example of the present invention.

【図3】長波長側の励起パワーの変化率に対する短波長
側の励起パワー変化率とラマン利得の関係を示す特性図
である。
FIG. 3 is a characteristic diagram showing a relationship between a pump power change rate on a short wavelength side and a Raman gain with respect to a change rate of pump power on a long wavelength side.

【図4】本発明の他の実施例を示した構成図である。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【図5】光ファイバのラマン利得係数が変化したときの
信号波長とラマン増幅利得の関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a signal wavelength and a Raman amplification gain when a Raman gain coefficient of an optical fiber changes.

【図6】光ファイバに供給される励起パワーが変化した
ときの信号波長とラマン増幅利得の関係を示す特性図で
ある。
FIG. 6 is a characteristic diagram showing a relationship between a signal wavelength and a Raman amplification gain when a pump power supplied to an optical fiber changes.

【図7】光ファイバに供給される励起パワーの違いによ
る信号波長とラマン増幅利得の関係を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing a relationship between a signal wavelength and a Raman amplification gain depending on a difference in pump power supplied to an optical fiber.

【図8】一般的なラマン増幅器を示す構成図である。FIG. 8 is a configuration diagram illustrating a general Raman amplifier.

【図9】一般的な後方励起型ラマン増幅システムを示す
構成図である。
FIG. 9 is a configuration diagram showing a general backward-pumped Raman amplification system.

【符号の説明】[Explanation of symbols]

1:光送信局 2:光信号 3:光伝送路 31:ラマン増幅媒体 4:光受信局 5:光増幅装置 6:光カプラ 7:励起光源 71:発振波長1423.516nmの半導体レーザ素子 72:発振波長1430.990nmの半導体レーザ素子 73:発振波長1438.543nmの半導体レーザ素子 74:発振波長1460.265nmの半導体レーザ素子 75、76:偏波合成器 77、78、79:波長光合波器 80:光アイソレータ 81:電流コントローラ 82、83:光減衰器 84:光減衰器コントローラ 1: Optical transmitting station 2: Optical signal 3: Optical transmission line 31: Raman amplification medium 4: Optical receiving station 5: Optical amplifier 6: Optical coupler 7: Pump light source 71: Semiconductor laser device with oscillation wavelength of 1423.516 nm 72: Oscillation Semiconductor laser device having a wavelength of 1430.990 nm 73: Semiconductor laser device having an oscillation wavelength of 1438.543 nm 74: Semiconductor laser device having an oscillation wavelength of 1460.265 nm 75, 76: Polarization combiner 77, 78, 79: Wavelength optical multiplexer 80: Optical isolator 81 : Current controller 82, 83: Optical attenuator 84: Optical attenuator controller

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2K002 AA02 AB30 BA01 CA15 DA10 GA10 HA24 5F072 AB07 AK06 HH04 HH05 JJ20 MM01 MM07 PP07 QQ07 YY17 5K002 AA06 BA02 BA04 BA05 BA13 CA13 FA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2K002 AA02 AB30 BA01 CA15 DA10 GA10 HA24 5F072 AB07 AK06 HH04 HH05 JJ20 MM01 MM07 PP07 QQ07 YY17 5K002 AA06 BA02 BA04 BA05 BA13 CA13 FA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】光伝送路内に入力された信号光を光伝送路
内でラマン増幅させるための複数の励起光を出力するラ
マン増幅用励起光源において、ラマン増幅用励起光源は
発振波長が互いに異なる短波長側の光源と長波長側の光
源とに2分割され、短波長側の光源から出力される複数
の発振光と長波長側の発振光とを合成して出力するとと
もに、短波長側の光源から出力される複数の発振光又は
長波長側の光源から出力される発振光を一括制御して、
出力光強度を調整するようにしたことを特徴とするラマ
ン増幅用励起光源。
1. A Raman amplification pumping light source for outputting a plurality of pumping lights for Raman-amplifying signal light input into an optical transmission line in the optical transmission line, wherein the Raman amplification pumping light sources have oscillation wavelengths mutually. It is divided into two light sources, one on the short wavelength side and the other on the long wavelength side, and combines and outputs a plurality of oscillating lights output from the short wavelength light source and the oscillating light on the long wavelength side. Collectively controlling a plurality of oscillating lights output from a light source or an oscillating light output from a long wavelength side light source,
A pump light source for Raman amplification, wherein the output light intensity is adjusted.
【請求項2】短波長側に分割された複数の光源の駆動電
流を一括制御して、短波長側の出力光強度を調整するよ
うにしたことを特徴とする請求項1記載のラマン増幅用
励起光源。
2. The Raman amplification device according to claim 1, wherein the driving currents of the plurality of light sources divided on the short wavelength side are collectively controlled to adjust the output light intensity on the short wavelength side. Excitation light source.
【請求項3】短波長側に分割された複数の光源から発振
される光を合成した後、光減衰器により一括制御して、
短波長側の出力光強度を調整するようにしたことを特徴
とする請求項1記載のラマン増幅用励起光源。
3. After synthesizing light oscillated from a plurality of light sources split on the short wavelength side, collectively controlling the light by an optical attenuator,
2. The pump light source for Raman amplification according to claim 1, wherein the output light intensity on the short wavelength side is adjusted.
【請求項4】短波長側の発振光の強度と長波長側の発振
光の強度とを同時に調整するようにしたことを特徴とす
る請求項1乃至3のいずれか1記載のラマン増幅用励起
光源。
4. The pump for Raman amplification according to claim 1, wherein the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are simultaneously adjusted. light source.
【請求項5】短波長側の発振光の強度と長波長側の発振
光の強度とを1対0.81の割合で変化させることを特徴と
する請求項4記載のラマン増幅用励起光源。
5. The pump light source for Raman amplification according to claim 4, wherein the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are changed at a ratio of 1: 0.81.
【請求項6】短波長側の発振光の強度と長波長側の発振
光の強度とを1対1.40の割合で変化させることを特徴と
する請求項4記載のラマン増幅用励起光源。
6. The Raman amplification pump light source according to claim 4, wherein the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are changed at a ratio of 1: 1.40.
【請求項7】短波長側の発振光の強度と長波長側の発振
光の強度とを1対1.92の割合で変化させることを特徴と
する請求項4記載のラマン増幅用励起光源。
7. The pump light source for Raman amplification according to claim 4, wherein the intensity of the oscillation light on the short wavelength side and the intensity of the oscillation light on the long wavelength side are changed at a ratio of 1: 1.2.
【請求項8】信号光を発する光送信局と、その信号光を
受光する光受信局と、光送信局からの信号光を光受信局
に伝播させる光伝送路と、光伝送路内に励起光を導入さ
せて光伝送路内でラマン散乱を生じさせて前記信号光を
ラマン増幅させるラマン増幅用励起光源とからなるラマ
ン増幅器において、ラマン増幅用励起光源は、請求項1
ないし7の何れか1つで構成されていることを特徴とす
るラマン増幅器。
8. An optical transmitting station that emits a signal light, an optical receiving station that receives the signal light, an optical transmission line that propagates the signal light from the optical transmitting station to the optical receiving station, and a pump in the optical transmission line. A Raman amplification pumping light source comprising: a Raman amplification pumping light source that introduces light to cause Raman scattering in an optical transmission line to Raman-amplify the signal light;
A Raman amplifier comprising any one of the above items 7 to 7.
JP2002025238A 2001-02-02 2002-02-01 Excitation light source for Raman amplifier and Raman amplifier using the same Expired - Lifetime JP3949463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025238A JP3949463B2 (en) 2001-02-02 2002-02-01 Excitation light source for Raman amplifier and Raman amplifier using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-27201 2001-02-02
JP2001027201 2001-02-02
JP2002025238A JP3949463B2 (en) 2001-02-02 2002-02-01 Excitation light source for Raman amplifier and Raman amplifier using the same

Publications (2)

Publication Number Publication Date
JP2002305342A true JP2002305342A (en) 2002-10-18
JP3949463B2 JP3949463B2 (en) 2007-07-25

Family

ID=26608864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025238A Expired - Lifetime JP3949463B2 (en) 2001-02-02 2002-02-01 Excitation light source for Raman amplifier and Raman amplifier using the same

Country Status (1)

Country Link
JP (1) JP3949463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286151A (en) * 2004-03-30 2005-10-13 Fujitsu Ltd Multistage optical amplifier having tilt compensating function
JP2008164836A (en) * 2006-12-27 2008-07-17 Fujitsu Ltd Raman amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286151A (en) * 2004-03-30 2005-10-13 Fujitsu Ltd Multistage optical amplifier having tilt compensating function
JP4484565B2 (en) * 2004-03-30 2010-06-16 富士通株式会社 Multistage optical amplifier with tilt compensation function
JP2008164836A (en) * 2006-12-27 2008-07-17 Fujitsu Ltd Raman amplifier
US8027082B2 (en) 2006-12-27 2011-09-27 Fujitsu Limited Raman amplifier and excitation light source used thereof

Also Published As

Publication number Publication date
JP3949463B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JPH08278523A (en) Light amplifier
JP3757018B2 (en) Optical amplification device, optical amplification device control method, and optical transmission system using optical amplification device
JP4399496B2 (en) Optical amplifier, optical amplification repeater, and pumping light supply control method
US7738165B2 (en) Amplified spontaneous emission reflector-based gain-clamped fiber amplifier
JPH07202306A (en) Optical fiber amplifier for wavelength multiplex transmission
JP2003218804A (en) Raman amplifier, wavelength multiplexed optical communication system and control method for raman amplification
JP2005309250A (en) Raman amplifier
JP6962384B2 (en) Optical amplifier and optical signal amplification method
US6384965B2 (en) Wavelength division multiplexing optical fiber amplifier
JP2002305342A (en) Exciting light source for raman amplifier and raman amplifier using the same
JP4062062B2 (en) Excitation module for Raman amplification
EP1229675A2 (en) Pump light source for raman amplifier and raman amplifier using the same
JP2004301991A (en) Optical amplification control unit and optical amplification control process
US6614591B1 (en) Optical combiner
WO2007036986A1 (en) Exciting light supplying device and its exciting light supplying method and optical amplifier
JPWO2019187051A1 (en) Optical amplifier, control method of optical amplifier and optical communication system
EP1469622B1 (en) Semiconductor optical amplifier based Raman pump
JP3570927B2 (en) Optical fiber communication system using Raman amplification.
JP2003283019A (en) Optical repeater and optical transmission system
KR100567317B1 (en) Optical fiber amplification method and apparatus for controlling gain
JP2000114630A (en) Optical amplifier
US6624928B1 (en) Raman amplification
JP6052295B2 (en) Raman amplifier and gain control method
JP4108459B2 (en) Optical amplifier
JP2010262988A (en) Optical amplification device and optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R151 Written notification of patent or utility model registration

Ref document number: 3949463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term