JP2002303866A - Reflective liquid crystal display device - Google Patents

Reflective liquid crystal display device

Info

Publication number
JP2002303866A
JP2002303866A JP2001109555A JP2001109555A JP2002303866A JP 2002303866 A JP2002303866 A JP 2002303866A JP 2001109555 A JP2001109555 A JP 2001109555A JP 2001109555 A JP2001109555 A JP 2001109555A JP 2002303866 A JP2002303866 A JP 2002303866A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
optical path
crystal display
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001109555A
Other languages
Japanese (ja)
Inventor
Yuuki Nakano
勇樹 中野
Toshihiko Ariyoshi
俊彦 有吉
Seiji Umemoto
清司 梅本
Riyouji Kinoshita
亮児 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2001109555A priority Critical patent/JP2002303866A/en
Priority to EP02005133A priority patent/EP1241514A3/en
Priority to TW091104675A priority patent/TW539897B/en
Priority to US10/098,145 priority patent/US6825895B2/en
Priority to KR1020020014298A priority patent/KR100802761B1/en
Publication of JP2002303866A publication Critical patent/JP2002303866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop an external light and lighting type reflective liquid crystal display device which is thin and lightweight, hardly causes panel cracking, and has superior display quality. SOLUTION: The reflective liquid crystal display panel (100) is equipped with a light reflecting means (12) on the back side of the liquid crystal layer of a liquid crystal cell (90) formed by sandwiching liquid crystal (30) between a back-side cell substrate (10) having at least an electrode (12) on a base substrate (11) and a view-side cell substrate (20) which has at least a transparent electrode (21) provided on a transparent substrate (24) thicker than the base substrate of the cell substrate while both the substrates are arranged having their electrode sides put opposite each other. The liquid crystal display panel has a lighting device (50) at one or more places on its side face and is provided with an optical path control layer (40) having a light projecting means (A) equipped with an optical path conversion oblique surface (A1) on the external surface side of the view-side cell substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、薄型軽量で表示品位に優
れる外光・照明両用式の反射型液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection-type liquid crystal display device which is thin and lightweight and has excellent display quality, which is used for both external light and illumination.

【0002】[0002]

【発明の背景】従来、外光・照明両用式の反射型LCD
(液晶表示装置)としては、サイドライト型導光板を液
晶表示パネルの視認側表面に配置し、その導光板を介し
て表示光を視認するようにしたフロントライト式ものが
知られていた(特開平12−147499号公報)。し
かしながらサイドライト型導光板では光伝送の必要上約
2mm以上の板厚を要することとなり液晶表示装置の厚み
や重量が大きくなる問題点があった。そのため特に携帯
パソコンや携帯電話等の携帯用途の反射型液晶表示装置
ではその薄型軽量化が重要な課題となっていた。液晶表
示パネルのセル基板を薄くする薄型軽量化方式では機械
的強度が落ちてパネルが割れやすくなる難点が発生す
る。
BACKGROUND OF THE INVENTION Conventionally, a reflection type LCD for both external light and illumination is used.
As a (liquid crystal display device), there has been known a front light type device in which a side light type light guide plate is disposed on a viewing side surface of a liquid crystal display panel, and display light is visually recognized through the light guide plate. JP-A-12-147499). However, the sidelight type light guide plate requires a plate thickness of about 2 mm or more due to the necessity of light transmission, and there is a problem that the thickness and weight of the liquid crystal display device are increased. For this reason, the reduction in thickness and weight has become an important issue, particularly in a reflection type liquid crystal display device for portable use such as a portable personal computer and a portable telephone. In the thin and light weight system in which the cell substrate of the liquid crystal display panel is thinned, there is a problem that the mechanical strength is reduced and the panel is easily broken.

【0003】[0003]

【発明の技術的課題】本発明は、薄型軽量性に優れてパ
ネル割れを生じにくく表示品位にも優れる外光・照明両
用式の反射型液晶表示装置の開発を課題とする。
An object of the present invention is to develop a reflection type liquid crystal display device for both external light and illumination, which is excellent in thinness and lightness, does not easily cause panel breakage, and has excellent display quality.

【0004】[0004]

【課題の解決手段】本発明は、支持基板に少なくとも電
極を設けた背面側セル基板と、そのセル基板における前
記支持基板よりも厚さが大きい透明基板に少なくとも透
明電極を設けた視認側セル基板とを、それらの電極側を
対向させて配置した間に液晶を挟持してなる液晶セルの
当該液晶層よりも背面側に光反射手段を具備し、視認側
セル基板の外表面より入射した外光を前記光反射手段で
反射して当該液晶層を透過した表示光を視認側セル基板
より出射させて視認するようにした反射型の液晶表示パ
ネルにおける側面の1又は2以上に照明装置を有すると
共に、前記視認側セル基板の外表面側に光出射手段を有
する厚さが10〜300μmの光路制御層を設けてな
り、その光出射手段が前記照明装置を介し当該側面より
入射させた光を前記背面側セル基板の側に反射する光路
変換斜面を具備して、その光路変換斜面が液晶表示パネ
ルの基準平面に対し35〜48度の傾斜角を有するもの
であることを特徴とする反射型液晶表示装置を提供する
ものである。
The present invention provides a rear-side cell substrate provided with at least an electrode on a supporting substrate, and a viewing-side cell substrate provided with at least a transparent electrode on a transparent substrate having a thickness larger than the supporting substrate in the cell substrate. A liquid crystal cell having a liquid crystal sandwiched between its electrode sides facing the liquid crystal layer, provided with light reflecting means on the back side of the liquid crystal layer, and the light incident from the outer surface of the viewing side cell substrate. An illumination device is provided on one or more side surfaces of a reflective liquid crystal display panel in which light is reflected by the light reflecting means and display light transmitted through the liquid crystal layer is emitted from the viewing side cell substrate to be viewed. In addition, an optical path control layer having a thickness of 10 to 300 μm having light emitting means on the outer surface side of the viewing side cell substrate is provided, and the light emitting means emits light incident from the side surface through the lighting device. The back A reflection type liquid crystal display comprising a light path conversion slope on the side of the side cell substrate, the light path conversion slope having an inclination angle of 35 to 48 degrees with respect to a reference plane of the liquid crystal display panel. An apparatus is provided.

【0005】[0005]

【発明の効果】本発明によれば、液晶表示パネルの側面
に配置した照明装置からの入射光を視認側に配置した光
路制御層の光出射手段と背面側に配置した光反射手段を
介して液晶表示パネルの視認方向に効率よく光路変換し
て液晶表示に利用でき、かつ外光を入射させる外光モー
ドにても液晶表示することができるフロントライト機構
を形成できて、薄さに優れる光路制御層と照明装置の側
面配置にて薄型軽量性に優れてパネル割れを生じにくく
表示品位に優れる外光・照明両用式の反射型液晶表示装
置を得ることができる。
According to the present invention, the incident light from the illuminating device arranged on the side of the liquid crystal display panel is passed through the light emitting means of the optical path control layer arranged on the viewing side and the light reflecting means arranged on the back side. The light path can be efficiently converted in the viewing direction of the liquid crystal display panel and used for liquid crystal display, and the front light mechanism that can display the liquid crystal even in the external light mode in which external light is incident can be formed. A reflection type liquid crystal display device for both external light and illumination, which is excellent in thinness and lightness, hardly causes panel breakage, and is excellent in display quality, can be obtained by the side arrangement of the control layer and the illumination device.

【0006】すなわち本発明によれば、液晶表示パネル
のセル基板、特に視認側の透明基板を介して側面配置の
照明装置からの入射光を効率よく伝送しつつ光路制御層
に供給でき、導光板に比べて遙かに薄い光路制御層にて
も良好な光の出射を実現することができる。また視認側
の透明基板を背面側の支持基板よりも厚くしたことでそ
れらが同厚である場合に比べて視認側の透明基板におけ
る側面入射光を多くすることができ、これにより表示光
をより明るくすることができると共に、圧力を受けやす
い視認側セル基板の剛性を高めて外力によるその撓みに
て表示画像が乱れることを抑制でき、前記同厚の場合と
基板の総厚が同じときにも割れにくい液晶表示装置とす
ることができる。
That is, according to the present invention, it is possible to efficiently transmit incident light from a side-mounted illuminating device through a cell substrate of a liquid crystal display panel, in particular, a transparent substrate on the viewing side, and to supply the light to the optical path control layer. It is possible to achieve good light emission even with an optical path control layer that is much thinner than that of. In addition, by making the transparent substrate on the viewing side thicker than the supporting substrate on the back side, it is possible to increase the side incident light on the transparent substrate on the viewing side as compared with the case where they are the same thickness, thereby increasing the display light. In addition to being able to be bright, the rigidity of the viewing-side cell substrate, which is easily subjected to pressure, can be increased to suppress the display image from being distorted due to its bending due to external force. Even when the total thickness of the substrate is the same as the case of the same thickness, A liquid crystal display device that is difficult to break can be obtained.

【0007】さらに光路制御層に設けた光出射手段が所
定の傾斜角の光路変換斜面を有することでその斜面を介
し側面からの入射光ないしその伝送光を反射させて指向
性よく光路変換でき、かつピークを示す正反射方向の光
を光路制御して表示に有利な指向性、就中、正面方向の
指向性を容易にもたせることができ明るい照明モードに
よる液晶表示を達成することができる。また外光モード
にても光路制御層における光路変換斜面以外の平坦な部
分を利用して外光を効率よく入射させることができるた
め照明モードに加えて外光モードにても明るい液晶表示
を達成することができる。
Further, since the light emitting means provided in the optical path control layer has an optical path changing slope having a predetermined inclination angle, the incident light from the side surface or the transmitted light can be reflected through the inclined surface to convert the optical path with good directivity. In addition, by controlling the optical path of light in the specular reflection direction showing the peak, directivity advantageous for display, particularly directivity in the front direction, can be easily provided, and a liquid crystal display in a bright illumination mode can be achieved. In addition, even in the external light mode, a bright liquid crystal display can be achieved in the external light mode in addition to the illumination mode because external light can be efficiently incident by using a flat portion other than the optical path conversion slope in the optical path control layer. can do.

【0008】[0008]

【発明の実施形態】本発明による反射型液晶表示装置
は、支持基板に少なくとも電極を設けた背面側セル基板
と、そのセル基板における前記支持基板よりも厚さが大
きい透明基板に少なくとも透明電極を設けた視認側セル
基板とを、それらの電極側を対向させて配置した間に液
晶を挟持してなる液晶セルの当該液晶層よりも背面側に
光反射手段を具備し、視認側セル基板の外表面より入射
した外光を前記光反射手段で反射して当該液晶層を透過
した表示光を視認側セル基板より出射させて視認するよ
うにした反射型の液晶表示パネルにおける側面の1又は
2以上に照明装置を有すると共に、前記視認側セル基板
の外表面側に光出射手段を有する厚さが10〜300μ
mの光路制御層を設けてなり、その光出射手段が前記照
明装置を介し当該側面より入射させた光を前記背面側セ
ル基板の側に反射する光路変換斜面を具備して、その光
路変換斜面が液晶表示パネルの基準平面に対し35〜4
8度の傾斜角を有するものよりなる。
BEST MODE FOR CARRYING OUT THE INVENTION A reflection type liquid crystal display device according to the present invention comprises a rear cell substrate provided with at least an electrode on a support substrate, and a transparent substrate having a thickness larger than the support substrate in the cell substrate. The viewing-side cell substrate provided is provided with light reflecting means on the back side of the liquid crystal layer of the liquid crystal cell in which the liquid crystal is sandwiched between the electrode sides facing each other. 1 or 2 of a side surface of a reflection type liquid crystal display panel in which external light incident from an outer surface is reflected by the light reflecting means and display light transmitted through the liquid crystal layer is emitted from a viewing side cell substrate to be visually recognized. Having a lighting device as described above and having a light emitting means on the outer surface side of the viewing-side cell substrate, the thickness is 10 to 300 μm.
m light path control layer, the light emitting means of which is provided with an optical path conversion slope for reflecting light incident from the side surface through the lighting device to the side of the back side cell substrate, and the light path conversion slope. Is 35 to 4 with respect to the reference plane of the liquid crystal display panel.
It has an inclination angle of 8 degrees.

【0009】前記した反射型液晶表示装置の例を図1に
示した。100が液晶表示パネル、90が液晶セル、1
0が支持基板11に光反射手段を兼ねる電極12を設け
た背面側セル基板、20が透明基板24に透明電極21
を設けた視認側セル基板、30が液晶層、40が光路変
換斜面A1を具備する光出射手段Aを有する光路制御
層、50が照明装置である。なお図中の13、22は配
向膜、23は低屈折率の透明層、25は偏光板、26は
位相差板、31はセル基板の10と20の間に液晶30
を封入するシール材、51は光源、52はリフレクタで
ある。
FIG. 1 shows an example of the above-mentioned reflection type liquid crystal display device. 100 is a liquid crystal display panel, 90 is a liquid crystal cell, 1
Reference numeral 0 denotes a back-side cell substrate provided with an electrode 12 serving also as a light reflecting means on a support substrate 11, and reference numeral 20 denotes a transparent electrode 21 on a transparent substrate 24.
Is a liquid crystal layer, 40 is an optical path control layer having light emitting means A having an optical path conversion slope A1, and 50 is an illumination device. In the figures, 13 and 22 are alignment films, 23 is a transparent layer having a low refractive index, 25 is a polarizing plate, 26 is a retardation plate, and 31 is a liquid crystal 30 between the cell substrates 10 and 20.
Is a light source, and 52 is a reflector.

【0010】液晶表示パネルとしては、図例の如く支持
基板に少なくとも電極を設けた背面側セル基板と、その
セル基板における前記支持基板よりも厚さが大きい透明
基板に少なくとも透明電極を設けた視認側セル基板と
を、それらの電極側を対向させて配置した間に液晶を挟
持してなる液晶セル、及びそのセルの当該液晶層よりも
背面側に光反射手段を具備して、光路制御層を配置した
視認側セル基板の外表面より入射した外光を前記光反射
手段で反射しその反転で当該液晶層を透過した表示光を
視認側セル基板より出射させて視認するようにした適宜
な反射型のものを用いることができ、その種類について
特に限定はない。
[0010] As a liquid crystal display panel, as shown in the figure, a rear-side cell substrate provided with at least an electrode on a support substrate, and a transparent substrate provided with at least a transparent electrode on a transparent substrate having a thickness larger than the support substrate in the cell substrate. A liquid crystal cell in which a liquid crystal is sandwiched between a side cell substrate and their electrode sides facing each other; and a light reflecting means provided on the back side of the liquid crystal layer of the cell, and an optical path control layer. The external light incident from the outer surface of the viewing side cell substrate on which is disposed is reflected by the light reflecting means, and the display light transmitted through the liquid crystal layer is inverted by the light reflection means so that the display light is emitted from the viewing side cell substrate and appropriately viewed. A reflective type can be used, and the type is not particularly limited.

【0011】ちなみに前記した液晶セルの具体例として
は、液晶の配向形態に基づいてTN液晶セルやSTN液
晶セル、垂直配向セルやHANセル、OCBセルの如き
ツイスト系や非ツイスト系、ゲストホスト系や強誘電性
液晶系のもの、光拡散を利用したものなどがあげられ、
液晶の駆動方式も例えばアクティブマトリクス方式やパ
ッシブマトリクス方式などの適宜なものであってよい。
液晶の駆動は通例、図例の如く一対のセル基板10、2
0の内側に設けた電極12、21を介して行われる。
Incidentally, specific examples of the above-mentioned liquid crystal cell include twisted and non-twisted types such as a TN liquid crystal cell, an STN liquid crystal cell, a vertical alignment cell, a HAN cell, and an OCB cell, and a guest host type, based on the orientation of the liquid crystal. And those using ferroelectric liquid crystal, and those utilizing light diffusion.
The driving method of the liquid crystal may be an appropriate method such as an active matrix method or a passive matrix method.
The driving of the liquid crystal is generally performed by a pair of cell substrates 10, 2 as shown in the figure.
This is performed via the electrodes 12 and 21 provided inside 0.

【0012】視認側セル基板には表示光の透過を可能と
するため透明基板が用いられる。その透明基板は、ガラ
スや樹脂などの適宜な材料で形成でき就中、複屈折を可
及的に抑制して光損失を低減する点などより光学的に等
方性の材料からなるものが好ましい。また輝度や表示品
位の向上等の点より青ガラス板に対する無アルカリガラ
ス板の如く無色透明性に優れるものが好ましく、さらに
軽量性等の点よりは樹脂基板が好ましい。
A transparent substrate is used for the viewing-side cell substrate to allow transmission of display light. The transparent substrate can be formed of an appropriate material such as glass or resin, and among others, is preferably formed of an optically isotropic material from the viewpoint of minimizing birefringence and reducing light loss. . Further, a material having excellent colorless transparency such as a non-alkali glass plate with respect to a blue glass plate is preferable in terms of improvement of luminance and display quality, and a resin substrate is more preferable in terms of lightness and the like.

【0013】一方、背面側セル基板における支持基板に
ついては、例えば図1の例の如く液晶セル90の内部に
光反射手段を兼ねる電極12を設ける場合には光透過性
である必要はないので任意な基板11を用いることがで
き着色基板であってもよい。その場合、液晶セルが光の
散乱又は透過・吸収差で表示を実現するタイプであると
きには黒表示の点より黒色基板が好ましく用いうる。他
方、液晶セルの外側に光反射手段を有して背面側セル基
板が光透過性であることが必要な場合や背面側セル基
板、特にその支持基板に側面に配置した照明装置からの
光を入射させる場合などには透明基板が用いられる。そ
の透明基板の材質については上記した視認側セル基板に
準じうる。
On the other hand, the support substrate in the rear-side cell substrate does not need to be light-transmitting when the electrode 12 serving also as a light reflecting means is provided inside the liquid crystal cell 90 as shown in FIG. The substrate 11 can be used, and may be a colored substrate. In that case, when the liquid crystal cell is of a type that realizes display by scattering or transmission / absorption difference of light, a black substrate can be preferably used from the point of black display. On the other hand, when it is necessary that the rear cell substrate has light transmissivity by providing light reflecting means outside the liquid crystal cell, or when the rear cell substrate, in particular, the light from the lighting device disposed on the side surface of the supporting substrate is used. A transparent substrate is used when the light is incident. The material of the transparent substrate can be in accordance with the above-mentioned viewing-side cell substrate.

【0014】視認側セル基板の透明基板及び背面側セル
基板の支持基板の厚さについては、その透明基板を支持
基板よりも厚くする点を除いて特に限定はなく、液晶の
封入強度などに応じて適宜に決定しうる。一般には側面
入射光の伝送効率と薄型軽量性のバランスなどの点より
10μm〜5mm、就中50μm〜3mm、特に100μm〜
2mmの厚さとされる。図例の如く視認側セル基板20を
照明装置50からの入射光の伝送基板として用いる場合
には入射効率や伝送効率等の点より透明基板の断面積が
大きいほど有利であり厚いほど好ましい。
The thickness of the transparent substrate of the viewing-side cell substrate and the thickness of the supporting substrate of the back-side cell substrate are not particularly limited except that the transparent substrate is made thicker than the supporting substrate, and depends on the sealing strength of the liquid crystal and the like. Can be determined appropriately. Generally, 10 μm to 5 mm, particularly 50 μm to 3 mm, especially 100 μm
It is 2 mm thick. In the case where the viewing-side cell substrate 20 is used as a transmission substrate for the incident light from the lighting device 50 as shown in the figure, the larger the cross-sectional area of the transparent substrate is, the better and the more preferable, the larger the cross-sectional area is from the viewpoint of the incident efficiency and transmission efficiency.

【0015】前記の場合、背面側セル基板は薄型軽量化
の点より薄いほど有利であることより、背面側セル基板
の支持基板の厚さは視認側セル基板の透明基板の厚さの
2/3以下、就中5〜60%、特に10〜50%である
ことが好ましい。透明基板の形状は、同厚板であっても
よいし、光路制御層の傾斜配置による光路変換斜面への
伝送光の入射効率の向上などを目的に断面楔形の如く厚
さが部分的に相違するものであってもよい。支持基板の
形状についても同様である。
In the above case, the thickness of the support substrate of the back side cell substrate is 2 / th of the thickness of the transparent substrate of the viewing side cell substrate because the back side cell substrate is more advantageous as it is thinner and thinner and lighter. It is preferably 3 or less, especially 5 to 60%, particularly preferably 10 to 50%. The shape of the transparent substrate may be the same thick plate, or the thickness may be partially different, such as a wedge-shaped cross section, for the purpose of improving the efficiency of transmitting light to the optical path conversion slope by the inclined arrangement of the optical path control layer. May be used. The same applies to the shape of the support substrate.

【0016】また視認側セル基板と背面側セル基板は、
平面寸法が同じであってもよいし、相違していてもよ
い。視認側セル基板を照明装置からの入射光の伝送基板
として用いる場合には図例の如く少なくとも照明装置5
0を配置する側の側面において、背面側セル基板10が
形成する側面よりも視認側セル基板20の形成する側面
が突出する状態にあることが、その突出側面に照明装置
を配置した場合の入射効率等の点より好ましい。
The viewing-side cell substrate and the back-side cell substrate are
The plane dimensions may be the same or different. When the viewing-side cell substrate is used as a transmission substrate for the incident light from the lighting device, at least the lighting device 5 is used as shown in FIG.
On the side surface on which 0 is arranged, the side surface formed by the viewing-side cell substrate 20 is projected from the side surface formed by the back-side cell substrate 10 when the lighting device is arranged on the projected side surface. It is preferable from the point of efficiency and the like.

【0017】視認側セル基板の透明基板に設ける透明電
極、また場合により背面側セル基板の支持基板に設ける
透明電極は、例えばITO等の従来に準じた適宜な材料
にて形成することができる。一方、図例の如く背面側セ
ル基板10の支持基板11に必要に応じ光反射手段を兼
ねるものとして設ける電極12は、例えば適宜な反射性
金属などにて形成できアルミニウム等の高反射率、良電
気伝導性の金属による薄膜として形成することが好まし
い。その場合、視認側セル基板を照明装置からの入射光
の伝送基板とするときには、その基板内の伝送光が光路
制御層の光路変換斜面で反射されるまでは光反射手段に
到達しにくく散乱反射による伝送光の乱れも防止しうる
ことから散乱性の光反射手段とすることもできる。
The transparent electrode provided on the transparent substrate of the viewing-side cell substrate and, if necessary, the transparent electrode provided on the supporting substrate of the back-side cell substrate can be formed of a suitable material such as ITO, for example. On the other hand, as shown in the figure, the electrode 12 provided on the support substrate 11 of the rear-side cell substrate 10 as a light reflecting means as required can be formed of, for example, an appropriate reflective metal or the like. It is preferably formed as a thin film of an electrically conductive metal. In this case, when the viewing-side cell substrate is used as a transmission substrate for the incident light from the lighting device, it is difficult for the transmission light in the substrate to reach the light reflection means until the transmission light is reflected by the optical path conversion slope of the optical path control layer. The transmission light can be prevented from being disturbed by light scattering, so that the light reflection means can be used as scattering light.

【0018】上記の如く液晶セル内の液晶層よりも背面
側に設ける光反射手段、従って通例、背面側セル基板の
内側又は外側に設ける光反射手段は、図1に折れ線矢印
で示した如く照明装置50からの入射光ないしその伝送
光を光路制御層40における光出射手段Aの光路変換斜
面A1で反射して背面側セル基板側に光路変換し、その
光を反射反転させて照明モードによる表示光αを得るこ
と、及び光路制御層の光路変換斜面以外の平坦な部分な
いし傾斜角の緩い部分を介した入射外光を反射反転させ
て外光モードによる表示光βを得ることを目的とし、こ
れにより外光・照明両用式の反射型液晶表示装置が形成
される。
As described above, the light reflecting means provided on the back side of the liquid crystal layer in the liquid crystal cell, that is, the light reflecting means usually provided on the inside or outside of the back side cell substrate is illuminated as shown by a broken line arrow in FIG. The incident light from the device 50 or the transmission light thereof is reflected by the light path changing slope A1 of the light emitting means A in the light path control layer 40 to change the light path to the back cell substrate side, and the light is reflected and inverted to be displayed in the illumination mode. To obtain the light α, and to obtain the display light β in the external light mode by reflecting and reversing the incident external light through a flat portion other than the optical path conversion slope of the optical path control layer or a portion with a gentle inclination angle, As a result, a reflective liquid crystal display device for both external light and illumination is formed.

【0019】光反射手段、特に液晶セルの外側に設ける
光反射手段は、従来に準じた白色シートなどの適宜なも
のにて形成することができる。就中、例えばアルミニウ
ムや銀、金や銅やクロム等の高反射率の金属ないしその
合金の粉末をバインダ樹脂中に含有させた塗工層、前記
の金属等や誘電体多層膜を真空蒸着方式やスパッタリン
グ方式等の適宜な薄膜形成方式で付設してなる層、前記
の塗工層や付設層をフィルム等からなる基材で支持した
反射シート、金属箔などからなる高反射率の光反射手段
が好ましい。
The light reflecting means, in particular, the light reflecting means provided outside the liquid crystal cell can be formed by a suitable material such as a conventional white sheet. Above all, for example, a coating layer containing a powder of a high reflectivity metal such as aluminum, silver, gold, copper, chromium, or an alloy thereof in a binder resin, the above-mentioned metal, etc. and a dielectric multilayer film are formed by a vacuum deposition method. Layer formed by an appropriate thin film forming method such as sputtering or sputtering, a reflection sheet in which the coating layer or the added layer is supported by a substrate made of a film or the like, and a high-reflectance light reflecting means made of a metal foil or the like Is preferred.

【0020】形成する光反射手段は、上記の如く光散乱
機能を示すものであってもよい。散乱反射面にて反射光
を拡散させることにより正面方向への指向性の向上を図
ることができ、また粗面化による場合には密着によるニ
ュートンリングの発生を防止して視認性を向上させるこ
とができる。従ってセル外に設ける光反射手段は、単に
重ね置いた状態にあってもよいし、接着方式や蒸着方式
などで密着配置された状態にあってもよい。
The light reflecting means to be formed may have a light scattering function as described above. It is possible to improve the directivity in the front direction by diffusing the reflected light on the scattering reflection surface, and to improve the visibility by preventing the occurrence of Newton rings due to close contact in the case of roughening. Can be. Therefore, the light reflection means provided outside the cell may be in a state of being simply placed on top of each other, or may be in a state of being closely attached by an adhesion method or a vapor deposition method.

【0021】光散乱型の光反射手段の形成は、例えばサ
ンドブラストやマット処理等による表面の粗面化方式
や、粒子添加方式などの適宜な方式で表面を微細凹凸構
造としたフィルム基材等にその微細凹凸構造を反映させ
た光反射手段を設ける方式などにより行うことができ
る。その表面の微細凹凸構造を反映させた微細凹凸構造
の光反射手段の形成は、例えば真空蒸着方式やイオンプ
レーティング方式、スパッタリング方式等の蒸着方式や
メッキ方式などの適宜な方式で金属をフィルム基材等の
表面に付設する方法などにより行うことができる。
The light scattering type light reflecting means is formed on a film base material having a fine uneven structure on the surface by an appropriate method such as a surface roughening method by sandblasting or matting, or a particle addition method. It can be performed by a method of providing a light reflecting means reflecting the fine uneven structure. The formation of the light reflecting means of the fine uneven structure reflecting the fine uneven structure on the surface is performed, for example, by film-forming a metal by an appropriate method such as an evaporation method such as a vacuum evaporation method, an ion plating method, or a sputtering method, or a plating method. It can be performed by a method of attaching to the surface of a material or the like.

【0022】液晶セルの形成に際しては必要に応じ、液
晶を配向させるためのラビング処理膜等からなる配向膜
やカラー表示のためのカラーフィルタ、低屈折率の透明
層などの適宜な機能層の1層又は2層以上を設けること
ができる。なお図例の如く、配向膜12、22は通常、
液晶30と接触するように電極12、21の上側に形成
される。またカラーフィルタは通常、セル基板10、2
0の一方における支持基板11又は透明基板24と透明
電極の間に設けられる。従ってカラーフィルタを支持基
板側に配置する場合、その電極は透明電極とされる。
When forming a liquid crystal cell, if necessary, an appropriate functional layer such as an alignment film composed of a rubbing treatment film for aligning liquid crystal, a color filter for color display, a transparent layer having a low refractive index, etc. One or more layers can be provided. In addition, as shown in the figure, the alignment films 12 and 22 are usually
It is formed above the electrodes 12 and 21 so as to be in contact with the liquid crystal 30. In addition, the color filters are usually used for the cell substrates 10 and 2.
0 is provided between the transparent electrode and the support substrate 11 or the transparent substrate 24 on one side. Therefore, when the color filter is arranged on the support substrate side, the electrode is a transparent electrode.

【0023】一方、前記した低屈折率の透明層は、照明
モードでの表示画面全体における明るさの均一性の向上
を目的とする。ちなみに図1の例では視認側セル基板2
0にそれを形成する透明基板24よりも屈折率の低い層
として低屈折率の透明層23が設けられている。図例に
よれば折れ線矢印γとして示した如く、照明装置50か
らの入射光が視認側セル基板20の内部を伝送される際
にその伝送光を透明基板24と透明層23との屈折率差
を介し全反射させて視認側セル基板内に効率よく閉じ込
め、それにより前記伝送光を後方に効率よく伝送し照明
装置から遠い位置における光路制御層の光路変換斜面に
も伝送光を均等性よく供給してその反射による光路変換
を介し表示画面全体における明るさの均一性を向上させ
ることができる。
On the other hand, the low refractive index transparent layer is intended to improve the uniformity of brightness over the entire display screen in the illumination mode. Incidentally, in the example of FIG.
A transparent layer 23 having a low refractive index is provided as a layer having a lower refractive index than the transparent substrate 24 forming the same. According to the example of the figure, as indicated by the broken line arrow γ, when the incident light from the lighting device 50 is transmitted inside the viewing-side cell substrate 20, the transmitted light is converted into the refractive index difference between the transparent substrate 24 and the transparent layer 23. Through which the light is efficiently reflected and confined within the viewing-side cell substrate efficiently, whereby the transmission light is efficiently transmitted backward, and the transmission light is evenly supplied to the optical path conversion slope of the optical path control layer at a position far from the lighting device. Then, the uniformity of brightness over the entire display screen can be improved through the optical path conversion by the reflection.

【0024】また図例の如く低屈折率の透明層を視認側
セル基板に設けた場合には、前記の伝送光が液晶層30
に入射して複屈折や散乱を受け、それにより伝送状態が
部分的に変化して伝送光が減少したり不均一化すること
を防止して表示が暗くなることや、照明装置近傍での表
示が後方においてゴースト化して表示品位を低下させる
ことの防止などにも有効である。さらにカラーフィルタ
等を配置した場合にそれによる伝送光の急激な吸収を防
止して伝送光の減少を回避することにも有効である。照
明装置からの入射光が液晶層内を伝送されるものでは液
晶層で伝送光が散乱されて不均一な伝送状態となり、出
射光の不均一化やゴーストを生じて表示像が見ずらくな
りやすい。従って図例の如く低屈折率の透明層を視認側
セル基板に設けてその視認側セル基板の側面に照明装置
を配置してなる形態が明るさや表示品位等の点より好ま
しい。
When a transparent layer having a low refractive index is provided on the cell substrate on the viewing side as shown in FIG.
Incident on the screen and undergoes birefringence and scattering, thereby preventing the transmission state from partially changing and causing the transmission light to decrease or become non-uniform. Is also effective in preventing ghosting behind and deteriorating the display quality. Further, when a color filter or the like is arranged, it is effective to prevent a sudden absorption of the transmission light due to the arrangement and avoid a decrease in the transmission light. In the case where the incident light from the illumination device is transmitted through the liquid crystal layer, the transmitted light is scattered by the liquid crystal layer, resulting in a non-uniform transmission state. Cheap. Therefore, a mode in which a transparent layer having a low refractive index is provided on the viewing-side cell substrate and an illuminating device is arranged on the side surface of the viewing-side cell substrate as shown in the figure is preferable from the viewpoint of brightness and display quality.

【0025】低屈折率の透明層は、視認側又は背面側の
セル基板を形成する透明基板よりも屈折率の低い例えば
無機系や有機系の低屈折率誘電体の如き適宜な材料を用
いて真空蒸着方式やスピンコート方式などの適宜な方式
で形成することができ、その材料や形成方法について特
に限定はない。
The low-refractive-index transparent layer is made of an appropriate material such as an inorganic or organic low-refractive-index dielectric material having a lower refractive index than the transparent substrate forming the cell substrate on the viewing side or the back side. It can be formed by an appropriate method such as a vacuum evaporation method or a spin coating method, and there is no particular limitation on the material and the forming method.

【0026】前記した全反射による後方への伝送効率等
の点より透明層と透明基板の屈折率差は、大きいほど有
利であり、就中0.05以上、特に0.1〜0.5であ
ることが好ましい。かかる程度の屈折率差では外光モー
ドによる表示品位に殆ど影響しない。ちなみに当該屈折
率差が0.1の場合、その界面での外光の反射率は0.
1%以下でありその反射損による明るさやコントラスト
の低下は極めて小さいものである。
From the viewpoint of the transmission efficiency to the rear due to the total reflection, the larger the difference in the refractive index between the transparent layer and the transparent substrate is, the more advantageous it is, and more preferably 0.05 or more, especially 0.1 to 0.5. Preferably, there is. Such a difference in the refractive index hardly affects the display quality in the external light mode. Incidentally, when the refractive index difference is 0.1, the reflectance of external light at the interface is 0.1.
It is 1% or less, and the decrease in brightness and contrast due to the reflection loss is extremely small.

【0027】低屈折率の透明層の配置位置は適宜に決定
しうるが、前記した伝送光の閉じ込め効果や液晶層への
浸入防止などの点より透明基板と透明電極の間に位置さ
せることが好ましい。また透明基板と透明電極の間にカ
ラーフィルタを配置する場合には、カラーフィルタによ
る伝送光の吸収損を防止する点よりそのカラーフィルタ
よりも透明基板側に位置させることが好ましい。従って
通例、低屈折率の透明層は透明基板に直接設けられる。
その場合、透明基板における透明層の付設面は平滑なほ
ど、よって透明層は平滑なほど伝送光の散乱防止に有利
で好ましく、また表示光への影響防止の点よりも好まし
い。低屈折率の透明層の厚さは、上記した閉じ込め効果
と薄型化等の点より100nm以上、就中200nm以上、
特に400nm〜5μmが好ましい。
The arrangement position of the transparent layer having a low refractive index can be determined as appropriate. However, it is preferable that the transparent layer be located between the transparent substrate and the transparent electrode in view of the above-described effect of confining transmitted light and preventing intrusion into the liquid crystal layer. preferable. When a color filter is arranged between the transparent substrate and the transparent electrode, it is preferable that the color filter be located closer to the transparent substrate than the color filter in order to prevent absorption loss of transmission light by the color filter. Therefore, the transparent layer having a low refractive index is usually provided directly on the transparent substrate.
In this case, the smoother the surface on which the transparent layer is provided on the transparent substrate, the smoother the transparent layer is, the more advantageous in preventing scattering of transmission light, and more preferable in terms of preventing influence on display light. The thickness of the low-refractive-index transparent layer is 100 nm or more, particularly 200 nm or more, in view of the above-described confinement effect and thinning.
Particularly, the thickness is preferably 400 nm to 5 μm.

【0028】液晶表示パネルは、図1の例の如く液晶セ
ルに偏光板25や位相差板26、光拡散層等の適宜な光
学層の1層又は2層以上を付加したものであってもよ
い。偏光板は、TN型やSTN型等の液晶表示パネルの
如く直線偏光を利用した表示の達成を目的とし、位相差
板は液晶の複屈折性による位相差の補償等による表示品
位の向上などを目的とする。また光拡散層は、表示光の
拡散による表示範囲の拡大や光路制御層の光路変換斜面
を介した輝線状発光の平準化による輝度の均一化、液晶
表示パネル内の伝送光の拡散による光路制御層への入射
光量の増大などを目的とする。従って光拡散層は通例、
光路制御層と視認側セル基板の透明基板との間に設けら
れる。
The liquid crystal display panel has a structure in which one or more suitable optical layers such as a polarizing plate 25, a retardation plate 26, and a light diffusing layer are added to a liquid crystal cell as shown in FIG. Good. Polarizing plates aim at achieving display using linearly polarized light, such as liquid crystal display panels of TN type or STN type, and retardation plates improve display quality by compensating for phase differences due to the birefringence of liquid crystal. Aim. In addition, the light diffusion layer expands the display range by diffusing the display light, equalizes the brightness by leveling the bright line emission through the light path conversion slope of the light path control layer, and controls the light path by diffusing the transmission light in the liquid crystal display panel. The purpose is to increase the amount of light incident on the layer. Therefore, the light diffusion layer is usually
It is provided between the optical path control layer and the transparent substrate of the viewing side cell substrate.

【0029】偏光板の配置は、液晶セルの外側の両側と
することもできるし、図例の如く片側のみとすることも
できる。偏光板としては適宜なものを用いることができ
特に限定はない。高度な直線偏光の入射による良好なコ
ントラスト比の表示を得る点などよりは、例えばポリビ
ニルアルコール系フィルムや部分ホルマール化ポリビニ
ルアルコール系フィルム、エチレン・酢酸ビニル共重合
体系部分ケン化フィルムの如き親水性高分子フィルムに
ヨウ素や二色性染料等の二色性物質を吸着させて延伸し
たものからなる吸収型偏光フィルムやその片側又は両側
に透明保護層を設けたものなどの如く偏光度の高いもの
が好ましく用いうる。
The polarizers can be arranged on both sides outside the liquid crystal cell, or only on one side as shown in the figure. An appropriate polarizing plate can be used, and there is no particular limitation. Rather than obtaining a display with a good contrast ratio due to the incidence of highly linearly polarized light, for example, a highly hydrophilic film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, or an ethylene-vinyl acetate copolymer-based partially saponified film is used. Absorption-type polarizing films consisting of those which are made by adsorbing dichroic substances such as iodine or dichroic dyes on molecular films, and those having a high degree of polarization such as those provided with a transparent protective layer on one or both sides thereof. It can be preferably used.

【0030】前記透明保護層の形成には、透明性や機械
的強度、熱安定性や水分遮蔽性などに優れるものが好ま
しく用いられ、その例としてはアセテート系樹脂やポリ
エステル系樹脂、ポリエーテルスルホン系樹脂やポリカ
ーボネート系樹脂、ポリアミド系樹脂やポリイミド系樹
脂、ポリオレフィン系樹脂やアクリル系樹脂、ポリエー
テル系樹脂やポリ塩化ビニル、スチレン系樹脂やノルボ
ルネン系樹脂の如きポリマー、あるいはアクリル系やウ
レタン系、アクリルウレタン系やエポキシ系、シリコー
ン系等の熱硬化型ないし紫外線硬化型の樹脂などがあげ
られる。透明保護層は、フィルムとしたものの接着方式
やポリマー液等の塗布方式などにより付与することがで
きる。
For the formation of the transparent protective layer, those having excellent transparency, mechanical strength, heat stability and moisture shielding properties are preferably used. Examples thereof include acetate resins, polyester resins, and polyether sulfone. Resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin or acrylic resin, polyether resin or polyvinyl chloride, polymer such as styrene resin or norbornene resin, or acrylic or urethane resin, Examples thereof include thermosetting or ultraviolet-curing resins such as acrylic urethane, epoxy, and silicone. The transparent protective layer can be provided by a bonding method of a film or a coating method of a polymer liquid or the like.

【0031】一方、位相差板としても例えば前記の透明
保護層で例示したものなどの適宜なポリマーからなるフ
ィルムを一軸や二軸等の適宜な方式で延伸処理してなる
複屈折性フィルム、ネマチック系やディスコティック系
等の適宜な液晶ポリマーの配向フィルムやその配向層を
透明基材で支持したものなどの適宜なものを用いること
ができ、熱収縮性フィルムの加熱収縮力の作用下に厚さ
方向の屈折率を制御したものなどであってもよい。補償
用の位相差板は通例、視認側又は/及び背面側の偏光板
と液晶セルの間に必要に応じて配置され、その位相差板
には波長域などに応じ適宜なものを用いうる。また位相
差板は位相差等の光学特性の制御を目的に2層以上を重
畳して用いることもできる。
On the other hand, a birefringent film obtained by stretching a film made of a suitable polymer such as those exemplified in the above-mentioned transparent protective layer by a suitable method such as uniaxial or biaxial is also used as a retardation plate. An appropriate film such as an alignment film of a liquid crystal polymer such as a liquid crystal polymer or a discotic one or a film in which the alignment layer is supported by a transparent substrate can be used. The refractive index in the vertical direction may be controlled. The compensating retardation plate is usually arranged as needed between the viewing side and / or back side polarizing plate and the liquid crystal cell, and an appropriate retardation plate may be used according to the wavelength range or the like. Further, the retardation plate may be used by superposing two or more layers for the purpose of controlling optical characteristics such as a retardation.

【0032】液晶表示パネルの側面に配置する照明装置
は、反射型液晶表示装置の照明光として利用する光を液
晶表示パネルの側面から入射させることを目的とする。
これによりパネルの視認側に配置する光路制御層との組
合せにて反射型液晶表示装置の薄型軽量化を図ることが
できる。照明装置からの入射光の液晶層への入射を防止
する点より照明装置の好ましい配置方式は、上記した如
く視認側セル基板の側面、特に背面側セル基板が形成す
る側面よりも突出させた視認側セル基板の側面に対して
配置する方式である。
The illumination device arranged on the side surface of the liquid crystal display panel aims to make light used as illumination light for the reflection type liquid crystal display device enter from the side surface of the liquid crystal display panel.
This makes it possible to reduce the thickness and weight of the reflective liquid crystal display device in combination with the optical path control layer disposed on the viewing side of the panel. From the viewpoint of preventing incident light from the illuminating device from entering the liquid crystal layer, the preferred arrangement of the illuminating device is as described above, in which the visible side projects from the side surface of the viewing side cell substrate, particularly the side surface formed by the back side cell substrate. This is a method of arranging on the side surface of the side cell substrate.

【0033】照明装置としては適宜なものを用いること
ができ、例えば(冷,熱)陰極管等の線状光源、発光ダ
イオード等の点光源やそれを線状や面状等に配列したア
レイ体、あるいは点光源と線状導光板を組合せて点光源
からの入射光を線状導光板を介し線状光源に変換するよ
うにした照明装置などが好ましく用いうる。図1の例で
は光源51とそれを包囲するリフレクタ52による照明
装置50が用いられている。照明装置は、液晶表示パネ
ルにおける1又は2以上の側面に配置することができ
る。照明装置を2以上の側面に配置する場合、その複数
の側面は対向する側面の組合せであってもよいし、縦横
に交差する側面の組合せであってもよく、それらを併用
した3側面以上の組合せであってもよい。
As the illuminating device, an appropriate one can be used, for example, a linear light source such as a (cold or hot) cathode tube, a point light source such as a light emitting diode, or an array body in which the light sources are arranged in a linear or planar manner. Alternatively, an illumination device in which a point light source is combined with a linear light guide plate to convert incident light from the point light source into a linear light source via the linear light guide plate can be preferably used. In the example of FIG. 1, a lighting device 50 including a light source 51 and a reflector 52 surrounding the light source 51 is used. The lighting device can be arranged on one or more side surfaces of the liquid crystal display panel. When the lighting device is arranged on two or more side surfaces, the plurality of side surfaces may be a combination of opposing side surfaces, a combination of side surfaces that intersect vertically and horizontally, or a combination of three or more side surfaces. It may be a combination.

【0034】照明装置は、その点灯による照明モードで
の視認を可能とするものであり、外光モードにて視認す
るときには点灯の必要がないので、その点灯・消灯を切
り替えうるものとされる。その切り替え方式には任意な
方式を採ることができ、従来方式のいずれも採ることが
できる。なお照明装置は、発光色を切り替えうる異色発
光式のものであってもよく、また異種の照明装置を介し
て異色発光させうるものとすることもできる。
The illuminating device enables visual recognition in an illumination mode by turning on the lighting device, and does not need to be turned on when visually recognizing in the external light mode, and can be switched on and off. An arbitrary method can be adopted as the switching method, and any of the conventional methods can be adopted. Note that the illumination device may be of a different color emission type capable of switching the emission color, or may be of a different color emission type through different types of illumination devices.

【0035】照明装置は、図例の如く必要に応じ光源5
1による発散光を液晶表示パネルの側面に導くためにそ
れを包囲するリフレクタ52などの適宜な補助手段を配
置した組合せ体とすることもできる。リフレクタとして
は例えば高反射率の金属薄膜を付設した樹脂シートや白
色シートや金属箔などの如く、少なくとも照明装置側が
光を反射する適宜な反射シートを用いうる。リフレクタ
は、その端部を液晶表示パネルのセル基板、特に視認側
セル基板の上下面の端部に接着する方式などにて光源の
包囲を兼ねる保持手段として利用することもできる。
The lighting device is provided with a light source 5 as necessary as shown in the figure.
In order to guide the divergent light by 1 to the side surface of the liquid crystal display panel, it may be a combination body in which appropriate auxiliary means such as a reflector 52 surrounding the liquid crystal display panel are arranged. As the reflector, an appropriate reflection sheet that reflects light at least on the lighting device side, such as a resin sheet or a white sheet or a metal foil provided with a high-reflectance metal thin film, can be used. The reflector can also be used as a holding means that also surrounds the light source by, for example, bonding the end to the cell substrate of the liquid crystal display panel, particularly to the upper and lower ends of the cell substrate on the viewing side.

【0036】光路制御層は、図1に例示した如く液晶表
示パネルの側面に配置した照明装置50からの入射光な
いしその伝送光を光出射手段Aの光路変換斜面A1を介
し当該パネルの背面側セル基板方向に光路変換させ、光
反射手段12による反射反転を介して照明光(表示光)
として利用することを目的とし、液晶表示パネルの視認
側セル基板20の外表面側、一般には図1の例の如く視
認側の表面部に配置される。
As shown in FIG. 1, the light path control layer converts incident light from the illuminating device 50 disposed on the side surface of the liquid crystal display panel or transmitted light thereof through the light path changing slope A1 of the light emitting means A to the rear side of the panel. The light path is changed in the direction of the cell substrate, and the illumination light (display light) passes through the reflection reversal by the light reflection means 12.
The liquid crystal display panel is disposed on the outer surface side of the viewing side cell substrate 20 of the liquid crystal display panel, generally on the viewing side surface portion as in the example of FIG.

【0037】前記の目的より図例の如く光路制御層40
は、照明装置からの入射光を反射して所定方向に光路変
換するために、視認側セル基板の基準平面(仮想水平
面)に対する傾斜角が35〜48度の光路変換斜面A1
を具備する光出射手段Aを有するものとされる。また光
路制御層は、一般に薄型化を目的に斯かる光出射手段の
多数を分布させたものとされる。なおセル基板、特に視
認側のそれに低屈折率の透明層を設けた場合には光路制
御層をその透明層よりも屈折率の高い層として形成する
ことが好ましい。光路制御層の屈折率が当該透明層のそ
れよりも低いと照明装置からの入射光ないしその伝送光
がセル基板内に閉じ込められやすくて光路制御層への入
射が阻害され表示光として利用しにくくなる場合があ
る。
For the above purpose, as shown in FIG.
Is an optical path conversion slope A1 having an inclination angle of 35 to 48 degrees with respect to a reference plane (virtual horizontal plane) of the viewing-side cell substrate in order to reflect incident light from the illumination device and change the optical path in a predetermined direction.
Is provided. Further, the light path control layer is generally formed by distributing a large number of such light emitting means for the purpose of reducing the thickness. When a transparent layer having a low refractive index is provided on the cell substrate, particularly on the viewing side, it is preferable to form the optical path control layer as a layer having a higher refractive index than the transparent layer. If the refractive index of the optical path control layer is lower than that of the transparent layer, the incident light from the lighting device or the transmitted light is easily confined in the cell substrate, and the incidence on the optical path control layer is hindered, making it difficult to use as display light. May be.

【0038】光路制御層における光出射手段は、前記し
た所定傾斜角の光路変換斜面を有するものとする点を除
き、適宜な形態のものとして形成することができる。光
路変換等を介して正面方向への指向性に優れる表示光を
得る点よりは、照明装置を配置した側面(すなわち入射
側面)と対面する光路変換斜面A1を具備する光出射手
段Aを有する光路制御層、特にプリズム状凸凹からなる
光路変換斜面A1を具備する光出射手段Aを有する光路
制御層が好ましい。
The light emitting means in the light path control layer can be formed in any suitable form, except that the light emitting means has a light path changing slope having a predetermined inclination angle. Rather than obtaining display light with excellent directivity in the front direction via optical path conversion or the like, an optical path having light emitting means A having an optical path changing slope A1 facing a side surface (i.e., an incident side surface) on which the illumination device is arranged. A control layer, in particular, an optical path control layer having light emitting means A having an optical path conversion slope A1 composed of prismatic irregularities is preferable.

【0039】前記した光路変換斜面ないしプリズム状凸
凹を有する光出射手段の例を図2〜4に示した。図2で
は二等辺三角形による2面の光路変換斜面A1を具備す
る光出射手段A、図3では光路変換斜面A1と基準平面
に対する傾斜角が斜面A1よりも大きい急斜面Bを具備
する光出射手段Aからなる。また図4では光路変換斜面
A1と基準平面に対する傾斜角が小さい緩斜面Cとを単
位とする光出射手段Aが隣接連続状態の繰返し構造とし
て光路制御層片側の全面に形成されたものからなる。
FIGS. 2 to 4 show examples of light emitting means having the above-described optical path changing slope or prismatic irregularities. FIG. 2 shows a light emitting means A having two light path changing slopes A1 formed by isosceles triangles, and FIG. 3 shows a light emitting means A having an optical path changing slope A1 and a steep slope B having a larger inclination angle with respect to a reference plane than the slope A1. Consists of In FIG. 4, the light emitting means A is formed on the entire surface of one side of the optical path control layer as a repetitive structure in which the light path changing slope A1 and the gentle slope C having a small inclination angle with respect to the reference plane are adjacent to each other.

【0040】従って前記した例のように光出射手段は、
等辺面ないし同じ傾斜角の斜面からなるプリズム状の凸
部又は凹部にても形成できるし、光路変換斜面と急斜面
又は緩斜面ないし傾斜角が相違する斜面からなるプリズ
ム状の凸部又は凹部にても形成でき、その斜面形態は入
射側面の数や位置にて適宜に決定することができる。耐
擦傷性の向上による斜面機能の維持や伝送光の入射効率
等の点よりは図例の如く、光路制御層の表面41よりも
陥没したプリズム状凹部(溝)の形態が、該表面より突
出したプリズム状凸部(突起)の形態よりも好ましい。
また前記の図例では光路変換斜面A1に対する横断面に
基づいて略三角形の光出射手段Aを示した。断面略三角
形は形成容易性などの点より有利であるが、例えば断面
略四角形や断面略五角形などの適宜な断面形態を有する
光出射手段Aであってよい。なお当該断面形の「略」
は、辺の角度変化や辺の交点からなる角の円化等の変形
を許容することを意味する。
Therefore, as in the above-described example, the light emitting means
It can also be formed on a prism-shaped convex or concave portion having an equilateral surface or a slope having the same inclination angle, or a prism-shaped convex portion or a concave portion having an optical path conversion slope and a steep slope or a gentle slope or a slope having a different slope angle. Can be formed, and the form of the slope can be appropriately determined by the number and position of the incident side surfaces. As shown in the figure, the shape of the prism-shaped concave portion (groove) that is depressed from the surface 41 of the optical path control layer is protruded from the surface, rather than maintaining the slope function and improving the incident efficiency of transmission light due to the improvement of scratch resistance. It is more preferable than the form of the prism-shaped convex portion (projection).
Further, in the above-described example, the light emitting means A having a substantially triangular shape based on the cross section with respect to the optical path changing slope A1 is shown. Although a substantially triangular cross-section is advantageous in terms of ease of formation, the light emitting means A may have an appropriate cross-sectional shape such as a substantially quadrangular cross-section or a substantially pentagonal cross-section. The “abbreviation” of the cross-sectional shape
Means that a deformation such as a change in the angle of the side or a rounding of the angle formed by the intersection of the sides is permitted.

【0041】上記した正面方向への指向性等の特性を達
成する点などより好ましい光路制御層は、図例の如く基
準平面に対する傾斜角が35〜48度の光路変換斜面A
1を入射側面に対面して有するものである。従って液晶
表示パネルの2側面以上に照明装置を配置して2以上の
入射側面を有する場合には、その数と位置に対応して光
路変換斜面A1を有する光路制御層としたものが好まし
く用いられる。なお図中の矢印が入射側面から入射した
光の伝送方向である。
The optical path control layer, which is more preferable in achieving the above-described characteristics such as the directivity in the front direction, is an optical path conversion slope A having an inclination angle of 35 to 48 degrees with respect to a reference plane as shown in the figure.
1 facing the incident side surface. Therefore, when the illuminating device is disposed on two or more side surfaces of the liquid crystal display panel and has two or more incident side surfaces, a light path control layer having an optical path conversion slope A1 corresponding to the number and position is preferably used. . The arrow in the figure is the transmission direction of light incident from the incident side.

【0042】従って液晶表示パネルの対向する2側面に
照明装置を配置してその2側面を入射側面とする場合に
は、図2の如き断面略二等辺三角形からなる光出射手段
Aによる2面の光路変換斜面A1や断面略台形からなる
光出射手段による2面の光路変換斜面をその稜線が入射
側面に沿う方向となる状態で有する光路制御層が好まし
く用いられる。また液晶表示パネルの縦横で隣接する2
側面に照明装置を配置する場合には、その側面に対応し
て稜線が縦横の両方向に沿う状態で光路変換斜面を有す
る光路制御層が好ましく用いられる。さらには対向及び
縦横を含む3側面以上に照明装置を配置する場合には、
前記の組合せからなる光路変換斜面を有する光路制御層
が好ましく用いられる。
Accordingly, in the case where the illuminating devices are arranged on two opposing side surfaces of the liquid crystal display panel and the two side surfaces are used as the incident side surfaces, the light emitting means A having a substantially isosceles triangular cross section as shown in FIG. An optical path control layer having two optical path converting slopes formed by the light emitting means having a light trapping surface A1 or a substantially trapezoidal cross section in such a state that the ridge line thereof is along the incident side surface is preferably used. In addition, two horizontal and vertical sides of the liquid crystal display panel
When illuminating devices are arranged on the side surfaces, an optical path control layer having an optical path changing slope with ridges corresponding to the side surfaces in both the vertical and horizontal directions is preferably used. Furthermore, when arranging the lighting device on three or more sides including vertical and horizontal,
An optical path control layer having an optical path changing slope composed of the above combination is preferably used.

【0043】前記した光路変換斜面A1は、照明装置を
介した入射側面よりの入射光ないしその伝送光の内、そ
の面A1に入射する光を反射して光路変換し液晶表示パ
ネルの背面側に供給する役割をする。その場合、光路変
換斜面A1の基準平面に対する傾斜角を35〜48度と
することにより図1に折線矢印αで例示した如く、側面
入射光ないしその伝送光を基準平面に対し垂直性よく光
路変換して正面への指向性に優れる表示光を効率よく得
ることができる。その傾斜角が35度未満では光反射手
段を介した反射光の光路が正面方向より30度以上ずれ
て表示に有効利用しにくく表示品位も低下する。一方、
当該傾斜角が48度を超えると側面入射光ないしその伝
送光を全反射させる条件から外れて光路変換斜面よりの
漏れ光が多くなり側面入射光の光利用効率に乏しくな
る。
The optical path changing slope A1 reflects the light incident on the surface A1 out of the incident light from the incident side surface through the illumination device or the transmitted light, and changes the optical path to perform the light path changing on the rear side of the liquid crystal display panel. Play the role of supply. In this case, the inclination angle of the optical path changing slope A1 with respect to the reference plane is set to 35 to 48 degrees, so that the side incident light or its transmission light is subjected to optical path conversion with good perpendicularity to the reference plane as exemplified by the broken line arrow α in FIG. As a result, display light having excellent directivity toward the front can be efficiently obtained. If the inclination angle is less than 35 degrees, the optical path of the reflected light via the light reflecting means is shifted by 30 degrees or more from the front direction, making it difficult to effectively use for display and deteriorating the display quality. on the other hand,
If the angle of inclination exceeds 48 degrees, the condition for totally reflecting the side incident light or its transmitted light is deviated, so that the amount of light leaking from the optical path conversion slope increases and the light utilization efficiency of the side incident light becomes poor.

【0044】正面への指向性に優れる光路変換や漏れ光
の抑制等の点より光路変換斜面A1の好ましい傾斜角
は、液晶表示パネル内を伝送される光のスネルの法則に
よる屈折に基づく全反射条件などを考慮して38〜45
度、就中40〜44度である。ちなみにガラス板の一般
的な全反射条件は42度であり従ってその場合、側面入
射光は±42度の範囲に集約された状態で伝送されつ
つ、光路変換斜面に入射することとなる。
The preferable angle of inclination of the optical path conversion slope A1 in terms of light path conversion having excellent directivity to the front and suppression of leak light is determined by total reflection based on refraction of light transmitted through the liquid crystal display panel according to Snell's law. 38-45 considering conditions
Degrees, especially 40-44 degrees. Incidentally, the general total reflection condition of the glass plate is 42 degrees, and in that case, the side incident light is incident on the optical path conversion slope while being transmitted in a state of being concentrated in the range of ± 42 degrees.

【0045】光路変換斜面A1を具備する光出射手段A
は、上記のように光路制御層の薄型化を目的に通例その
複数を配置した構造として形成されるがその場合、図1
の如く入射側面からの入射光を後方に反射し対向側面側
に効率よく伝送して液晶表示全面で可及的に均一に発光
させる点よりは、図2〜4に例示の如く基準平面に対す
る傾斜角が略0度の平坦面41を含む構造や当該傾斜角
が10度以下、就中5度以下、特に3度以下の緩斜面C
を含む構造とすることが好ましい。従って図3に例示の
急斜面Bを含む光出射手段Aでは、その急斜面の角度を
35度以上、就中50度以上、特に60度以上として平
坦面41の幅を広くできる構造とすることが好ましい。
Light emitting means A having an optical path changing slope A1
Is usually formed as a structure in which a plurality of the light path control layers are arranged for the purpose of reducing the thickness of the optical path control layer as described above.
2 to 4, the incident light from the incident side is reflected backward and efficiently transmitted to the opposite side to emit light as uniformly as possible over the entire liquid crystal display. A structure including a flat surface 41 having an angle of approximately 0 degree or a gentle slope C having an inclination angle of 10 degrees or less, particularly 5 degrees or less, and particularly 3 degrees or less.
Is preferable. Therefore, in the light emitting means A including the steep slope B illustrated in FIG. 3, it is preferable that the angle of the steep slope is 35 degrees or more, particularly 50 degrees or more, and particularly 60 degrees or more to make the structure of the flat surface 41 wide. .

【0046】また前記の平坦面41や緩斜面Cは、図1
の例の如く照明モードによる表示光α、並びに外光モー
ドよる外光の入射部分及びその入射光の光反射手段12
を介した反射表示光βの透過部分として機能する部分で
あり、これにより外光・照明両用式の反射型液晶表示装
置が達成される。その場合に特に図4の如き斜面A1、
Cによる光出射手段Aの隣接繰返し構造からなるときに
は、その緩斜面Cの基準平面に対する傾斜角の角度差を
光路制御層の全体で5度以内、就中4度以内、特に3度
以内、さらに最寄りの緩斜面間の傾斜角の差を1度以
内、就中0.3度以内、特に0.1度以内とすることが
好ましい。これは反射型液晶表示装置の最適視認方向、
就中、正面方向近傍での最適視認方向を緩斜面Cの透過
で大きく変化させないこと、就中、最寄りの緩斜面間で
大きく変化させないことを目的とする。また外光モード
による明るい表示を得る点よりは、基準平面に対する緩
斜面Cの投影面積を光路変換斜面A1のそれの5倍以
上、就中10倍以上、特に15倍以上とすることが好ま
しい。これは外光の入射効率とその光反射手段を介した
反射表示光の透過効率の向上を目的とする。
The flat surface 41 and the gentle slope C are not shown in FIG.
As shown in the example, the display light α in the illumination mode, the incident portion of the external light in the external light mode, and the light reflecting means 12 of the incident light
And a portion functioning as a transmission portion of the reflected display light β through the light-emitting device, thereby achieving a reflection type liquid crystal display device for both external light and illumination. In this case, the slope A1 as shown in FIG.
When the light emitting means A has a repeating structure adjacent to the light emitting means C, the angle difference of the gentle slope C with respect to the reference plane is within 5 degrees, preferably within 4 degrees, particularly within 3 degrees, and more particularly within 3 degrees of the entire optical path control layer. It is preferable that the difference in the inclination angle between the nearest gentle slopes is within 1 degree, preferably within 0.3 degree, particularly within 0.1 degree. This is the optimal viewing direction of the reflective liquid crystal display,
In particular, it is an object of the present invention to prevent the optimum viewing direction in the vicinity of the front direction from being largely changed by the transmission of the gentle slope C, and not to make a large change between the nearest gentle slopes. Further, from the viewpoint of obtaining a bright display in the external light mode, it is preferable that the projection area of the gentle slope C with respect to the reference plane be 5 times or more, especially 10 times or more, especially 15 times or more of that of the optical path conversion slope A1. This aims at improving the incident efficiency of external light and the transmission efficiency of reflected display light via the light reflecting means.

【0047】光出射手段Aは、その稜線、従って光路変
換斜面が照明装置を配置した液晶表示パネルの入射側面
に平行又は傾斜状態で沿うように設けられるがその場
合、プリズム状凹部等からなる光出射手段Aは光路制御
層の一端から他端にわたり連続して形成されていてもよ
いし、断続的に不連続に形成されていてもよい。不連続
に形成する場合、伝送光の入射効率や光路変換効率など
の点よりその溝又は突起からなる凹凸の入射側面に沿う
方向の長さ、又は光路変換斜面の長辺の長さを溝の深さ
又は突起の高さの5倍以上とすることが好ましくい。ま
たパネル表示面の均一発光化の点より前記長さを500
μm以下、就中10〜480μm、特に50〜450μm
とすることが好ましい。
The light emitting means A is provided so that its ridge line, that is, the optical path changing slope is parallel or inclined along the incident side surface of the liquid crystal display panel on which the illuminating device is arranged. The emission unit A may be formed continuously from one end to the other end of the optical path control layer, or may be formed discontinuously and discontinuously. In the case of discontinuous formation, the length of the groove or projection along the incident side surface along the incident side, or the length of the long side of the optical path conversion slope is determined by the groove in terms of the transmission efficiency of the transmission light and the optical path conversion efficiency. It is preferable that the depth be 5 times or more the depth or the height of the projection. Further, the length is set to 500 from the viewpoint of uniform light emission of the panel display surface.
μm or less, especially 10 to 480 μm, especially 50 to 450 μm
It is preferable that

【0048】光出射手段Aの断面形状やそれを介した光
路変換斜面A1の配置間隔については特に限定はなく、
光路変換斜面A1が照明モードでの輝度決定要因となる
ことよりその照明モードや外光モードにおけるパネル表
示面の発光の均一性などに応じて適宜に決定でき、その
分布密度にて光路変換光量を制御することができる。従
って光路変換斜面の傾斜角等が光路制御層の全面で一定
な形状であってもよいし、吸収ロスや先の光路変換によ
る伝送光の減衰に対処してパネル表示面の発光の均一化
を図ることを目的に入射側面から遠離るほど光出射手段
Aを大きくしてもよい。
There is no particular limitation on the cross-sectional shape of the light emitting means A and the arrangement interval of the optical path changing slope A1 therethrough.
Since the light path conversion slope A1 is a factor in determining the luminance in the illumination mode, the light path conversion slope A1 can be appropriately determined according to the uniformity of light emission of the panel display surface in the illumination mode or the external light mode. Can be controlled. Therefore, the inclination angle of the light path conversion slope may be constant over the entire surface of the light path control layer, or the light emission of the panel display surface may be made uniform by coping with absorption loss and attenuation of transmitted light due to the light path conversion. For the purpose, the light emitting means A may be made larger as the distance from the incident side surface increases.

【0049】また一定な配置間隔の光出射手段Aとする
こともできるし、入射側面から遠離るほど徐々に配置間
隔を狭くして光出射手段Aの分布密度を多くしたものと
することもでき、さらにランダムな配置間隔にてパネル
表示面における発光の均一化を図ることもできる。加え
て光出射手段Aが不連続な溝又は突起からなる凹凸の場
合には、その凹凸の大きさや形状、分布密度や稜線の方
向等を不規則なものとしたり、その不規則な又は規則的
ないし画一的な凹凸をランダムに配置してパネル表示面
における発光の均一化を図ることもできる。よって前記
した例の如くパネル表示面での発光の均一化は、光出射
手段Aに適宜な方式を適用して達成することができる。
Also, the light emitting means A can be arranged at a constant arrangement interval, or the distribution density of the light emitting means A can be increased by gradually decreasing the arrangement interval as the distance from the incident side surface increases. In addition, uniform light emission on the panel display surface can be achieved at random arrangement intervals. In addition, when the light emitting means A has irregularities formed of discontinuous grooves or projections, the size and shape of the irregularities, the distribution density, the direction of the ridge line, and the like are made irregular, or the irregular or regular Alternatively, uniform unevenness may be randomly arranged to make light emission uniform on the panel display surface. Therefore, uniform light emission on the panel display surface as in the above-described example can be achieved by applying an appropriate method to the light emitting means A.

【0050】なお光路変換斜面A1が液晶セルの画素と
オーバーラップすると表示光の透過不足で不自然な表示
となることがあり、それを防止する点などよりはそのオ
ーバーラップ面積を可及的に小さくして平坦面41や緩
斜面Cを介した充分な光透過率を確保することが好まし
い。かかる点より液晶セルの画素ピッチが一般に100
〜300μmであることも考慮して光路変換斜面A1
は、その基準平面に対する投影幅に基づいて40μm以
下、就中3〜20μm、特に5〜15μmとなるように形
成することが好ましい。かかる投影幅は、一般に蛍光管
のコヒーレント長が20μm程度とされている点などよ
り回折による表示品位の低下を防止する点よりも好まし
い。
If the optical path changing slope A1 overlaps the pixels of the liquid crystal cell, the display light may be insufficiently transmitted, resulting in an unnatural display. It is preferable to reduce the size to secure a sufficient light transmittance through the flat surface 41 and the gentle slope C. From this point, the pixel pitch of the liquid crystal cell is generally 100
In consideration of the fact that it is ~ 300 μm,
Is preferably formed to be 40 μm or less, particularly 3 to 20 μm, particularly 5 to 15 μm based on the projection width with respect to the reference plane. Such a projection width is more preferable than the point where the coherent length of the fluorescent tube is generally set to about 20 μm, and the like, from the viewpoint of preventing the deterioration of display quality due to diffraction.

【0051】一方、前記の点よりは光路変換斜面A1の
間隔の大きいことが好ましいが、他方で光路変換斜面は
上記したように側面入射光の光路変換による実質的な照
明光形成の機能部分であるから、その間隔が広すぎると
点灯時の照明が疎となって不自然な表示となる場合があ
りそれらを鑑みた場合、光路変換斜面A1の配置間隔
は、5mm以下、就中20μm〜3mm、特に50μm〜2mm
とすることが好ましい。また光出射手段の配置構造が液
晶セルの画素と干渉してモアレを生じる場合がある。モ
アレの防止は、その配置間隔の調節で行いうるが、上記
したように配置間隔には好ましい範囲がある。従ってそ
の範囲でモアレが生じる場合の解決策が問題となる。本
発明においては画素に対して光出射手段を交差状態で配
列しうるように凹凸の稜線を入射側面に対し傾斜する状
態に形成してモアレを防止する方式が好ましい。
On the other hand, it is preferable that the distance between the optical path changing slopes A1 is larger than the above-mentioned point. On the other hand, the optical path changing slope is a functional part for substantially forming the illumination light by the light path changing of the side incident light as described above. Therefore, if the interval is too large, the lighting at the time of lighting may be sparse, resulting in an unnatural display. In view of them, the arrangement interval of the optical path conversion slope A1 is 5 mm or less, especially 20 μm to 3 mm. , Especially 50 μm to 2 mm
It is preferable that Further, the arrangement structure of the light emitting means may interfere with the pixels of the liquid crystal cell and cause moire. Although moire can be prevented by adjusting the arrangement interval, the arrangement interval has a preferable range as described above. Therefore, a solution for a case where moiré occurs in that range becomes a problem. In the present invention, it is preferable to form a ridge line of the unevenness so as to be inclined with respect to the incident side so that the light emitting means can be arranged in an intersecting state with respect to the pixel to prevent moire.

【0052】前記方式の場合、入射側面に対する傾斜角
が大きすぎると光路変換斜面A1を介した反射に偏向を
生じて光路変換の方向に大きな偏りが発生し表示品位の
低下原因となりやすいことから、その稜線の入射側面に
対する傾斜角は、±30度以内、就中±25度以内とす
ることが好ましい。なお±の符号は入射側面を基準とし
た稜線の傾斜方向を意味する。液晶セルの解像度が低く
てモアレを生じない場合やモアレを無視しうる場合に
は、かかる稜線は入射側面に平行なほど好ましい。また
モアレの防止策としては上記したサイズよりなるプリズ
ム状凹部等の微小溝又はプリズム状凸部等の微小突起か
らなる光出射手段の複数個を光路制御層の表面に不連続
に、かつ不規則に分布させる方式も好ましい。
In the case of the above-mentioned method, if the inclination angle with respect to the incident side surface is too large, the reflection via the optical path changing slope A1 is deflected, and a large deviation occurs in the direction of the optical path changing, which is likely to cause a deterioration in display quality. It is preferable that the inclination angle of the ridge line with respect to the incident side surface is within ± 30 degrees, particularly within ± 25 degrees. The sign of ± means the inclination direction of the ridgeline with respect to the incident side surface. In the case where the resolution of the liquid crystal cell is low and moiré does not occur, or when moiré can be neglected, it is preferable that the ridge line is parallel to the incident side surface. Further, as a measure for preventing moire, a plurality of light emitting means composed of minute grooves such as prism-shaped concave portions or prism-shaped convex portions having the above-mentioned size is discontinuously and irregularly formed on the surface of the optical path control layer. Is also preferable.

【0053】光路制御層は、照明装置の波長域に応じそ
れに透明性を示す適宜な材料にて形成しうる。ちなみに
可視光域では、上記の透明保護層等で例示したポリマー
ないし硬化型樹脂やガラスなどがあげられる。複屈折を
示さないか、複屈折の小さい材料で形成した光路制御層
が好ましい。また照明装置からの入射光ないしその伝送
光を視認側セル基板から光路制御層に効率よく入射させ
て光路変換斜面を介し明るい表示を達成する点より、視
認側セル基板の透明基板との屈折率差が0.15以内、
就中0.10以内、特に0.05以内の光路制御層であ
ること、殊に当該透明基板よりも高い屈折率の光路制御
層であることが好ましい。
The light path control layer can be formed of an appropriate material exhibiting transparency according to the wavelength range of the lighting device. By the way, in the visible light region, the polymer, the curable resin, the glass, and the like exemplified as the transparent protective layer and the like are mentioned. An optical path control layer formed of a material that does not exhibit birefringence or has low birefringence is preferable. In addition, since the incident light from the illuminating device or its transmitted light is efficiently incident on the optical path control layer from the viewing-side cell substrate to achieve a bright display through the optical path conversion slope, the refractive index of the viewing-side cell substrate with respect to the transparent substrate is increased. The difference is within 0.15,
In particular, it is preferable that the optical path control layer has a refractive index of 0.10 or less, particularly 0.05 or less, and particularly has a refractive index higher than that of the transparent substrate.

【0054】光路制御層は、適宜な方法で形成すること
ができ、その製造方法について特に限定はない。量産性
等の点より好ましい製造方法としては例えば熱可塑性樹
脂を所定の光出射手段を形成しうる金型に加熱下に押付
て形状を転写する方法、加熱溶融させた熱可塑性樹脂あ
るいは熱や溶媒を介して流動化させた樹脂を所定の光出
射手段を形成しうる金型に充填する方法、熱や紫外線、
電子線ないし放射線等で重合処理しうる液状樹脂ないし
モノマーを所定の光出射手段を形成しうる型に充填ない
し流延して重合処理する方法又はその際に充填ないし流
延した層の上に透明フィルムを密着させて重合処理しフ
ィルムと一体化させる方法、透明フィルムに前記の液状
樹脂ないしモノマーを塗布しその塗布層を所定の光出射
手段を形成しうる金型に押付て形状を転写したのち重合
処理してフィルムと一体化させる方法などがあげられ
る。従って光路制御層は、視認側セル基板等に直接その
所定形態を付与して形成することもできるし、所定の形
態を付与した透明シート等として形成することもでき
る。
The optical path control layer can be formed by an appropriate method, and there is no particular limitation on the manufacturing method. As a preferable production method from the viewpoint of mass productivity, for example, a method of transferring a shape by pressing a thermoplastic resin under heating to a mold capable of forming a predetermined light emitting means, a thermoplastic resin melted by heating or heat or solvent A method of filling a resin that has been fluidized through a mold capable of forming a predetermined light emitting means, heat or ultraviolet light,
A method in which a liquid resin or monomer that can be polymerized by an electron beam or radiation is filled or cast into a mold capable of forming a predetermined light emitting means, and a polymerization process is performed. A method in which the film is adhered to polymerize and integrated with the film, after applying the liquid resin or monomer to a transparent film and pressing the applied layer onto a mold capable of forming a predetermined light emitting means, and transferring the shape. Examples of the method include a method of performing a polymerization treatment and integrating the film with the film. Therefore, the light path control layer can be formed by directly giving a predetermined form to the viewing side cell substrate or the like, or can be formed as a transparent sheet or the like having a predetermined form.

【0055】光路制御層の厚さは、薄型化などの点より
10〜300μm、就中15〜200μm、特に20〜1
00μmとされる。なお光路制御層を透明シート等とし
て独立に形成した場合には、その透明シート等を視認側
セル基板の透明基板よりも大きい屈折率を有する接着
層、就中その透明シート等と可及的に等しい屈折率の接
着層、特にその透明シート等と視認側セル基板との中間
の屈折率の接着層を介して液晶表示パネルにおける視認
側セル基板の外表面側に接着することが入射光等を視認
側セル基板から光路制御層に効率よく入射させて明るい
表示を達成する点などより好ましい。従って斯かる接着
層の屈折率は上記した光路制御層に準じうる。
The thickness of the optical path control layer is 10 to 300 μm, preferably 15 to 200 μm, particularly 20 to
00 μm. When the light path control layer is independently formed as a transparent sheet or the like, the transparent sheet or the like may be formed as an adhesive layer having a refractive index larger than that of the transparent substrate of the viewing-side cell substrate, particularly the transparent sheet or the like. Adhesion to the outer surface side of the viewing-side cell substrate in the liquid crystal display panel through an adhesive layer having the same refractive index, particularly an adhesive layer having an intermediate refractive index between the transparent sheet or the like and the viewing-side cell substrate can reduce incident light and the like. It is more preferable that a bright display is achieved by efficiently entering the optical path control layer from the viewing side cell substrate. Therefore, the refractive index of such an adhesive layer can conform to the above-described optical path control layer.

【0056】前記の接着層は、適宜な透明接着剤にて形
成でき、その接着剤の種類については特に限定はない。
接着処理作業の簡便性などの点よりは粘着層による接着
方式が好ましい。その粘着層の形成には、例えばゴム系
やアクリル系、ビニルアルキルエーテル系やシリコーン
系、ポリエステル系やポリウレタン系、ポリエーテル系
やポリアミド系、スチレン系などの適宜なポリマーをベ
ースポリマーとする粘着剤などを用いうる。就中アクリ
ル酸ないしメタクリル酸のアルキルエステルを主体とす
るポリマーをベースポリマーとするアクリル系粘着剤の
如く透明性や耐候性や耐熱性などに優れるものが好まし
く用いうる。
The above-mentioned adhesive layer can be formed of an appropriate transparent adhesive, and the kind of the adhesive is not particularly limited.
An adhesion method using an adhesive layer is preferred from the viewpoint of simplicity of the adhesion treatment operation. For forming the adhesive layer, for example, an adhesive using a suitable polymer such as a rubber-based, acrylic-based, vinyl alkyl ether-based, silicone-based, polyester-based or polyurethane-based, polyether-based, polyamide-based, or styrene-based polymer as a base polymer Etc. can be used. Among them, those excellent in transparency, weather resistance, heat resistance and the like, such as an acrylic pressure-sensitive adhesive containing a polymer mainly composed of an alkyl ester of acrylic acid or methacrylic acid as a base polymer, can be preferably used.

【0057】光路制御層は、液晶表示パネルの視認側に
配置されるがその場合、図1に例示の如く光出射手段A
を形成した面を外側(視認側)にして配置することが、
光出射手段Aの光路変換斜面A1を介した反射効率、ひ
いては側面入射光の有効利用による輝度向上の点などよ
り好ましい。
The optical path control layer is disposed on the viewing side of the liquid crystal display panel. In this case, the light emitting means A is provided as shown in FIG.
Can be arranged with the surface on which the is formed on the outside (viewing side),
It is more preferable to improve the reflection efficiency of the light emitting means A through the optical path changing slope A1, and furthermore to improve the luminance by effectively utilizing the side incident light.

【0058】光路制御層の外表面には、外光の表面反射
による視認阻害の防止を目的にノングレア処理や反射防
止処理を施すこともできる。ノングレア処理は、サンド
ブラスト方式やエンボス加工方式等の粗面化方式、シリ
カ等の透明粒子の配合方式などの種々の方式で表面を微
細凹凸構造化することにより施すことができ、反射防止
処理は、干渉性の蒸着膜を形成する方式などにて施すこ
とができる。またノングレア処理や反射防止処理は、前
記の表面微細凹凸構造や干渉膜を付与したフィルムの接
着方式などにても施すことができる。ノングレア処理や
反射防止処理は、光出射手段の機能を可及的に阻害しな
いように設けることが好ましい。
The outer surface of the optical path control layer may be subjected to a non-glare treatment or an anti-reflection treatment for the purpose of preventing visual disturbance due to surface reflection of external light. Non-glare treatment can be performed by forming a fine uneven structure on the surface by various methods such as a roughening method such as a sand blast method or an embossing method, a method of blending transparent particles such as silica, etc. It can be applied by a method of forming a coherent vapor deposition film. The non-glare treatment and the anti-reflection treatment can also be applied to the above-mentioned method of bonding a film provided with a fine surface unevenness structure or an interference film. The non-glare treatment and the anti-reflection treatment are preferably provided so as not to hinder the function of the light emitting means as much as possible.

【0059】反射型液晶表示装置には上記した如く光拡
散層を配置することもできる。光拡散層は前記のノング
レア層に準じた表面微細凹凸構造を有する塗工層や拡散
シートなどによる適宜な方式にて設けることができる。
光拡散層の配置位置は、適宜に決定しうるが一般には上
記した如く光路制御層と視認側セル基板の間への配置が
表示品位の安定性などの点より好ましい。その場合、光
拡散層は透明粒子の配合による光拡散型の接着層として
形成し、光路制御層を形成する透明シートの接着、ある
いは偏光板と位相差板の接着を兼ねる光拡散層として用
いて薄型化を図ることもでき。従って光拡散層は、1層
又は2層以上を配置することができる。
The reflection type liquid crystal display device may be provided with the light diffusion layer as described above. The light diffusion layer can be provided by an appropriate method using a coating layer or a diffusion sheet having a fine surface unevenness structure according to the non-glare layer.
The arrangement position of the light diffusion layer can be determined as appropriate, but generally, as described above, the arrangement between the optical path control layer and the viewing side cell substrate is preferable from the viewpoint of stability of display quality and the like. In this case, the light diffusion layer is formed as a light diffusion type adhesive layer formed by blending transparent particles, and is used as a light diffusion layer that also serves as a bonding of a transparent sheet forming an optical path control layer or a bonding between a polarizing plate and a retardation plate. It can also be made thinner. Therefore, one or two or more light diffusion layers can be arranged.

【0060】なお前記の接着層に配合する透明粒子とし
ては、例えば平均粒径が0.5〜20μmのシリカやア
ルミナ、チタニアやジルコニア、酸化錫や酸化インジウ
ム、酸化カドミウムや酸化アンチモン等からなる導電性
のこともある無機系粒子、架橋又は未架橋のポリマー等
からなる有機系粒子などの適宜なものを1種又は2種用
いうる。
The transparent particles to be incorporated in the adhesive layer include, for example, conductive particles made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, or the like having an average particle size of 0.5 to 20 μm. One or two kinds of appropriate particles such as inorganic particles having a property and organic particles formed of a crosslinked or uncrosslinked polymer or the like may be used.

【0061】本発明による反射型液晶表示装置によれ
ば、入射側面よりの入射光の殆どが液晶表示パネル、特
にその視認側セル基板の透明基板を介し屈折の法則によ
る反射を介して後方に伝送されパネル表面よりの出射
(漏れ)が防止されつつ、光路制御層の光路変換斜面A
1に入射した光が効率よく背面側セル基板方向に垂直指
向性よく光路変換され、他の伝送光は全反射にて後方に
さらに伝送されて後方における光路変換斜面A1に入射
し効率よく背面側セル基板方向に垂直指向性よく光路変
換され、明るい照明モードによる表示を達成することが
できる。従って照明装置からの光や外光を効率よく利用
して明るくて見やすく表示品位に優れる外光・照明両用
式の反射型液晶表示装置を形成することができる。
According to the reflection type liquid crystal display device of the present invention, most of the incident light from the incident side is transmitted backward through the liquid crystal display panel, particularly through the transparent substrate of the cell substrate on the viewing side, through reflection based on the law of refraction. The output path (leakage) from the panel surface is prevented, and the optical path conversion slope A of the optical path control layer is prevented.
The light incident on the light path 1 is efficiently converted in the optical path in the direction of the rear cell substrate with good vertical directivity, and the other transmission light is further transmitted rearward by total internal reflection, and is incident on the optical path conversion slope A1 in the rear and efficiently on the rear side. Optical path conversion is performed with good vertical directivity in the direction of the cell substrate, and display in a bright illumination mode can be achieved. Accordingly, it is possible to form a reflective liquid crystal display device for both external light and illumination, which is bright and easy to see, and has excellent display quality by efficiently using light from the illumination device and external light.

【0062】なお本発明において上記した反射型液晶表
示装置を形成する光路制御層や液晶セル、偏光板や位相
差板等の光学素子ないし部品は、全体的又は部分的に積
層一体化されて固着されていてもよいし、分離容易な状
態に配置されていてもよい。界面反射の抑制によるコン
トラストの低下防止などの点よりは固着状態にあること
が好ましい。その固着密着処理には、粘着剤等の適宜な
透明接着剤を用いることができ、その透明接着層に上記
した透明粒子等を含有させて拡散機能を示す接着層など
とすることもできる。また前記の光学素子ないし部品、
特に視認側のそれには例えばサリチル酸エステル系化合
物やベンゾフェノン系化合物、ベンゾトリアゾール系化
合物やシアノアクリレート系化合物、ニッケル錯塩系化
合物等の紫外線吸収剤で処理する方式などにより紫外線
吸収能をもたせることもできる。
In the present invention, optical elements or components such as an optical path control layer, a liquid crystal cell, a polarizing plate and a retardation plate, which form the above-mentioned reflection type liquid crystal display device, are entirely or partially laminated and integrated and fixed. Or may be arranged in an easily separable state. It is preferable to be in a fixed state rather than to prevent reduction in contrast by suppressing interface reflection. An appropriate transparent adhesive such as a pressure-sensitive adhesive can be used in the adhesion and adhesion treatment, and the transparent adhesive layer can be made to contain the above-mentioned transparent particles and the like to form an adhesive layer having a diffusion function. The optical element or component,
In particular, those on the viewing side can have an ultraviolet absorbing ability by, for example, a method of treating with an ultraviolet absorbing agent such as a salicylic acid ester compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex salt compound.

【0063】[0063]

【実施例】参考例1 屈折率1.505の透明プラスチック板にフッ化マグネ
シウムを真空蒸着して厚さ600nm、屈折率1.38の
低屈折率透明層を形成し、その上にITO透明導電層を
形成した後、その透明電極をエッチングして分割しその
上にポリビニルアルコール溶液をスピンコートしてその
乾燥膜をラビング処理して視認側セル基板を得た。一
方、屈折率1.505の透明プラスチック板に紫外線硬
化樹脂層を形成しそれを粗面化したのちアルミニウムを
蒸着して拡散反射型の電極を形成し、その上に前記に準
じラビング膜を設けて背面側セル基板を得た。
Reference Example 1 Magnesium fluoride was vacuum-deposited on a transparent plastic plate having a refractive index of 1.505 to form a low refractive index transparent layer having a thickness of 600 nm and a refractive index of 1.38, and an ITO transparent conductive layer was formed thereon. After forming the layer, the transparent electrode was etched and divided, and a polyvinyl alcohol solution was spin-coated thereon, and the dried film was rubbed to obtain a cell substrate on the viewing side. On the other hand, an ultraviolet curable resin layer is formed on a transparent plastic plate having a refractive index of 1.505, and after roughening the layer, aluminum is deposited to form a diffuse reflection electrode, and a rubbing film is provided thereon in accordance with the above. Thus, a back side cell substrate was obtained.

【0064】ついで前記の視認側セル基板と背面側セル
基板をそのラビング面をラビング方向が直交するように
対向させてギャップ調節材を配し、周囲をエポキシ樹脂
でシールしたのち液晶(メルク社製、ZLI−479
2)を注入してTN系反射型液晶セルを形成し、その両
面に反射防止処理とノングレア処理を施した偏光板(日
東電工社製、NPF EGW1225DU)を貼着して
ノーマリーホワイトの反射型液晶表示パネルを得た。そ
のパネルサイズは、幅45mm、長さ34mmで、その長さ
方向の視認側セル基板の一側面が背面側セル基板よりも
2mm突出したものである。次にその視認側セル基板の突
出側面に冷陰極管を配置し、銀蒸着のポリエステルフィ
ルムで包囲してフィルム端部を視認側セル基板の上下面
に両面粘着テープで接着し冷陰極管を保持固定した。
Then, a gap adjusting material is provided with the sighting-side cell substrate and the back-side cell substrate facing each other such that the rubbing surfaces thereof are orthogonal to each other in a rubbing direction, and the periphery thereof is sealed with an epoxy resin. , ZLI-479
2) is injected to form a TN reflective liquid crystal cell, and a polarizing plate (NPF EGW1225DU, manufactured by Nitto Denko Corporation) that has been subjected to anti-reflection treatment and non-glare treatment is adhered to both surfaces thereof, and a normally white reflective liquid crystal cell is adhered. A liquid crystal display panel was obtained. The panel size is 45 mm in width and 34 mm in length, and one side surface of the viewing-side cell substrate in the length direction protrudes 2 mm from the back-side cell substrate. Next, a cold-cathode tube is placed on the protruding side of the viewing-side cell substrate, surrounded by a silver-evaporated polyester film, and the film ends are adhered to the upper and lower surfaces of the viewing-side cell substrate with a double-sided adhesive tape to hold the cold-cathode tube. Fixed.

【0065】参考例2 予め所定形状に加工した金型にアクリル系の紫外線硬化
型樹脂(東亞合成社製、アロニックスUV−3701)
をスポイトにて滴下充填し、その上に厚さ70μmの無
延伸ポリカーボネート(PC)フィルム(屈折率1.5
8)を静置しゴムローラで密着させて余分な樹脂と気泡
を除去しメタルハライドランプにて紫外線を照射して硬
化処理した後、金型から剥離し所定寸法に裁断して屈折
率1.51の光路制御層を有する透明シートを得た。
Reference Example 2 Acrylic UV-curable resin (Aronix UV-3701, manufactured by Toagosei Co., Ltd.) was placed in a mold previously processed into a predetermined shape.
Is dropped and filled with a dropper, and a 70 μm-thick unstretched polycarbonate (PC) film (refractive index 1.5
8) is allowed to stand still and adhered tightly with a rubber roller to remove excess resin and air bubbles, irradiated with ultraviolet light from a metal halide lamp, cured, and then separated from the mold and cut into a predetermined size to have a refractive index of 1.51. A transparent sheet having an optical path control layer was obtained.

【0066】なお前記の透明シートは、幅40mm、長さ
30mmであり、稜線が幅方向にわたり21度の角度で傾
斜するプリズム状凹部からなる光出射手段を平行に21
0μmのピッチで連続して有し(図4)、その光路変換
斜面A1の傾斜角が42度であり、緩斜面Cの傾斜角が
1.8〜3.5度で最寄り緩斜面の傾斜角変化が0.1
度以内にあり、光路変換斜面の基準平面に対する投影幅
が10〜16μmで、緩斜面/光路変換斜面の基準平面
に対する投影面積比が12倍以上のものからなる。
The transparent sheet has a width of 40 mm and a length of 30 mm, and the light emitting means composed of prism-shaped concave portions whose ridge lines are inclined at an angle of 21 degrees in the width direction is parallel to the light emitting means.
It has a pitch of 0 μm continuously (FIG. 4), the inclination angle of the optical path changing slope A1 is 42 degrees, and the inclination angle of the gentle slope C is 1.8 to 3.5 degrees, and the inclination angle of the nearest gentle slope is 0.1 change
Degrees, the projected width of the light path changing slope to the reference plane is 10 to 16 μm, and the projected area ratio of the gentle slope / light path changing slope to the reference plane is 12 times or more.

【0067】参考例3 異なる金型を用いて参考例2に準じ光路制御層付の透明
シートを得た。この透明シートは、傾斜角が約42度で
基準平面に対する投影幅が10μmの光路変換斜面A1
による二等辺三角形からなる長さ80μmの光出射手段
(図2)をその長さ方向が入射側面に平行な状態で規則
的に有するものであり、平坦部(41)の面積は、光路
変換斜面の基準平面に対する投影合計面積の10倍以上
である。
Reference Example 3 A transparent sheet having an optical path control layer was obtained according to Reference Example 2 using different molds. This transparent sheet has an optical path conversion slope A1 having an inclination angle of about 42 degrees and a projection width of 10 μm with respect to a reference plane.
80 μm long light emitting means (FIG. 2) consisting of an isosceles triangle is regularly arranged in a state where the length direction is parallel to the incident side surface, and the area of the flat portion (41) is the optical path conversion slope. Is 10 times or more the total projected area with respect to the reference plane.

【0068】参考例4 異なる金型を用いて参考例2に準じ光路制御層付の透明
シートを得た。この透明シートは、傾斜角が約42度で
基準平面に対する投影幅が10μmの光路変換斜面A1
と傾斜角が約65度の急斜面からなる長さ80μmの光
出射手段(図3)をその長さ方向が入射側面に平行な状
態で規則的に有するものであり、平坦部(41)の面積
は、光路変換斜面と急斜面の基準平面に対する投影合計
面積の10倍以上である。
Reference Example 4 A transparent sheet having an optical path control layer was obtained according to Reference Example 2 using different molds. This transparent sheet has an optical path conversion slope A1 having an inclination angle of about 42 degrees and a projection width of 10 μm with respect to a reference plane.
And light emitting means (FIG. 3) having a steep slope having an inclination angle of about 65 degrees and having a length of 80 μm and having a length direction parallel to the incident side surface. Is 10 times or more the total projected area of the optical path changing slope and the steep slope with respect to the reference plane.

【0069】参考例5 異なる金型を用いて参考例2に準じ光路制御層付の透明
シートを得た。この透明シートは、傾斜角が約42度で
基準平面に対する投影幅が10μmの光路変換斜面A1
による二等辺三角形からなる長さ80μmの光出射手段
(図2)をその長さ方向が入射側面に平行な状態で有
し、かつその光出射手段を入射側面より遠離るほど徐々
に高密度となるようにランダムに配置したものであり、
平坦部(41)の面積は、光路変換斜面の基準平面に対
する投影合計面積の10倍以上である。
Reference Example 5 A transparent sheet having an optical path control layer was obtained according to Reference Example 2 using different molds. This transparent sheet has an optical path conversion slope A1 having an inclination angle of about 42 degrees and a projection width of 10 μm with respect to a reference plane.
80 μm long light emitting means (FIG. 2) composed of an isosceles triangle according to the following formula: its length direction is parallel to the incident side face, and the light emitting means becomes gradually denser as the distance from the incident side face increases. Are arranged randomly so that
The area of the flat portion (41) is at least 10 times the total projected area of the optical path conversion slope with respect to the reference plane.

【0070】参考例6 異なる金型を用いて参考例2に準じ光路制御層付の透明
シートを得た。この透明シートは、傾斜角が約42度で
基準平面に対する投影幅が10μmの光路変換斜面A1
と傾斜角が約65度の急斜面からなる長さ80μmの光
出射手段(図3)をその長さ方向が入射側面に平行な状
態で有し、かつその光出射手段を入射側面より遠離るほ
ど徐々に高密度となるようにランダム配置したものであ
り、平坦部(41)の面積は、光路変換斜面と急斜面の
基準平面に対する投影合計面積の10倍以上である。
Reference Example 6 A transparent sheet with an optical path control layer was obtained according to Reference Example 2 using different molds. This transparent sheet has an optical path conversion slope A1 having an inclination angle of about 42 degrees and a projection width of 10 μm with respect to a reference plane.
And a light emitting means (FIG. 3) having a steep slope with an inclination angle of about 65 degrees and a length of 80 μm (FIG. 3) in a state where its length direction is parallel to the incident side face, and the light emitting means is further away from the incident side face. The areas are randomly arranged so as to gradually increase in density, and the area of the flat portion (41) is at least 10 times the total projected area of the optical path conversion slope and the steep slope with respect to the reference plane.

【0071】実施例1 視認側のプラスチック板に厚さ0.6mmのもの、背面側
のプラスチック板に厚さ0.2mmのものを用いてなる参
考例1の反射型液晶表示パネルの視認側表面に参考例2
の透明シートをその光路制御層を有しない面に屈折率
1.52の粘着層を付設して接着し、外光・照明両用式
の反射型液晶表示装置を得た。
Example 1 A viewing-side surface of a reflective liquid crystal display panel of Reference Example 1 in which a viewing-side plastic plate having a thickness of 0.6 mm and a back-side plastic plate having a thickness of 0.2 mm were used. Reference Example 2
Was adhered by attaching an adhesive layer having a refractive index of 1.52 to the surface having no optical path control layer to obtain a reflective liquid crystal display device for both external light and illumination.

【0072】比較例1 視認側及び背面側のプラスチック板に厚さ0.4mmのも
のを用いてなる参考例1の反射型液晶表示パネルの視認
側表面に参考例2の透明シートをその光路制御層を有し
ない面に屈折率1.465の粘着層を付設して接着し、
外光・照明両用式の反射型液晶表示装置を得た。
Comparative Example 1 The transparent sheet of Reference Example 2 was mounted on the viewing side surface of the reflective liquid crystal display panel of Reference Example 1 in which plastic plates of 0.4 mm in thickness were used for the viewing side and the back side plastic plates. An adhesive layer having a refractive index of 1.465 is attached to a surface having no layer, and adhered;
A reflective liquid crystal display device for both external light and illumination was obtained.

【0073】実施例2 参考例3の透明シートを用いたほかは実施例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Example 2 A reflective liquid crystal display device for both external light and illumination was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 3 was used.

【0074】比較例2 参考例3の透明シートを用いたほかは比較例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Comparative Example 2 A reflective liquid crystal display device for both external light and illumination was obtained in the same manner as in Comparative Example 1 except that the transparent sheet of Reference Example 3 was used.

【0075】実施例3 参考例4の透明シートを用いたほかは実施例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Example 3 A reflective liquid crystal display device for both external light and illumination was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 4 was used.

【0076】比較例3 参考例4の透明シートを用いたほかは比較例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Comparative Example 3 A reflective liquid crystal display device for both external light and illumination was obtained according to Comparative Example 1, except that the transparent sheet of Reference Example 4 was used.

【0077】実施例4 参考例5の透明シートを用いたほかは実施例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Example 4 A reflective liquid crystal display device for both external light and illumination was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 5 was used.

【0078】比較例4 参考例5の透明シートを用いたほかは比較例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Comparative Example 4 A reflective liquid crystal display device for both external light and illumination was obtained in the same manner as in Comparative Example 1 except that the transparent sheet of Reference Example 5 was used.

【0079】実施例5 参考例6の透明シートを用いたほかは実施例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Example 5 A reflective liquid crystal display device for both external light and illumination was obtained in the same manner as in Example 1 except that the transparent sheet of Reference Example 6 was used.

【0080】比較例5 参考例6の透明シートを用いたほかは比較例1に準じて
外光・照明両用式の反射型液晶表示装置を得た。
Comparative Example 5 A reflective liquid crystal display device of both external light and illumination type was obtained in the same manner as in Comparative Example 1 except that the transparent sheet of Reference Example 6 was used.

【0081】評価試験1 実施例、比較例で得た反射型液晶表示装置について、暗
室にて液晶セルに電圧を印加しない状態で冷陰極管を点
灯させ、入射側面より5mm、中央部、対向端より5mmの
位置での正面輝度を輝度計(トプコン社製、BM7)に
て調べた。
Evaluation Test 1 With respect to the reflection type liquid crystal display devices obtained in Examples and Comparative Examples, the cold cathode tubes were turned on in a dark room with no voltage applied to the liquid crystal cells, 5 mm from the incident side, the center, and the opposite end. The front luminance at a position of 5 mm was measured with a luminance meter (BM7, manufactured by Topcon Corporation).

【0082】前記の結果を次表に示した。 The results are shown in the following table.

【0083】前記の表より、実施例では照明モードにて
明るくい表示が達成されており、特に光出射手段の密度
を光源側からその対向面に向かって徐々に増やして配置
した実施例4、5においてはパネル全面での明るさの均
一性にも優れていることがわかる。一方、比較例では実
施例に比べ全ての条件において輝度に劣っているがわか
る。
As can be seen from the above table, in the embodiment, bright display was achieved in the illumination mode. In particular, in the fourth embodiment, the density of the light emitting means was gradually increased from the light source side toward the facing surface. 5 shows that the brightness uniformity over the entire panel is also excellent. On the other hand, it can be seen that the luminance of the comparative example is inferior to that of the example under all conditions.

【0084】評価試験2 実施例1、比較例1で得た反射型液晶表示装置をステン
レス板上に固定した後、10gの鉄球を所定の高さから
落下させ、パネル割れの有無を目視観察し、割れなかっ
た場合を○、割れた場合を×とした。その結果を次表に
示した。これより実施例1では落下高さが40cmを超え
るまで基板に損傷を生じないが、比較例1では20cm落
下高さで基板に損傷の生じることがわかる。 落下高さ(cm) 10 20 30 40 50 実施例1 ○ ○ ○ ○ × 比較例1 ○ × × × ×
Evaluation Test 2 After fixing the reflective liquid crystal display devices obtained in Example 1 and Comparative Example 1 on a stainless steel plate, a 10 g iron ball was dropped from a predetermined height, and the presence or absence of panel cracks was visually observed. The sample was evaluated as ○ when it was not cracked, and as X when it was cracked. The results are shown in the following table. From this, it can be seen that in Example 1, the substrate was not damaged until the drop height exceeded 40 cm, but in Comparative Example 1, the substrate was damaged at a drop height of 20 cm. Fall height (cm) 10 20 30 40 50 Example 1 ○ ○ ○ ○ × Comparative example 1 ○ × × × ×

【0085】一方、実施例において光源を消灯した外光
モードによる表示状態を観察したが、明るくて表示品位
に優れるものであった。以上より本発明にて従来のサイ
ドライト型導光板の使用による嵩高化、高重量化を回避
しつつ、液晶表示パネルの側面に照明装置を設けるだけ
で発光が可能な、薄くて割れにくい外光・照明両用式の
反射型液晶表示装置を形成できることがわかる。
On the other hand, when the display state in the external light mode in which the light source was turned off in the example was observed, it was bright and excellent in display quality. As described above, according to the present invention, it is possible to emit light only by providing a lighting device on the side surface of the liquid crystal display panel while avoiding bulkiness and weight increase by using the conventional sidelight type light guide plate in the present invention. -It turns out that a reflection type liquid crystal display device for both lighting use can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】外光・照明両用式の反射型液晶表示装置例の側
面説明図
FIG. 1 is an explanatory side view of an example of a reflection type liquid crystal display device for both external light and illumination.

【図2】光出射手段例の側面説明図FIG. 2 is an explanatory side view of an example of a light emitting unit.

【図3】他の光出射手段例の側面説明図FIG. 3 is an explanatory side view of another example of light emitting means.

【図4】さらに他の光出射手段例の側面説明図FIG. 4 is an explanatory side view of still another example of light emitting means.

【符号の説明】[Explanation of symbols]

100:液晶表示パネル 10:背面側セル基板(11:支持基板 12:光反射
手段兼用の電極) 20:視認側セル基板(24:透明基板 21:透明電
極) 30:液晶層 40:光路制御層(A:光出射手段 A1:光路変換斜
面) 50:照明装置
100: liquid crystal display panel 10: back side cell substrate (11: support substrate 12: electrode also serving as light reflection means) 20: viewing side cell substrate (24: transparent substrate 21: transparent electrode) 30: liquid crystal layer 40: optical path control layer (A: light emitting means A1: optical path conversion slope) 50: lighting device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09F 9/35 G09F 9/35 (72)発明者 梅本 清司 大阪府茨木市下穂積1丁目1番2号日東電 工株式会社内 (72)発明者 木下 亮児 大阪府茨木市下穂積1丁目1番2号日東電 工株式会社内 Fターム(参考) 2H091 FA14Y FA23X FA41Z FB02 FC17 FC29 FC30 FD07 FD12 FD13 FD18 FD23 LA11 LA16 5C094 AA15 AA31 BA43 CA19 ED01 ED11 ED14 JA08 JA09 5G435 AA14 AA18 BB12 BB15 BB16 CC09 EE23 EE27 GG03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G09F 9/35 G09F 9/35 (72) Inventor Kiyoji Umemoto 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Ryoji Kinoshita 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation F-term (reference) 2H091 FA14Y FA23X FA41Z FB02 FC17 FC29 FC30 FD07 FD12 FD13 FD18 FD23 LA11 LA16 5C094 AA15 AA31 BA43 CA19 ED01 ED11 ED14 JA08 JA09 5G435 AA14 AA18 BB12 BB15 BB16 CC09 EE23 EE27 GG03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 支持基板に少なくとも電極を設けた背面
側セル基板と、そのセル基板における前記支持基板より
も厚さが大きい透明基板に少なくとも透明電極を設けた
視認側セル基板とを、それらの電極側を対向させて配置
した間に液晶を挟持してなる液晶セルの当該液晶層より
も背面側に光反射手段を具備し、視認側セル基板の外表
面より入射した外光を前記光反射手段で反射して当該液
晶層を透過した表示光を視認側セル基板より出射させて
視認するようにした反射型の液晶表示パネルにおける側
面の1又は2以上に照明装置を有すると共に、前記視認
側セル基板の外表面側に光出射手段を有する厚さが10
〜300μmの光路制御層を設けてなり、その光出射手
段が前記照明装置を介し当該側面より入射させた光を前
記背面側セル基板の側に反射する光路変換斜面を具備し
て、その光路変換斜面が液晶表示パネルの基準平面に対
し35〜48度の傾斜角を有するものであることを特徴
とする反射型液晶表示装置。
A back-side cell substrate provided with at least an electrode on a supporting substrate; and a viewing-side cell substrate provided with at least a transparent electrode on a transparent substrate having a thickness greater than the supporting substrate in the cell substrate. A liquid crystal cell having a liquid crystal sandwiched between electrodes disposed opposite to each other is provided with light reflecting means on the back side of the liquid crystal layer, and reflects external light incident from the outer surface of the viewing side cell substrate on the light reflecting side. The display device further includes an illuminating device on one or more side surfaces of a reflective liquid crystal display panel in which display light reflected by the means and transmitted through the liquid crystal layer is emitted from a viewing side cell substrate to be viewed. The thickness having the light emitting means on the outer surface side of the cell substrate is 10
An optical path control layer having a thickness of about 300 μm, and an optical path changing slope for reflecting light incident from the side surface through the lighting device on the side of the rear-side cell substrate. A reflection type liquid crystal display device, wherein the slope has an inclination angle of 35 to 48 degrees with respect to a reference plane of the liquid crystal display panel.
【請求項2】 請求項1において、背面側セル基板にお
ける支持基板の厚さが視認側セル基板における透明基板
の厚さの2/3以下である反射型液晶表示装置。
2. The reflection type liquid crystal display device according to claim 1, wherein the thickness of the supporting substrate on the back side cell substrate is not more than / of the thickness of the transparent substrate on the viewing side cell substrate.
【請求項3】 請求項1又は2において、視認側セル基
板の透明基板がそれよりも低屈折率の透明層を具備し、
照明装置が視認側セル基板の側面に配置されてなる反射
型液晶表示装置。
3. The transparent substrate of the viewing-side cell substrate according to claim 1, wherein the transparent substrate has a transparent layer having a lower refractive index than the transparent substrate.
A reflection type liquid crystal display device in which an illumination device is arranged on a side surface of a viewing side cell substrate.
【請求項4】 請求項1〜3において、液晶表示パネル
が液晶セルの片側又は両側に偏光板を有する反射型液晶
表示装置。
4. The reflection type liquid crystal display device according to claim 1, wherein the liquid crystal display panel has a polarizing plate on one side or both sides of the liquid crystal cell.
【請求項5】 請求項1〜4において、光路制御層の光
出射手段がプリズム状凹部からなり、その光出射手段の
光路変換斜面が照明装置を配置した当該側面と対面する
状態にある反射型液晶表示装置。
5. The reflection type light source according to claim 1, wherein the light emitting means of the light path control layer comprises a prism-shaped recess, and the light path changing slope of the light emitting means faces the side surface on which the lighting device is arranged. Liquid crystal display.
【請求項6】 請求項5において、プリズム状凹部が光
路変換斜面に対する横断面に基づいて略三角形である反
射型液晶表示装置。
6. The reflective liquid crystal display device according to claim 5, wherein the prism-shaped concave portion is substantially triangular based on a cross section with respect to the optical path conversion slope.
【請求項7】 請求項5又は6において、プリズム状凹
部が光路制御層の一端から他端にわたる連続溝からな
り、その溝における光路変換斜面が照明装置を配置した
当該側面に平行な又は傾斜した状態にある反射型液晶表
示装置。
7. The prism-shaped recess according to claim 5, wherein the prism-shaped concave portion is formed of a continuous groove extending from one end to the other end of the optical path control layer, and the optical path conversion slope in the groove is parallel or inclined to the side surface on which the lighting device is arranged. Reflective liquid crystal display device in a state.
【請求項8】 請求項5において、プリズム状凹部が断
面略三角形の微小溝からなり、その略三角形が光路変換
斜面に対する横断面に基づくと共に、光路変換斜面の長
辺の長さが微小溝の深さの5倍以上であり、光出射手段
が前記微小溝の複数個を光路制御層の表面に不連続に、
かつ不規則に分布させたものよりなる反射型液晶表示装
置。
8. The prism according to claim 5, wherein the prism-shaped concave portion is formed of a minute groove having a substantially triangular cross section, and the substantially triangular shape is based on a cross section with respect to the optical path conversion slope, and the length of the long side of the optical path conversion slope is the minute groove. 5 times or more the depth, and the light emitting means discontinuously forms a plurality of the fine grooves on the surface of the optical path control layer;
And a reflection type liquid crystal display device which is irregularly distributed.
【請求項9】 請求項1〜8において、光路制御層が透
明シートからなり、それを視認側セル基板の透明基板よ
りも大きい屈折率を有する接着層にて視認側セル基板の
外表面側に接着してなる反射型液晶表示装置。
9. The visual path control layer according to claim 1, wherein the optical path control layer is made of a transparent sheet, and is provided on the outer surface side of the visual side cell substrate by an adhesive layer having a refractive index larger than that of the transparent substrate of the visual side cell substrate. Adhesive reflective liquid crystal display.
JP2001109555A 2001-03-16 2001-04-09 Reflective liquid crystal display device Pending JP2002303866A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001109555A JP2002303866A (en) 2001-04-09 2001-04-09 Reflective liquid crystal display device
EP02005133A EP1241514A3 (en) 2001-03-16 2002-03-07 Liquid-crystal display apparatus
TW091104675A TW539897B (en) 2001-03-16 2002-03-13 Liquid-crystal display apparatus
US10/098,145 US6825895B2 (en) 2001-03-16 2002-03-15 Liquid-crystal display apparatus
KR1020020014298A KR100802761B1 (en) 2001-03-16 2002-03-16 Liquid-crystal display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109555A JP2002303866A (en) 2001-04-09 2001-04-09 Reflective liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2002303866A true JP2002303866A (en) 2002-10-18

Family

ID=18961476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109555A Pending JP2002303866A (en) 2001-03-16 2001-04-09 Reflective liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2002303866A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264978A (en) * 1992-03-19 1993-10-15 Idemitsu Kosan Co Ltd Ferroelectric liquid crystal display device
JPH09146078A (en) * 1995-11-16 1997-06-06 Canon Inc Liquid crystal element, manufacture of liquid crystal element, and liquid crystal device using the same
JP2000147499A (en) * 1998-11-09 2000-05-26 Hitachi Ltd Reflection type liquid crystal display device
JP2000155315A (en) * 1998-09-14 2000-06-06 Sharp Corp Frontlight and reflective liquid crystal display device
JP2000221501A (en) * 1999-01-29 2000-08-11 Sharp Corp Liquid crystal display device
JP2000243120A (en) * 1999-02-16 2000-09-08 Minebea Co Ltd Surface lighting system
JP2000294022A (en) * 1999-04-09 2000-10-20 Yasuhiro Koike Photo-guide element and light source device
JP2000314882A (en) * 1999-04-30 2000-11-14 Hitachi Ltd Liquid crystal display device, light guiding plate and manufacture of light guiding plate
JP2003202568A (en) * 2001-10-24 2003-07-18 Sharp Corp Light guide, its manufacturing method, surface-like light source, and display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264978A (en) * 1992-03-19 1993-10-15 Idemitsu Kosan Co Ltd Ferroelectric liquid crystal display device
JPH09146078A (en) * 1995-11-16 1997-06-06 Canon Inc Liquid crystal element, manufacture of liquid crystal element, and liquid crystal device using the same
JP2000155315A (en) * 1998-09-14 2000-06-06 Sharp Corp Frontlight and reflective liquid crystal display device
JP2000147499A (en) * 1998-11-09 2000-05-26 Hitachi Ltd Reflection type liquid crystal display device
JP2000221501A (en) * 1999-01-29 2000-08-11 Sharp Corp Liquid crystal display device
JP2000243120A (en) * 1999-02-16 2000-09-08 Minebea Co Ltd Surface lighting system
JP2000294022A (en) * 1999-04-09 2000-10-20 Yasuhiro Koike Photo-guide element and light source device
JP2000314882A (en) * 1999-04-30 2000-11-14 Hitachi Ltd Liquid crystal display device, light guiding plate and manufacture of light guiding plate
JP2003202568A (en) * 2001-10-24 2003-07-18 Sharp Corp Light guide, its manufacturing method, surface-like light source, and display device

Similar Documents

Publication Publication Date Title
JP4439084B2 (en) Liquid crystal display
US6825895B2 (en) Liquid-crystal display apparatus
JP4609962B2 (en) Optical film
US6665029B2 (en) Optical path changing film and reflective liquid-crystal display device including same
JP4197572B2 (en) Reflective liquid crystal display
JP2001174815A (en) Liquid crystal display device
JP4144829B2 (en) Reflective and transmissive liquid crystal display device
JP2002277615A (en) Optical film and liquid crystal display
JP2003066445A (en) Liquid crystal display device
JP4548628B2 (en) Optical film
JP2003131227A (en) Liquid crystal display device
JP4462517B2 (en) Optical film and liquid crystal display device
JP4814451B2 (en) Liquid crystal display
JP2001194529A (en) Optical path conversion polarizing plate
JP4978918B2 (en) Liquid crystal display
JP4916054B2 (en) Transmission type liquid crystal display device
JP4968762B2 (en) External light / illumination type liquid crystal display device
JP4845920B2 (en) Reflective and transmissive liquid crystal display device
JP4462514B2 (en) Optical film and liquid crystal display device
JP2002303866A (en) Reflective liquid crystal display device
JP2003121841A (en) Liquid crystal display device
JP2001350016A (en) Polarizing plate for conversion of optical path
JP2003131214A (en) Reflection type liquid crystal display device
JP2008262224A (en) Reflective liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710